
Package ‘BoutrosLab.plotting.general’
January 22, 2026

Version 7.1.5

Type Package

Title Functions to Create Publication-Quality Plots

Maintainer Paul Boutros <PBoutros@sbpdiscovery.org>

Depends R (>= 3.5.0), lattice (>= 0.20-35), latticeExtra (>= 0.6-27),
cluster (>= 2.0.0), hexbin (>= 1.27.0), grid

Imports gridExtra, tools, methods, gtable, e1071, MASS(>= 7.3-29)

Suggests Cairo (>= 1.5-1), knitr, testthat (>= 3.0.0)

Description
Contains several plotting functions such as barplots, scatterplots, heatmaps, as well as func-
tions to combine plots and assist in the creation of these plots. These func-
tions will give users great ease of use and customization options in broad use for biomedical ap-
plications, as well as general purpose plotting. Each of the functions also provides valid de-
fault settings to make plotting data more efficient and producing high quality plots with stan-
dard colour schemes simpler. All functions within this package are capable of produc-
ing plots that are of the quality to be presented in scientific publications and jour-
nals. P'ng et al.; BPG: Seamless, automated and interactive visualization of scien-
tific data; BMC Bioinformatics 2019 <doi:10.1186/s12859-019-2610-2>.

License GPL-2

URL https://github.com/uclahs-cds/package-BoutrosLab-plotting-general

BugReports
https://github.com/uclahs-cds/package-BoutrosLab-plotting-general/issues

LazyLoad yes

LazyData yes

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Paul Boutros [aut, cre],
Christine P'ng [ctb],
Jeff Green [ctb],

1

https://doi.org/10.1186/s12859-019-2610-2
https://github.com/uclahs-cds/package-BoutrosLab-plotting-general
https://github.com/uclahs-cds/package-BoutrosLab-plotting-general/issues

2 Contents

Stephenie Prokopec [ctb],
Ontario Institute for Cancer Research [cph],
The R Core Team [cph],
The R Foundation [cph],
Robert Gentleman [ctb],
Ross Ihaka [ctb],
Caden Bugh [ctb],
Dan Knight [ctb],
Stefan Eng [ctb],
Mohammed Faizal Eeman Mootor [ctb],
Rachel Dang [ctb],
John Sahrmann [ctb],
Jaron Arbet [ctb],
Yash Patel [ctb],
Raag Agrawal [ctb]

Repository CRAN

Date/Publication 2026-01-22 06:11:26 UTC

Contents
auto.axis . 3
CNA . 4
colour.gradient . 5
covariates.grob . 6
create.barplot . 9
create.boxplot . 35
create.colourkey . 50
create.dendrogram . 52
create.densityplot . 54
create.dotmap . 64
create.gif . 80
create.heatmap . 82
create.hexbinplot . 111
create.histogram . 125
create.lollipopplot . 133
create.manhattanplot . 142
create.multipanelplot . 154
create.multiplot . 173
create.polygonplot . 200
create.qqplot.comparison . 214
create.qqplot.fit . 221
create.qqplot.fit.confidence.interval . 231
create.scatterplot . 232
create.segplot . 255
create.stripplot . 266
create.violinplot . 276
critical.value.ks.test . 287

auto.axis 3

default.colours . 288
display.colours . 289
display.statistical.result . 290
dist . 291
force.colour.scheme . 294
generate.at.final . 301
get.corr.key . 301
get.correlation.p.and.corr . 304
get.defaults . 305
get.line.breaks . 306
legend.grob . 307
microarray . 311
panel.BL.bwplot . 312
patient . 312
pcawg.colours . 314
scientific.notation . 314
show.available.palettes . 315
SNV . 316
thousands.split . 317
write.metadata . 318
write.plot . 319

Index 322

auto.axis Create ideal labels and values for a given numeric vector (detects log
scales)

Description

Takes a numeric vector and several parameters and outputs an object with values and labels ideal
for given data

Usage

auto.axis(
x,
pretty = TRUE,
log.scaled = NA,
log.zero = 0.1,
max.factor = 1,
min.factor = 1,
include.origin = TRUE,
num.labels = 5,
max.min.log10.diff = 2

)

4 CNA

Arguments

x Numeric vector to be scaled

pretty Parameter flag for if output should be in pretty format

log.scaled parameter set to determine if scaling is logarithmic or not

log.zero log 0 starting point

max.factor maximum factor for y variable

min.factor minimum factor for y variable

include.origin flag to include the origin value or not

num.labels number of labels to output
max.min.log10.diff

the max and min diffrence for dataset to be determined logarithmic

Author(s)

Takafumi N. Yamaguchi

See Also

stripplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(223);
simple.data <- data.frame(

x = sample(1:15, 10),
y = LETTERS[1:10]
);

auto.axis(simple.data$x)

data2 <- c(1,10,100,1000)

auto.axis(data2)

CNA Copy number aberration (CNA) data from colon cancer patients

Description

CNA calls from 30 genes across 58 colon cancer patients. Additional data on the patient samples is
found in the patient dataset. The same patient samples are described in the microarray and SNV
datasets.

Usage

CNA

colour.gradient 5

Format

A data frame with 58 columns and 30 rows. The columns indicate the patient sample, and the rows
indicate the gene. The contents of the data frame are encoded such that 0 indicates no CNA, -1
indicates a CNA loss, and 1 indicates a CNA gain.

Author(s)

Christine P’ng

Examples

data(CNA);
create.dotmap(

filename = tempfile(pattern = 'Using_CNA_dataset', fileext = '.tiff'),
x = CNA[1:15, 1:15],
main = 'CNA data',
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.rot = 90,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 50
);

colour.gradient Creates a colour gradient

Description

Creates a sequential palette of colours.

Usage

colour.gradient(
colour,
length
);

Arguments

colour A single colour to be used as the center value of the sequence

length The number of colours to include in the palette

Author(s)

Ren Sun & Christine P’ng

6 covariates.grob

Examples

display.colours(colour.gradient('dodgerblue2', 6));

display.colours(colour.gradient(default.colours(1), 3));

covariates.grob Create one or more covariate bars

Description

Takes a list of covariate bar annotates and creates a grid graphical object for them

Usage

covariates.grob(
covariates,
ord,
side = 'right',
size = 1,
grid.row = NULL,
grid.col = NULL,
grid.border = NULL,
row.lines = NULL,
col.lines = NULL,
reorder.grid.index = FALSE,

x = 0.5,
y = 0.5

);

Arguments

covariates Any covariate annotate to add to the plot, as a fully formed list.

ord A vector of integer indices indicating the order of the items in the covariate bars.

side Intended position of the covariate bar when added as a legend. Allowed posi-
tions are “right” and “top”.

size The size of each covariate bar in units of “lines”.

grid.row A list of parameters to be passed to gpar specifying the behaviour of row lines
in the covariate bars. See Notes for details.

grid.col A list of parameters to be passed to gpar specifying the behaviour of column
lines in the covariate bars.

grid.border A list of parameters to be passed to gpar specifying the behaviour of the border
around the covariate bars.

row.lines Vector of row indices where grid lines should be drawn. If NULL (default), all
row lines are drawn. Ignored if grid.row is not specified.

covariates.grob 7

col.lines Vector of column indices where grid lines should be drawn. If NULL (default),
all column lines are drawn. Ignored if grid.col is not specified.

reorder.grid.index

Boolean specifying whether grid line indices should be re-ordered according to
the ord argument. Defaults to FALSE.

x x coordinate in npc coordinate system

y y coordinate in npc coordinate system

Value

A grid graphical object (grob) representing the covariate bar(s)

Notes

This code is an adaptation of the dendrogramGrob function in the latticeExtra package. It uses
functions of the grid package.

By default, the covariate bar grid is drawn via borders around individual rectangles using the
parameters specified in the covariates argument (col, lwd, etc.). If grid.row, grid.col, or
grid.border are specified by the user, additional grid lines are drawn over any existing ones using
the parameters in these lists.

Author(s)

Lauren Chong

See Also

gpar

Examples

The 'cairo' graphics is preferred but on M1 Macs this is not available
bitmap.type = getOption('bitmapType')
if (capabilities('cairo')) {
bitmap.type <- 'cairo';
}

create temp data
set.seed(1234567890);

x <- outer(-5:5, -5:5, '*') + matrix(nrow = 11, ncol = 11, data = runif(11 * 11));
colnames(x) <- paste('col', 1:11, sep = '-');
rownames(x) <- paste('row', 1:11, sep = '-');

set covariates
covariate.colours1 <- x[,1]
covariate.colours1[covariate.colours1 >= 0] <- default.colours(3)[1];
covariate.colours1[covariate.colours1 != default.colours(3)[1]] <- default.colours(3)[2];

covariate.colours2 <- x[,1]

8 covariates.grob

covariate.colours2[covariate.colours2 >= 0] <- default.colours(3)[2];
covariate.colours2[covariate.colours2 != default.colours(3)[2]] <- default.colours(3)[3];

create an object to draw the covariates from
covariates1 <- list(

rect = list(
col = 'black',
fill = covariate.colours1,
lwd = 1.5
),

rect = list(
col = 'black',
fill = covariate.colours2,
lwd = 1.5
)

);

create a covariates grob using a simple incremental ordering and default behaviour
covariates.grob1 <- covariates.grob(

covariates = covariates1,
ord = c(1:ncol(x)),
side = 'right'
);

create a dendrogram for x
cov.dendrogram <- BoutrosLab.plotting.general::create.dendrogram(

x = x,
clustering.method = 'average'
);

covariates2 <-list(
rect = list(

col = 'black',
fill = covariate.colours2,
lwd = 1.5
)

);

create a covariates grob using the dendrogram ordering and double the default size
covariates.grob2 <- covariates.grob(

covariates = covariates2,
ord = order.dendrogram(cov.dendrogram),
side = 'top',
size = 2
);

add a border of a different colour
covariates.grob3 <- covariates.grob(

covariates = covariates1,
ord = c(1:ncol(x)),
side = 'right',
grid.border = list(col = 'red', lwd = 1.5)
);

create.barplot 9

create covariates with transparent rectangle borders
covariates3 <- list(

rect = list(
col = 'transparent',
fill = covariate.colours1,
lwd = 1.5
),

rect = list(
col = 'transparent',
fill = covariate.colours2,
lwd = 1.5
)

);

add column grid lines and a border with default gpar settings
covariates.grob4 <- covariates.grob(

covariates = covariates3,
ord = c(1:nrow(x)),
side = 'top',
grid.col = list(col = 'black', lty = 3),
grid.border = list()
);

draw a subset of row/column lines
covariates.grob5 <- covariates.grob(

covariates = covariates3,
ord = order.dendrogram(cov.dendrogram),
side = 'right',
grid.row = list(lineend = 'butt', lwd = 2),
row.lines = 6,
reorder.grid.index = FALSE, # note: this is already set by default
grid.col = list(lty = 2),
col.lines = c(0,1)
);

create.barplot Make a barplot

Description

Takes a data.frame and creates a barplot

Usage

create.barplot(
formula,
data,
groups = NULL,
stack = FALSE,

10 create.barplot

filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
abline.h = NULL,
abline.v = NULL,
abline.lty = 1,
abline.lwd = NULL,
abline.col = 'black',
axes.lwd = 1,
add.grid = FALSE,
xgrid.at = xat,
ygrid.at = yat,
grid.lwd = 5,
grid.col = NULL,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = 1,
yaxis.tck = 1,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
layout = NULL,
as.table = FALSE,
x.spacing = 0,

create.barplot 11

y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
top.padding = 0.5,
bottom.padding = 1,
right.padding = 1,
left.padding = 1,
key.bottom = 0.1,
ylab.axis.padding = 0.5,
xlab.axis.padding = 0.5,
col = 'black',
border.col = 'black',
border.lwd = 1,
plot.horizontal = FALSE,
background.col = 'transparent',
origin = 0,
reference = TRUE,
box.ratio = 2,
sample.order = 'none',
group.labels = FALSE,
key = list(text = list(lab = c(''))),
legend = NULL,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
strip.col = 'white',
strip.cex = 1,
y.error.up = NULL,
y.error.down = y.error.up,
y.error.bar.col = 'black',
error.whisker.width = width/(nrow(data)*4),
error.bar.lwd = 1,
error.whisker.angle = 90,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'grey85',
alpha.rectangle = 1,
line.func = NULL,
line.from = 0,
line.to = 0,
line.col = 'transparent',

12 create.barplot

line.infront = TRUE,
text.above.bars = list(labels = NULL,
padding = NULL,
bar.locations = NULL,
rotation = 0
),
raster = NULL,
raster.vert = TRUE,
raster.just = 'center',
raster.width.dim = unit(2/37, 'npc'),
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,
inside.legend.auto = FALSE,
disable.factor.sorting = FALSE
);

Arguments

formula The formula used to extract the x & y components from the data-frame. Trans-
forming data within formula is not compatible with automatic scaling with ‘xat‘
or ‘yat‘

data The data-frame to plot

groups Optional grouping variable. Expression or variable.

stack Logical, relevant when groups is non-null. If FALSE (the default), bars for
different values of the grouping variable are drawn side by side, otherwise they
are stacked

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 3

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to black

create.barplot 13

ylab.col Colour of the y-axis label, defaults to black

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

abline.h Specify the superimposed horizontal line(s)

abline.v Specify the superimposed vertical line(s)

abline.lty Specify the superimposed line type

abline.lwd Specify the superimposed line width

abline.col Specify the superimposed line colour (defaults to black)

axes.lwd Specify line width of the axes; set to 0 to turn off axes

add.grid Specify whether to draw grid or not (defaults to FALSE)

xgrid.at Specify where to draw x-axis grid lines (defaults to xat)

ygrid.at Specify where to draw y-axis grid lines (defaults to yat)

grid.lwd Specify width of grid line (defaults to 5)

grid.col Specify colour of grid line. Currently only supports one colour. Defaults to
NULL, which uses the colour of the reference line.

xaxis.lab Vector listing x-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with xat will overwrite user input. Set to NULL to remove x-axis labels.

yaxis.lab Vector listing y-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with yat will overwrite user input. Set to NULL to remove y-axis labels.

xaxis.col Colour of the x-axis tick labels, defaults to black

yaxis.col Colour of the y-axis tick labels, defaults to black

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.cex Size of x-axis tick labels, defaults to 1.2

yaxis.cex Size of y-axis tick labels, defaults to 1.5

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xlimits Two-element vector giving the x-axis limits. Useful when plot.horizontal =
TRUE

ylimits Two-element vector giving the y-axis limits

14 create.barplot

xat Accepts a vector listing where x-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes x-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘. Useful when plot.horizontal = TRUE

yat Accepts a vector listing where y-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes y-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

.

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

top.padding A number specifying the distance to the top margin, defaults to 0.5

bottom.padding A number specifying the distance to the bottom margin, defaults to 2

right.padding A number specifying the distance to the right margin, defaults to 1

left.padding A number specifying the distance to the left margin, defaults to 1

key.bottom A number specifying how much space should be left for the key at the bottom,
defaults to 0.1

ylab.axis.padding

A number specifying the distance of y-axis label to the y-axis, defaults to 0

,

xlab.axis.padding

A number specifying the distance of x-axis label to the x-axis, defaults to 0.5.
Named differently than ylab.axis.padding because these are lattice’s internal
names for these values

col Filling colour of bars, defaults to black, does a grey-scale spectrum if !is.null(groups)

border.col Specify border colour (defaults to black)

border.lwd Specify border width (defaults to 1)

create.barplot 15

plot.horizontal

Plot the bars horizontally. Note if disable.factor.sorting = TRUE, then the
top row of data is the bottom row of the plot, i.e. bars are filled in from the bot-
tom to the top of the plot. To make the barplot rows match the input data rows,
make sure the y-axis variable is a factor, and do data = data[nrow(data):1,]

background.col Plot background colour, defaults to transparent

origin The origin of the plot, generally 0

reference Should the reference line be printed at the origin

box.ratio Specifies the width of each bar, defaults to 2

sample.order Should the bars be reordered, accepts values “increasing”, “decreasing” or a
vector of sample names. Labels will also be reordered

group.labels Should the labels be grouped to the same amount of bars per column

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text

strip.col Strip background colour, defaults to white

strip.cex Strip title character expansion

y.error.up A vector specifying the length of the error bar going up from each point. If set
to NULL (the default), error bars will not be drawn

y.error.down A vector specifying the length of the error bar going down from each point. By
default, it is set to y.error.up

y.error.bar.col

A string or vector of strings specifying the colour of the error bars. Defaults to
black

error.whisker.width

A number specifying the width of the error bars. Defaults to a rough approxi-
mation based on the size of the data

error.bar.lwd The line width of the error bars. Defaults to 1
error.whisker.angle

The angle of the error bar whiskers, defaults to 90. Can be changed to produce
arrow-like bars

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn

16 create.barplot

ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle

line.func Function for the line that should be drawn on top of plot

line.from The starting point of the line on the plot

line.to The ending point of the line on the plot

line.col Colour of the line on the plot

line.infront Should the line appear in front of the plot or not
text.above.bars

Should some form of text appear above the bars; input as a list. bar.locations
is the x-axis when vertical and y-axis when horizontal. See lattice::ltext ar-
guments for all possible values that can be passed in. (col, alpha, cex, etc, can
all be passed in as a single value or vector of same length as text.above.bars$labels)

raster The image to raster over each bar - see Raster Images in R Graphics by Paul
Murrell for full details

raster.vert A logical indicating whether the raster is applied vertically or horizontally

raster.just A word giving the justification of the raster, can be set to “left”, “right”, “centre”,
“center”, “bottom”, or “top”

raster.width.dim

A unit object giving the width of the raster bar

height Figure height, defaults to 6 in

width Figure width, defaults to 6 in

size.units Figure units, defaults to inches

resolution Figure resolution, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Description of image/plot; default NULL

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function
disable.factor.sorting

Disable barplot auto sorting factors alphabetically/numerically

create.barplot 17

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Mehrdad Shamsi

See Also

barchart, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = sample(1:15, 5),
y = LETTERS[1:5]
);

Simple example
create.barplot(

filename = tempfile(pattern = 'Barplot_Simple', fileext = '.tiff'),
formula = x ~ y,
data = simple.data,
yat = seq(0,16,2),
resolution = 30
);

set up the data
total.counts <- apply(SNV[1:15], 2, function(x){ mutation.count <- (30 - sum(is.na(x)))});
count.nonsyn <- function(x){

mutation.count <- length(which(x == 1));
}

nonsynonymous.SNV <- apply(SNV[1:15], 2, count.nonsyn);
other.mutations <- total.counts - nonsynonymous.SNV;

18 create.barplot

subset the first fifteen samples
barplot.data <- data.frame(

samples = rep(1:15, 2),
mutation = c(rep('nonsynonymous', 15), rep('other',15)),
type = c(rep(1, 15), rep(2,15)),
values = c(nonsynonymous.SNV, other.mutations),
sex = rep(patient$sex[1:15], 2),
stage = rep(patient$stage[1:15], 2),
msi = rep(patient$msi[1:15], 2)
);

Minimal input
create.barplot(

filename = tempfile(pattern = 'Barplot_Minimal_Input', fileext = '.tiff'),
formula = values ~ samples ,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Minimal input',
Editing the metadata
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Axes labels & limits
create.barplot(

filename = tempfile(pattern = 'Barplot_Custom_Axes', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Axes labels & limits',
Setting axes labels
xlab.lab = 'Sample',
ylab.lab = 'Nonsynonymous SNVs',
Setting y-axis limits and tick-mark locations
ylimits = c(0,30),
yat = seq(0,30,5),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Font size and font face
create.barplot(

filename = tempfile(pattern = 'Barplot_Font_Changes', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Font changes',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
Changing font sizes
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,

create.barplot 19

Changing font type
xaxis.fontface = 1,
yaxis.fontface = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Sorting data
create.barplot(

filename = tempfile(pattern = 'Barplot_Sorted', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Sorted bars',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Order bars either by 'increasing' or 'decreasing'
sample.order = 'decreasing',
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Sorting data with horizontal barplot
create.barplot(

formula = samples ~ values,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Sorted bars',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
xlimits = c(0,30),
xat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Order bars either by 'increasing' or 'decreasing'
sample.order = 'decreasing',
plot.horizontal = TRUE,
resolution = 100
)

