
R Data Import/Export

Version 4.5.2 Patched (2026-01-19)

R Core Team

This manual is for R, version 4.5.2 Patched (2026-01-19).

Copyright © 2000–2026 R Core Team

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the R Core Team.

Table of Contents

 	Acknowledgements

 	1 Introduction

 	1.1 Imports

 	1.1.1 Encodings

 	1.2 Export to text files

 	1.3 XML

 	2 Spreadsheet-like data

 	2.1 Variations on read.table

 	2.2 Fixed-width-format files

 	2.3 Data Interchange Format (DIF)

 	2.4 Using scan directly

 	2.5 Re-shaping data

 	2.6 Flat contingency tables

 	3 Importing from other statistical systems

 	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

 	3.2 Octave

 	4 Relational databases

 	4.1 Why use a database?

 	4.2 Overview of RDBMSs

 	4.2.1 SQL queries

 	4.2.2 Data types

 	4.3 R interface packages

 	4.3.1 Packages using DBI

 	4.3.2 Package RODBC

 	5 Binary files

 	5.1 Binary data formats

 	5.2 dBase files (DBF)

 	6 Image files

 	7 Connections

 	7.1 Types of connections

 	7.2 Output to connections

 	7.3 Input from connections

 	7.3.1 Pushback

 	7.4 Listing and manipulating connections

 	7.5 Binary connections

 	7.5.1 Special values

 	8 Network interfaces

 	8.1 Reading from sockets

 	8.2 Using download.file

 	9 Reading Excel spreadsheets

 	References

 	Function and variable index

 	Concept index

Acknowledgements

The relational databases part of this manual is based in part on an
earlier manual by Douglas Bates and Saikat DebRoy. The
principal author of this manual was Brian Ripley.

Many volunteers have contributed to the packages used here. The
principal authors of the packages mentioned are

	DBI:

	David A. James

	dataframes2xls:

	Guido van Steen

	foreign:

	Thomas Lumley,
Saikat DebRoy,
Douglas Bates,
Duncan Murdoch and
Roger Bivand

	gdata:

	Gregory R. Warnes

	ncdf4:

	David Pierce

	rJava:

	Simon Urbanek

	RJDBC:

	Simon Urbanek

	RMySQL:

	David James and
Saikat DebRoy

	RNetCDF:

	Pavel Michna

	RODBC:

	Michael Lapsley and
Brian Ripley

	ROracle:

	David A. James

	RPostgreSQL:

	Sameer Kumar Prayaga and
Tomoaki Nishiyama

	RSPerl:

	Duncan Temple Lang

	RSPython:

	Duncan Temple Lang

	RSQLite:

	David A. James

	SJava:

	John Chambers and
Duncan Temple Lang

	WriteXLS:

	Marc Schwartz

	XLConnect:

	Mirai Solutions GmbH

	XML:

	Duncan Temple Lang

Brian Ripley is the author of the support for connections.

1 Introduction

Reading data into a statistical system for analysis and exporting the
results to some other system for report writing can be frustrating tasks
that can take far more time than the statistical analysis itself, even
though most readers will find the latter far more appealing.

This manual describes the import and export facilities available either
in R itself or via packages which are available from CRAN
or elsewhere.

Unless otherwise stated, everything described in this manual is (at
least in principle) available on all platforms running R.

In general, statistical systems like R are not particularly well
suited to manipulations of large-scale data. Some other systems are
better than R at this, and part of the thrust of this manual is to
suggest that rather than duplicating functionality in R we can make
another system do the work! (For example Therneau & Grambsch (2000)
commented that they preferred to do data manipulation in SAS and then
use package survival in S for the analysis.) Database
manipulation systems are often very suitable for manipulating and
extracting data: several packages to interact with DBMSs are discussed
here.

There are packages to allow functionality developed in languages such as
Java, perl and python to be directly integrated
with R code, making the use of facilities in these languages even
more appropriate. (See the rJava package from CRAN.)

It is also worth remembering that R like S comes from the Unix
tradition of small re-usable tools, and it can be rewarding to use tools
such as awk and perl to manipulate data before import or
after export. The case study in Becker, Chambers & Wilks (1988, Chapter
9) is an example of this, where Unix tools were used to check and
manipulate the data before input to S. The traditional Unix tools
are now much more widely available, including for Windows.

This manual was first written in 2000, and the number of scope of R
packages has increased a hundredfold since. For specialist data formats
it is worth searching to see if a suitable package already exists.

1.1 Imports

The easiest form of data to import into R is a simple text file, and
this will often be acceptable for problems of small or medium scale.
The primary function to import from a text file is scan, and this
underlies most of the more convenient functions discussed in
Spreadsheet-like data.

However, all statistical consultants are familiar with being presented
by a client with a memory stick (formerly, a floppy disc or CD-R) of
data in some proprietary binary format, for example ‘an Excel
spreadsheet’ or ‘an SPSS file’. Often the simplest thing to do is to
use the originating application to export the data as a text file (and
statistical consultants will have copies of the most common applications
on their computers for that purpose). However, this is not always
possible, and Importing from other statistical systems discusses
what facilities are available to access such files directly from R.
For Excel spreadsheets, the available methods are summarized in
Reading Excel spreadsheets.

In a few cases, data have been stored in a binary form for compactness
and speed of access. One application of this that we have seen several
times is imaging data, which is normally stored as a stream of bytes as
represented in memory, possibly preceded by a header. Such data formats
are discussed in Binary files and Binary connections.

For much larger databases it is common to handle the data using a
database management system (DBMS). There is once again the option of
using the DBMS to extract a plain file, but for many such DBMSs the
extraction operation can be done directly from an R package:
See Relational databases. Importing data via network connections is
discussed in Network interfaces.

1.1.1 Encodings

Unless the file to be imported from is entirely in ASCII, it
is usually necessary to know how it was encoded. For text files, a good
way to find out something about its structure is the file
command-line tool (for Windows, included in Rtools). This
reports something like

text.Rd: UTF-8 Unicode English text
text2.dat: ISO-8859 English text
text3.dat: Little-endian UTF-16 Unicode English character data,
 with CRLF line terminators
intro.dat: UTF-8 Unicode text
intro.dat: UTF-8 Unicode (with BOM) text

Modern Unix-alike systems, including macOS, are likely to produce
UTF-8 files. Windows may produce what it calls ‘Unicode’ files
(UCS-2LE or just possibly UTF-16LE1). Otherwise most files will be in a
8-bit encoding unless from a Chinese/Japanese/Korean locale (which have
a wide range of encodings in common use). It is not possible to
automatically detect with certainty which 8-bit encoding (although
guesses may be possible and file may guess as it did in the
example above), so you may simply have to ask the originator for some
clues (e.g. ‘Russian on Windows’).

‘BOMs’ (Byte Order Marks,
https://en.wikipedia.org/wiki/Byte_order_mark) cause problems for
Unicode files. In the Unix world BOMs are rarely used, whereas in the
Windows world they almost always are for UCS-2/UTF-16 files, and often
are for UTF-8 files. The file utility will not even recognize
UCS-2 files without a BOM, but many other utilities will refuse to read
files with a BOM and the IANA standards for UTF-16LE
and UTF-16BE prohibit it. We have too often been reduced to
looking at the file with the command-line utility od or a hex
editor to work out its encoding.

Note that utf8 is not a valid encoding name (UTF-8 is),
and macintosh is the most portable name for what is sometimes
called ‘Mac Roman’ encoding.

1.2 Export to text files

Exporting results from R is usually a less contentious task, but
there are still a number of pitfalls. There will be a target
application in mind, and often a text file will be the most convenient
interchange vehicle. (If a binary file is required, see Binary files.)

Function cat underlies the functions for exporting data. It
takes a file argument, and the append argument allows a
text file to be written via successive calls to cat. Better,
especially if this is to be done many times, is to open a file
connection for writing or appending, and cat to that connection,
then close it.

The most common task is to write a matrix or data frame to file as a
rectangular grid of numbers, possibly with row and column labels. This
can be done by the functions write.table and write.
Function write just writes out a matrix or vector in a specified
number of columns (and transposes a matrix). Function
write.table is more convenient, and writes out a data frame (or
an object that can be coerced to a data frame) with row and column
labels.

There are a number of issues that need to be considered in writing out a
data frame to a text file.

	
Precision

Most of the conversions of real/complex numbers done by these functions
is to full precision, but those by write are governed by the
current setting of options(digits). For more control, use
format on a data frame, possibly column-by-column.

	 Header line

R prefers the header line to have no entry for the row names, so the
file looks like

 dist climb time
Greenmantle 2.5 650 16.083
 ...

Some other systems require a (possibly empty) entry for the row names, which
is what write.table will provide if argument col.names = NA
is specified. Excel is one such system.