Log-Scaled Axis
log.data <- data.frame(

20 create.barplot

x = 10 ** sample(1:15, 5),
y = LETTERS[1:5]
);

create.barplot(
formula = x ~ y,
data = log.data,
Log base 10 scale y-axis
yat = 'auto.log',
main = 'Log Scaled',
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Colour changes
sex.colours <- replace(as.vector(barplot.data$sex), which(barplot.data$sex == 'male'),'dodgerblue');
sex.colours <- replace(sex.colours, which(barplot.data$sex == 'female'), 'pink');

create.barplot(
filename = tempfile(pattern = 'Barplot_Colour_Changes', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Colour changes',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Colour bars based on sex
col = sex.colours,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Legend
create.barplot(

filename = tempfile(pattern = 'Barplot_Legend', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Legend',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,

create.barplot 21

xaxis.fontface = 1,
yaxis.fontface = 1,
col = sex.colours,
Adding legend to explain bar colour-coding
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot
x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Grouped barplot
create.barplot(

filename = tempfile(pattern = 'Barplot_Grouped', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data,
main = 'Grouped bar chart',
xlab.lab = 'Samples',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Setting groups
groups = mutation,
col = default.colours(12, is.greyscale = FALSE)[11:12],
legend = list(

inside = list(
fun = draw.key,

22 create.barplot

args = list(
key = list(

points = list(
col = 'black',
pch = 22,
cex = 2,
fill = default.colours(12, is.greyscale = FALSE)[11:12]
),

text = list(
lab = c('Nonsynonymous SNV','Other SNV')
),

padding.text = 3,
cex = 1
)

),
x = 0.55,
y = 0.95
)

),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Grouped labels
create.barplot(

filename = tempfile(pattern = 'Barplot_Grouped_Labels', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data,
main = 'Grouped labels',
xlab.lab = 'Samples',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Setting groups
groups = mutation,
col = default.colours(12, is.greyscale = FALSE)[11:12],
Grouped labels
xaxis.lab = rep(c('nonsynonymous', 'other'), 15),
xaxis.rot = 90,
group.labels = TRUE,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Stacked barplot
create.barplot(

filename = tempfile(pattern = 'Barplot_Stacked', fileext = '.tiff'),

create.barplot 23

formula = values ~ samples,
data = barplot.data,
main = 'Stacked bar chart',
xlab.lab = 'Samples',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
groups = mutation,
col = default.colours(12, is.greyscale = FALSE)[11:12],
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 2,
reverse order to match stacked bar order
fill = rev(default.colours(12, is.greyscale = FALSE)[11:12])
),

text = list(
reverse order to match stacked bar order
lab = rev(c('Nonsynonymous SNV','Other SNV'))
),

padding.text = 3,
cex = 1
)

),
x = 0.55,
y = 0.95
)

),
Changing the plot from a grouped plot to a stacked plot
stack = TRUE,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Panel organization
create.barplot(

filename = tempfile(pattern = 'Barplot_Panel_Layout_numeric_conditioning', fileext = '.tiff'),
Setting the panel layout
formula = values ~ samples | type,
data = barplot.data,
main = 'Panel layout',
xlab.lab = 'Samples',

24 create.barplot

ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

create.barplot(
Setting the panel layout
formula = values ~ samples | mutation,
data = barplot.data,
main = 'Panel layout',
xlab.lab = 'Samples',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Panel organization 2
create.barplot(

filename = tempfile(pattern = 'Barplot_Panel_Layout_2', fileext = '.tiff'),
formula = values ~ samples | mutation,
data = barplot.data,
main = 'Panel layout',
xlab.lab = 'Samples',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Adjusting the panel layout
layout = c(1,2),
y.spacing = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200

create.barplot 25

);

Covariates
Note: Covariates can also be created using the create.multiplot function

set covariate colour schemes
covariate.colours.sex <- as.character(barplot.data$sex);
covariate.colours.sex[covariate.colours.sex == 'male'] <- 'dodgerblue';
covariate.colours.sex[covariate.colours.sex == 'female'] <- 'pink';

covariate.colours.stage <- as.character(barplot.data$stage);
covariate.colours.stage[covariate.colours.stage == 'I'] <- 'plum1';
covariate.colours.stage[covariate.colours.stage == 'II'] <- 'orchid1';
covariate.colours.stage[covariate.colours.stage == 'III'] <- 'orchid3';
covariate.colours.stage[covariate.colours.stage == 'IV'] <- 'orchid4';

covariate.colours.msi <- as.character(barplot.data$msi);
covariate.colours.msi[covariate.colours.msi == 'MSS'] <- 'chartreuse4';
covariate.colours.msi[covariate.colours.msi == 'MSI-High'] <- 'chartreuse2';

create object to draw covariates
covariates.object <- list(

rect = list(
col = 'white',
fill = covariate.colours.sex,
lwd = 1.5
),

rect = list(
col = 'white',
fill = covariate.colours.stage,
lwd = 1.5
),

rect = list(
col = 'white',
fill = covariate.colours.msi,
lwd = 1.5
)

);

see BoutrosLab.plotting.general::covariates.grob() for more information
covariate.object.grob <- covariates.grob(

covariates = covariates.object,
ord = c(1:15),
side = 'top',
size = 0.8
);

Create legend to explain covariates
covariates.legends <- list(

legend = list(
colours = c('dodgerblue','pink'),
labels = c('male','female'),
title = 'Sex',

26 create.barplot

border = 'white'
),

legend = list(
colours = c('plum1', 'orchid1', 'orchid3', 'orchid4'),
labels = c('I','II','III','IV'),
title = 'Stage',
border = 'white'
),

legend = list(
colours = c('chartreuse4','chartreuse2'),
labels = c('MSS','MSI-High'),
title = 'MSI',
border = 'white'
)

);

see BoutrosLab.plotting.general::legend.grob() for more information
covariate.legend.grob <- legend.grob(

legends = covariates.legends,
title.just = 'left'
);

create.barplot(
filename = tempfile(pattern = 'Barplot_Covariates', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Covariates',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
yaxis.fontface = 1,
removing x-axis formatting to give space to covariates
xaxis.tck = 0,
xaxis.lab = rep('',15),
xaxis.cex = 0,
covariates
legend = list(

bottom = list(fun = covariate.object.grob),
right = list(fun = covariate.legend.grob)
),

key = list(
x = 1,
y = -0.028,
text = list(

lab = c('Sex','Stage','MSI')
),

padding.text = 1
),

bottom.padding = 4,
description = 'Barplot created by BoutrosLab.plotting.general',

create.barplot 27

resolution = 200
);

create.barplot(
filename = tempfile(pattern = 'Barplot_Auto_legend', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Covariates',
ylab.lab = 'Mutations',
ylimits = c(0,30),
yat = seq(0,30,5),
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
yaxis.fontface = 1,
removing x-axis formatting to give space to covariates
xaxis.tck = 0,
xaxis.lab = rep('',15),
xaxis.cex = 0,
covariates
legend = list(

inside = list(fun = covariate.legend.grob)
),

bottom.padding = 4,
inside.legend.auto = TRUE,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Horizontal orientation
create.barplot(

filename = tempfile(pattern = 'Barplot_Horizontal', fileext = '.tiff'),
switch formula order
formula = samples ~ values,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Plot horizontally',
Adjusting the panel layout
plot.horizontal = TRUE,
covariates
legend = list(

inside = list(fun = covariate.legend.grob)
),

inside.legend.auto = TRUE,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Change bar thickness and add text labels
create.barplot(

filename = tempfile(pattern = 'Barplot_Text_Labels', fileext = '.tiff'),
switch formula order
formula = samples ~ values,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],

28 create.barplot

main = 'Text labels and thin bars',
Adjusting the panel layout
plot.horizontal = TRUE,
box.ratio = 0.6,
add.text = TRUE,
text.x = 27.75,
text.y = 1:15,
text.labels = barplot.data[barplot.data$mutation == 'nonsynonymous','values'],
text.cex = 0.8,
text.fontface = 'italic',
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Error bars
error.data <- data.frame(

genes = rownames(microarray)[1:15],
values = apply(microarray[1:15,1:58], 1, mean),
error = apply(microarray[1:15,1:58], 1, sd)
);

create.barplot(
filename = tempfile(pattern = 'Barplot_Error_Bars', fileext = '.tiff'),
needs sequential x-axis
formula = values ~ 1:15,
data = error.data,
y.error.up = error.data$error,
xaxis.lab = error.data$genes,
main = 'Error bars',
xlab.lab = 'Gene',
ylab.lab = 'Change in Expression',
ylimits = c(0,14),
yat = seq(0,14,2),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.rot = 45,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

create.barplot(
filename = tempfile(pattern = 'Barplot_Error_Bars_Horizontal', fileext = '.tiff'),
needs sequential x-axis
formula = values ~ 1:15,
data = error.data,
y.error.up = error.data$error,
yaxis.lab = error.data$genes,
plot.horizontal = TRUE,

create.barplot 29

main = 'Error bars',
xlab.lab = 'Gene',
ylab.lab = 'Change in Expression',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.rot = 45,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 100
);

Grid lines
create.barplot(

filename = tempfile(pattern = 'Barplot_Gridlines', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Gridlines',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Grid lines
add.grid = TRUE,
xgrid.at = seq(0,15,2),

col = sex.colours,
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot

30 create.barplot

x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Grid lines 2
create.barplot(

filename = tempfile(pattern = 'Barplot_Gridlines_GreyBG', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Gridlines & grey background',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Grid lines
background.col = 'grey85',
add.grid = TRUE,
xgrid.at = seq(0,15,2),
col = sex.colours,
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot
x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',

create.barplot 31

resolution = 200
);

Labels
create.barplot(

filename = tempfile(pattern = 'Barplot_Labels', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Labels',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Labels
text.above.bars = list(

labels = c('*','27','15','*'),
padding = 0.75,
bar.locations = c(1, 3, 12, 14),
rotation = 0
),

col = sex.colours,
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot
x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

32 create.barplot

lines
create.barplot(

filename = tempfile(pattern = 'Barplot_Lines', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Lines',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
Lines
sample.order = 'increasing',
line.func = function(x) {0.1*x**2},
line.from = 0,
line.to = 16,
line.col = 'darkgrey',
abline.h = 10,
abline.col = 'red',
col = sex.colours,
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot
x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

create.barplot 33

Background rectangle
create.barplot(

filename = tempfile(pattern = 'Barplot_Bg_Rectangle', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Background rectangle',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
sample.order = 'increasing',
Background rectangle
add.rectangle = TRUE,
xleft.rectangle = seq(0.5, 14.5, 2),
ybottom.rectangle = 0,
xright.rectangle = seq(1.5, 15.5, 2),
ytop.rectangle = 30,
col.rectangle = 'lightgrey',
col = sex.colours,
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 3,
fill = c('dodgerblue', 'pink')
),

text = list(
lab = c('Male','Female')
),

padding.text = 5,
cex = 1
)

),
Positioning legend on plot
x = 0.75,
y = 0.95

)
),

description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Raster

34 create.barplot

create.barplot(
filename = tempfile(pattern = 'Barplot_with_raster', fileext = '.tiff'),
formula = values ~ samples,
data = barplot.data[barplot.data$mutation == 'nonsynonymous',],
main = 'Raster fill',
xlab.lab = 'Samples',
ylab.lab = 'Nonsynonymous SNVs',
ylimits = c(0,30),
yat = seq(0,30,5),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
filling bars with raster
raster = 1:10/10,
raster.just = 'bottom',
description = 'Description of image here',
resolution = 200
);

Nature format
create.barplot(

filename = tempfile(pattern = 'Barplot_Nature_style', fileext = '.tiff'),
formula = x ~ y,
data = simple.data,
yat = seq(0,16,2),
main = 'Nature style',

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

resolution = 200
);

Left Justified Example
create.barplot(

filename = tempfile(pattern = 'Barplot_TwoTopLabelsLeftJustified', fileext = '.tiff'),
formula = x ~ y,
data = simple.data,
yat = seq(0,16,2),
ylab.label = NULL,
set top label details
xlab.top.label = 'Sample Label',
xlab.top.cex = 1.5,
xlab.top.x = -0.125,

create.boxplot 35

xlab.top.y = 0.5,
xlab.top.just = 'left',
set main label details
main = 'Sample Main',
main.just = 'left',
main.x = 0,
main.y = 0.6,
top.padding = 1,
resolution = 200
);

create.boxplot Make a boxplot

Description

Takes a data.frame and creates a boxplot

Usage

create.boxplot(
formula,
data,
filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
add.stripplot = FALSE,
jitter.factor = 1,
jitter.amount = NULL,
points.pch = 19,
points.col = 'darkgrey',
points.cex = 0.5,
points.alpha = 1,
abline.h = NULL,
abline.v = NULL,
abline.lty = NULL,
abline.lwd = NULL,
abline.col = 'black',
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',

36 create.boxplot

alpha.rectangle = 1,
box.ratio = 1,
col = 'transparent',
alpha = 1,
border.col = 'black',
symbol.cex = 0.8,
lwd = 1,
outliers = TRUE,
sample.order = 'none',
order.by = 'median',
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = c(1,0),
yaxis.tck = 1,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
top.padding = 0.5,
bottom.padding = 2,
right.padding = 1,
left.padding = 2,

create.boxplot 37

ylab.axis.padding = 0,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.anchor = 'centre',
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
key = NULL,
legend = NULL,
strip.col = 'white',
strip.cex = 1,
strip.fontface = 'bold',
line.func = NULL,
line.from = 0,
line.to = 0,
line.col = 'transparent',
line.infront = TRUE,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE,
disable.factor.sorting = FALSE
);

Arguments

formula The formula used to extract the x & y components from the data-frame. Trans-
forming data within formula is not compatible with automatic scaling with ‘xat‘
or ‘yat‘.

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 3

add.stripplot logical whether to plot all points, defaults to FALSE

jitter.factor Numeric value to apply to jitter, default is 1

jitter.amount Numeric; amount of noise to add, default is NULL

38 create.boxplot

points.pch pch value to use for stripplot

points.col colour(s) to use for stripplot (either a single colour or a vector)

points.cex cex value to use for stripplot

points.alpha alpha value to use for stripplot

abline.h Specify the horizontal superimpose line

abline.v Specify the vertical superimpose line

abline.lty Specify the superimpose line type

abline.lwd Specify the superimpose line width

abline.col Specify the superimpose line colour (defaults to black)

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour of the rectangle to be drawn
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

box.ratio ability to change the box width, defaults to 1

col The colour to fill the interior of the boxplot, defaults to white

alpha The alpha of the interior boxplot colour specified in ‘col‘. Defaults to 1 (opaque)

border.col Colour of the boxplot, defaults to black

symbol.cex Size of the boxplot outlier-symbol

lwd Line width, defaults to 1

outliers logical whether to plot outliers, defaults to TRUE

sample.order String specifying how samples should be ordered. Either none, increasing, or
decreasing.

order.by A string specifying what the sample order should be ordered by, either max,
min, median or mean

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

create.boxplot 39

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits

ylimits Two-element vector giving the y-axis limits

xat Accepts a vector listing where x-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes x-axis tick locations, labels, and data values dependent on
given data. “auto” will determine whether linear or logarithmic scaling fits the
given data best, “auto.linear” or “auto.log” will force data to be scaled linearly
or logarithmically respectively. Defaults to lattice automatic (TRUE). For more
details see ‘auto.axis()‘.

yat Accepts a vector listing where y-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes y-axis tick locations, labels, and data values dependent on
given data. “auto” will determine whether linear or logarithmic scaling fits the
given data best, “auto.linear” or “auto.log” will force data to be scaled linearly
or logarithmically respectively. Defaults to lattice automatic (TRUE). For more
details see ‘auto.axis()‘.

xaxis.lab Vector listing x-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with xat will overwrite user input. Set to NULL to remove x-axis labels.

yaxis.lab Vector listing y-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with yat will overwrite user input. Set to NULL to remove y-axis labels.

xaxis.cex Size of x-axis tick labels, defaults to 2

yaxis.cex Size of y-axis tick labels, defaults to 2

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1 (bottom) and 0
(top)

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

.

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

40 create.boxplot

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

top.padding A number specifying the distance to the top margin, defaults to 0.5

bottom.padding A number specifying the distance to the bottom margin, defaults to 2

right.padding A number specifying the distance to the right margin, defaults to 1

left.padding A number specifying the distance to the left margin, defaults to 2
ylab.axis.padding

A number specifying the distance of y-axis label to the y-axis, defaults to 0

,

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text. If the formula contains group, the length of this argu-
ment should match with the number of groups.

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.anchor Part of text that should be anchored to x/y coordinates. Defaults to ’centre’. Use
’left’ or ’right’ to left or right-align text.

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text

key Add a key to the plot. See xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

strip.fontface Strip title fontface, defaults to bold

line.func Function for the line that should be drawn on top of plot

line.from The starting point of the line on the plot

line.to The ending point of the line on the plot

line.col Colour of the line on the plot

line.infront Should the line appear in front of the plot or not

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

create.boxplot 41

description Description of image/plot; default NULL.

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
disable.factor.sorting

Disable barplot auto sorting factors alphabetically/numerically

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Maud H.W. Starmans

See Also

bwplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = rnorm(1000),
y = rep('A',1000)
);

create.boxplot(
filename = tempfile(pattern = 'Boxplot_Simple', fileext = '.tiff'),
formula = y ~ x,
data = simple.data,
main = 'Simple',

42 create.boxplot

description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 50
);

add stripplot behind boxplot
create.boxplot(

filename = tempfile(pattern = 'Boxplot_with_Stripplot', fileext = '.tiff'),
formula = y ~ x,
data = simple.data,
main = 'With Stripplot',
add.stripplot = TRUE,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 50
);

Multi-coloured stripplot
strip.data <- data.frame(

score = c(rnorm(30, 15, 3), rnorm(50, 20, 4)),
sex = sample(c('male', 'female'), 80, replace = TRUE),
gene = sample(c('a', 'b'), 80, replace = TRUE)
);

create.boxplot(
filename = NULL,
formula = score ~ sex | gene,
data = strip.data,
main = 'Multi-Coloured Stripplot',
add.stripplot = TRUE,
points.col = c('pink', 'dodgerblue'),
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

format data
reformatted.data <- data.frame(

x = as.vector(t(microarray[1:10,1:58])),
y = as.factor(rep(rownames(microarray[1:10,1:58]),each = 58)),
z = sample(1:10, 580, replace = TRUE)
);

Minimal Input
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Minimal_Input', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Minimal input',
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 50
);

Minimal Input
create.boxplot(

create.boxplot 43

filename = tempfile(pattern = 'Boxplot_Disable_Factor_Sorting_Input', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'No Factor Sorting',
disable.factor.sorting = TRUE,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 50
);

Axes and labels
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Axes_Labels', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Axes & labels',
Adjusting axes size
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
Adding y-axis label
ylab.label = 'Gene',
setting axes limits
xlimits = c(0,13),
xat = seq(0,12,2),
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

Sorting
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Sorted', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Sorting',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
Reordered by median
sample.order = 'increasing',
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

Colour change
sex.colour <- as.character(patient$sex);
sex.colour[sex.colour == 'male'] <- 'dodgerblue';
sex.colour[sex.colour == 'female'] <- 'pink';

44 create.boxplot

create.boxplot(
filename = tempfile(pattern = 'Boxplot_Colour_Change', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Colour change',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
Colour change
col = sex.colour,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

Remove y-axis labels
create.boxplot(

formula = y ~ x,
data = reformatted.data,
main = 'Remove y-axis labels',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
yaxis.lab = NULL, # Remove labels with NULL
Colour change
col = sex.colour,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

Log Scaled Axis
log.data <- data.frame(

x = 10 ** rnorm(1000, 5, 2),
y = rep('A',1000)
);

create.boxplot(
formula = x ~ y,
data = log.data,
Log base 10 scale y axis
yat = 'auto.log',
main = 'Log Scale',
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

create.boxplot 45

Legend
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Legend', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Legend',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
col = sex.colour,
legend
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 1.5,
fill = c('dodgerblue','pink')
),

text = list(
lab = c('male','female')
),

cex = 1
)

),
x = 0.03,
y = 0.97,
corner = c(0,1),
draw = FALSE
)

),
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 100
);

Orientation
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Orientation', fileext = '.tiff'),
switch the order
formula = x ~ y,
data = reformatted.data,
main = 'Orientation',
xaxis.cex = 1,
yaxis.cex = 1,
adjust the axes

46 create.boxplot

ylimits = c(0,13),
yat = seq(0,12,2),
rotate the labels
xaxis.rot = 90,
xlab.label = 'Gene',
xlab.cex = 1.5,
col = sex.colour,
legend
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 1.5,
fill = c('dodgerblue','pink')
),

text = list(
lab = c('male','female')
),

cex = 1
)

),
x = 0.23,
y = 0.97,
corner = c(0,1),
draw = FALSE
)

),
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

Background rectangle
create.boxplot(

filename = tempfile(pattern = 'Boxplot_BG_Rect', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Bg rectangle',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
draw rectangle
add.rectangle = TRUE,
xleft.rectangle = 0,
xright.rectangle = 13,
ybottom.rectangle = seq(0.5, 8.5, 2),

create.boxplot 47

ytop.rectangle = seq(1.5, 9.5, 2),
col.rectangle = 'grey',
alpha.rectangle = 0.5,
col = sex.colour,
legend
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = 'black',
pch = 22,
cex = 1.5,
fill = c('dodgerblue','pink')
),

text = list(
lab = c('male','female')
),

cex = 1
)

),
x = 0.03,
y = 0.97,
corner = c(0,1),
draw = FALSE
)

),
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

Line
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Line', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Line',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
draw line
line.func = function(x){c(0.5, 10.5)},
line.from = 11,
line.to = 11,
line.col = 'grey',
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

48 create.boxplot

Panel Organization
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Panels_numeric_conditioning', fileext = '.tiff'),
formula = ~ x | z,
data = reformatted.data,
main = 'Panels',
xaxis.cex = 1,
yaxis.cex = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
Setting up the layout
layout = c(2,5),
x.relation = 'free',
x.spacing = 1,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

create.boxplot(
filename = tempfile(pattern = 'Boxplot_Panels_factor_conditioning', fileext = '.tiff'),
formula = ~ x | y,
data = reformatted.data,
main = 'Panels',
xaxis.cex = 1,
yaxis.cex = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
Setting up the layout
layout = c(2,5),
x.relation = 'free',
x.spacing = 1,
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

Nature format
create.boxplot(

filename = tempfile(pattern = 'Boxplot_Nature_style', fileext = '.tiff'),
formula = y ~ x,
data = reformatted.data,
main = 'Nature style',
xaxis.cex = 1,
yaxis.cex = 1,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

create.boxplot 49

resolution = 1200
);

Sorting by mean and multiple filenames
create.boxplot(

filename = c(
tempfile(pattern = 'Boxplot_Sorted1', fileext = '.tiff'),
tempfile(pattern = 'Boxplot_Sorted2', fileext = '.tiff')
),

formula = y ~ x,
data = reformatted.data,
main = 'Sorting',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
ylab.label = 'Gene',
xlimits = c(0,13),
xat = seq(0,12,2),
Reordered by median
sample.order = 'increasing',
order.by = 'mean',
description = 'Boxplot created by BoutrosLab.plotting.general',
resolution = 200
);

Adding text to plot
Generate normally distributed variables with two different means
set.seed(779);
groupA <- rnorm(n = 100, mean = 10, sd = 2);
groupB <- rnorm(n = 134, mean = 10.5, sd = 2);

Create data frame for plotting
to.plot <- data.frame(
y = rep(
c('1', '2'),
times = c(100, 134)
),
x = c(groupA, groupB)
);

Get difference between means
diff.mean <- round(mean(groupB) - mean(groupA), 2);

Plot and display difference
create.boxplot(
formula = x ~ y,
filename = tempfile(pattern = 'boxplot_with_text', fileext = '.tiff'),
data = to.plot,
add.stripplot = TRUE,
add.text = TRUE,
text.labels = bquote(mu[B] - mu[A] == .(diff.mean)),

50 create.colourkey

text.x = 2.1,
text.y = 15.3,
text.col = 'black',
text.cex = 1.5,
text.fontface = 'bold',
ylimits = c(
min(to.plot$x) - abs(min(to.plot$x) * 0.1),
max(to.plot$x) + abs(max(to.plot$x) * 0.1)
),
resolution = 200

);

create.colourkey Create Colourkey

Description

A function for generating and placing a colour key. Good for use in multiplots when a smaller
colour key is desired.

Usage

create.colourkey(
x,
scale.data = FALSE,
colour.scheme = c(),
total.colours = 99,
colour.centering.value = 0,
colour.alpha = 1,
fill.colour = 'darkgray',
at = NULL,
colourkey.labels.at = NULL,
colourkey.labels = colourkey.labels.at,
colourkey.labels.cex = 1,
placement = NULL
);

Arguments

x Either a data-frame or a matrix from which the heatmap was created

scale.data Was the data for the heatmap scaled? Defaults to FALSE.

colour.scheme Heatmap colouring. Accepts old-style themes, or a vector of either two or three
colours that are gradiated to create the final palette.

total.colours Total number of colours to plot.
colour.centering.value

The center of the colour-map.

create.colourkey 51

colour.alpha Bias to be added to colour selection (uses x^colour.alpha in mapping).

fill.colour The background fill (only exposed where missing values are present.

at A vector specifying the breakpoints along the range of x.
colourkey.labels.at

A vector specifying the tick-positions on the colourkey.
colourkey.labels

A vector specifying tick-labels of the colourkey
colourkey.labels.cex

Size of colourkey labels. Defaults to 1

placement Location and size of the colourkey.

Value

Returns a key in the format specified in the xyplot documentation.

Author(s)

Stephenie Prokopec

See Also

xyplot, plotmath

Examples

set.seed(1234567890);
x <- outer(-5:5, -5:5, '*') + matrix(nrow = 11, ncol = 11, data = runif(11 * 11));
colnames(x) <- paste('col', 1:11, sep = '-');
rownames(x) <- paste('row', 1:11, sep = '-');

y <- as.data.frame(x);
y$mean <- apply(x,1,mean);

example of a simple multiplot with colourkey
heatmap1 <- create.heatmap(

x = t(x),
filename = NULL,
clustering.method = 'none',
scale.data = FALSE,
yaxis.lab = NA,
print.colour.key = FALSE,
colour.scheme = c('chartreuse3', 'white', 'blue'),
at = seq(-25, 25, 0.01)
);

barplot1 <- create.barplot(
1:nrow(y) ~ mean,
y,
plot.horizontal = TRUE
);

52 create.dendrogram

create.multiplot(
plot.objects = list(heatmap1, barplot1),
filename = tempfile(pattern = 'multiplot_with_colourkey', fileext = '.tiff'),
plot.layout = c(2,1),
panel.widths = c(2,1),
yat = list(1:nrow(y), NULL),
yaxis.labels = rownames(y),
xlimits = list(NULL, c(0,1)),
xat = list(NULL, seq(0,1,0.5)),
xaxis.labels = list(NULL, seq(0,1,0.5)),
x.spacing = 0,
print.new.legend = TRUE,
legend = list(

inside = list(
fun = BoutrosLab.plotting.general::create.colourkey(

x = x,
colour.scheme = c('chartreuse3', 'white', 'blue'),
at = seq(-25, 25, 0.01),
colourkey.labels.at = c(-25, 0, 25),
placement = viewport(just = 'left', x = 0.55, y = -0.55, width = 0.5)
)

)
),

bottom.padding = 4,
width = 10,
height = 8,
resolution = 500
);

create.dendrogram Generate a dendrogram

Description

Takes a matrix and creates a row-wise or column-wise dendrogram

Usage

create.dendrogram(
x,
clustering.method = 'diana',
cluster.dimension = 'col',
distance.method = 'correlation',
cor.method = 'pearson',
force.clustering = FALSE,
same.as.matrix = FALSE
);

create.dendrogram 53

Arguments

x A matrix that is used to create the dendrogram
clustering.method

Method used to cluster the records (can not be none). Accepts all agglomerative
clustering methods available in hclust, plus “diana” (which is divisive).

cluster.dimension

Should clustering be performed on the rows or columns of x?
distance.method

Method name of the distance measure to be used for clustering. Defaults to
“correlation”. Other supported methods are same as in ?dist. Also supports
“jaccard” which is useful for clustering categorical variables.

cor.method The method used for calculating correlation. Defaults to “pearson”
force.clustering

Binary to over-ride the control that prevents clustering of too-large matrices

same.as.matrix Prevents the flipping of the matrix that the function normally does

Value

Returns an object of the dendrogram class corresponding to the row-wise or column-wise dendro-
gram for x

Author(s)

Lauren Chong

Examples

create temp data
x <- outer(-5:5, -5:5, '*') + matrix(nrow = 11, ncol = 11, data = runif(11 * 11));
colnames(x) <- paste('col', 1:11, sep = '-');
rownames(x) <- paste('row', 1:11, sep = '-');

example of generating a column-wise dendrogram using default values
create.dendrogram(

x = x
);

example of generating a column-wise dendrogram using different distance and clustering methods
create.dendrogram(

x = x,
clustering.method = 'median',
cluster.dimension = 'cols',
distance.method = 'euclidean'
);

generate row-wise dendrogram using default distance and clustering methods
create.dendrogram(

x = x,
cluster.dimension = 'row'

54 create.densityplot

);

generate row-wise dendrogram using different distance and clustering methods
create.dendrogram(

x = x,
clustering.method = 'ward',
cluster.dimension = 'rows',
distance.method = 'manhattan'
);

create.densityplot Make a density plot

Description

Takes a list of vectors and creates a density-plot with each vector as a separate curve

Usage

create.densityplot(
x,
filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = NULL,
ylab.label = 'Density',
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
type = 'l',
lty = 'solid',
cex = 0.75,
pch = 19,
col = 'black',
lwd = 2,
bandwidth = 'nrd0',
bandwidth.adjust = 1,
xlimits = NULL,

create.densityplot 55

ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.tck = 1,
yaxis.tck = 1,
xgrid.at = xat,
ygrid.at = yat,
key = list(text = list(lab = c(''))),
legend = NULL,
top.padding = 0.1,
bottom.padding = 0.7,
left.padding = 0.5,
right.padding = 0.1,
add.axes = FALSE,
abline.h = NULL,
abline.v = NULL,
abline.lty = NULL,
abline.lwd = NULL,
abline.col = 'black',
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.anchor = "centre",
text.col = "black",
text.cex = 1,

text.fontface = "bold",
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,

56 create.densityplot

enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE,
inside.legend.auto = FALSE
);

Arguments

x A list of vectors, each of which will be plotted as a separate curve in the final
plot

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 2

xlab.label The label for the x-axis

ylab.label The label for the y-axis, defaults to “Density”

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

type Plot type

lty Line type

cex Character expansion for plotting symbol

pch Plotting character

col Point/line colour

lwd Thickness of width of any best-fit lines

bandwidth Smoothing bandwidth, or character string giving rule to choose bandwidth (’nrd0’,
’nrd’, ’ucv’, ’bcv’, ’sj’, or ’sj-ste’). Passed to base R function density.

bandwidth.adjust

Adjustment parameter for the bandwidth (bandwidth used is bandwidth*bandwidth.adjust).
Makes it easy to specify bandwidth as a proportion of the default.

create.densityplot 57

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis tick labels, defaults to 1

yaxis.cex Size of x-axis tick labels, defaults to 1

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xgrid.at Vector listing where the x-axis grid lines should be drawn, defaults to xat

ygrid.at Vector listing where the y-axis grid lines should be drawn, defaults to yat

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

top.padding A number giving the top padding in multiples of the lattice default

bottom.padding A number giving the bottom padding in multiples of the lattice default

left.padding A number giving the left padding in multiples of the lattice default

right.padding A number giving the right padding in multiples of the lattice default

add.axes Allow axis lines to be turned on or off

abline.h Specify the superimposed horizontal line(s)

abline.v Specify the superimposed vertical line(s)

abline.lty Specify the superimposed line type

abline.lwd Specify the superimposed line width

abline.col Specify the superimposed line colour (defaults to black)

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

58 create.densityplot

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn
col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn
add.text Allow additional text to be drawn, default is FALSE
text.labels Labels for additional text
text.x The x co-ordinates where additional text should be placed
text.y The y co-ordinates where additional text should be placed
text.anchor Part of text that should be anchored to x/y coordinates. Defaults to ’centre’. Use

’left’ or ’right’ to left or right-align text.
text.col The colour of additional text
text.cex The size of additional text
text.fontface The fontface for additional text
height Figure height, defaults to 6 inches
width Figure width, defaults to 6 inches
size.units Figure units, defaults to inches
resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE
description Short description of image/plot; default NULL.
style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-

cording to Nature formatting requirements
preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

create.densityplot 59

Author(s)

Paul C. Boutros

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = rnorm(1000),
y = rnorm(1000, mean = 3, sd = 3)
);

create.densityplot(
filename = tempfile(pattern = 'Densityplot_Simple', fileext = '.tiff'),
x = simple.data,
main = 'Simple',
description = 'Barplot created by BoutrosLab.plotting.general'
);

format data
format.data <- microarray[1:3,1:58];
format.data <- as.data.frame(t(format.data));

Minimal Input
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Minimal_Input', fileext = '.tiff'),
x = format.data,
main = 'Minimal input',
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 50
);

Line type
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Line_Type', fileext = '.tiff'),
x = format.data,
main = 'Line type',
Line type
lty = c('solid','dashed','dotted'),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 50
);

Axes & Labels
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Axes_Labels', fileext = '.tiff'),
x = format.data,
main = 'Axes & labels',

60 create.densityplot

lty = c('solid','dashed','dotted'),
Axes & Labels
ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
xat = seq(0, 13, 1),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 50
);

Colour change & Legend
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Colour_Legend', fileext = '.tiff'),
x = format.data,
main = 'Colour & legend',
lty = c('solid','dashed','dotted'),
ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
Colours
col = default.colours(3),
Legend
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 21,
cex = 1.5,
fill = default.colours(3)
),

text = list(
lab = colnames(format.data)
),

padding.text = c(0,5,0),
cex = 1
)

),
x = 0.65,
y = 0.97,
draw = FALSE
)

),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 50
);

Correlation key
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Correlation_Key', fileext = '.tiff'),
x = format.data[,1:2],
main = 'Correlation key',

create.densityplot 61

lty = c('solid','dotted'),
ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
col = default.colours(2),
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(2),
pch = 21,
cex = 1.5,
fill = default.colours(2)
),

text = list(
lab = colnames(format.data)[1:2]
),

padding.text = c(0,5,0),
cex = 1
)

),
x = 0.65,
y = 0.97,
draw = FALSE
),

Correlation key accepts two vectors
inside = list(

fun = draw.key,
args = list(

key = get.corr.key(
x = as.numeric(format.data[,1]),
y = as.numeric(format.data[,2]),
label.items = c('pearson','beta1'),
alpha.background = 1,
key.cex = 1.2
)

),
x = 0.65,
y = 0.85,
corner = c(0,1)
)

),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Gridlines
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Gridlines_1', fileext = '.tiff'),
x = format.data,
main = 'Gridlines',
lty = c('solid','dashed','dotted'),

62 create.densityplot

ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
col = default.colours(3),
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 21,
cex = 1.5,
fill = default.colours(3)
),

text = list(
lab = colnames(format.data)
),

padding.text = c(0,5,0),
cex = 1
)

),
x = 0.65,
y = 0.97,
draw = FALSE
)

),
Grid lines
type = c('l','g'),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Gridlines
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Gridlines_2', fileext = '.tiff'),
x = format.data,
main = 'Gridlines',
lty = c('solid','dashed','dotted'),
ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
col = default.colours(3),
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 21,
cex = 1.5,
fill = default.colours(3)
),

text = list(

create.densityplot 63

lab = colnames(format.data)
),

padding.text = c(0,5,0),
cex = 1
)

),
x = 0.65,
y = 0.97,
draw = FALSE
)

),
Grid lines
type = c('l','g'),
xgrid.at = seq(0,14,1),
ygrid.at = seq(0,2.5,0.25),
description = 'Barplot created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.densityplot(

filename = tempfile(pattern = 'Densityplot_Nature_style', fileext = '.tiff'),
x = format.data,
main = 'Nature style',
lty = c('solid','dashed','dotted'),
ylimits = c(-0.1, 2.5),
ylab.cex = 1.5,
xlab.cex = 1.5,
col = default.colours(3),
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 21,
cex = 1.5,
fill = default.colours(3)
),

text = list(
lab = colnames(format.data)
),

padding.text = c(0,5,0),
cex = 1
)

),
x = 0.65,
y = 0.97,
draw = FALSE
)

),
Grid lines

64 create.dotmap

style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),
resolution = 200
);

create.dotmap Make a dotmap with coloured background

Description

Takes two data.frames and creates a dotmap with a coloured background. A dotmap is an ordered
array of evenly-spaced dots whose size and colour can be user-specified to represent characteristics.
For example, size gives the absolute magnitude of the correlation and colour gives the sign of the
correlation. The coloured background may indicate p-values.

Usage

create.dotmap(
x,
bg.data = NULL,
filename = NULL,
main = NULL,
main.just = "center",
main.x = 0.5,
main.y = 0.5,
pch = 19,
pch.border.col = 'black',
add.grid = TRUE,
xaxis.lab = colnames(x),
yaxis.lab = rownames(x),
xaxis.rot = 0,
yaxis.rot = 0,
main.cex = 3,
xlab.cex = 2,
ylab.cex = 2,
xlab.label = NULL,
ylab.label = NULL,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',

create.dotmap 65

xlab.top.just = "center",
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = 1,
yaxis.tck = 1,
axis.top = 1,
axis.bottom = 1,
axis.left = 1,
axis.right = 1,
top.padding = 0.1,
bottom.padding = 0.7,
right.padding = 0.1,
left.padding = 0.5,
key.ylab.padding = 0.1,
key = list(text = list(lab = c(''))),
legend = NULL,
col.lwd = 1.5,
row.lwd = 1.5,
spot.size.function = 'default',
spot.colour.function = 'default',
na.spot.size = 7,
na.pch = 4,
na.spot.size.colour = 'black',
grid.colour = NULL,
colour.scheme = 'white',
total.colours = 99,
at = NULL,
colour.centering.value = 0,
colourkey = FALSE,
colourkey.labels.at = NULL,
colourkey.labels = NULL,
colourkey.cex = 1,
colour.alpha = 1,
bg.alpha = 0.5,
fill.colour = 'white',
key.top = 0.1,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
col.colour = 'black',
row.colour = 'black',
description = 'Created with BoutrosLab.plotting.general',

66 create.dotmap

add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
border.rectangle = NULL,
lwd.rectangle = NULL,
alpha.rectangle = 1,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
dot.colour.scheme = NULL,
style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE,
remove.symmetric = FALSE,

lwd = 2
);

Arguments

x An unstacked data.frame to plot the dotmap

bg.data An unstacked data.frame to plot the background, of the same size as “x”. Col-
umn names specified here may be arbitrary: they are not used in the plot.

filename Filename for tiff output, or if NULL returns the trellis object itself

pch Plotting character

pch.border.col Colour of the dot border if using pch = 21:25

add.grid Should a grid of black-lines separating each column/row be added?