	 Separator

A common field separator to use in the file is a comma, as that is
unlikely to appear in any of the fields in English-speaking countries.
Such files are known as CSV (comma separated values) files, and wrapper
function write.csv provides appropriate defaults. In some
locales the comma is used as the decimal point (set this in
write.table by dec = ",") and there CSV files use the
semicolon as the field separator: use write.csv2 for appropriate
defaults. There is an IETF standard for CSV files (which mandates
commas and CRLF line endings, for which use eol = "\r\n"), RFC4180
(see https://www.rfc-editor.org/rfc/rfc4180), but what is more
important in practice is that the file is readable by the application it
is targeted at.

Using a semicolon or tab (sep = "\t") are probably the safest
options.

	 Missing values

By default missing values are output as NA, but this may be
changed by argument na. Note that NaNs are treated as
NA by write.table, but not by cat nor write.

	 Quoting strings

By default strings are quoted (including the row and column names).
Argument quote controls if character and factor variables are
quoted: some programs, for example Mondrian
(https://en.wikipedia.org/wiki/Mondrian_(software)), do not accept
quoted strings.

Some care is needed if the strings contain embedded quotes. Three
useful forms are

> df <- data.frame(a = I("a \" quote"))
> write.table(df)
"a"
"1" "a \" quote"
> write.table(df, qmethod = "double")
"a"
"1" "a "" quote"
> write.table(df, quote = FALSE, sep = ",")
a
1,a " quote

The second is the form of escape commonly used by spreadsheets.

	 Encodings

Text files do not contain metadata on their encodings, so for
non-ASCII data the file needs to be targetted to the
application intended to read it. All of these functions can write to a
connection which allows an encoding to be specified for the file,
and write.table has a fileEncoding argument to make this
easier.

The hard part is to know what file encoding to use. For use on Windows,
it is best to use what Windows calls ‘Unicode’2, that is "UTF-16LE". Using UTF-8 is a good way
to make portable files that will not easily be confused with any other
encoding, but even macOS applications (where UTF-8 is the system
encoding) may not recognize them, and Windows applications are most
unlikely to. Apparently Excel:mac 2004/8 expected .csv files in
"macroman" encoding (the encoding used in much earlier versions
of Mac OS).

Function write.matrix in package MASS provides a
specialized interface for writing matrices, with the option of writing
them in blocks and thereby reducing memory usage.

It is possible to use sink to divert the standard R output to
a file, and thereby capture the output of (possibly implicit)
print statements. This is not usually the most efficient route,
and the options(width) setting may need to be increased.

Function write.foreign in package foreign uses
write.table to produce a text file and also writes a code file
that will read this text file into another statistical package. There is
currently support for export to SAS, SPSS and Stata.

1.3 XML

When reading data from text files, it is the responsibility of the user
to know and to specify the conventions used to create that file,
e.g. the comment character, whether a header line is present, the value
separator, the representation for missing values (and so on) described
in Export to text files. A markup language which can be used to
describe not only content but also the structure of the content can
make a file self-describing, so that one need not provide these details
to the software reading the data.

The eXtensible Markup Language – more commonly known simply as
XML – can be used to provide such structure, not only for
standard datasets but also more complex data structures.
XML is becoming extremely popular and is emerging as a
standard for general data markup and exchange. It is being used by
different communities to describe geographical data such as maps,
graphical displays, mathematics and so on.

XML provides a way to specify the file’s encoding, e.g.

<?xml version="1.0" encoding="UTF-8"?>

although it does not require it.

The XML package provides general facilities for reading and
writing XML documents within R.
Package StatDataML on CRAN is one example building
on XML. Another interface to the libxml2 C library is
provided by package xml2.

YAML is another system for structuring text data, with
emphasis on human-readability: it is supported by package
yaml.

Footnotes

(1)

the
distinction is subtle,
https://en.wikipedia.org/wiki/UTF-16/UCS-2, and the use of
surrogate pairs is very rare.

(2)

Even then,
Windows applications may expect a Byte Order Mark which the
implementation of iconv used by R may or may not add depending
on the platform.

2 Spreadsheet-like data

In Export to text files we saw a number of variations on the
format of a spreadsheet-like text file, in which the data are presented
in a rectangular grid, possibly with row and column labels. In this
section we consider importing such files into R.

2.1 Variations on read.table

The function read.table is the most convenient way to read in a
rectangular grid of data. Because of the many possibilities, there are
several other functions that call read.table but change a group
of default arguments.

Beware that read.table is an inefficient way to read in
very large numerical matrices: see scan below.

Some of the issues to consider are:

	 Header line

We recommend that you specify the header argument explicitly,
Conventionally the header line has entries only for the columns and not
for the row labels, so is one field shorter than the remaining lines.
(If R sees this, it sets header = TRUE.) If presented with a
file that has a (possibly empty) header field for the row labels, read
it in by something like

read.table("file.dat", header = TRUE, row.names = 1)

Column names can be given explicitly via the col.names; explicit
names override the header line (if present).

	 Separator

Normally looking at the file will determine the field separator to be
used, but with white-space separated files there may be a choice between
the default sep = "" which uses any white space (spaces, tabs or
newlines) as a separator, sep = " " and sep = "\t". Note
that the choice of separator affects the input of quoted strings.

If you have a tab-delimited file containing empty fields be sure to use
sep = "\t".

	 Quoting

By default character strings can be quoted by either ‘"’ or
‘'’, and in each case all the characters up to a matching quote are
taken as part of the character string. The set of valid quoting
characters (which might be none) is controlled by the quote
argument. For sep = "\n" the default is changed to quote =
"".

If no separator character is specified, quotes can be escaped within
quoted strings by immediately preceding them by ‘\’, C-style.

If a separator character is specified, quotes can be escaped within
quoted strings by doubling them as is conventional in spreadsheets. For
example

'One string isn''t two',"one more"

can be read by

read.table("testfile", sep = ",")

This does not work with the default separator.

	 Missing values

By default the file is assumed to contain the character string NA
to represent missing values, but this can be changed by the argument
na.strings, which is a vector of one or more character
representations of missing values.

Empty fields in numeric columns are also regarded as missing values.

In numeric columns, the values NaN, Inf and -Inf are
accepted.

	 Unfilled lines

It is quite common for a file exported from a spreadsheet to have all
trailing empty fields (and their separators) omitted. To read such
files set fill = TRUE.

	 White space in character fields

If a separator is specified, leading and trailing white space in
character fields is regarded as part of the field. To strip the space,
use argument strip.white = TRUE.

	 Blank lines

By default, read.table ignores empty lines. This can be changed
by setting blank.lines.skip = FALSE, which will only be useful in
conjunction with fill = TRUE, perhaps to use blank rows to
indicate missing cases in a regular layout.

	 Classes for the variables

Unless you take any special action, read.table reads all the
columns as character vectors and then tries to select a suitable class
for each variable in the data frame. It tries in turn logical,
integer, numeric and complex, moving on if any
entry is not missing and cannot be converted.3
If all of these fail, the variable is converted to a factor.

Arguments colClasses and as.is provide greater control.
Specifying as.is = TRUE suppresses conversion of character
vectors to factors (only). Using colClasses allows the desired
class to be set for each column in the input: it will be faster and use
less memory.

Note that colClasses and as.is are specified per
column, not per variable, and so include the column of row names
(if any).

	 Comments

By default, read.table uses ‘#’ as a comment character,
and if this is encountered (except in quoted strings) the rest of the
line is ignored. Lines containing only white space and a comment are
treated as blank lines.

If it is known that there will be no comments in the data file, it is
safer (and may be faster) to use comment.char = "".

	 Escapes

Many OSes have conventions for using backslash as an escape character in
text files, but Windows does not (and uses backslash in path names).
It is optional in R whether such conventions are applied to data files.

Both read.table and scan have a logical argument
allowEscapes. This is false by default, and backslashes are then
only interpreted as (under circumstances described above) escaping
quotes. If this set to be true, C-style escapes are interpreted, namely
the control characters \a, \b, \f, \n, \r, \t, \v and octal and
hexadecimal representations like \040 and \0x2A. Any
other escaped character is treated as itself, including backslash. Note
that Unicode escapes such as \uxxxx are never interpreted.

	 Encoding

If the file contains non-ASCII character fields, ensure that
it is read in the correct encoding. This is mainly an issue for reading
legacy Latin-1 files in a UTF-8 locale, which can be done by something like

read.table("file.dat", fileEncoding = "latin1")

Note that this will work in any locale which can represent Latin-1
strings, but not many Greek/Russian/Chinese/Japanese … locales.

Other examples for the fileEncoding argument include:

fileEncoding = "UCS-2LE" # Windows 'Unicode' files
fileEncoding = "UTF-8"

If you know (correctly) the file’s encoding this will almost always
work. However, we know of one exception, UTF-8 files with a BOM. Some
people claim that UTF-8 files should never have a BOM, but some software
(apparently including Excel:mac) uses them, and many Unix-alike OSes do
not accept them. So faced with a file which file reports as

intro.dat: UTF-8 Unicode (with BOM) text

it can be read on Windows by

read.table("intro.dat", fileEncoding = "UTF-8")

but on a Unix-alike might need

read.table("intro.dat", fileEncoding = "UTF-8-BOM")

(This would most likely work without specifying an encoding in a UTF-8 locale.)