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

main.cex Size of text for the main title, defaults to 2

create.dotmap 67

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xaxis.lab Vector listing x-axis tick labels, defaults to colnames(x)

yaxis.lab Vector listing y-axis tick labels, defaults to rownames(x)

xaxis.cex Size of x-axis tick labels, defaults to 1.2

yaxis.cex Size of y-axis tick labels, defaults to 1.5

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

axis.top Specifies the padding on the top of the plot

axis.bottom Specifies the padding on the bottom of the plot

axis.left Specifies the padding on the left of the plot

axis.right Specifies the padding on the right of the plot

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.1

left.padding A number specifying the distance to the left margin, defaults to 0.5
key.ylab.padding

a number specifying distance between key and left label

key A list giving the key (legend). The default suppresses drawing. If the key has a
“space” component then extra space will be cleared on that side of the plot for
the key

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

col.lwd Thickness of column grid lines

row.lwd Thickness of row grid lines
spot.size.function

The function that translates values in x into dotmap spot-size. The default is 0.1
+ (2 * abs(x))

spot.colour.function

The function that translates values in x into dotmap spot-colour. The default
gives negative values blue, positive values red, and zero white. Parameter also
accepts ’columns’ and ’rows’, which groups the dot colours by columns or rows
(not both), respectively. For column/row grouping, there are 12 unique colours
and these colours will start to repeat once there are more than 12 columns/rows.

na.spot.size The size for plotting character for NA cells. Defaults to 7.

na.pch The type of plotting character to represent NA cells. Defaults to 4 (’X’).

68 create.dotmap

na.spot.size.colour

Colour for plotting character representing NA cells. Defaults to black.

grid.colour The colour for the grid lines. DEPRECATED

colour.scheme Background colouring. Accepts a vector of colours. Vectors of two or three
colours are gradiated to create the final palette. Defaults to “white”.

total.colours Total number of colours to plot for the Background colours

at A vector specifying the breakpoints along the range of bg; each interval spec-
ified by these breakpoints are assigned to a colour from the palette. Defaults
to NULL, which corresponds to the range of bg being divided into total.colours
equally spaced intervals. If bg has values outside of the range specified by “at”,
those values are shown with colours corresponding to the extreme ends of the
colour spectrum and a warning is given.

colour.centering.value

What should be the center of the background key

colourkey Determines if the colour key should be added or not and sets up its formatting.
Defaults to FALSE.

colourkey.labels.at

A vector specifying the tick-positions on the background colourkey
colourkey.labels

A vector specifying tick-labels of the background colourkey

colourkey.cex Size of the background colourkey label text

colour.alpha Bias to be added to background colour selection (uses x^colour.alpha in map-
ping)

bg.alpha The alpha value of the background colours, defaults to 0.5 so that the back-
ground does not compete with the dot colours for attention.

fill.colour The background fill colour (only exposed where missing values are present). De-
faults to white. NOTE: If you change this colour, you may want to set bg.alpha
to 1 to avoid the fill colour showing through

key.top A number specifying the distance at top of key, defaults to 0.1

height Figure height in size.units

width Figure width in size.units

size.units Units of size for the figure

resolution Figure resolution in dpi
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

col.colour The colour for the column grid lines, defaults to “black”. Can be a vector.

row.colour The colour for the row grid lines, defaults to “black”. Can be a vector.

description Description of image/plot; default NULL.

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn

create.dotmap 69

ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn

xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area

alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

border.rectangle

Specifies the colour of the rectangle border

lwd.rectangle Specifies the thickness of the rectangle border

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

dot.colour.scheme

Colour Scheme for the dots

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs

use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

remove.symmetric

boolean to set whether or not to remove the top left half of a symettrically sized
matrix

lwd line width for the axis lines

Details

It would be nice to have a library of suitable spot.size and spot.colour functions.

Earlier ideas included:
(1) Changing the dot shape to triangles, so that upward or downward-pointing dots indicated direction of change. This would allow dot colour to be used to encode something else. This idea was not used because in the case of very small dots, the direction of the triangle might not be visible.
(2) Adding arrows above or below dots to indicate direction of change. This idea was not used because there may not always be enough space present to add such arrows.
(3) Adding line(s) in the background set at different angles to show data. This was found to be not intuitive to read.

A future addition may be to add the option of outlining boxes instead of adding a background. This would be applicable in cases where there is very little background space, and consequently, the background colour would not be very visible.

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

70 create.dotmap

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

xyplot, levelplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);
simple.data <- data.frame(

'A' = runif(n = 15, min = -1, max = 1),
'B' = runif(n = 15, min = -1, max = 1),
'C' = runif(n = 15, min = -1, max = 1),
'D' = runif(n = 15, min = -1, max = 1),
'E' = runif(n = 15, min = -1, max = 1)
);

create.dotmap(
filename = tempfile(pattern = 'Dotmap_Simple', fileext = '.tiff'),
x = simple.data,
main = 'Simple',
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 100
);

create a function to determine the spot sizes (default function works best with values < 1)
spot.size.med <- function(x) {abs(x)/3;}

Minimal Input
create.dotmap(

filename = tempfile(pattern = 'Dotmap_Minimal_Input', fileext = '.tiff'),
x = microarray[1:5,1:5],
main = 'Minimal input',
spot.size.function = spot.size.med,
xaxis.rot = 90,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 100

create.dotmap 71

);

Axes & Labels
spot.size.small <- function(x) {abs(x)/5;}

create.dotmap(
filename = tempfile(pattern = 'Dotmap_Axes_Labels', fileext = '.tiff'),
x = microarray[1:15,1:15],
main = 'Axes & labels',
spot.size.function = spot.size.small,
Adjusting the font sizes and labels
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 100
);

Legend
key.sizes <- seq(2,12,2);

create.dotmap(
filename = tempfile(pattern = 'Dotmap_Legend', fileext = '.tiff'),
x = microarray[1:15,1:15],
main = 'Legend',
spot.size.function = spot.size.small,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
Legend for dots
key = list(

space = 'right',
points = list(

cex = spot.size.small(key.sizes),
col = default.colours(2, palette.type = 'dotmap')[2],
pch = 19
),

text = list(
lab = as.character(key.sizes),
cex = 1,
adj = 1
),

padding.text = 3,
background = 'white'
),

72 create.dotmap

key.top = 1,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 100
);

Cluster by dots and add dendrogram
plot.data <- microarray[1:15,1:15];

cluster data
clustered.data <- diana(plot.data);

order data by cluster
plot.data <- plot.data[clustered.data$order,];

create dendogram
dendrogram.data <- create.dendrogram(x = plot.data, clustering.method = 'diana',
cluster.dimension = 'row');

dendrogram.grob <- latticeExtra::dendrogramGrob(
x = dendrogram.data,
side = 'right',
type = 'rectangle'
);

create dotmap
create.dotmap(

x = plot.data,
filename = tempfile(pattern = 'Dotmap_clustered_dendrogram', fileext = '.tiff'),
main = 'Clustered & dendrogram',
spot.size.function = spot.size.small,
Adjusting the font sizes and labels
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
legend = list(

right = list(fun = dendrogram.grob)
),

right.padding = 4,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 100
);

Add background data
key.sizes <- c(-1, 1);

CNA.colour.function <- function(x){
colours <- rep('white', length(x));
colours[sign(x) == 1] <- 'Red';

create.dotmap 73

colours[sign(x) == -1] <- 'Blue';
colours[x == 0] <- 'transparent';
return(colours);
}

create.dotmap(
filename = tempfile(pattern = 'Dotmap_with_Background', fileext = '.tiff'),
added new data for the dots
x = CNA[1:15,1:15],
Moving the dot-data to be background data
bg.data = microarray[1:15,1:15],
colour.scheme = c('white','black'),
main = 'Background',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
key = list(

space = 'right',
points = list(

cex = 1,
col = CNA.colour.function(key.sizes),
pch = 19
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

title = 'CNA',
padding.text = 2,
background = 'white'
),

Adding colourkey for background data
colourkey = TRUE,
key.top = 1,
description = 'Dotmap created by BoutrosLab.plotting.general',
resolution = 200
);

Discrete background colours
create.dotmap(

filename = tempfile(pattern = 'Dotmap_Discrete_Background', fileext = '.tiff'),
x = CNA[1:15,1:15],
bg.data = microarray[1:15,1:15],
main = 'Discrete background',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,

74 create.dotmap

xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
key = list(

space = 'right',
points = list(

cex = 1,
col = CNA.colour.function(key.sizes),
pch = 19
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

title = 'CNA',
padding.text = 2,
background = 'white'
),

colourkey = TRUE,
key.top = 1,
Changing background colour scheme
colour.scheme = c('lightyellow','gold','darkorange', 'darkorange3'),
at = seq(0,12,3),
colourkey.labels = seq(0,12,3),
colourkey.labels.at = seq(0,12,3),
bg.alpha = 0.65,
description = 'Dotmap created by BoutrosLab.plotting.general'
);

Dot outlines
border.colours <- function(x){

colours <- rep('transparent', length(x));
colours[x > 0] <- 'black';
colours[x == 0] <- 'transparent';
return(colours);
}

create.dotmap(
filename = tempfile(pattern = 'Dotmap_Outlined_Dots', fileext = '.tiff'),
x = CNA[1:15,1:15],
bg.data = microarray[1:15,1:15],
main = 'Dot outlines',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',

create.dotmap 75

ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
key = list(

space = 'right',
points = list(

cex = 1,
col = 'black',
Remember to also change the pch in the legend
pch = 21,
fill = CNA.colour.function(key.sizes)
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

title = 'CNA',
padding.text = 2,
background = 'white'
),

colourkey = TRUE,
key.top = 1,
colour.scheme = c('lightyellow','gold','darkorange', 'darkorange3'),
at = seq(0,12,3),
colourkey.labels = seq(0,12,3),
colourkey.labels.at = seq(0,12,3),
bg.alpha = 0.65,
Change the plotting character to one which has an outline
pch = 21,
pch.border.col = border.colours(CNA[1:15,1:15]),
description = 'Dotmap created by BoutrosLab.plotting.general'
);

Covariates & Legend
sex.colours <- patient$sex[1:15];
sex.colours[sex.colours == 'male'] <- 'dodgerblue';
sex.colours[sex.colours == 'female'] <- 'pink';

sample.covariate <- list(
rect = list(

col = 'black',
fill = sex.colours,
lwd = 1.5
)

);

cov.grob <- covariates.grob(
covariates = sample.covariate,
ord = c(1:15),
side = 'top'
);

76 create.dotmap

sample.cov.legend <- list(
legend = list(

colours = c('dodgerblue', 'pink'),
labels = c('male','female'),
title = 'Sex'
)

);

cov.legend <- legend.grob(
legends = sample.cov.legend
);

create.dotmap(
filename = tempfile(pattern = 'Dotmap_Covariates', fileext = '.tiff'),
x = CNA[1:15,1:15],
bg.data = microarray[1:15,1:15],
main = 'Covariates',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
key = list(

space = 'right',
points = list(

cex = 1,
col = 'black',
pch = 21,
fill = CNA.colour.function(key.sizes)
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

title = 'CNA',
padding.text = 2,
background = 'white'
),

colourkey = TRUE,
key.top = 1,
colour.scheme = c('lightyellow','gold','darkorange', 'darkorange3'),
at = seq(0,12,3),
colourkey.labels = seq(0,12,3),
colourkey.labels.at = seq(0,12,3),
bg.alpha = 0.65,
pch = 21,
pch.border.col = border.colours(CNA[1:15,1:15]),
Insert covariates & legend

create.dotmap 77

legend = list(
top = list(

fun = cov.grob
),

left = list(
fun = cov.legend
)

),
description = 'Dotmap created by BoutrosLab.plotting.general'
);

Side covariates with label
chr.cov.colours <- microarray$Chr;
chr.cov.colours[microarray$Chr == 1] <- default.colours(3, palette.type = 'chromosomes')[1];
chr.cov.colours[microarray$Chr == 2] <- default.colours(3, palette.type = 'chromosomes')[2];
chr.cov.colours[microarray$Chr == 3] <- default.colours(3, palette.type = 'chromosomes')[3];

chr.covariate <- list(
rect = list(

col = 'white',
fill = chr.cov.colours,
lwd = 1.5
)

);

chr.cov.grob <- covariates.grob(
covariates = chr.covariate,
ord = c(1:15),
side = 'right'
);

create dot legend
dot.grob <- draw.key(

list(
space = 'right',
points = list(

cex = 1,
col = 'black',
pch = 21,
fill = CNA.colour.function(key.sizes)
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

title = 'CNA',
padding.text = 2,
background = 'white'

)
);

Setting up the layout for the joint legends

78 create.dotmap

right.layout <- grid.layout(
nrow = 1,
ncol = 2,
width = unit(

x = c(0,1),
units = rep('lines',2)
),

heights = unit(
x = c(1,1),
units = rep('npc', 1)
)

);

right.grob <- frameGrob(layout = right.layout);

right.grob <- packGrob(
frame = right.grob,
grob = chr.cov.grob,
row = 1,
col = 1
);

right.grob <- packGrob(
frame = right.grob,
grob = dot.grob,
row = 1,
col = 2
);

temp <- create.dotmap(
filename = tempfile(pattern = 'Dotmap_Covariates_Side', fileext = '.tiff'),
x = CNA[1:15,1:15],
bg.data = microarray[1:15,1:15],
main = 'Both covariates',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.label = 'Sample',
ylab.label = 'Gene',
xlab.cex = 1,
ylab.cex = 1,
colourkey = TRUE,
key.top = 1,
colour.scheme = c('lightyellow','gold','darkorange', 'darkorange3'),
at = seq(0,12,3),
colourkey.labels = seq(0,12,3),
colourkey.labels.at = seq(0,12,3),
bg.alpha = 0.65,
pch = 21,
pch.border.col = border.colours(CNA[1:15,1:15]),
insert covariates & legend

create.dotmap 79

legend = list(
right = list(

fun = right.grob
)

),
description = 'Dotmap created by BoutrosLab.plotting.general'
);

add side label to covariate
print(temp, position = c(0,0,1,1), more = TRUE);

draw.key(
key = list(

text = list(
lab = 'Covariate Label',
cex = 1,
adj = 1
)

),
position label on the plot
vp = viewport(x = 0.86, y = 0.155, height = 1, width = 0.5, angle = 90),
draw = TRUE
);

dev.off();

Nature style
create.dotmap(

filename = tempfile(pattern = 'Dotmap_Nature_style', fileext = '.tiff'),
x = CNA[1:15,1:15],
bg.data = microarray[1:15,1:15],
main = 'Nature style',
spot.size.function = 1,
spot.colour.function = CNA.colour.function,
xaxis.cex = 0.8,
yaxis.cex = 0.8,
xaxis.lab = 1:15,
xlab.cex = 1,
ylab.cex = 1,
key = list(

space = 'right',
points = list(

cex = 1,
col = 'black',
Remember to also change the pch in the legend
pch = 21,
fill = CNA.colour.function(key.sizes)
),

text = list(
lab = c('Gain', 'Loss'),
cex = 1,
adj = 1
),

80 create.gif

title = 'CNA',
padding.text = 2,
background = 'white'
),

colourkey = TRUE,
key.top = 1,
colour.scheme = c('lightyellow','gold','darkorange', 'darkorange3'),
at = seq(0,12,3),
colourkey.labels = seq(0,12,3),
colourkey.labels.at = seq(0,12,3),
bg.alpha = 0.65,
Change the plotting character to one which has an outline
pch = 21,
pch.border.col = border.colours(CNA[1:15,1:15]),

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

resolution = 200
);

simple.data.sym <- data.frame(
'1' = runif(n = 7, min = -1, max = 1),
'2' = runif(n = 7, min = -1, max = 1),
'3' = runif(n = 7, min = -1, max = 1),
'4' = runif(n = 7, min = -1, max = 1),
'5' = runif(n = 7, min = -1, max = 1),
'6' = runif(n = 7, min = -1, max = 1),
'7' = runif(n = 7, min = -1, max = 1)
);

create.dotmap(
filename = tempfile(pattern = 'Dotmap_remove_symmetric', fileext = '.tiff'),
x = simple.data.sym,
main = 'Simple',
xaxis.lab = seq(1,7,1),
description = 'Dotmap created by BoutrosLab.plotting.general',
remove.symmetric = TRUE,
resolution = 200
);

create.gif Make a gif

create.gif 81

Description

Takes a function and several sets of parameters and makes a gif of their function calls

Usage

create.gif(
exec.func,
parameters,
number.of.frames,
delay = 40,
filename)

Arguments

exec.func The function that will be used to make the plots for the gif

parameters Parameter list to be sent to the exec func at each frame
number.of.frames

Total number of frames to be made (must match number of parameter lists)

delay Delay between each frame in the gif

filename Name of output file (must end in .gif)

Author(s)

Jeffrey Green

See Also

stripplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(223);

simple.data1 <- data.frame(
x = sample(1:15, 10),
y = LETTERS[1:10]
);

simple.data2 <- data.frame(
x = sample(1:15, 10),
y = LETTERS[1:10]
);

simple.data3 <- data.frame(
x = sample(1:15, 10),
y = LETTERS[1:10]
);

p = list(

82 create.heatmap

list(formula = x ~ y,data = simple.data1, yat = seq(0,16,2)),
list(formula = x ~ y,data = simple.data2, yat = seq(0,16,2)),
list(formula = x ~ y,data = simple.data3, yat = seq(0,16,2))
)

create.gif(
exec.func = create.barplot,
parameters = p,
number.of.frames = 3,
delay = 20,
filename = tempfile(pattern = 'test', fileext = '.gif')
)

create.heatmap Make a heatmap

Description

Takes a data.frame and creates a heatmap

Usage

create.heatmap(
x,
filename = NULL,
clustering.method = 'diana',
cluster.dimensions = 'both',
rows.distance.method = 'correlation',
cols.distance.method = 'correlation',
cor.method = 'pearson',
row.dendrogram = list(),
col.dendrogram = list(),
plot.dendrograms = 'both',
force.clustering = FALSE,
criteria.list = TRUE,
covariates = list(),
covariates.grid.row = NULL,
covariates.grid.col = NULL,
covariates.grid.border = NULL,
covariates.row.lines = NULL,
covariates.col.lines = NULL,
covariates.reorder.grid.index = FALSE,
covariates.padding = 0.25,
covariates.top = list(),
covariates.top.grid.row = NULL,
covariates.top.grid.col = NULL,
covariates.top.grid.border = NULL,

create.heatmap 83

covariates.top.row.lines = NULL,
covariates.top.col.lines = NULL,
covariates.top.reorder.grid.index = FALSE,
covariates.top.padding = 0.25,
covariate.legends = list(),
legend.cex = 1,
legend.title.cex = 1,
legend.title.just = 'centre',
legend.title.fontface = 'bold',
legend.border = NULL,
legend.border.padding = 1,
legend.layout = NULL,
legend.between.col = 1,
legend.between.row = 1,
legend.side = 'left',
main = list(label = ''),
main.just = "center",
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
right.size.add = 1,
top.size.add = 1,
right.dendrogram.size = 2.5,
top.dendrogram.size = 2.5,
scale.data = FALSE,
yaxis.lab = NULL,
xaxis.lab = NULL,
xaxis.lab.top = NULL,
xaxis.cex = 1.5,
xaxis.top.cex = NULL,
yaxis.cex = 1.5,
xlab.cex = 2,
ylab.cex = 2,
xlab.top.label = NULL,

xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = "center",
xlab.top.x = 0.5,
xlab.top.y = 0,
xat = TRUE,
xat.top = NULL,
yat = TRUE,
xaxis.tck = NULL,
xaxis.top.tck = NULL,
yaxis.tck = NULL,
xaxis.col = 'black',
yaxis.col = 'black',
col.pos = NULL,