Convenience functions read.csv and read.delim provide
arguments to read.table appropriate for CSV and tab-delimited
files exported from spreadsheets in English-speaking locales. The
variations read.csv2 and read.delim2 are appropriate for
use in those locales where the comma is used for the decimal point and
(for read.csv2) for spreadsheets which use semicolons to separate
fields.

If the options to read.table are specified incorrectly, the error
message will usually be of the form

Error in scan(file = file, what = what, sep = sep, :
 line 1 did not have 5 elements

or

Error in read.table("files.dat", header = TRUE) :
 more columns than column names

This may give enough information to find the problem, but the auxiliary
function count.fields can be useful to investigate further.

Efficiency can be important when reading large data grids. It will help
to specify comment.char = "", colClasses as one of the
atomic vector types (logical, integer, numeric, complex, character or
perhaps raw) for each column, and to give nrows, the number of
rows to be read (and a mild over-estimate is better than not specifying
this at all). See the examples in later sections.

2.2 Fixed-width-format files

Sometimes data files have no field delimiters but have fields in
pre-specified columns. This was very common in the days of punched
cards, and is still sometimes used to save file space.

Function read.fwf provides a simple way to read such files,
specifying a vector of field widths. The function reads the file into
memory as whole lines, splits the resulting character strings, writes
out a temporary tab-separated file and then calls read.table.
This is adequate for small files, but for anything more complicated we
recommend using the facilities of a language like perl to
pre-process the file.

Function read.fortran is a similar function for fixed-format files,
using Fortran-style column specifications.

2.3 Data Interchange Format (DIF)

An old format sometimes used for spreadsheet-like data is DIF, or Data Interchange
format.

Function read.DIF provides a simple way to read such files. It takes
arguments similar to read.table for assigning types to each of the columns.

On Windows, spreadsheet programs often store spreadsheet data copied to
the clipboard in this format; read.DIF("clipboard") can read it
from there directly. It is slightly more robust than
read.table("clipboard") in handling spreadsheets with empty
cells.

2.4 Using scan directly

Both read.table and read.fwf use scan to read the
file, and then process the results of scan. They are very
convenient, but sometimes it is better to use scan directly.

Function scan has many arguments, most of which we have already
covered under read.table. The most crucial argument is
what, which specifies a list of modes of variables to be read
from the file. If the list is named, the names are used for the
components of the returned list. Modes can be numeric, character or
complex, and are usually specified by an example, e.g. 0,
"" or 0i. For example

cat("2 3 5 7", "11 13 17 19", file="ex.dat", sep="\n")
scan(file="ex.dat", what=list(x=0, y="", z=0), flush=TRUE)

returns a list with three components and discards the fourth column in
the file.

There is a function readLines which will be more convenient if
all you want is to read whole lines into R for further processing.

One common use of scan is to read in a large matrix. Suppose
file matrix.dat just contains the numbers for a 200 x 2000
matrix. Then we can use

A <- matrix(scan("matrix.dat", n = 200*2000), 200, 2000, byrow = TRUE)

On one test this took 1 second (under Linux, 3 seconds under Windows on
the same machine) whereas

A <- as.matrix(read.table("matrix.dat"))

took 10 seconds (and more memory), and

A <- as.matrix(read.table("matrix.dat", header = FALSE, nrows = 200,
 comment.char = "", colClasses = "numeric"))

took 7 seconds. The difference is almost entirely due to the overhead
of reading 2000 separate short columns: were they of length 2000,
scan took 9 seconds whereas read.table took 18 if used
efficiently (in particular, specifying colClasses) and 125 if
used naively.

Note that timings can depend on the type read and the data.
Consider reading a million distinct integers:

writeLines(as.character((1+1e6):2e6), "ints.dat")
xi <- scan("ints.dat", what=integer(0), n=1e6) # 0.77s
xn <- scan("ints.dat", what=numeric(0), n=1e6) # 0.93s
xc <- scan("ints.dat", what=character(0), n=1e6) # 0.85s
xf <- as.factor(xc) # 2.2s
DF <- read.table("ints.dat") # 4.5s

and a million examples of a small set of codes:

code <- c("LMH", "SJC", "CHCH", "SPC", "SOM")
writeLines(sample(code, 1e6, replace=TRUE), "code.dat")
y <- scan("code.dat", what=character(0), n=1e6) # 0.44s
yf <- as.factor(y) # 0.21s
DF <- read.table("code.dat") # 4.9s
DF <- read.table("code.dat", nrows=1e6) # 3.6s

Note that these timings depend heavily on the operating system (the
basic reads in Windows take at least as twice as long as these Linux
times) and on the precise state of the garbage collector.

2.5 Re-shaping data

Sometimes spreadsheet data is in a compact format that gives the
covariates for each subject followed by all the observations on that
subject. R’s modelling functions need observations in a single
column. Consider the following sample of data from repeated MRI brain
measurements

 Status Age V1 V2 V3 V4
 P 23646 45190 50333 55166 56271
 CC 26174 35535 38227 37911 41184
 CC 27723 25691 25712 26144 26398
 CC 27193 30949 29693 29754 30772
 CC 24370 50542 51966 54341 54273
 CC 28359 58591 58803 59435 61292
 CC 25136 45801 45389 47197 47126

There are two covariates and up to four measurements on each subject.
The data were exported from Excel as a file mr.csv.

We can use stack to help manipulate these data to give a single
response.

zz <- read.csv("mr.csv", strip.white = TRUE)
zzz <- cbind(zz[gl(nrow(zz), 1, 4*nrow(zz)), 1:2], stack(zz[, 3:6]))

with result

 Status Age values ind
X1 P 23646 45190 V1
X2 CC 26174 35535 V1
X3 CC 27723 25691 V1
X4 CC 27193 30949 V1
X5 CC 24370 50542 V1
X6 CC 28359 58591 V1
X7 CC 25136 45801 V1
X11 P 23646 50333 V2
...

Function unstack goes in the opposite direction, and may be
useful for exporting data.

Another way to do this is to use the function
reshape, by

> reshape(zz, idvar="id",timevar="var",
 varying=list(c("V1","V2","V3","V4")),direction="long")
 Status Age var V1 id
1.1 P 23646 1 45190 1
2.1 CC 26174 1 35535 2
3.1 CC 27723 1 25691 3
4.1 CC 27193 1 30949 4
5.1 CC 24370 1 50542 5
6.1 CC 28359 1 58591 6
7.1 CC 25136 1 45801 7
1.2 P 23646 2 50333 1
2.2 CC 26174 2 38227 2
...

The reshape function has a more complicated syntax than
stack but can be used for data where the ‘long’ form has more
than the one column in this example. With direction="wide",
reshape can also perform the opposite transformation.

Some people prefer the tools in packages reshape,
reshape2 and plyr.

2.6 Flat contingency tables

Displaying higher-dimensional contingency tables in array form typically
is rather inconvenient. In categorical data analysis, such information
is often represented in the form of bordered two-dimensional arrays with
leading rows and columns specifying the combination of factor levels
corresponding to the cell counts. These rows and columns are typically
“ragged” in the sense that labels are only displayed when they change,
with the obvious convention that rows are read from top to bottom and
columns are read from left to right. In R, such “flat” contingency
tables can be created using ftable,

which creates objects of class "ftable" with an appropriate print
method.

As a simple example, consider the R standard data set
UCBAdmissions which is a 3-dimensional contingency table
resulting from classifying applicants to graduate school at UC Berkeley
for the six largest departments in 1973 classified by admission and sex.

> data(UCBAdmissions)
> ftable(UCBAdmissions)
 Dept A B C D E F
Admit Gender
Admitted Male 512 353 120 138 53 22
 Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351
 Female 19 8 391 244 299 317

The printed representation is clearly more useful than displaying the
data as a 3-dimensional array.

There is also a function read.ftable for reading in flat-like
contingency tables from files.

This has additional arguments for dealing with variants on how exactly
the information on row and column variables names and levels is
represented. The help page for read.ftable has some useful
examples. The flat tables can be converted to standard contingency
tables in array form using as.table.

Note that flat tables are characterized by their “ragged” display of
row (and maybe also column) labels. If the full grid of levels of the
row variables is given, one should instead use read.table to read
in the data, and create the contingency table from this using
xtabs.

Footnotes

(3)

This is normally
fast as looking at the first entry rules out most of the possibilities.

3 Importing from other statistical systems

In this chapter we consider the problem of reading a binary data file
written by another statistical system. This is often best avoided, but
may be unavoidable if the originating system is not available.

In all cases the facilities described were written for data files from
specific versions of the other system (often in the early 2000s), and
have not necessarily been updated for the most recent versions of the
other system.

3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

The recommended package foreign provides import facilities for
files produced by these statistical systems, and for export to Stata. In
some cases these functions may require substantially less memory than
read.table would. write.foreign (See Export to text files) provides an export mechanism with support currently for
SAS, SPSS and Stata.

EpiInfo versions 5 and 6 stored data in a self-describing fixed-width
text format. read.epiinfo will read these .REC files into
an R data frame. EpiData also produces data in this format.

Function read.mtp imports a ‘Minitab Portable Worksheet’. This
returns the components of the worksheet as an R list.

Function read.xport reads a file in SAS Transport (XPORT) format
and return a list of data frames. If SAS is available on your system,
function read.ssd can be used to create and run a SAS script that
saves a SAS permanent dataset (.ssd or .sas7bdat) in
Transport format. It then calls read.xport to read the resulting
file. (Package Hmisc has a similar function sas.get, also
running SAS.) For those without access to SAS but running on Windows,
the SAS System Viewer (a zero-cost download) can be used to open SAS
datasets and export them to e.g. .csv format.

Function read.S which can read binary objects produced by S-PLUS
3.x, 4.x or 2000 on (32-bit) Unix or Windows (and can read them on a
different OS). This is able to read many but not all S objects: in
particular it can read vectors, matrices and data frames and lists
containing those.

Function data.restore reads S-PLUS data dumps (created by
data.dump) with the same restrictions (except that dumps from the
Alpha platform can also be read). It should be possible to read data
dumps from S-PLUS 5.x and later written with data.dump(oldStyle=T).

If you have access to S-PLUS, it is usually more reliable to dump
the object(s) in S-PLUS and source the dump file in R. For
S-PLUS 5.x and later you may need to use dump(..., oldStyle=T),
and to read in very large objects it may be preferable to use the dump
file as a batch script rather than use the source function.

Function read.spss can read files created by the ‘save’ and
‘export’ commands in SPSS. It returns a list with one
component for each variable in the saved data set. SPSS
variables with value labels are optionally converted to R factors.

SPSS Data Entry is an application for creating data entry
forms. By default it creates data files with extra formatting
information that read.spss cannot handle, but it is possible to
export the data in an ordinary SPSS format.

Some third-party applications claim to produce data ‘in SPSS format’ but
with differences in the formats: read.spss may or may not be able
to handle these.

Stata .dta files are a binary file format. Files from versions 5
up to 12 of Stata can be read and written by functions read.dta
and write.dta. Stata variables with value labels are optionally
converted to (and from) R factors. For Stata versions 13 and later
see CRAN packages readstata13 and haven.

read.systat reads those Systat SAVE files that are
rectangular data files (mtype = 1) written on little-endian
machines (such as from Windows). These have extension .sys
or (more recently) .syd.

3.2 Octave

Octave is a numerical linear algebra system
(https://octave.org/), and function read.octave in
package foreign can read in files in Octave text data format
created using the Octave command save -ascii, with support for
most of the common types of variables, including the standard atomic
(real and complex scalars, matrices, and N-d arrays, strings,
ranges, and boolean scalars and matrices) and recursive (structs, cells,
and lists) ones.

4 Relational databases

4.1 Why use a database?

There are limitations on the types of data that R handles well.
Since all data being manipulated by R are resident in memory, and
several copies of the data can be created during execution of a
function, R is not well suited to extremely large data sets. Data
objects that are more than a (few) hundred megabytes in size can cause
R to run out of memory, particularly on a 32-bit operating system.

R does not easily support concurrent access to data. That is, if
more than one user is accessing, and perhaps updating, the same data,
the changes made by one user will not be visible to the others.

R does support persistence of data, in that you can save a data
object or an entire worksheet from one session and restore it at the
subsequent session, but the format of the stored data is specific to
R and not easily manipulated by other systems.

Database management systems (DBMSs) and, in particular, relational
DBMSs (RDBMSs) are designed to do all of these things well.
Their strengths are

	 To provide fast access to selected parts of large databases.

	 Powerful ways to summarize and cross-tabulate columns in databases.

	 Store data in more organized ways than the rectangular grid model of
spreadsheets and R data frames.

	 Concurrent access from multiple clients running on multiple hosts while
enforcing security constraints on access to the data.

	 Ability to act as a server to a wide range of clients.

The sort of statistical applications for which DBMS might be used are to
extract a 10% sample of the data, to cross-tabulate data to produce a
multi-dimensional contingency table, and to extract data group by group
from a database for separate analysis.

Increasingly OSes are themselves making use of DBMSs for these reasons,
so it is nowadays likely that one will be already installed on your
(non-Windows) OS. Akonadi
is used by KDE4 to store personal information. Several macOS
applications, including Mail and Address Book, use SQLite.

4.2 Overview of RDBMSs

Traditionally there had been large (and expensive) commercial RDBMSs
(Informix;
Oracle;
Sybase;
IBM’s DB2;
Microsoft SQL
Server on Windows) and academic and small-system databases (such as
MySQL4, PostgreSQL, Microsoft
Access, …), the former marked out by much greater emphasis on data
security features. The line is blurring, with MySQL and PostgreSQL
having more and more high-end features, and free ‘express’ versions
being made available for the commercial DBMSs.

There are other commonly used data sources, including spreadsheets,
non-relational databases and even text files (possibly compressed).
Open Database Connectivity (ODBC) is a standard to use all of
these data sources. It originated on Windows (see
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc)
but is also implemented on Linux/Unix/macOS.

All of the packages described later in this chapter provide clients to
client/server databases. The database can reside on the same machine or
(more often) remotely. There is an ISO standard (in fact
several: SQL92 is ISO/IEC 9075, also known as
ANSI X3.135-1992, and SQL99 is coming into use) for
an interface language called SQL (Structured Query Language,
sometimes pronounced ‘sequel’: see Bowman et al. 1996 and Kline
and Kline 2001) which these DBMSs support to varying degrees.

4.2.1 SQL queries

The more comprehensive R interfaces generate SQL behind the
scenes for common operations, but direct use of SQL is needed
for complex operations in all. Conventionally SQL is written
in upper case, but many users will find it more convenient to use lower
case in the R interface functions.

A relational DBMS stores data as a database of tables (or
relations) which are rather similar to R data frames, in that
they are made up of columns or fields of one type
(numeric, character, date, currency, …) and rows or
records containing the observations for one entity.

SQL ‘queries’ are quite general operations on a relational
database. The classical query is a SELECT statement of the type

SELECT State, Murder FROM USArrests WHERE Rape > 30 ORDER BY Murder

SELECT t.sch, c.meanses, t.sex, t.achieve
 FROM student as t, school as c WHERE t.sch = c.id

SELECT sex, COUNT(*) FROM student GROUP BY sex

SELECT sch, AVG(sestat) FROM student GROUP BY sch LIMIT 10

The first of these selects two columns from the R data frame
USArrests that has been copied across to a database table,
subsets on a third column and asks the results be sorted. The second
performs a database join on two tables student and
school and returns four columns. The third and fourth queries do
some cross-tabulation and return counts or averages. (The five
aggregation functions are COUNT(*) and SUM, MAX, MIN and AVG, each
applied to a single column.)

SELECT queries use FROM to select the table, WHERE to specify a
condition for inclusion (or more than one condition separated by AND or
OR), and ORDER BY to sort the result. Unlike data frames, rows in RDBMS
tables are best thought of as unordered, and without an ORDER BY
statement the ordering is indeterminate. You can sort (in
lexicographical order) on more than one column by separating them by
commas. Placing DESC after an ORDER BY puts the sort in descending
order.

SELECT DISTINCT queries will only return one copy of each distinct row
in the selected table.

The GROUP BY clause selects subgroups of the rows according to the
criterion. If more than one column is specified (separated by commas)
then multi-way cross-classifications can be summarized by one of the
five aggregation functions. A HAVING clause allows the select to
include or exclude groups depending on the aggregated value.

If the SELECT statement contains an ORDER BY statement that produces a
unique ordering, a LIMIT clause can be added to select (by number) a
contiguous block of output rows. This can be useful to retrieve rows a
block at a time. (It may not be reliable unless the ordering is unique,
as the LIMIT clause can be used to optimize the query.)

There are queries to create a table (CREATE TABLE, but usually one
copies a data frame to the database in these interfaces), INSERT or
DELETE or UPDATE data. A table is destroyed by a DROP TABLE ‘query’.

Kline and Kline (2001) discuss the details of the implementation of SQL
in Microsoft SQL Server 2000, Oracle, MySQL and PostgreSQL.

4.2.2 Data types

Data can be stored in a database in various data types. The range of
data types is DBMS-specific, but the SQL standard defines many
types, including the following that are widely implemented (often not by
the SQL name).

	float(p)

	Real number, with optional precision. Often called real or
double or double precision.

	integer

	32-bit integer. Often called int.

	smallint

	16-bit integer

	character(n)

	fixed-length character string. Often called char.

	character varying(n)

	variable-length character string. Often called varchar. Almost
always has a limit of 255 chars.

	boolean

	true or false. Sometimes called bool or bit.

	date

	calendar date

	time

	time of day

	timestamp

	date and time

There are variants on time and timestamp, with
timezone. Other types widely implemented are text and
blob, for large blocks of text and binary data, respectively.

The more comprehensive of the R interface packages hide the type
conversion issues from the user.

4.3 R interface packages

There are several packages available on CRAN to help R
communicate with DBMSs. They provide different levels of abstraction.
Some provide means to copy whole data frames to and from databases. All
have functions to select data within the database via SQL
queries, and to retrieve the result as a whole as a
data frame or in pieces (usually as groups of rows).