84 create.heatmap

row.pos = NULL,
cell.text = '',
text.fontface = 1,
text.cex = 1,
text.col = 'black',
text.position = NULL,
text.offset = 0,
text.use.grid.coordinates = TRUE,
colourkey.cex = 3.6,
xaxis.rot = 90,
xaxis.rot.top = 90,
yaxis.rot = 0,
xlab.label = '' ,
ylab.label = '',
xlab.col = 'black',
ylab.col = 'black',
axes.lwd = 2,
gridline.order = 'h',
grid.row = FALSE,
grid.col = FALSE,
force.grid.row = FALSE,
force.grid.col = FALSE,
grid.limit = 50,
row.lines = seq(0, ncol(x), 1) + 0.5,
col.lines = seq(0, nrow(x), 1) + 0.5,
colour.scheme = c(),
total.colours = 99,
colour.centering.value = 0,
colour.alpha = 1,
fill.colour = 'darkgray',
at = NULL,
print.colour.key = TRUE,
colourkey.labels.at = NULL,
colourkey.labels = NULL,
top.padding = 0.1,
bottom.padding = 0.5,
right.padding = 0.5,
left.padding = 0.5,
x.alternating = 1,
shrink = 1,
row.colour = 'black',
col.colour = 'black',
row.lwd = 1,
col.lwd = 1,
grid.colour = NULL,
grid.lwd = NULL,
width = 6,
height = 6,

create.heatmap 85

size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
xaxis.covariates = NULL,
xaxis.covariates.y = 0,
yaxis.covariates = NULL,
yaxis.covariates.x = NULL,
description = 'Created with BoutrosLab.plotting.general',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
symbols = list(borders = NULL,
squares = NULL,
circles = NULL),
same.as.matrix = FALSE,
input.colours = FALSE,
axis.xlab.padding = 0.1,
stratified.clusters.rows = NULL,
stratified.clusters.cols = NULL,

inside.legend = NULL,
style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE
);

Arguments

x Either a data-frame or a matrix from which the heatmap is to created

filename Filename for tiff output, or if NULL returns the trellis object itself
clustering.method

Method used to cluster the records – “none” gives unclustered data. Accepts
all agglomerative clustering methods available in hclust, plus “diana” (which is
divisive).

cluster.dimensions

Should clustering be performed on rows, columns, or both – supersedes setting
of plot.dendrograms

rows.distance.method

Method name of the distance measure between rows to be used for clustering.
Defaults to “correlation”. Other supported methods are same as in ?dist. Also
supports “jaccard” which is useful for clustering categorical variables. “eu-
clidean” is sometimes more robust when ties cause “Unclusterable matrix: some
col-distances are null” errors. Note, rows and cols are switched due an internal
transposition of the data.

cols.distance.method

Method name of the distance measure between columns to be used for clus-
tering. Defaults to “correlation”. Other supported methods are same as in ?dist.
Also supports “jaccard” which is useful for clustering categorical variables. “eu-
clidean” is sometimes more robust when ties cause “Unclusterable matrix: some

86 create.heatmap

col-distances are null” errors. Note, rows and cols are switched due an internal
transposition of the data.

cor.method The method used for calculating correlation. Defaults to “pearson”

row.dendrogram A dendrogram object corresponding to the heatmap rows. If provided, row clus-
tering cannot be performed

col.dendrogram A dendrogram object corresponding to the heatmap columns. If provided, col-
umn clustering cannot be performed

plot.dendrograms

If clustering is performed or dendrograms are provided, which dendrograms
should be plotted – “none”, “right”, “top”, or “both”

force.clustering

Binary to over-ride the control that prevents clustering of too-large matrices

criteria.list A vector indicating which rows should be retained

covariates Any row-wise covariate annotate to add to the plot, as a fully formed list (placed
on right side of plot)

covariates.grid.row

A list of parameters passed to gpar specifying the behaviour of row lines in the
right covariate bars

covariates.grid.col

A list of parameters passed to gpar specifying the behaviour of column lines in
the right covariate bars

covariates.grid.border

A list of parameters passed to gpar specifying the behaviour of the border
around the right covariate bars

covariates.row.lines

Vector of row indices where grid lines should be drawn on the right covariate
bars. If NULL (default), all row lines are drawn. Ignored if covariates.grid.row
is not specified

covariates.col.lines

Vector of column indices where grid lines should be drawn on the right covariate
bars. If NULL (default), all column lines are drawn. Ignored if covariates.grid.col
is not specified

covariates.reorder.grid.index

Boolean specifying whether grid line indices for the right covariate bars should
be re-ordered with clustering

covariates.padding

Amount of empty space (in “lines”) to place between the right covariate bars
and dendrogram

covariates.top Any column-wise covariate annotate to add to the plot, as a fully formed list
covariates.top.grid.row

A list of parameters passed to gpar specifying the behaviour of row lines in the
top covariate bars

covariates.top.grid.col

A list of parameters passed to gpar specifying the behaviour of column lines in
the top covariate bars

create.heatmap 87

covariates.top.grid.border

A list of parameters passed to gpar specifying the behaviour of the border
around the top covariate bars

covariates.top.row.lines

Vector of row indices where grid lines should be drawn on the top covariate bars.
If NULL (default), all row lines are drawn. Ignored if covariates.top.grid.row
is not specified

covariates.top.col.lines

Vector of column indices where grid lines should be drawn on the top covariate
bars. If NULL (default), all column lines are drawn. Ignored if covariates.top.grid.col
is not specified

covariates.top.reorder.grid.index

Boolean specifying whether grid line indices for the top covariate bars should
be re-ordered with clustering

covariates.top.padding

Amount of empty space (in “lines”) to place between the top covariate bars and
dendrogram

covariate.legends

A list defining covariate legends to add to the plot. See legends argument of
legend.grob for more information

legend.cex Size of text labels in covariate legends, defaults to 1
legend.title.cex

Size of title text in covariate legends, defaults to 1
legend.title.just

Justification of title text in covariate legends, defaults to “centre”
legend.title.fontface

Font face of title text in covariate legends – “plain”, “bold”, “italic”, etc.

legend.border A list of parameters passed to gpar specifying line options for the legend border,
defaults to NULL (no border drawn)

legend.border.padding

The amount of empty space (split equally on both sides) to add between the
legend and its border, in “lines” units

legend.layout Numeric vector of length 2 specifying the number of columns and rows for the
legend layout, defaults to a logical layout based on legend.side

legend.between.col

Amount of space to add between columns in the layout, in “lines” units
legend.between.row

Amount of space to add between rows in the layout, in “lines” units

legend.side Side of the plot where the legends should be drawn – “left”, “right”, or “top”

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 2.5

88 create.heatmap

right.size.add The size of each extra covariate row in the right dendrogram in units of “lines”

top.size.add The size of each extra covariate row in the top dendrogram in units of “lines”
right.dendrogram.size

Size of right dendrogram
top.dendrogram.size

Size of top dendrogram

scale.data TRUE/FALSE to do row-wise scaling with mean-centering and sd-scaling

xaxis.lab A vector of row labels, NA = use existing rownames, NULL = none

xaxis.lab.top The label for the top x-axis. Required only if you want to print a top *and*
bottom xaxis, otherwise use x.alternating = 2 for top axis only. Defaults to
NULL

yaxis.lab A vector of col labels, NA = use existing colnames, NULL = none

xaxis.cex Size of x-axis label text - defaults to values found in a look-up table

xaxis.top.cex Size of top x axis label text

yaxis.cex Size of y-axis label text - defaults to values found in a look-up table

xaxis.rot Rotation of x-axis tick labels; defaults to 90

xaxis.rot.top Rotation of the top x-axis tick labels; defaults to 90

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

xat.top Vector listing where the x-axis labels should be drawn on the top of the plot.
Required only when you want bottom and top axis, otherwise use x.alternating
= 2, to get top axis only. Defaults to NULL

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

xaxis.tck Size of x-axis tick marks. Defaults to NULL for intelligent choice based on
covariate size.

create.heatmap 89

xaxis.top.tck Size of top x-axis tick marks. Defaults to NULL for intelligent choice based on
covariate size.

yaxis.tck Size of y-axis tick marks. Defaults to NULL for intelligent choice based on
covariate size.

col.pos Vector of column positions for adding text to cell, defaults to NULL

row.pos Vector of row positions for adding text to cell, defaults to NULL

cell.text Text to add to cell, defaults to an empty string

text.fontface 1 = Plain, 2 = Bold, 3 = Italic, default is 1

text.cex Text size, default is 1

text.col Text colour, default is black.

text.position The position of the text, defaults to center.

text.offset The offset of the position, defaults to 0.
text.use.grid.coordinates

Indetifier if grid coordinates or npc coordinates should be used

colourkey.cex Size of colourkey label text

axes.lwd Width of heatmap border. Note it also changes the colourkey border and ticks

gridline.order Character specifying order in which to draw interior grid-lines (’h’ or ’v’). De-
faults to ’h’ for horizontal first.

grid.row Allow turning off of the interior grid-lines. Default FALSE

grid.col Allow turning off of the interior grid-lines. Default FALSE

force.grid.row Overrides default behaviour of turning off grid lines when number of rows ex-
ceed grid.limit. Defaults to FALSE

force.grid.col Overrides default behaviour of turning off grid lines when number of columns
exceed grid.limit. Defaults to FALSE

grid.limit Limit set for when to turn off column and row lines if data size exceeds it.
Defaults to 50

row.lines Vector specifying location of lines, default is seq(1, ncol(x), 1) + 0.5. Note: Add
0.5 to customized vector

col.lines Vector specifying location of lines, default is seq(1, nrow(x), 1) + 0.5. Note:
Add 0.5 to customized vector

colour.scheme Heatmap colouring. Accepts old-style themes, or a vector of either two or three
colours that are gradiated to create the final palette.

total.colours Total number of colours to plot
colour.centering.value

What should be the center of the colour-map

colour.alpha Bias to be added to colour selection (uses x^colour.alpha in mapping). Set to
“automatic” for auto-adjustment.

fill.colour The background fill (only exposed where missing values are present
print.colour.key

Should the colour key be printed at all?

90 create.heatmap

at A vector specifying the breakpoints along the range of x; each interval spec-
ified by these breakpoints are assigned to a colour from the palette. Defaults
to NULL, which corresponds to the range of x being divided into total.colours
equally spaced intervals. If x has values outside of the range specified by “at”
those values are shown with the colours corresponding to the extreme ends of
the colour spectrum and a warning is given.

colourkey.labels.at

A vector specifying the tick-positions on the colourkey
colourkey.labels

A vector specifying tick-labels of the colourkey

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.5

right.padding A number specifying the distance to the right margin, defaults to 0.5

left.padding A number specifying the distance to the left margin, defaults to 0.5

x.alternating A value specifying the position of the col names, defaults to 1. 1 means below
the graph, 2 means above the graph. Use 3 to get tick marks below and above
graph, but still need to specify xat.top and xaxis.lab.top to get values there

shrink Allows rectangles to be scaled, defaults to 1

row.colour Interior grid-line colour, defaults to “black”. Can be a vector

col.colour Interior grid-line colour, defaults to “black”. Can be a vector

row.lwd Interior grid-line width, defaults to 1. Setting to zero is equivalent to grid.row =
FALSE and grid.col = FALSE. Can be a vector.

col.lwd Interior grid-line width, defaults to 1. Setting to zero is equivalent to grid.row =
FALSE and grid.col = FALSE. Can be a vector.

grid.colour Interior grid-line colour, defaults to “black”. Can be a vector. Applies to both
rows and columns. DEPRECATED

grid.lwd Interior grid-line width, defaults to 1. Setting to zero is equivalent to grid.row
= FALSE and grid.col = FALSE. Applies to both rows and columns. DEPRE-
CATED

width Figure width in size.units

height Figure height in size.units

size.units Units of size for the figure

resolution Figure resolution in dpi
enable.warnings

Print warnings if set to TRUE, defaults to FALSE
xaxis.covariates

Any column-wise covariate annotate to add to the plot, as a fully formed list
xaxis.covariates.y

The y coordinate of the location of the x axis covariates
yaxis.covariates

Any row-wise covariate annotate to add to the plot, as a fully formed list
yaxis.covariates.x

The x coordinate of the lcoation of the y axis covariates

create.heatmap 91

description Short description of image/plot; default NULL.

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

symbols Extra symbols to be added (borders, squares and circles)

same.as.matrix Prevents the flipping of the matrix that the function normally does

input.colours boolean expressing whether or not the matrix was specified using colours or
integer values. Defaults to FALSE

axis.xlab.padding

Padding between axis of plot and x label
stratified.clusters.rows

the row locations of the rows to be combined into a strata
stratified.clusters.cols

the column locations of the columns to be combined into a strata

inside.legend legend specification for the inside legend/key of the heatmap

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the heatmap. In particular, if a script that uses such a call of create heatmap
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Note that we would very much like to be able to pass xaxis.cex and yaxis.cex as vectors of the
same length as the actual data-table. However lattice does not support that, because it currently ex-
pects them as a two-element vectors to specify left/right or top/bottom axes separately. I’ve raised
a bug report on requesting an enhancement, but this would require an API change so... not sure if it
will happen. Here’s the bug-report: https://r-forge.r-project.org/tracker/index.php?func=detail&aid=1702&group_id=638&atid=2567

92 create.heatmap

Author(s)

Paul C. Boutros

See Also

covariates.grob, create.dendrogram, legend.grob

Examples

set.seed(12345);
simple.data <- data.frame(

x <- rnorm(n = 15),
y <- rnorm(n = 15),
z <- rnorm(n = 15),
v <- rnorm(n = 15),
w <- rnorm(n = 15)
);

simple.1D.data <- data.frame(x = rnorm(n = 15));

create.heatmap(
filename = tempfile(pattern = 'Heatmap_1D_Inside_Legend', fileext = '.tiff'),
x = simple.1D.data,
clustering.method='none',
inside.legend = list(fun = draw.key,

args = list(
key = list(

text = list(
lab = c('test','test','test','test'),
cex = 1,
fontface = 'bold'
),

padding.text = 3,
background = 'white',

alpha.background = 0
)

),
x = 0.5,
y = 0.5
),

resolution = 100
)

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Simple', fileext = '.tiff'),
x = simple.data,
main = 'Simple',
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 100
);

create.heatmap 93

simple.data.col <- data.frame(
x <- c('blue','green','red','yellow','blue','red','black','white','purple','grey'),
y <- rep('red',10),
z <- rep('yellow',10),
v <- rep('green',10),
w <- rep('purple',10)
);

Input Colours Provided
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Simple_Using_Colours', fileext = '.tiff'),
x = simple.data.col,
clustering.method = 'none',
input.colours = TRUE,
resolution = 100
);

Single Input Colour Provided
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Simple_Using_Single_Colour', fileext = '.tiff'),
x = simple.data.col[, ncol(simple.data.col), drop = FALSE],
clustering.method = 'none',
input.colours = TRUE,
resolution = 100
);

Minimal Input
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Minimal_Input', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Minimal input',
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 100
);

Axes and labels
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Axes_Labels', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Axes & labels',
Changing axes
xlab.label = 'Genes',
ylab.label = 'Samples',
Turning on default row and column labels
xaxis.lab = NA,
yaxis.lab = 1:20,
Adjusting font sizes
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
Changing colourkey
colourkey.cex = 1,

94 create.heatmap

colourkey.labels.at = seq(2,12,1),
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 100
);

Custom Axes
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Custom_Axes', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Customized axes',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
Specify where to place tick marks
colourkey.labels.at = c(3,4, 6, 7, 10, 11),
Specify label colours (note: this is based on the pre-clustering order)

xaxis.col = c('black', 'red',rep('black',6), 'red','black', 'black','red',rep('black',8)),
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Two-sided Colour Scheme
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Colour_Scheme_1', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Colour scheme',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
Changing the colours
colour.scheme = c('white','firebrick'),
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Three-sided Colour Scheme
Note: when using a three-sided colour scheme, it is advised to have two-sided data
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Colour_Scheme_2', fileext = '.tiff'),

create.heatmap 95

x = microarray[1:20, 1:20],
main = 'Colour scheme',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
Changing the colours
colour.scheme = c('red','white','turquoise'),
Scale the data to center around the mean
scale.data = TRUE,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Colour Alpha
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Colour_Alpha', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Colours alpha',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
Adjusting the alpha value of the colours
colour.alpha = 'automatic',
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Clustering
create.heatmap(

filename = tempfile(pattern = 'Heatmap_No_Clustering', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'No clustering',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,

96 create.heatmap

colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
Turning clustering off
clustering.method = 'none',
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Clustering
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Clustering_Methods', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Clustering methods',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
Clustering method defaults to 'diana', but can be set to other options
clustering.method = 'complete',
Also setting the distance measures
rows.distance.method = 'euclidean',
cols.distance.method = 'manhattan',
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Stratified Clustering
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Stratified_Clustering', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Stratified clustering',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
Stratifying the clustering by rows
stratified.clusters.rows = list(c(1:10), c(11:20)),
Adding line to show highlight the division between the two strata

create.heatmap 97

grid.row = TRUE,
row.lines = 10.5,
row.lwd = 2,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Dendrogram provided
col.dendrogram <- BoutrosLab.plotting.general::create.dendrogram(

x = microarray[1:20, 1:20],
cluster.dimension = 'col'
);

row.dendrogram <- BoutrosLab.plotting.general::create.dendrogram(
x = microarray[1:20, 1:20],
cluster.dimension = 'row'
);

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Dendrogram_Provided', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Dendrogram provided',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',

note: row/column dendrograms are switched because the function inverts rows and columns
clustering.method = 'none',
row.dendrogram = col.dendrogram,
col.dendrogram = row.dendrogram,
Adjusting the size of the dendrogram
right.dendrogram.size = 3,
top.dendrogram.size = 2.5,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Covariates and Legends
Note: covariates can also be added using the create.multiplot function
set the colour schemes for the covariates
sex.colours <- patient$sex;
sex.colours[sex.colours == 'male'] <- 'dodgerblue';
sex.colours[sex.colours == 'female'] <- 'pink';

stage.colours <- patient$stage;
stage.colours[stage.colours == 'I'] <- 'plum1';

98 create.heatmap

stage.colours[stage.colours == 'II'] <- 'orchid1';
stage.colours[stage.colours == 'III'] <- 'orchid3';
stage.colours[stage.colours == 'IV'] <- 'orchid4';

create an object to draw the covariates from
sample.covariate <- list(

rect = list(
col = 'black',
fill = sex.colours,
lwd = 1.5
),

rect = list(
col = 'black',
fill = stage.colours,
lwd = 1.5
)

);

create a legend for the covariates
sample.cov.legend <- list(

legend = list(
colours = c('dodgerblue', 'pink'),
labels = c('male','female'),
title = 'Sex'
),

legend = list(
colours = c('plum1', 'orchid1','orchid3', 'orchid4'),
labels = c('I','II', 'III', 'IV'),
title = 'Stage'
)

);