All except RODBC are tied to one DBMS, but there has been a
proposal for a unified ‘front-end’ package DBI
(https://developer.r-project.org/db/) in conjunction with a
‘back-end’, the most developed of which is RMySQL. Also on
CRAN are the back-ends ROracle,
RPostgreSQL and RSQLite (which works with the
bundled DBMS SQLite, https://www.sqlite.org/index.html) and
RJDBC (which uses Java and can connect to any DBMS that has a
JDBC driver).

PL/R (https://github.com/postgres-plr/plr) is a project to
embed R into PostgreSQL.

Package RMongo provides an R interface to a Java client for
‘MongoDB’ (https://en.wikipedia.org/wiki/MongoDB) databases,
which are queried using JavaScript rather than SQL. Package
mongolite is another client using mongodb’s C driver.

4.3.1 Packages using DBI

Package RMySQL on CRAN provides an interface to the
MySQL database system (see https://www.mysql.com and Dubois,
2000) or its fork MariaDB (see https://mariadb.org/). The
description here applies to versions 0.5-0 and later: earlier
versions had a substantially different interface. The current version
requires the DBI package, and this description will apply with
minor changes to all the other back-ends to DBI.

MySQL exists on Unix/Linux/macOS and Windows: there is a ‘Community
Edition’ released under GPL but commercial licenses are also available.
MySQL was originally a ‘light and lean’ database. (It preserves the
case of names where the operating file system is case-sensitive, so not
on Windows.)

The call dbDriver("MySQL") returns a database connection manager
object, and then a call to dbConnect opens a database connection
which can subsequently be closed by a call to the generic function
dbDisconnect. Use dbDriver("Oracle"),
dbDriver("PostgreSQL") or dbDriver("SQLite") with those
DBMSs and packages ROracle, RPostgreSQL or RSQLite
respectively.

SQL queries can be sent by either dbSendQuery or
dbGetQuery. dbGetquery sends the query and retrieves the
results as a data frame. dbSendQuery sends the query and returns
an object of class inheriting from "DBIResult" which can be used
to retrieve the results, and subsequently used in a call to
dbClearResult to remove the result.

Function fetch is used to retrieve some or all of the rows in the
query result, as a list. The function dbHasCompleted indicates if
all the rows have been fetched, and dbGetRowCount returns the
number of rows in the result.

These are convenient interfaces to read/write/test/delete tables in the
database. dbReadTable and dbWriteTable copy to and from
an R data frame, mapping the row names of the data frame to the field
row_names in the MySQL table.

> library(RMySQL) # will load DBI as well
open a connection to a MySQL database
> con <- dbConnect(dbDriver("MySQL"), dbname = "test")
list the tables in the database
> dbListTables(con)
load a data frame into the database, deleting any existing copy
> data(USArrests)
> dbWriteTable(con, "arrests", USArrests, overwrite = TRUE)
TRUE
> dbListTables(con)
[1] "arrests"
get the whole table
> dbReadTable(con, "arrests")
 Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
...
Select from the loaded table
> dbGetQuery(con, paste("select row_names, Murder from arrests",
 "where Rape > 30 order by Murder"))
 row_names Murder
1 Colorado 7.9
2 Arizona 8.1
3 California 9.0
4 Alaska 10.0
5 New Mexico 11.4
6 Michigan 12.1
7 Nevada 12.2
8 Florida 15.4
> dbRemoveTable(con, "arrests")
> dbDisconnect(con)

4.3.2 Package RODBC

Package RODBC on CRAN provides an interface to
database sources supporting an ODBC interface. This is very
widely available, and allows the same R code to access different
database systems. RODBC runs on Unix/Linux, Windows and macOS,
and almost all database systems provide support for ODBC. We
have tested Microsoft SQL Server, Access, MySQL, PostgreSQL, Oracle and
IBM DB2 on Windows and MySQL, MariaDB, Oracle, PostgreSQL and SQLite on
Linux.

ODBC is a client-server system, and we have happily connected to a DBMS
running on a Unix server from a Windows client, and vice versa.

On Windows ODBC support is part of the OS. On Unix/Linux you will need
an ODBC Driver Manager such as unixODBC
(https://www.unixodbc.org/) or iODBC (https://www.iodbc.org/:
this is pre-installed in macOS) and an installed driver for your
database system.

Windows provides drivers not just for DBMSs but also for Excel
(.xls) spreadsheets, dBase (.dbf) files and even text
files. (The named applications do not need to be
installed. Which file formats are supported depends on the versions of
the drivers.) There are versions for Excel and Access 2007/2010 (go to
https://www.microsoft.com/en-us/download, and
search for ‘Office ODBC’, which will lead to
AccessDatabaseEngine.exe), the ‘2007 Office System Driver’ (the
latter has a version for 64-bit Windows, and that will also read earlier
versions).

On macOS the Actual Technologies
(https://www.actualtech.com/product_access.php) drivers provide
ODBC interfaces to Access databases and to Excel spreadsheets (not
including Excel 2007/2010).

Many simultaneous connections are possible. A connection is opened by a
call to odbcConnect or odbcDriverConnect (which on the
Windows GUI allows a database to be selected via dialog boxes) which
returns a handle used for subsequent access to the database. Printing a
connection will provide some details of the ODBC connection, and calling
odbcGetInfo will give details on the client and server.

A connection is closed by a call to close or odbcClose,
and also (with a warning) when not R object refers to it and at the end
of an R session.

Details of the tables on a connection can be found using
sqlTables.

Function sqlSave copies an R data frame to a table in the
database, and sqlFetch copies a table in the database to an R
data frame.

An SQL query can be sent to the database by a call to
sqlQuery. This returns the result in an R data frame.
(sqlCopy sends a query to the database and saves the result as a
table in the database.) A finer level of control is attained by first
calling odbcQuery and then sqlGetResults to fetch the
results. The latter can be used within a loop to retrieve a limited
number of rows at a time, as can function sqlFetchMore.

Here is an example using PostgreSQL, for which the ODBC driver
maps column and data frame names to lower case. We use a database
testdb we created earlier, and had the DSN (data source name) set
up in ~/.odbc.ini under unixODBC. Exactly the same code
worked using MyODBC to access a MySQL database under Linux or Windows
(where MySQL also maps names to lowercase). Under Windows,
DSNs are set up in the ODBC applet in the Control
Panel (‘Data Sources (ODBC)’ in the ‘Administrative Tools’ section).

> library(RODBC)
tell it to map names to l/case
> channel <- odbcConnect("testdb", uid="ripley", case="tolower")
load a data frame into the database
> data(USArrests)
> sqlSave(channel, USArrests, rownames = "state", addPK = TRUE)
> rm(USArrests)
list the tables in the database
> sqlTables(channel)
 TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
1 usarrests TABLE
list it
> sqlFetch(channel, "USArrests", rownames = "state")
 murder assault urbanpop rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
 ...
an SQL query, originally on one line
> sqlQuery(channel, "select state, murder from USArrests
 where rape > 30 order by murder")
 state murder
1 Colorado 7.9
2 Arizona 8.1
3 California 9.0
4 Alaska 10.0
5 New Mexico 11.4
6 Michigan 12.1
7 Nevada 12.2
8 Florida 15.4
remove the table
> sqlDrop(channel, "USArrests")
close the connection
> odbcClose(channel)

As a simple example of using ODBC under Windows with a Excel
spreadsheet, we can read from a spreadsheet by

> library(RODBC)
> channel <- odbcConnectExcel("bdr.xls")
list the spreadsheets
> sqlTables(channel)
 TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS
1 C:\\bdr NA Sheet1$ SYSTEM TABLE NA
2 C:\\bdr NA Sheet2$ SYSTEM TABLE NA
3 C:\\bdr NA Sheet3$ SYSTEM TABLE NA
4 C:\\bdr NA Sheet1$Print_Area TABLE NA
retrieve the contents of sheet 1, by either of
> sh1 <- sqlFetch(channel, "Sheet1")
> sh1 <- sqlQuery(channel, "select * from [Sheet1$]")

Notice that the specification of the table is different from the name
returned by sqlTables: sqlFetch is able to map the
differences.

Footnotes

(4)

and forks, notably MariaDB.

5 Binary files

Binary connections (Connections) are now the preferred way to
handle binary files.

5.1 Binary data formats

Packages h5, Bioconductor’s rhdf5, RNetCDF and
ncdf4 on CRAN provide interfaces to NASA’s
HDF5 (Hierarchical Data Format, see
https://www.hdfgroup.org/wp-content/uploads/2017/07/HDF5.pdf) and to UCAR’s netCDF data files
(network Common Data Form, see
https://www.unidata.ucar.edu/software/netcdf/).

Both of these are systems to store scientific data in array-oriented
ways, including descriptions, labels, formats, units, …. HDF5 also
allows groups of arrays, and the R interface maps lists
to HDF5 groups, and can write numeric and character vectors and
matrices.

NetCDF’s version 4 format (confusingly, implemented in netCDF 4.1.1 and
later, but not in 4.0.1) includes the use of various HDF5 formats. This
is handled by package ncdf4 whereas RNetCDF handles
version 3 files.

The availability of software to support these formats is somewhat
limited by platform, especially on Windows.

5.2 dBase files (DBF)

dBase was a DOS program written by Ashton-Tate and later owned by
Borland which has a binary flat-file format that became popular, with
file extension .dbf. It has been adopted for the ’Xbase’ family
of databases, covering dBase, Clipper, FoxPro and their Windows
equivalents Visual dBase, Visual Objects and Visual FoxPro (see
https://www.clicketyclick.dk/databases/xbase/format/).
A dBase file contains
a header and then a series of fields and so is most similar to an R
data frame. The data itself is stored in text format, and can include
character, logical and numeric fields, and other types in later versions
(see for example
https://www.loc.gov/preservation/digital/formats/fdd/fdd000325.shtml
and
https://www.clicketyclick.dk/databases/xbase/format/index.html).

Functions read.dbf and write.dbf provide ways to read and
write basic DBF files on all R platforms. For Windows users
odbcConnectDbase in package RODBC provides more
comprehensive facilities to read DBF files via Microsoft’s dBase
ODBC driver (and the Visual FoxPro driver can also be used via
odbcDriverConnect).

6 Image files

A particular class of binary files are those representing images, and a
not uncommon request is to read such a file into R as a matrix.

There are many formats for image files (most with lots of variants), and
it may be necessary to use external conversion software to first convert
the image into one of the formats for which a package currently provides
an R reader. A versatile example of such software is ImageMagick and
its fork GraphicsMagick. These provide command-line programs
convert and gm convert to convert images from one
format to another: what formats they can input is determined when they
are compiled, and the supported formats can be listed by e.g.
convert -list format.

Package pixmap has a function read.pnm to read ‘portable
anymap’ images in PBM (black/white), PGM (grey) and PPM (RGB colour)
formats. These are also known as ‘netpbm’ formats.

Packages bmp, jpeg and png read the
formats after which they are named. See also packages biOps
and Momocs, and Bioconductor package EBImage.

TIFF is more a meta-format, a wrapper within which a very large variety
of image formats can be embedded. Packages rtiff and
tiff can read some of the sub-formats (depending on the
external libtiff software against which they are compiled).
There some facilities for specialized sub-formats, for example in
Bioconductor package beadarray.

Raster files are common in the geographical sciences, and package
rgdal provides an interface to GDAL which provides some
facilities of its own to read raster files and links to many others.
Which formats it supports is determined when GDAL is compiled: use
gdalDrivers() to see what these are for the build you are using.
It can be useful for uncommon formats such as JPEG 2000 (which is a
different format from JPEG, and not currently supported in the macOS
nor Windows binary versions of rgdal).

7 Connections

Connections are used in R in the sense of Chambers (1998) and
Ripley (2001), a set of functions to replace the use of file names by a
flexible interface to file-like objects.

7.1 Types of connections

The most familiar type of connection will be a file, and file
connections are created by function file. File connections can
(if the OS will allow it for the particular file) be opened for reading
or writing or appending, in text or binary mode. In fact, files can be
opened for both reading and writing, and R keeps a separate file
position for reading and writing.

Note that by default a connection is not opened when it is created. The
rule is that a function using a connection should open a connection
(needed) if the connection is not already open, and close a connection
after use if it opened it. In brief, leave the connection in the state
you found it in. There are generic functions open and
close with methods to explicitly open and close connections.

Files compressed via the algorithm used by gzip can be used as
connections created by the function gzfile, whereas files
compressed by bzip2 can be used via bzfile.

Unix programmers are used to dealing with special files stdin,
stdout and stderr. These exist as terminal
connections in R. They may be normal files, but they might also
refer to input from and output to a GUI console. (Even with the standard
Unix R interface, stdin refers to the lines submitted from
readline rather than a file.)

The three terminal connections are always open, and cannot be opened or
closed. stdout and stderr are conventionally used for
normal output and error messages respectively. They may normally go to
the same place, but whereas normal output can be re-directed by a call
to sink, error output is sent to stderr unless re-directed
by sink, type="message"). Note carefully the language used here:
the connections cannot be re-directed, but output can be sent to other
connections.

Text connections are another source of input. They allow R
character vectors to be read as if the lines were being read from a text
file. A text connection is created and opened by a call to
textConnection, which copies the current contents of the
character vector to an internal buffer at the time of creation.

Text connections can also be used to capture R output to a character
vector. textConnection can be asked to create a new character
object or append to an existing one, in both cases in the user’s
workspace. The connection is opened by the call to
textConnection, and at all times the complete lines output to the
connection are available in the R object. Closing the connection
writes any remaining output to a final element of the character vector.

Pipes are a special form of file that connects to another
process, and pipe connections are created by the function pipe.
Opening a pipe connection for writing (it makes no sense to append to a
pipe) runs an OS command, and connects its standard input to whatever
R then writes to that connection. Conversely, opening a pipe
connection for input runs an OS command and makes its standard output
available for R input from that connection.

URLs of types ‘http://’, ‘https://’, ‘ftp://’
and ‘file://’ can be read from using the function url. For
convenience, file will also accept these as the file
specification and call url.

Sockets can also be used as connections via function
socketConnection on platforms which support Berkeley-like sockets
(most Unix systems, Linux and Windows). Sockets can be written to or
read from, and both client and server sockets can be used.

7.2 Output to connections

We have described functions cat, write, write.table
and sink as writing to a file, possibly appending to a file if
argument append = TRUE, and this is what they did prior to R
version 1.2.0.

The current behaviour is equivalent, but what actually happens is that
when the file argument is a character string, a file connection
is opened (for writing or appending) and closed again at the end of the
function call. If we want to repeatedly write to the same file, it is
more efficient to explicitly declare and open the connection, and pass
the connection object to each call to an output function. This also
makes it possible to write to pipes, which was implemented earlier in a
limited way via the syntax file = "|cmd" (which can still be
used).

There is a function writeLines to write complete text lines
to a connection.

Some simple examples are

zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", "", "11 13 17",
 file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)

convert decimal point to comma in output, using a pipe (Unix)
both R strings and (probably) the shell need \ doubled
zz <- pipe(paste("sed s/\\\\./,/ >", "outfile"), "w")
cat(format(round(rnorm(100), 4)), sep = "\n", file = zz)
close(zz)
now look at the output file:
file.show("outfile", delete.file = TRUE)

capture R output: use examples from help(lm)
zz <- textConnection("ex.lm.out", "w")
sink(zz)
example(lm, prompt.echo = "> ")
sink()
close(zz)
now `ex.lm.out' contains the output for further processing.
Look at it by, e.g.,
cat(ex.lm.out, sep = "\n")

7.3 Input from connections

The basic functions to read from connections are scan and
readLines. These take a character string argument and open a
file connection for the duration of the function call, but explicitly
opening a file connection allows a file to be read sequentially in
different formats.

Other functions that call scan can also make use of connections,
in particular read.table.

Some simple examples are

read in file created in last examples
readLines("ex.data")
unlink("ex.data")

read listing of current directory (Unix)
readLines(pipe("ls -1"))

remove trailing commas from an input file.
Suppose we are given a file `data' containing
450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479
Then read this by
scan(pipe("sed -e s/,$// data"), sep=",")

For convenience, if the file argument specifies a FTP, HTTP or
HTTPS URL, the URL is opened for reading via
url. Specifying files via ‘file://foo.bar’ is also allowed.

7.3.1 Pushback

C programmers may be familiar with the ungetc function to push
back a character onto a text input stream. R connections have the
same idea in a more powerful way, in that an (essentially) arbitrary
number of lines of text can be pushed back onto a connection via a call
to pushBack.

Pushbacks operate as a stack, so a read request first uses each line
from the most recently pushbacked text, then those from earlier
pushbacks and finally reads from the connection itself. Once a
pushbacked line is read completely, it is cleared. The number of
pending lines pushed back can be found via a call to
pushBackLength.

A simple example will show the idea.

> zz <- textConnection(LETTERS)
> readLines(zz, 2)
[1] "A" "B"
> scan(zz, "", 4)
Read 4 items
[1] "C" "D" "E" "F"
> pushBack(c("aa", "bb"), zz)
> scan(zz, "", 4)
Read 4 items
[1] "aa" "bb" "G" "H"
> close(zz)

Pushback is only available for connections opened for input in text mode.

7.4 Listing and manipulating connections

A summary of all the connections currently opened by the user can be
found by showConnections(), and a summary of all connections,
including closed and terminal connections, by showConnections(all
= TRUE)

The generic function seek can be used to read and (on some
connections) reset the current position for reading or writing.
Unfortunately it depends on OS facilities which may be unreliable
(e.g. with text files under Windows). Function isSeekable
reports if seek can change the position on the connection
given by its argument.

The function truncate can be used to truncate a file opened for
writing at its current position. It works only for file
connections, and is not implemented on all platforms.