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Covariates_Simple', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Covariates',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
adding covariates and corresponding legend
covariates = sample.covariate,
covariate.legend = sample.cov.legend,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

create.heatmap 99

Top covariate and legend customization
chr.cov.colours <- microarray$Chr;
chr.cov.colours[microarray$Chr == 1] <- default.colours(3, palette.type = 'chromosomes')[1];
chr.cov.colours[microarray$Chr == 2] <- default.colours(3, palette.type = 'chromosomes')[2];
chr.cov.colours[microarray$Chr == 3] <- default.colours(3, palette.type = 'chromosomes')[3];

chr.covariate <- list(
rect = list(

col = 'white',
fill = chr.cov.colours,
lwd = 1.5
)

);

join covariate legends
combo.cov.legend <- list(

legend = list(
colours = default.colours(3, palette.type = 'chromosomes'),
labels = c('1','2', '3'),
title = 'Chromosome',
border = 'white'
),

legend = list(
colours = c('dodgerblue', 'pink'),
labels = c('male','female'),
title = 'Sex'
),

legend = list(
colours = c('plum1', 'orchid1','orchid3', 'orchid4'),
labels = c('I','II', 'III', 'IV'),
title = 'Stage'
)

);

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Covariate_Legend_Custom', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Custom covariates & legend',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
clustering.method = 'none',
side covariate
covariates = sample.covariate,

100 create.heatmap

top covariate and covariate border specification
covariates.top = chr.covariate,
covariate.legend = combo.cov.legend,
making outline of border a matching green
covariates.top.grid.border = list(col = 'lightblue', lwd = 2),
making certain column divisions a different colour
covariates.top.col.lines = c(5,6),
covariates.top.grid.col = list(col = 'blue', lwd = 2),
legend customization
legend.side = c('right','left','top'),
legend.title.cex = 0.75,
legend.cex = 0.75,
legend.title.just = 'left',
legend.border = list(lwd = 1),
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Custom gridlines

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Gridlines', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Gridlines',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
colouring gridlines
grid.row = TRUE,
grid.col = TRUE,
row.colour = 'white',
col.colour = 'white',
row.lwd = 1.5,
col.lwd = 1.5,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Label cells
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Labelled_Cells', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Labelled cells',
xlab.label = 'Genes',
ylab.label = 'Samples',

create.heatmap 101

xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
grid.row = TRUE,
grid.col = TRUE,
row.colour = 'white',
col.colour = 'white',
row.lwd = 1.5,
col.lwd = 1.5,
clustering.method = 'none',
conditionally labelling cells
flipping rows and columns because the heatmap function does so
row.pos = which(microarray[1:20, 1:20] > 11, arr.ind = TRUE)[,2],
col.pos = which(microarray[1:20, 1:20] > 11, arr.ind = TRUE)[,1],
cell.text = microarray[1:20, 1:20][microarray[1:20, 1:20] > 11],
text.col = 'white',
text.cex = 0.65,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Label cells
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Labelled_Cells_NPC', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Labelled cells',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
grid.row = TRUE,
grid.col = TRUE,
row.colour = 'white',
col.colour = 'white',
row.lwd = 1.5,
col.lwd = 1.5,
clustering.method = 'none',
text.use.grid.coordinates = FALSE,
conditionally labelling cells
flipping rows and columns because the heatmap function does so
cell.text = c("text1","text2"),
text.col = 'white',
text.cex = 0.65,
text.position = list(c(0.5,0.5),c(0.75,0.75)),
description = 'Heatmap created using BoutrosLab.plotting.general',

102 create.heatmap

resolution = 200
);

Method 1 of adding symbols (very similar to how text is added)
points <- microarray[1:20, 1:20][microarray[1:20, 1:20] > 11];
size.from <- range(points, na.rm = TRUE);
size.to <- c(1,3);
point.size <- (points - size.from[1])/diff(size.from) * diff(size.to) + size.to[1];
point.colour <- grey(runif(sum(microarray[1:20, 1:20] > 11), max = 0.5));

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Symbols_1', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Symbols',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
clustering.method = 'none',
conditionally adding points to cells
flipping rows and columns because the heatmap function does so
row.pos = which(microarray[1:20, 1:20] > 11, arr.ind = TRUE)[,2],
col.pos = which(microarray[1:20, 1:20] > 11, arr.ind = TRUE)[,1],
cell.text = rep(expression("\u2022"), times = sum(microarray[1:20, 1:20] > 11)),
text.col = point.colour,
text.cex = point.size,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Method 2 of Adding Symbols
Create matrices to describe the symbols
circle.matrix <- matrix(

nrow = 20,
ncol = 20,
data = FALSE
);

circle.colour.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 'pink'
);

circle.size.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 20

create.heatmap 103

);

border.matrix <- matrix(
nrow = 20,
ncol = 20,
data = FALSE
);

border.colour.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 'black'
);

border.size.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 4
);

square.matrix <- matrix(
nrow = 20,
ncol = 20,
data = FALSE
);

square.colour.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 'pink'
);

square.size.matrix <- matrix(
nrow = 20,
ncol = 20,
data = 10
);

setting up the symbols
symbol.locations <- list(

circles = list(
list(

x = circle.matrix,
col = circle.colour.matrix,
size = circle.size.matrix
)

),
borders = list(

list(
x = border.matrix,
col = border.colour.matrix,
size = border.size.matrix
),

104 create.heatmap

creating a border encompassing a larger area
list(

xright = 12.10,
xleft = 12,
ybottom = 1,
ytop = 20,
size = 4,
col = 'pink'
)

),
squares = list(

list(
x = square.matrix,
col = square.colour.matrix,
size = square.size.matrix
)

)
);

Set which items in the matrix will be shown

symbol.locations$borders[[1]]$x <- FALSE;
symbol.locations$squares[[1]]$x <- FALSE;
symbol.locations$circles[[1]]$x[which(microarray[1:20,1:20] > 11, arr.ind = TRUE)] <- TRUE;

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Symbols_2', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Symbols',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
clustering.method = 'none',
adding symbols
symbols = symbol.locations,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Rotate matrix
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Rotated_Matrix', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Rotated matrix',
Also flip labels
ylab.label = 'Genes',
xlab.label = 'Samples',

create.heatmap 105

xaxis.lab = NA,
yaxis.lab = NA,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',
grid.row = TRUE,
grid.col = TRUE,
row.colour = 'white',
col.colour = 'white',
row.lwd = 1.5,
col.lwd = 1.5,
stop heatmap function from rotating matrix
same.as.matrix = TRUE,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Example of using discrete data
discrete.data <- microarray[1:10,1:40];
Looking for values greater than 10
discrete.data[which(discrete.data < 10, arr.ind = TRUE)] <- 0;
discrete.data[which(discrete.data > 0, arr.ind = TRUE)] <- 1;

sex.colour <- as.character(patient$sex);
sex.colour[sex.colour == 'male'] <- 'dodgerblue';
sex.colour[sex.colour == 'female'] <- 'pink';

stage.colour <- as.character(patient$stage)
stage.colour[stage.colour == 'I'] <- 'plum1'
stage.colour[stage.colour == 'II'] <- 'orchid1'
stage.colour[stage.colour == 'III'] <- 'orchid3'
stage.colour[stage.colour == 'IV'] <- 'orchid4'

msi.colour <- as.character(patient$msi)
msi.colour[msi.colour == 'MSS'] <- 'chartreuse4'
msi.colour[msi.colour == 'MSI-High'] <- 'chartreuse2'

discrete.covariate <- list(
rect = list(

col = 'transparent',
fill = sex.colour,
lwd = 1.5
),

rect = list(
col = 'transparent',
fill = stage.colour,
lwd = 1.5
),

rect = list(

106 create.heatmap

col = 'transparent',
fill = msi.colour,
lwd = 1.5
)

);

discrete.covariate.legend <- list(
legend = list(

colours = c('dodgerblue', 'pink'),
labels = c('male','female'),
title = expression(underline('Sex'))
),

legend = list(
colours = c('plum1', 'orchid1', 'orchid3', 'orchid4'),
labels = c('I','II', 'III', 'IV'),
title = expression(underline('Stage'))
),

legend = list(
colours = c('chartreuse4', 'chartreuse2'),
labels = c('MSS','MSI-High'),
title = expression(underline('MSI'))
)

);

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Discrete_Data', fileext = '.tiff'),
x = discrete.data,
main = 'Discrete data',
xlab.label = 'Samples',
same.as.matrix = TRUE,
Customize plot
clustering.method = 'none',
total.colours = 3,
colour.scheme = c('white','black'),
fill.colour = 'grey95',
Changing axes
xat = seq(0,40,5),
xaxis.lab = seq(0,40,5),
yaxis.lab = rownames(microarray)[1:10],
yaxis.cex = 0.75,
xaxis.cex = 0.75,
xaxis.rot = 0,
xlab.cex = 1,
Covariates
covariates.top = discrete.covariate,
covariate.legend = discrete.covariate.legend,
legend.side = 'right',
legend.title.cex = 0.75,
legend.cex = 0.75,
legend.title.just = 'left',
legend.between.row = 0.2,
legend.border = list(col = 'transparent'),
legend.border.padding = 2,

create.heatmap 107

shrink = 0.7,
covariates.top.grid.border = list(col = 'black', lwd = 2),
scale.data = FALSE,
print.colour.key = FALSE,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Correlation matrix
Example of how to visualize the relationship between (e.x.) different cellularity estimates
Generate a correlation matrix
cor.data <- cor(t(microarray[1:10,1:10]), method = 'spearman');
colnames(cor.data) <- colnames(microarray)[1:10];

ensure that input data matrix is equal to what the heatmap clustering produces
distance.matrix <- as.dist(1 - cor(t(cor.data), use = "pairwise", method = "pearson"));
clustered.order <- hclust(d = distance.matrix, method = "ward")$order;
cor.data <- cor.data[clustered.order, clustered.order];

prepare labels
x <- round(cor.data, 2);
x[x == 1] <- colnames(x);
y <- x;
for (i in 1:(ncol(y)-1)) {

y[i, (i+1):nrow(y)] <- "";
};

create.heatmap(
filename = tempfile(pattern = 'Heatmap_Cellularity_Estimates', fileext = '.tiff'),
x = cor.data,
main = 'Correlation matrix',
xaxis.lab = NULL,
yaxis.lab = NULL,
cell.text = y,
clustering.method = 'ward',
plot.dendrograms = 'none',
rows.distance.method = 'correlation',
cols.distance.method = 'correlation',
cor.method = 'pearson',
col.pos = which(y != '1', arr.ind = TRUE)[,1],
row.pos = which(y != '1', arr.ind = TRUE)[,2],
text.fontface = 2,
text.col = 'white',
text.cex = 0.70,
colourkey.cex = 1,
colour.scheme = c('blue', 'darkgrey', 'brown'),
colour.centering.value = 0,
at = seq(-1, 1, 0.001),
colour.alpha = 1.5,
grid.row = TRUE,
grid.col = TRUE,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200

108 create.heatmap

);

Discrete sequential colours
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Discrete_Colours_Sequential', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Discrete colours',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
Adjusting total colours plotted
colourkey.labels.at = seq(2,12,1),
at = seq(2,12,1),
Add one to account for a 'null' colour
total.colours = 11,
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Discrete qualitative colours
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Discrete_Colours_Qualitative', fileext = '.tiff'),
x = microarray[1:20, 1:20],
main = 'Discrete colours',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
Adjusting total colours plotted
colourkey.labels.at = seq(2,12,1),
colourkey.labels = seq(2,12,1),
at = seq(2,12,1),
Add one to account for a 'null' colour
total.colours = 11,
colour.scheme = default.colours(10),
description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.heatmap(

filename = tempfile(pattern = 'Heatmap_Nature_style', fileext = '.tiff'),

create.heatmap 109

x = microarray[1:20, 1:20],
main = 'Nature style',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,
Adjusting total colours plotted
colourkey.labels.at = seq(2,12,1),
colourkey.labels = seq(2,12,1),
at = seq(2,12,1),
Add one to account for a 'null' colour
total.colours = 11,
colour.scheme = default.colours(10),

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Heatmap created using BoutrosLab.plotting.general',
resolution = 200
);

create heatmap with key like legend - used to show range of continuous variables

First create legend with discrete colours
sex.colour <- as.character(patient$sex);
sex.colour[sex.colour == 'male'] <- 'dodgerblue';
sex.colour[sex.colour == 'female'] <- 'pink';

stage.colour <- as.character(patient$stage)
stage.colour[stage.colour == 'I'] <- 'plum1'
stage.colour[stage.colour == 'II'] <- 'orchid1'
stage.colour[stage.colour == 'III'] <- 'orchid3'
stage.colour[stage.colour == 'IV'] <- 'orchid4'

msi.colour <- as.character(patient$msi)
msi.colour[msi.colour == 'MSS'] <- 'chartreuse4'
msi.colour[msi.colour == 'MSI-High'] <- 'chartreuse2'

discrete.covariate <- list(
rect = list(

col = 'transparent',
fill = sex.colour,
lwd = 1.5
),

110 create.heatmap

rect = list(
col = 'transparent',
fill = stage.colour,
lwd = 1.5
),

rect = list(
col = 'transparent',
fill = msi.colour,
lwd = 1.5
)

);

discrete.covariate.legend <- list(
legend = list(

colours = c('dodgerblue', 'pink'),
labels = c('male','female'),
title = expression(underline('Sex'))
),

legend = list(
colours = c('plum1', 'orchid1', 'orchid3', 'orchid4'),
labels = c('I','II', 'III', 'IV'),
title = expression(underline('Stage'))
),

legend = list(
colours = c('chartreuse4', 'chartreuse2'),
labels = c('MSS','MSI-High'),
title = expression(underline('MSI'))
),

legend = list(
colours = c('grey0', 'grey100'),
labels = c('want key like','legend here'),
title = expression(underline('one')),

continuous = TRUE,
height=3

),
legend = list(

colours = c('grey0', 'grey100'),
labels = c('want key like','legend here'),
title = expression(underline('two'))
),

legend = list(
colours = c('grey0', 'grey100'),
labels = c(0,10),
title = expression(underline('three')),

continuous = TRUE,
width = 3,
tck = 1,
tck.number = 3,
at = c(0,100),

angle = -90,
just = c("center","bottom")

)
);

create.hexbinplot 111

create.heatmap(
filename = tempfile(pattern = 'Heatmap_ContinuousVariablesKey', fileext = '.tiff'),
x = patient[1:20, 4:6],
xlab.label = 'Samples',
ylab.label = 'Scaled Data',
xaxis.cex = 0.75,
yaxis.cex = 0.75,
clustering.method = 'none',
print.colour.key = FALSE,
scale=TRUE,
same.as.matrix = FALSE,
covariates.top = discrete.covariate,
covariates.top.grid.row = list(lwd = 1),
covariate.legends = discrete.covariate.legend,
legend.title.just = 'left',
colour.scheme = c('gray0','grey100'),
fill.colour = 'grey95',
axis.xlab.padding = 1.5,
resolution = 200
);

create.heatmap(
filename = tempfile(pattern = 'Heatmap_borderRemoved', fileext = '.tiff'),
x = simple.data,
main = 'Simple',
description = 'Heatmap created using BoutrosLab.plotting.general',
axes.lwd = 0,
resolution = 200
);

create.hexbinplot Make a hexagonally binned plot

Description

Takes a data.frame and writes a hexagonally binned plot

Usage

create.hexbinplot(
formula,
data,
filename = NULL,
main = NULL,
main.just = 'center',

112 create.hexbinplot

main.x = 0.5,
main.y = 0.5,
main.cex = 3,

aspect = 'xy',
trans = NULL,
inv = NULL,
colour.scheme = NULL,
colourkey = TRUE,

colourcut = seq(0, 1, length = 11),
mincnt = 1,
maxcnt = NULL,
xbins = 30,
legend.title = NULL,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,

ylab.cex = 2,
xlab.col = 'black',

ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,

xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,

xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,

xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.col = 'black',

yaxis.col = 'black',
xaxis.tck = 1,
yaxis.tck = 1,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',

layout = NULL,
as.table = FALSE,
x.relation = 'same',
y.relation = 'same',
x.spacing = 0,
y.spacing = 0,
strip.col = 'white',

create.hexbinplot 113

strip.cex = 1,
strip.fontface = 'bold',
add.grid = FALSE,
abline.h = NULL,
abline.v = NULL,
abline.lty = NULL,

abline.lwd = NULL,
abline.col = 'black',
abline.front = FALSE,
add.xyline = FALSE,
xyline.col = 'black',

xyline.lwd = 1,
xyline.lty = 1,
add.curves = FALSE,
curves.exprs = NULL,
curves.from = min(data, na.rm = TRUE),

curves.to = max(data, na.rm = TRUE),
curves.col = 'black',
curves.lwd = 2,
curves.lty = 1,

add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,

text.fontface = 'bold',
add.axes = FALSE,
top.padding = 0.1,
bottom.padding = 0.7,

left.padding = 0.5,
right.padding = 0.1,

add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,

ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,

background.col = 'transparent',
key = NULL,
legend = NULL,

height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,

description = 'Created with BoutrosLab.plotting.general',

114 create.hexbinplot

style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE,
inside.legend.auto = FALSE

);

Arguments

formula The formula used to extract the x & y components from the data-frame. Trans-
forming data within formula is not compatible with automatic scaling with ‘xat‘
or ‘yat‘.

data The data-frame to plot

filename Filename for tiff output, or if NULL (default value) returns the trellis object
itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of the main plot title

aspect This argument controls the physical aspect ratio of the panels, defaults to “xy”

trans function specifying a transformation for the counts such as log, defaults to
NULL

inv the inverse transformation of trans, defaults to NULL

colour.scheme colour scheme to be used, default NULL gives LinGray colour scale

colourkey logical whether a legend should be drawn, defaults to TRUE

colourcut Vector of values covering [0, 1] that determine hexagon colour class bound-
aries and hexagon legend size boundaries. Alternatively, an integer (<= maxcnt)
specifying the number of equispaced colourcut values in [0,1].

mincnt Cells with fewer counts are ignored

maxcnt Cells with more counts are ignored, defaults to auto-generation

xbins Number of bins to use in x, defaults to 30

legend.title character/expression to use in place of default legend title or a named list with
elements: lab, x, y; defaults to NULL

xlab.label X-axis label

ylab.label Y-axis label

xlab.cex Size of x-axis label

ylab.cex Size of y-axis label

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

create.hexbinplot 115

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits

ylimits Two-element vector giving the y-axis limits

xat Accepts a vector listing where x-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes x-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

yat Accepts a vector listing where y-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes y-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

xaxis.lab Vector listing x-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with xat will overwrite user input. Set to NULL to remove x-axis labels.

yaxis.lab Vector listing y-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with yat will overwrite user input. Set to NULL to remove y-axis labels.

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL.

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

116 create.hexbinplot

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

strip.fontface Strip title fontface, defaults to bold

add.grid Allows grid lines to be turned on or off

abline.h Specify the superimposed horizontal line(s)

abline.v Specify the superimposed vertical line(s)

abline.lty Specify the superimposed line type

abline.lwd Specify the superimposed line width

abline.col Specify the superimposed line colour (defaults to black)

abline.front If an abline and/or a grid has been added, this controls whether they are drawn
in front of the hexbins

add.xyline Allow y=x line to be drawn, default is FALSE

xyline.col y=x line colour, defaults to black

xyline.lwd Specifies y=x line width, defaults to 1

xyline.lty Specifies y=x line style, defaults to 1 (solid)

add.curves Allow curves to drawn, default is FALSE

curves.exprs A list of functions, expressions, or calls using “x” as a variable that specify the
curves to be drawn

curves.from Specifies the x co-ordinates at which the start of each curve should be drawn,
defaults to drawing the curves to the left edge of the plotting region

curves.to Specifies the x co-ordinates at which the end of each curve should be drawn,
defaults to drawing the curves to the right edge of the plotting region

curves.col Specifies colours of curves, default is black for each curve

curves.lwd Specifies width of curves, default is 1 for each curve

curves.lty Specifies type of curves, default is 1 (solid) for each curve

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text

add.axes Allow axis lines to be turned on or off

top.padding A number giving the top padding in multiples of the lattice default

bottom.padding A number giving the bottom padding in multiples of the lattice default

left.padding A number giving the left padding in multiples of the lattice default

right.padding A number giving the right padding in multiples of the lattice default

create.hexbinplot 117

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

background.col Specifies the colour for the background of the plot

key Add a key to the plot. See xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL.