7.5 Binary connections

Functions readBin and writeBin read to and write from
binary connections. A connection is opened in binary mode by appending
"b" to the mode specification, that is using mode "rb" for
reading, and mode "wb" or "ab" (where appropriate) for
writing. The functions have arguments

readBin(con, what, n = 1, size = NA, endian = .Platform$endian)
writeBin(object, con, size = NA, endian = .Platform$endian)

In each case con is a connection which will be opened if
necessary for the duration of the call, and if a character string is
given it is assumed to specify a file name.

It is slightly simpler to describe writing, so we will do that first.
object should be an atomic vector object, that is a vector of
mode numeric, integer, logical, character,
complex or raw, without attributes. By default this is
written to the file as a stream of bytes exactly as it is represented in
memory.

readBin reads a stream of bytes from the file and interprets them
as a vector of mode given by what. This can be either an object
of the appropriate mode (e.g. what=integer()) or a character
string describing the mode (one of the five given in the previous
paragraph or "double" or "int"). Argument n
specifies the maximum number of vector elements to read from the
connection: if fewer are available a shorter vector will be returned.
Argument signed allows 1-byte and 2-byte integers to be
read as signed (the default) or unsigned integers.

The remaining two arguments are used to write or read data for
interchange with another program or another platform. By default binary
data is transferred directly from memory to the connection or vice
versa. This will not suffice if the data are to be transferred to a
machine with a different architecture, but between almost all R
platforms the only change needed is that of byte-order. Common PCs
(‘ix86’-based and ‘x86_64’-based machines), Compaq Alpha
and Vaxen are little-endian, whereas Sun Sparc, mc680x0 series,
IBM R6000, SGI and most others are big-endian. (Network
byte-order (as used by XDR, eXternal Data Representation) is
big-endian.) To transfer to or from other programs we may need to do
more, for example to read 16-bit integers or write single-precision real
numbers. This can be done using the size argument, which
(usually) allows sizes 1, 2, 4, 8 for integers and logicals, and sizes
4, 8 and perhaps 12 or 16 for reals. Transferring at different sizes
can lose precision, and should not be attempted for vectors containing
NA’s.

Character strings are read and written in C format, that is as a string
of bytes terminated by a zero byte. Functions readChar and
writeChar provide greater flexibility.

7.5.1 Special values

Functions readBin and writeBin will pass missing and
special values, although this should not be attempted if a size change
is involved.

The missing value for R logical and integer types is INT_MIN,
the smallest representable int defined in the C header
limits.h, normally corresponding to the bit pattern
0x80000000.

The representation of the special values for R numeric and complex
types is machine-dependent, and possibly also compiler-dependent. The
simplest way to make use of them is to link an external application
against the standalone Rmath library which exports double
constants NA_REAL, R_PosInf and R_NegInf, and
include the header Rmath.h which defines the macros ISNAN
and R_FINITE.

If that is not possible, on all current platforms
IEC 60559 (aka IEEE 754) arithmetic is used, so
standard C facilities can be used to test for or set Inf,
-Inf and NaN values. On such platforms NA is
represented by the NaN value with low-word 0x7a2 (1954 in
decimal).

Character missing values are written as NA, and there are no
provision to recognize character values as missing (as this can be done
by re-assigning them once read).

8 Network interfaces

Some limited facilities are available to exchange data at a lower level
across network connections.

8.1 Reading from sockets

Base R comes with some facilities to communicate via
BSD sockets on systems that support them (including the common
Linux, Unix and Windows ports of R). One potential problem with
using sockets is that these facilities are often blocked for security
reasons or to force the use of Web caches, so these functions may be
more useful on an intranet than externally. For new projects it
is suggested that socket connections are used instead.

The earlier low-level interface is given by functions make.socket,
read.socket, write.socket and close.socket.

8.2 Using download.file

Function download.file is provided to read a file from a Web
resource via FTP or HTTP (including HTTPS) and write it to a file.
Often this can be avoided, as functions such as read.table and
scan can read directly from a URL, either by explicitly using
url to open a connection, or implicitly using it by giving a URL
as the file argument.

9 Reading Excel spreadsheets

The most common R data import/export question seems to be ‘how do I read
an Excel spreadsheet’. This chapter collects together advice and
options given earlier. Note that most of the advice is for pre-Excel
2007 spreadsheets and not the later .xlsx format.

The first piece of advice is to avoid doing so if possible! If you have
access to Excel, export the data you want from Excel in tab-delimited or
comma-separated form, and use read.delim or read.csv to
import it into R. (You may need to use read.delim2 or
read.csv2 in a locale that uses comma as the decimal point.)
Exporting a DIF file and reading it using read.DIF is another
possibility.

If you do not have Excel, many other programs are able to read such
spreadsheets and export in a text format on both Windows and Unix, for
example Gnumeric (http://www.gnumeric.org) and
OpenOffice (https://www.openoffice.org). You can also
cut-and-paste between the display of a spreadsheet in such a program and
R: read.table will read from the R console or, under Windows,
from the clipboard (via file = "clipboard" or
readClipboard). The read.DIF function can also read from
the clipboard.

Note that an Excel .xls file is not just a spreadsheet: such
files can contain many sheets, and the sheets can contain formulae,
macros and so on. Not all readers can read other than the first sheet,
and may be confused by other contents of the file.

Windows users (of 32-bit R) can use odbcConnectExcel in
package RODBC. This can select rows and columns from any of the
sheets in an Excel spreadsheet file (at least from Excel 97–2003,
depending on your ODBC drivers: by calling odbcConnect directly
versions back to Excel 3.0 can be read). The version
odbcConnectExcel2007 will read the Excel 2007 formats as well as
earlier ones (provided the drivers are installed, including with 64-bit
Windows R: see Package RODBC). macOS users can also use RODBC if
they have a suitable driver (e.g. that from Actual Technologies).

Perl users have contributed a module
OLE::SpreadSheet::ParseExcel and a program xls2csv.pl to
convert Excel 95–2003 spreadsheets to CSV files. Package gdata
provides a basic wrapper in its read.xls function. With suitable
Perl modules installed this function can also read Excel 2007
spreadsheets.

Packages dataframes2xls and WriteXLS each contain a function
to write one or more data frames to an .xls file, using
Python and Perl respectively.

Package xlsx can read and manipulate Excel 2007 and later
spreadsheets: it requires Java.

Package XLConnect can read, write and manipulate both Excel
97–2003 and Excel 2007/10 spreadsheets, using Java.

Package readxl can read both Excel 97–2003 and Excel 2007/10
spreadsheets, using an included C library.

References

R. A. Becker, J. M. Chambers and A. R. Wilks (1988),
The New S Language. A Programming Environment for Data Analysis
and Graphics.
Wadsworth & Brooks/Cole.

J. Bowman, S. Emberson and M. Darnovsky (1996),
The Practical SQL Handbook. Using Structured Query Language.
Addison-Wesley.

J. M. Chambers (1998),
Programming with Data. A Guide to the S Language.
Springer-Verlag.

P. Dubois (2000),
MySQL.
New Riders.

M. Henning and S. Vinoski (1999),
Advanced CORBA Programming with C++.
Addison-Wesley.

K. Kline and D. Kline (2001),
SQL in a Nutshell.
O’Reilly.

B. Momjian (2000),
PostgreSQL: Introduction and Concepts.
Addison-Wesley.
Also available at https://momjian.us/main/writings/pgsql/aw_pgsql_book/.

B. D. Ripley (2001),
Connections.
R News, 1/1, 16–7.
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

T. M. Therneau and P. M. Grambsch (2000),
Modeling Survival Data. Extending the Cox Model.
Springer-Verlag.

E. J. Yarger, G. Reese and T. King (1999),
MySQL & mSQL.
O’Reilly.

Function and variable index

	Jump to: 	.

B

C

D

F

G

H

I

M

N

O

P

R

S

T

U

W

X

		Index Entry	Section

	

	.

		.dbf	4.3.2 Package RODBC

		.xls	4.3.2 Package RODBC

		.xls	9 Reading Excel spreadsheets

		.xlsx	9 Reading Excel spreadsheets

	

	B

		bzfile	7.1 Types of connections

	

	C

		cat	1.2 Export to text files

		cat	7.2 Output to connections

		close	4.3.2 Package RODBC

		close	7.1 Types of connections

		close.socket	8.1 Reading from sockets

		count.fields	2.1 Variations on read.table

	

	D

		data.restore	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		dataframes2xls	9 Reading Excel spreadsheets

		dbClearResult	4.3.1 Packages using DBI

		dbConnect	4.3.1 Packages using DBI

		dbDisconnect	4.3.1 Packages using DBI

		dbDriver	4.3.1 Packages using DBI

		dbExistsTable	4.3.1 Packages using DBI

		dbGetQuery	4.3.1 Packages using DBI

		dbReadTable	4.3.1 Packages using DBI

		dbRemoveTable	4.3.1 Packages using DBI

		dbSendQuery	4.3.1 Packages using DBI

		dbWriteTable	4.3.1 Packages using DBI

	

	F

		fetch	4.3.1 Packages using DBI

		file	7.1 Types of connections

		format	1.2 Export to text files

		ftable	2.6 Flat contingency tables

	

	G

		gzfile	7.1 Types of connections

	

	H

		hdf5	5.1 Binary data formats

	

	I

		isSeekable	7.4 Listing and manipulating connections

	

	M

		make.socket	8.1 Reading from sockets

	

	N

		netCDF	5.1 Binary data formats

	

	O

		odbcClose	4.3.2 Package RODBC

		odbcConnect	4.3.2 Package RODBC

		odbcConnectDbase	5.2 dBase files (DBF)

		odbcConnectExcel	4.3.2 Package RODBC

		odbcConnectExcel	9 Reading Excel spreadsheets

		odbcConnectExcel2007	9 Reading Excel spreadsheets

		odbcDriverConnect	4.3.2 Package RODBC

		odbcGetInfo	4.3.2 Package RODBC

		odbcQuery	4.3.2 Package RODBC

		open	7.1 Types of connections

	

	P

		pipe	7.1 Types of connections

		pushBack.	7.3.1 Pushback

		pushBackLength	7.3.1 Pushback

	

	R

		read.csv	2.1 Variations on read.table

		read.csv	9 Reading Excel spreadsheets

		read.csv2	2.1 Variations on read.table

		read.dbf	5.2 dBase files (DBF)

		read.delim	2.1 Variations on read.table

		read.delim	9 Reading Excel spreadsheets

		read.delim2	2.1 Variations on read.table

		read.DIF	2.3 Data Interchange Format (DIF)

		read.DIF	9 Reading Excel spreadsheets

		read.dta	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.epiinfo	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.fortran	2.2 Fixed-width-format files

		read.ftable	2.6 Flat contingency tables

		read.fwf	2.2 Fixed-width-format files

		read.mtp	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.octave	3.2 Octave

		read.S	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.socket	8.1 Reading from sockets

		read.spss	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.systat	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		read.table	2.1 Variations on read.table

		read.table	7.3 Input from connections

		read.table	9 Reading Excel spreadsheets

		read.xls	9 Reading Excel spreadsheets

		read.xport	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		readBin	7.5 Binary connections

		readChar	7.5 Binary connections

		readClipboard	9 Reading Excel spreadsheets

		readLines	2.4 Using scan directly

		readLines	7.3 Input from connections

		readxl	9 Reading Excel spreadsheets

		reshape	2.5 Re-shaping data

	

	S

		scan	1.1 Imports

		scan	2.4 Using scan directly

		scan	7.3 Input from connections

		seek	7.4 Listing and manipulating connections

		showConnections	7.4 Listing and manipulating connections

		sink	1.2 Export to text files

		sink	7.2 Output to connections

		socketConnection	7.1 Types of connections

		sqlCopy	4.3.2 Package RODBC

		sqlFetch	4.3.2 Package RODBC

		sqlFetchMore	4.3.2 Package RODBC

		sqlGetResults	4.3.2 Package RODBC

		sqlQuery	4.3.2 Package RODBC

		sqlSave	4.3.2 Package RODBC

		sqlTables	4.3.2 Package RODBC

		stack	2.5 Re-shaping data

		stderr	7.1 Types of connections

		stdin	7.1 Types of connections

		stdout	7.1 Types of connections

		Sys.localeconv	2.1 Variations on read.table

	

	T

		textConnection	7.1 Types of connections

		truncate	7.4 Listing and manipulating connections

	

	U

		unstack	2.5 Re-shaping data

		url	7.1 Types of connections

	

	W

		write	1.2 Export to text files

		write	7.2 Output to connections

		write.csv	1.2 Export to text files

		write.csv2	1.2 Export to text files

		write.dbf	5.2 dBase files (DBF)

		write.dta	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		write.foreign	1.2 Export to text files

		write.matrix	1.2 Export to text files

		write.socket	8.1 Reading from sockets

		write.table	1.2 Export to text files

		write.table	7.2 Output to connections

		writeBin	7.5 Binary connections

		writeChar	7.5 Binary connections

		writeLines	7.2 Output to connections

		WriteXLS	9 Reading Excel spreadsheets

	

	X

		XLConnect	9 Reading Excel spreadsheets

		xlsx	9 Reading Excel spreadsheets

	

	Jump to: 	.

B

C

D

F

G

H

I

M

N

O

P

R

S

T

U

W

X

Concept index

	Jump to: 	A

B

C

D

E

F

H

I

L

M

N

O

P

Q

R

S

T

U

X

Y

		Index Entry	Section

	

	A

		awk	1 Introduction

	

	B

		Binary files	5 Binary files

		Binary files	7.5 Binary connections

	

	C

		comma separated values	1.2 Export to text files

		Compressed files	7.1 Types of connections

		Connections	7 Connections

		Connections	7.1 Types of connections

		Connections	7.2 Output to connections

		Connections	7.4 Listing and manipulating connections

		CSV files	1.2 Export to text files

		CSV files	2.1 Variations on read.table

	

	D

		Data Interchange Format (DIF)	2.3 Data Interchange Format (DIF)

		dBase	4.3.2 Package RODBC

		dBase	5.2 dBase files (DBF)

		DBF files	5.2 dBase files (DBF)

		DBMS	4 Relational databases

	

	E

		Encodings	1.1.1 Encodings

		Encodings	1.2 Export to text files

		EpiData	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		EpiInfo	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		Excel	4.3.2 Package RODBC

		Excel	4.3.2 Package RODBC

		Exporting to a text file	1.2 Export to text files

	

	F

		File connections	7.1 Types of connections

		Fixed-width-format files	2.2 Fixed-width-format files

		Flat contingency tables	2.6 Flat contingency tables

	

	H

		Hierarchical Data Format	5.1 Binary data formats

	

	I

		Importing from other statistical systems	3 Importing from other statistical systems

	

	L

		locales	2.1 Variations on read.table

	

	M

		Minitab	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		Missing values	1.2 Export to text files

		Missing values	2.1 Variations on read.table

		MySQL database system	4.3.1 Packages using DBI

		MySQL database system	4.3.2 Package RODBC

	

	N

		network Common Data Form	5.1 Binary data formats

	

	O

		Octave	3.2 Octave

		ODBC	4.2 Overview of RDBMSs

		ODBC	4.3.2 Package RODBC

		Open Database Connectivity	4.2 Overview of RDBMSs

		Open Database Connectivity	4.3.2 Package RODBC

	

	P

		perl	1 Introduction

		perl	2.2 Fixed-width-format files

		Pipe connections	7.1 Types of connections

		PostgreSQL database system	4.3.2 Package RODBC

		Pushback on a connection	7.3.1 Pushback

	

	Q

		Quoting strings	1.2 Export to text files

		Quoting strings	2.1 Variations on read.table

	

	R

		Re-shaping data	2.5 Re-shaping data

		Relational databases	4 Relational databases

	

	S

		S-PLUS	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		SAS	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		Sockets	7.1 Types of connections

		Sockets	8.1 Reading from sockets

		Spreadsheet-like data	2 Spreadsheet-like data

		SPSS	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		SPSS Data Entry	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		SQL queries	4.2.1 SQL queries

		Stata	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

		Systat	3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

	

	T

		Terminal connections	7.1 Types of connections

		Text connections	7.1 Types of connections

	

	U

		Unix tools	1 Introduction

		URL connections	7.1 Types of connections

		URL connections	7.3 Input from connections

	

	X

		XML	1.3 XML

	

	Y

		YAML	1.3 XML

	

	Jump to: 	A

B

C

D

E

F

H

I

L

M

N

O

P

Q

R

S

T

U

X

Y

EPUB/xhtml/nav_toc.xhtml

Table of contents

 		R Data Import/Export

 		Acknowledgements

 		1 Introduction

 		1.1 Imports

 		1.1.1 Encodings

 		1.2 Export to text files

 		1.3 XML

 		2 Spreadsheet-like data

 		2.1 Variations on read.table

 		2.2 Fixed-width-format files

 		2.3 Data Interchange Format (DIF)

 		2.4 Using scan directly

 		2.5 Re-shaping data

 		2.6 Flat contingency tables

 		3 Importing from other statistical systems

 		3.1 EpiInfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

 		3.2 Octave

 		4 Relational databases

 		4.1 Why use a database?

 		4.2 Overview of RDBMSs

 		4.2.1 SQL queries

 		4.2.2 Data types

 		4.3 R interface packages

 		4.3.1 Packages using DBI

 		4.3.2 Package RODBC

 		5 Binary files

 		5.1 Binary data formats

 		5.2 dBase files (DBF)

 		6 Image files

 		7 Connections

 		7.1 Types of connections

 		7.2 Output to connections

 		7.3 Input from connections

 		7.3.1 Pushback

 		7.4 Listing and manipulating connections

 		7.5 Binary connections

 		7.5.1 Special values

 		8 Network interfaces

 		8.1 Reading from sockets

 		8.2 Using download.file

 		9 Reading Excel spreadsheets

 		References

 		Function and variable index

 		Concept index