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Details

WARNING: this function uses highly unusual semantics, different from the rest of the BoutrosLab.plotting.general
library. The underlying hexbinplot function uses an argument called maxcnt to specify the maxi-
mum number of counts per cell. The default behaviour is not sensibly encoded via a NULL or an
NA, but instead by using the missing function. As a result, we need to use do.call semantics to
handle this function. This can mess up anything using substitute including things that generate
p-values!

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

118 create.hexbinplot

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics
If 'maxcnt' is passed, make sure it is not smaller than the actual maximum count (value depends on nbins). Otherwise, some data may be lost. If you aren't sure what the actual max count is, run this function without specifying the 'maxcnt' parameter using the desired number of bins.

Author(s)

Maud HW Starmans

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = rnorm(10000),
y = rnorm(10000)
);

create.hexbinplot(
filename = tempfile(pattern = 'Hexbinplot_Simple', fileext = '.tiff'),
formula = y ~ x,
data = simple.data,
main = 'Simple',
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 50
);

create.hexbinplot(
filename = tempfile(pattern = 'Hexbinplot_Simple_underlined_legend_title', fileext = '.tiff'),
formula = y ~ x,
data = simple.data,
legend.title = list(lab = expression(bold(underline('Counts'))), x = 1, y = 1.1),
right.padding = 4,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 50
);

Set up data
hexbin.data <- data.frame(

create.hexbinplot 119

x = microarray[,1],
y = microarray[,2]
);

Minimal Input
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Minimal_Input', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Minimal input',
formatting bins
colourcut = seq(0, 1, length = 11),
this sets the maximum value plotted -- values greater than this will not appear
maxcnt = 50,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Axes & Labels
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Axes_Labels', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Axes & labels',
colourcut = seq(0, 1, length = 11),
maxcnt = 50,
Customize Axes and labels
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Log Scaled Axis
log.data <- data.frame(

x = microarray[,1],
y = 10 ** microarray[,2]
);

create.hexbinplot(
formula = y ~ x,
data = log.data,
main = 'Log Scaled',

120 create.hexbinplot

Log base 10 scale y-axis
yat = 'auto.log',
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Aspect Ratio
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Aspect_Ratio', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Aspect ratio',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
colourcut = seq(0, 1, length = 11),
maxcnt = 50,
Set the aspect ratio to control plot dimensions
aspect = 2,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Colour scheme
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Colour_Change', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Colour change',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
aspect = 1,
colourcut = seq(0, 1, length = 11),

create.hexbinplot 121

maxcnt = 50,
Specify colour scheme

colour.scheme = colorRampPalette(c('dodgerblue','paleturquoise','chartreuse','yellow',
'orange','red')),

description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Bin sizes
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Bin_Sizes', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Bin sizes',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
aspect = 1,

colour.scheme = colorRampPalette(c('dodgerblue','paleturquoise','chartreuse', 'yellow',
'orange','red')),

Specify bin sizes
colourcut = seq(0,1,length = 6),
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Correlation Key
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Correlation', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Correlation',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),

122 create.hexbinplot

aspect = 1,
colourcut = seq(0, 1, length = 11),
maxcnt = 50,
Correlation Key
legend = list(

inside = list(
fun = draw.key,
args = list(

key = get.corr.key(
x = hexbin.data$x,
y = hexbin.data$y,
label.items = c('beta1', 'spearman'),
alpha.background = 0
)

),
x = 0.05,
y = 0.95,
corner = c(0,1),
draw = FALSE
)

),
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Grid lines and diagonal
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Gridlines', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Gridlines',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
aspect = 1,
colourcut = seq(0, 1, length = 11),
maxcnt = 50,
Grid & diagonal
add.grid = TRUE,
add.xyline = TRUE,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

create.hexbinplot 123

Large range
Generate some fake data with both very low and very high values
set.seed(12345);

x <- c(rnorm(100000,0,0.1),rnorm(1000,0,0.5),rnorm(1000,0,sd=0.75));
y <- c(rnorm(100000,0,0.1),rnorm(1000,0,0.5),rnorm(1000,0,sd=0.75));

fake.data <- data.frame(
x = x,
y = y,
z = y + x*(x+1)/4
);

create.hexbinplot(
filename = tempfile(pattern = 'Hexbinplot_Range', fileext = '.tiff'),
formula = z ~ x,
data = fake.data,
main = 'Range',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
aspect = 1,
Use colourcut to divide the bins appropriately

colourcut = c(0,0.0002,0.0004,0.0008,0.0016,0.0032,0.0064,0.0128,0.0256,0.0512,0.1024,0.2048,
0.4096,0.8192,1),

Change the colour scheme
colour.scheme = function(n){BTC(n, beg=1, end=256)},
background.col = 'grey',
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Outliers
Generate data with upper bound outlier
set.seed(12345);

x <- c(rnorm(1000,0,0),rnorm(4000,0,0.5));
y <- c(rnorm(1000,0,0),rnorm(4000,0,0.5));

fake.data.outlier <- data.frame(
x = x,
y = y,
z = y + x*(x+1)/4
);

create.hexbinplot(
filename = tempfile(pattern = 'Hexbinplot_Outlier', fileext = '.tiff'),
formula = z ~ x,

124 create.hexbinplot

data = fake.data.outlier,
main = 'Outlier',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
aspect = 1,
Use colourcut to divide the bins appropriately

colourcut = c(seq(0,0.01, length = 4),seq(0.0125,0.1,length=4), seq(0.125,1,length=4)),
xbins = 15,
mincnt = 0,
Change the colour scheme
colour.scheme = function(n){BTC(n, beg=1, end=256)},
background.col = 'grey',
description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.hexbinplot(

filename = tempfile(pattern = 'Hexbinplot_Nature_style', fileext = '.tiff'),
formula = y ~ x,
data = hexbin.data,
main = 'Nature style',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,16),
ylimits = c(0,16),
xat = seq(0,16,2),
yat = seq(0,16,2),
aspect = 1,
colourcut = seq(0, 1, length = 11),
maxcnt = 50,
Grid & diagonal
add.grid = TRUE,
add.xyline = TRUE,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

create.histogram 125

description = 'Hexbinplot created by BoutrosLab.plotting.general',
resolution = 200
);

Multiplot different groups
set.seed(73);

Randomly generate groups
simple.data$groups <- sample(1:2, 10000, replace = TRUE);
simple.data$group.labels <- as.factor(simple.data$groups);

create.hexbinplot(
formula = y ~ x | groups,
filename = tempfile(

pattern = 'stratified_hexbinplot_numeric_conditioning',
fileext = '.tiff'
),

data = simple.data,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
strip.col = 'white',
strip.cex = 0.8,
strip.fontface = 'bold',
resolution = 200
);

create.hexbinplot(
formula = y ~ x | group.labels,
filename = tempfile(

pattern = 'stratified_hexbinplot_factor_conditioning',
fileext = '.tiff'
),

data = simple.data,
description = 'Hexbinplot created by BoutrosLab.plotting.general',
strip.col = 'white',
strip.cex = 0.8,
strip.fontface = 'bold',
resolution = 200
);

create.histogram Make a histogram

Description

Takes a vector and creates a histogram

126 create.histogram

Usage

create.histogram(
x,
data,
filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = NULL,
ylab.label = NULL,
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = 1,
yaxis.tck = 1,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
type = 'percent',
breaks = NULL,
col = 'white',
border.col = 'black',
lwd = 2,
lty = 1,
layout = NULL,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',

create.histogram 127

y.relation = 'same',
strip.col = 'white',
strip.cex = 1,
top.padding = 0.1,
bottom.padding = 0.7,
right.padding = 0.1,
left.padding = 0.5,
ylab.axis.padding = 0,
abline.h = NULL,
abline.v = NULL,
abline.col = 'black',
abline.lwd = 1,
abline.lty = 1,
key = NULL,
legend = NULL,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',

use.legacy.settings = FALSE,
inside.legend.auto = FALSE
);

Arguments

x A formula or a numeric vector (not frequencies!)

data An optional data source if x is a formula

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

128 create.histogram

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 2

xlab.label x-axis title

ylab.label y-axis title

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis tick labels, defaults to 1

yaxis.cex Size of y-axis tick labels, defaults to 1

xlimits Two-element vector giving the x-axis limits

ylimits Two-element vector giving the y-axis limits

xat Vector listing where the x-axis ticks should be drawn

yat Vector listing where the y-axis ticks should be drawn

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

type Should the plot be of the “percent” (default), “density” or “count”

breaks A vector listing the break-points of the histogram, or an integer specifying the
desired number of breaks.

col Fill colour for the histograms

border.col Specify border colour (defaults to black)

lwd Specifies line width

create.histogram 129

lty Specifies line style

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

.

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.5

left.padding A number specifying the distance to the left margin, defaults to 0.5
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 0

,

abline.h Allow horizontal line to be drawn, default to NULL

abline.v Allow vertical line to be drawn, default to NULL

abline.col Horizontal and vertical line colour, defaults to black

abline.lwd Specifies horizontal/vertical line width, defaults to 1

abline.lty Specifies horizontal/vertical line style, defaults to 1 (solid)

key Add a key to the plot. See xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn

130 create.histogram

xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL.

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

histogram, lattice or the Lattice book for an overview of the package.

create.histogram 131

Examples

set.seed(12345);

create.histogram(
filename = tempfile(pattern = 'Histogram_Simple', fileext = '.tiff'),
x = rnorm(5000),
main = 'Simple',
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 50
);

create.histogram(
filename = tempfile(pattern = 'Histogram_Simple_Count', fileext = '.tiff'),
x = rnorm(5000),
main = 'Simple Count',
description = 'Histogram created by BoutrosLab.plotting.general',
type = 'count',
resolution = 50
);

Minimal Input
create.histogram(

filename = tempfile(pattern = 'Histogram_Minimal_Input', fileext = '.tiff'),
x = microarray[,1],
main = 'Minimal input',
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 50
);

Formula Input - dividing by chromosome
chr.data <- data.frame(

x = microarray$Chr,
y = microarray[,1]
);

create.histogram(
filename = tempfile(pattern = 'Histogram_Formula_Input', fileext = '.tiff'),
x = y ~ x,
data = chr.data,
main = 'Formula input',
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 100
);

Axes and Labels
create.histogram(

filename = tempfile(pattern = 'Histogram_Axes_Labels', fileext = '.tiff'),
x = microarray[,1],
main = 'Axes & labels',
Customizing the axes and labels
xlab.label = 'Bins',
ylab.label = 'Counts',

132 create.histogram

xlimits = c(0, 16),
xat = seq(0,15,5),
set break points for bins
breaks = seq(floor(min(microarray[,1])), ceiling(max(microarray[,1])), 1),
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 100
);

Colour change
create.histogram(

filename = tempfile(pattern = 'Histogram_Colours', fileext = '.tiff'),
x = microarray[,1],
main = 'Colours',
xlab.label = 'Bins',
ylab.label = 'Counts',
xlimits = c(0, 16),
xat = seq(0,15,5),
breaks = seq(floor(min(microarray[,1])), ceiling(max(microarray[,1])), 1),
Colours
col = 'lightgrey',
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 100
);

Line type
create.histogram(

filename = tempfile(pattern = 'Histogram_Line_Type', fileext = '.tiff'),
x = microarray[,1],
main = 'Line type',
xlab.label = 'Bins',
ylab.label = 'Counts',
xlimits = c(0, 16),
xat = seq(0,15,5),
breaks = seq(floor(min(microarray[,1])), ceiling(max(microarray[,1])), 1),
col = 'lightgrey',
Changing the line type
lty = 2,
description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.histogram(

filename = tempfile(pattern = 'Histogram_Nature_style', fileext = '.tiff'),
x = microarray[,1],
main = 'Nature style',
xlimits = c(0, 16),
xat = seq(0,15,5),
breaks = seq(floor(min(microarray[,1])), ceiling(max(microarray[,1])), 1),
col = 'lightgrey',

set style to Nature

create.lollipopplot 133

style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Histogram created by BoutrosLab.plotting.general',
resolution = 200
);

create.lollipopplot Make a lollipopplot

Description

Takes a data.frame and creates a lollipopplot

Usage

create.lollipopplot(
formula,
data,
filename = NULL,
groups = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,

main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),

xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',

xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,

xlab.top.y = 0,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,

134 create.lollipopplot

xaxis.lab = NA,
yaxis.lab = NA,
xaxis.log = FALSE,
yaxis.log = FALSE,

xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = c(1,1),
yaxis.tck = c(1,1),
add.grid = FALSE,
xgrid.at = xat,

ygrid.at = yat,
grid.colour = NULL,
horizontal = FALSE,
type = 'p',
cex = 0.75,
pch = 19,
col = 'black',
col.border = 'black',
lwd = 1,
lty = 1,
alpha = 1,
axes.lwd = 1,
strip.col = 'white',
strip.cex = 1,
strip.fontface = 'bold',
y.error.up = NULL,
y.error.down = y.error.up,
x.error.right = NULL,
x.error.left = x.error.right,
y.error.bar.col = 'black',
x.error.bar.col = y.error.bar.col,
error.whisker.angle = 90,
error.bar.lwd = 1,
error.bar.length = 0.1,
key = list(text = list(lab = c(''))),
legend = NULL,
top.padding = 0.1,
bottom.padding = 0.7,
right.padding = 0.1,
left.padding = 0.5,
key.top = 0.1,
key.left.padding = 0,

create.lollipopplot 135

ylab.axis.padding = 1,
axis.key.padding = 1,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
add.axes = FALSE,
axes.lty = 'dashed',
add.xyline = FALSE,
xyline.col = 'black',
xyline.lwd = 1,
xyline.lty = 1,
abline.h = NULL,
abline.v = NULL,
abline.col = 'black',
abline.lwd = 1,
abline.lty = 1,
add.curves = FALSE,
curves.exprs = NULL,
curves.from = min(data, na.rm = TRUE),
curves.to = max(data, na.rm = TRUE),
curves.col = 'black',
curves.lwd = 2,
curves.lty = 1,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
add.points = FALSE,
points.x = NULL,
points.y = NULL,
points.pch = 19,
points.col = 'black',
points.col.border = 'black',
points.cex = 1,
add.line.segments = FALSE,
line.start = NULL,
line.end = NULL,
line.col = 'black',
line.lwd = 1,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,

136 create.lollipopplot

text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
text.guess.labels = FALSE,
text.guess.skip.labels = TRUE,
text.guess.ignore.radius = FALSE,
text.guess.ignore.rectangle = FALSE,
text.guess.radius.factor = 1,
text.guess.buffer.factor = 1,
text.guess.label.position = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
group.specific.colouring = TRUE,
use.legacy.settings = FALSE,
inside.legend.auto = FALSE,
regions.labels = c(),

regions.start = c(),
regions.stop = c(),
regions.color = c("red"),
regions.cex = 1,
regions.alpha = 1,

lollipop.bar.y = NULL,
lollipop.bar.color = "gray",
...
);

Arguments

formula The formula used to extract the x & y components from the data-frame

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

groups The grouping variable in the data-frame

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title

xlab.label x-axis label

ylab.label y-axis label

create.lollipopplot 137

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

yaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

add.grid Logical stating wheter or not the grid should be drawn on the plot

xgrid.at Vector listing where the x-axis grid lines should be drawn, defaults to xat

ygrid.at Vector listing where the y-axis grid lines should be drawn, defaults to yat

grid.colour ability to set individual grid line colours

horizontal xyplot-specific function that allows you to change if type=’h’ draws lines to the
vertical or horizontal axis

type Plot type

cex Character expansion for plotting symbol

138 create.lollipopplot

pch Plotting character

col Point/line colour

col.border Colour of border when points pch >= 21. Defaults to “black”

lwd Specifies line width, defaults to 1

lty Specifies line style, defaults to 1 (solid)

alpha Specifies line transparency, defaults to 1 (opaque)

axes.lwd Thickness of width of axes lines

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

strip.fontface Strip title fontface, defaults to bold

y.error.up upward error vector. Defaults to NULL. When y.error.up is NULL, vertical error
bar is not drawn

y.error.down Downward error vector. Defaults to y.error.down to show symmetric error bars

x.error.right Rightward error vector. Defaults to NULL. When x.error.right is NULL, hori-
zontal error bar is not drawn

x.error.left Leftward error vector. Defaults to x.error.right to show symmetric error bars
y.error.bar.col

Colour of vertical error bar. Defaults to “black”
x.error.bar.col

Colour of horizontal error bar. Defaults to “black”
error.whisker.angle

Angle of the whisker drawn on error bar. Defaults to 90 degree

error.bar.lwd Error bar line width. Defaults to 1
error.bar.length

Length of the error bar whiskers. Defaults to 0.1

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.1

left.padding A number specifying the distance to the left margin, defaults to 0.5

key.top A number specifying the distance at top of key, defaults to 0.1
key.left.padding

Amount of padding to go onto any legend on the left
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 1
axis.key.padding

A number specifying the distance from the y-axis to the key, defaults to 1

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

create.lollipopplot 139

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

add.axes Allow axis lines to be turned on or off, default is FALSE

axes.lty Specifies axis line style, defaults to “dashed”

add.xyline Allow y=x line to be drawn, default is FALSE

xyline.col y=x line colour, defaults to black

xyline.lwd Specifies y=x line width, defaults to 1

xyline.lty Specifies y=x line style, defaults to 1 (solid)

abline.h Allow horizontal line to be drawn, default to NULL

abline.v Allow vertical line to be drawn, default to NULL

abline.col Horizontal line colour, defaults to black

abline.lwd Specifies horizontal line width, defaults to 1

abline.lty Specifies horizontal line style, defaults to 1 (solid)

add.curves Allow curves to drawn, default is FALSE

curves.exprs A list of functions, expressions, or calls using “x” as a variable that specify the
curves to be drawn

curves.from Specifies the x co-ordinates at which the start of each curve should be drawn,
defaults to drawing the curves to the left edge of the plotting region

curves.to Specifies the x co-ordinates at which the end of each curve should be drawn,
defaults to drawing the curves to the right edge of the plotting region

curves.col Specifies colours of curves, default is black for each curve

curves.lwd Specifies width of curves, default is 1 for each curve

curves.lty Specifies type of curves, default is 1 (solid) for each curve

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

add.points Allow additional points to be drawn, default is FALSE

140 create.lollipopplot

points.x The x co-ordinates where additional points should be drawn

points.y The y co-ordinates where additional points should be drawn

points.pch The plotting character for additional points

points.col The colour of additional points
points.col.border

Colour of the border of additional points if points.pch >= 21. Defaults to black

points.cex The size of additional points
add.line.segments

Allow additional line segments to be drawn, default is FALSE

line.start The y co-ordinates where additional line segments should start

line.end The y co-ordinates where additional line segments should end

line.col The colour of additional line segments, default is black

line.lwd The line width of additional line segments, default is 1

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text
text.guess.labels

Allows automatic labeling by considering values in text.x and text.y as a data
point to be labelled, default is FALSE

text.guess.skip.labels

Provides an option to disregard automatic labelling algorithm if no space is
available around a data point, thus forcing labelling if a collision is likely, default
is TRUE

text.guess.ignore.radius

Allows the automatic labeling algorithm to ignore the radius space of a data
point, useful to label a cluster of data points with a single text box, default is
FALSE

text.guess.ignore.rectangle

Allows the atuomatic labeling algorithm to ignore the rectangle space of multi-
ple potential label positions, default is FALSE

text.guess.radius.factor

A numeric value to factor the radius value to alter distance from the label and
the data point

text.guess.buffer.factor

A numeric value to factor the buffer value to alter the space which is used to
consider if data.points are potentially going to collide

text.guess.label.position

A numeric value between 0 and 360 to specify the percise angle of a text box
center and the positive x-axis. Angles move counter-clockwise beginning at the
positive x axis

create.lollipopplot 141

height Figure height, defaults to 6 inches
width Figure width, defaults to 6 inches
size.units Figure units, defaults to inches
resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE
description Short description of image/plot; default NULL
style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-

cording to Nature formatting requirements
preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
group.specific.colouring

Variable to specify if group specific multi colouring for error bars is enforced
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function
regions.labels Labels for each of the regions on the lollipop plots bars
regions.start start x value of each of the regions
regions.stop stop value for each of the regions
regions.color color of each of the regions
regions.cex size of the text of each of the regions
regions.alpha alpha of each of the regions
lollipop.bar.y y location of top of the lollipop plot bar – defaults to right above the bottom y

axis
lollipop.bar.color

color of the lollipop plot bar
... Additional arguments to be passed to xyplot

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

142 create.manhattanplot

Author(s)

Paul C. Boutros

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);
lollipop.data <- data.frame(

y = seq(1,100,1),
x = rnorm(100)
);

create.lollipopplot(
filename = tempfile(pattern = 'Lollipop_Simple', fileext = '.tiff'),
formula = x ~ y,
data = lollipop.data,
main = 'Lollipop plot',
xaxis.cex = 1,
xlimits = c(-1,102),
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
description = 'Scatter plot created by BoutrosLab.plotting.general',
regions.start = c(1,26,48),
regions.stop = c(15,35,72),
regions.labels = c("test 1", "test2", "test 3"),
regions.color = c("#66b3ff", "#5cd65c", "#ff3333")
);

create.manhattanplot Make a Manhattan plot

Description

Takes a data.frame and creates a Manhattan plot

Usage

create.manhattanplot(
formula,
data,

create.manhattanplot 143

filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,
xaxis.log = FALSE,
yaxis.log = FALSE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.fontface = 'plain',
yaxis.fontface = 'plain',
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = 0,
yaxis.tck = c(1,1),
horizontal = FALSE,
type = 'p',
cex = 2,
pch = '.',
col = 'black',
lwd = 1,
lty = 1,
alpha = 1,
strip.col = 'white',
strip.cex = 1,
axes.lwd = 1,
axes.lty = 'dashed',

144 create.manhattanplot

key = list(text = list(lab = c(''))),
legend = NULL,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
top.padding = 0,
bottom.padding = 0,
right.padding = 0,
left.padding = 0,
key.top = 0,
key.left.padding = 0,
ylab.axis.padding = 1,
axis.key.padding = 1,
abline.h = NULL,
abline.col = 'black',
abline.lwd = 1,
abline.lty = 1,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
add.points = FALSE,
points.x = NULL,
points.y = NULL,
points.pch = 19,
points.col = 'black',
points.cex = 1,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
height = 6,
width = 10,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
style = 'BoutrosLab',
description = 'Created with BoutrosLab.plotting.general',
preload.default = 'custom',

create.manhattanplot 145

use.legacy.settings = FALSE,
inside.legend.auto = FALSE,

...
);

Arguments

formula The formula used to extract the x & y components from the data-frame. Trans-
forming data within formula is not compatible with automatic scaling with ‘xat‘
or ‘yat‘.

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title

xlab.label x-axis label

ylab.label y-axis label

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Accepts a vector listing where x-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes x-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

146 create.manhattanplot

yat Accepts a vector listing where y-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes y-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

xaxis.lab Vector listing x-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with xat will overwrite user input. Set to NULL to remove x-axis labels.

yaxis.lab Vector listing y-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with yat will overwrite user input. Set to NULL to remove y-axis labels.

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.cex Size of x-axis scales, defaults to 1

yaxis.cex Size of y-axis scales, defaults to 1

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

yaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

horizontal xyplot-specific function that allows you to change if type=’h’ draws lines to the
vertical or horizontal axis

type Plot type

cex Character expansion for plotting symbol

pch Plotting character

col Point/line colour

lwd Specifies line width, defaults to 1

lty Specifies line style, defaults to 1 (solid)

alpha Specifies line transparency, defaults to 1 (opaque)

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

axes.lwd Thickness of width of axis lines

axes.lty Specifies axis line style, defaults to “dashed”

key A list giving the key (legend). The default suppresses drawing

create.manhattanplot 147

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

F

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

top.padding A number specifying the distance to the top margin, defaults to 0

bottom.padding A number specifying the distance to the bottom margin, defaults to 0

right.padding A number specifying the distance to the right margin, defaults to 0

left.padding A number specifying the distance to the left margin, defaults to 0

key.top A number specifying the distance at top of key, defaults to 0
key.left.padding

Amount of padding to go onto any legend on the left
ylab.axis.padding

A number specifying the distance of label to the y-axis, defaults to 1
axis.key.padding

A number specifying the distance from the y-axis to the key, defaults to 1

abline.h Allow horizontal line to be drawn, default to NULL

abline.col Horizontal line colour, defaults to black

abline.lwd Specifies horizontal line width, defaults to 1

abline.lty Specifies horizontal line style, defaults to 1 (solid)

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

add.points Allow additional points to be drawn, default is FALSE

points.x The x co-ordinates where additional points should be drawn

148 create.manhattanplot

points.y The y co-ordinates where additional points should be drawn
points.pch The plotting character for additional points
points.col The colour of additional points
points.cex The size of additional points
add.text Allow additional text to be drawn, default is FALSE
text.labels Labels for additional text
text.x The x co-ordinates where additional text should be placed
text.y The y co-ordinates where additional text should be placed
text.col The colour of additional text
text.cex The size of additional text
text.fontface The fontface for additional text
height Figure height, defaults to 6 inches
width Figure width, defaults to 6 inches
size.units Figure units, defaults to inches
resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE
style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-

cording to Nature formatting requirements
description Short description of image/plot; default NULL
preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function
... Additional arguments to be passed to xyplot

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

create.manhattanplot 149

Author(s)

Christine P’ng, Cindy Q. Yao

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);
simple.data <- data.frame(

x = runif(20000, 0, 1),
y = 1:20000
);

create.manhattanplot(
filename = tempfile(pattern = 'Manhattan_Simple', fileext = '.tiff'),
formula = -log10(x) ~ y,
data = simple.data,
main = 'Simple',
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 50
);

set up chromosome covariate colours to use for chr covariate, below
chr.colours <- force.colour.scheme(microarray$Chr, scheme = 'chromosome');

make chr covariate and chr labels
chr.n.genes <- vector();
chr.tck <- vector();
chr.pos.genes <- vector();
chr.break <- vector();
chr.break[1] <- 0;
get a list of chromosomes to loop
chr <- unique(microarray$Chr);

loop over each chromosome
for (i in 1:length(chr)) {

get the number of genes that belong to one chromosome
n <- sum(microarray$Chr == chr[i]);

calculate where the labels go
chr.n.genes[i] <- n;
chr.break[i+1] <- n + chr.break[i];
chr.pos.genes[i] <- floor(chr.n.genes[i]/2);
chr.tck[i] <- chr.pos.genes[i] + which(microarray$Chr == chr[i])[1];
}

add an indicator function for the data-frame
microarray$ind <- 1:nrow(microarray);

150 create.manhattanplot

Minimal input
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_Minimal_Input', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Minimal input',
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 100
);

Custom Axes
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_Custom_Axes', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Custom axes',
xlab.label = expression('Chromosomes'),
ylab.label = expression('P'['adjusted']),
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),
expression(10^-4)
),

description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 100
);

Log-Scaled Axis
log.data <- data.frame(

x = 10 ** runif(20000, 1, 5),
y = 1:20000
);

create.manhattanplot(
formula = x ~ y,
data = log.data,
main = 'Log Scaled',
Log base 10 scale x-axis
xat = 'auto.log',
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 50
);

Colour scheme
create.manhattanplot(

create.manhattanplot 151

filename = tempfile(pattern = 'Manhattan_Colour_Scheme', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Colour scheme',
xlab.label = expression('Chromosomes'),
ylab.label = expression('P'['adjusted']),
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),
expression(10^-4)
),

col = chr.colours,
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 200
);

Plotting Character
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_Plotting_Character', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Plotting character',
xlab.label = expression('Chromosomes'),
ylab.label = expression('P'['adjusted']),
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),
expression(10^-4)
),

col = chr.colours,
Change plotting character and size of plotting character
pch = 18,
cex = 0.75,
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 200
);

152 create.manhattanplot

Line
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_Added_Line', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Line',
xlab.label = expression('Chromosomes'),
ylab.label = expression('P'['adjusted']),
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),
expression(10^-4)
),

col = chr.colours,
pch = 18,
cex = 0.75,
draw horizontal line
abline.h = 2,
abline.lty = 2,
abline.lwd = 1,
abline.col = 'black',
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 200
);

Background shading
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_BG', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Bg rectangles',
xlab.label = expression('Chromosomes'),
ylab.label = expression('P'['adjusted']),
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),

create.manhattanplot 153

expression(10^-4)
),

col = chr.colours,
pch = 18,
cex = 0.75,
abline.h = 2,
abline.lty = 2,
abline.lwd = 1,
abline.col = 'black',
Adding rectangles
add.rectangle = TRUE,
xleft.rectangle = chr.break[seq(1, length(chr.break) - 1, 2)],
ybottom.rectangle = 0,
xright.rectangle = chr.break[seq(2, length(chr.break) - 1, 2)],
ytop.rectangle = 4.5,
col.rectangle = 'grey',
alpha.rectangle = 0.5,
description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.manhattanplot(

filename = tempfile(pattern = 'Manhattan_Nature_style', fileext = '.tiff'),
formula = -log10(pval) ~ ind,
data = microarray,
main = 'Nature style',
xat = chr.tck,
xaxis.lab = c(1:22, 'X', 'Y'),
xaxis.tck = 0,
xaxis.cex = 1,
yaxis.cex = 1,
yat = seq(0,5,1),
yaxis.lab = c(

1,
expression(10^-1),
expression(10^-2),
expression(10^-3),
expression(10^-4)
),

col = chr.colours,
pch = 18,
cex = 0.75,
abline.h = 2,
abline.lty = 2,
abline.lwd = 1,
abline.col = 'black',
Adding rectangles
add.rectangle = TRUE,
xleft.rectangle = chr.break[seq(1, length(chr.break) - 1, 2)],
ybottom.rectangle = 0,
xright.rectangle = chr.break[seq(2, length(chr.break) - 1, 2)],
ytop.rectangle = 4.5,

154 create.multipanelplot

col.rectangle = 'grey',
alpha.rectangle = 0.5,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Manhattan plot created using BoutrosLab.plotting.general',
resolution = 1200
);

create.multipanelplot Joins plots together

Description

Merges together multiple plots in the specified layout

Usage

create.multipanelplot(
plot.objects = NULL,
filename = NULL,
height = 10,
width = 10,
resolution = 1000,
plot.objects.heights = c(rep(1,layout.height)),
plot.objects.widths = c(rep(1,layout.width)),
layout.width = 1,
layout.height = length(plot.objects),
main = '',
main.x = 0.5,
main.y = 0.5,
x.spacing = 0,
y.spacing = 0,
xlab.label = '',
xlab.cex = 2,
ylab.label = '',
ylab.label.right = '',
ylab.cex = 2,
main.cex = 3,
legend = NULL,

create.multipanelplot 155

left.padding = 0,
ylab.axis.padding = c(rep(0, layout.width)),
xlab.axis.padding = c(rep(0, layout.height)),
bottom.padding = 0,
top.padding = 0,
right.padding = 0,
layout.skip = c(rep(FALSE, layout.width*layout.height)),
left.legend.padding = 2,
right.legend.padding = 2,
bottom.legend.padding = 2,
top.legend.padding = 2,
description = 'Created with BoutrosLab.plotting.general',
size.units = 'in',
enable.warnings = FALSE,
style = "BoutrosLab",
use.legacy.settings = FALSE
);

Arguments

plot.objects A list of plot objects. Goes in this order: Top Left, Top Right, Bottom Left,
Bottom Right

filename Filename to output to

height Height of resulting file

width Width of resulting file

resolution Resolution of resulting file
plot.objects.heights

Heights of each row of the plot. Must be vector of same size as layout.height
plot.objects.widths

Widths of each column of the plot. Must be vector of same size as layout.width

layout.width how many plots per row.

layout.height how many plots per column

main main label text

main.x main label x coordinate

main.y main label y coordinate

x.spacing horizontal spacing between each plot. Can be single value or vector of length
layout.width - 1

y.spacing vertical spacing between each plot. Can be single value or vector of length
layout.height - 1

xlab.label bottom x-axis main label

xlab.cex bottom x-axis main label cex

ylab.label left side y-axis label
ylab.label.right

right side y-axis label

156 create.multipanelplot

ylab.cex y-axis label cex

main.cex main label cex

legend legend for the plot

left.padding padding from the left side of the frame
ylab.axis.padding

padding between axis and y label of plots. Can be single value or vector of
length layout.width

xlab.axis.padding

padding between axis and x label of plots. Can be single value or vector of
length layout.height

bottom.padding padding from the bottom side of the frame

top.padding padding from the top side of the frame

right.padding padding from the right side of the frame

layout.skip list specifiying locations to skip plots. Must be vector of length layout.width*layout.height
left.legend.padding

padding between legend and left side of figure (can use without a legend)
right.legend.padding

padding between legend and right side of figure (can use without a legend)
bottom.legend.padding

padding between legend and bottom side of figure (can use without a legend)
top.legend.padding

padding between legend and top side of figure (can use without a legend)

description description of what plot is displaying

size.units the units the height and width of file represent
enable.warnings

enables warnings to be output

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

create.multipanelplot 157

Author(s)

Jeff Green

Examples

set.seed(12345);
begin by creating the individual plots which will be combined into a multiplot
dist <- data.frame(

a = rnorm(100, 1),
b = rnorm(100, 3),
c = rnorm(100, 5)
);

simple.data <- data.frame(
x = c(dist$a, dist$b, dist$c),
y = rep(LETTERS[1:3], each = 100)
);

fill.squares <- matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 1), ncol = 3, byrow = TRUE);
rownames(fill.squares) <- c("Drug I only", "Drug II only" , "Drugs I & II");
colnames(fill.squares) <- levels(factor(simple.data$y));

Create plot # 1
simple.boxplot <- create.boxplot(

formula = x ~ y,
data = simple.data,
xaxis.lab = c('','',''),
main.x = 0.57,
ylab.label = 'Sugar Level',
xlab.label = '',
col = 'lightgrey',
xaxis.tck = c(0,0),
yaxis.tck = c(1,0),
yaxis.lab = seq(-1,8,2) ,
yat = seq(-1,8,2),
left.padding = 0,
right.padding = 0,
lwd = 2
);

Create plot # 2
simple.heatmap <- create.heatmap(

x = t(fill.squares),
clustering.method = 'none',
shrink = 0.8,
yaxis.lab = c(3,2,3),
yaxis.tck = 1,
xaxis.lab = c('A','B','C'),
ylab.label = 'Drug Regimen',
xlab.label = 'Patient Group',
colour.scheme = c("white", "grey20"),
fill.colour = "white",
print.colour.key = FALSE,

158 create.multipanelplot

left.padding = 0,
xaxis.tck = c(1,0),
right.padding = 0,
xaxis.rot = 0
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_Simple', fileext = '.tiff'),
plot.objects = list(simple.boxplot,simple.heatmap),
y.spacing = 1,
ylab.axis.padding = 2,
main = 'Simple',
top.padding = 2,
resolution = 200
);

Create plot # 2
simple.heatmap.with.legends <- create.heatmap(

x = t(fill.squares),
shrink = 0.8,
yaxis.lab = c(3,2,3),
yaxis.tck = 1,
xaxis.lab = c('A','B','C'),
ylab.label = 'Drug Regimen',
xlab.label = '',
colour.scheme = c("white", "grey20"),
fill.colour = "white",
left.padding = 0,
xaxis.tck = c(1,0),
right.padding = 0,
xaxis.rot = 0
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_Simple_Legends', fileext = '.tiff'),
plot.objects = list(simple.boxplot,simple.heatmap.with.legends),
y.spacing = 1,
ylab.axis.padding = 2,
main = 'Simple',
top.padding = 2,
resolution = 200
);

Create plot # 1
simple.boxplot2 <- create.boxplot(

formula = x ~ y,
data = simple.data,
ylab.label = 'Sugar Level',
xlab.label = '',
col = 'lightgrey',
xaxis.tck = c(0,0),
xaxis.lab = c('','',''),

create.multipanelplot 159

yaxis.tck = c(1,0),
yaxis.lab = seq(-1,8,2),
yat = seq(-1,8,2),
left.padding = 0,
right.padding = 0,
lwd = 2
);

simple.violin2 <- create.violinplot(
formula = x ~ y,
data = simple.data,
col = 'lightgrey',
yaxis.tck = c(0,0),
xlab.label = '',
ylab.label = '',
yaxis.lab = NULL,
xaxis.lab = c('','',''),
xaxis.tck = c(0,0)
);

Create plot # 2
simple.heatmap2 <- create.heatmap(

x = t(fill.squares),
clustering.method = 'none',
shrink = 0.8,
yaxis.lab = c(1,2,3),
yaxis.tck = 1,
xaxis.lab = c('A','B','C'),
ylab.label = 'Drug Regimen',
colour.scheme = c("white", "grey20"),
fill.colour = "white",
print.colour.key = FALSE,
left.padding = 0,
xaxis.tck = c(3,0),
right.padding = 0,
xaxis.rot = 0,
ylab.cex = 2
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_Simple_Layout', fileext = '.tiff'),
plot.objects = list(simple.boxplot2,
simple.violin2,simple.heatmap2),
layout.width = 2,
layout.height = 2,
xlab.label = 'Patient Group',
main = 'Simple Layout',
top.padding = 2,
plot.objects.heights = c(3,1),
x.spacing = 1,
y.spacing = 1
);

160 create.multipanelplot

all.data <- data.frame(
a = rnorm(n = 25, mean = 0, sd = 0.75),
b = rnorm(n = 25, mean = 0, sd = 0.75),
c = rnorm(n = 25, mean = 0, sd = 0.75),
d = rnorm(n = 25, mean = 0, sd = 0.75),
e = rnorm(n = 25, mean = 0, sd = 0.75),
f = rnorm(n = 25, mean = 0, sd = 0.75),
x = rnorm(n = 25, mean = 5),
y = seq(1, 25, 1)
);

create the plot -- this allows for previewing of the individual plot
barplot.formatted <- create.barplot(

formula = x ~ y,
data = all.data[,7:8],
yaxis.tck = c(1,0),
border.lwd = 0,
col = 'grey',
xlab.label = '',
xat = c(-100),
ylab.label = '',
yaxis.lab = seq(1, ceiling(max(all.data$x)), 1),
yat = seq(1, ceiling(max(all.data$x)), 1),
yaxis.cex = 1.5
);

heatmap.formatted <- create.heatmap(
x = all.data[,1:6],
clustering.method = 'none',
colour.scheme = c('magenta','white','green'),
print.colour.key = FALSE,
xlab.label = '',
yaxis.tck = c(1,0),
xaxis.tck = c(1,0),
xat = c(1:25),
yaxis.lab = c("BRCA1", "BRCA2", "APC", "TIN", "ARG", "FOO"),
yat = c(1,2,3,4,5,6),
xaxis.lab = c(1:25),
xaxis.rot = 0,
yaxis.cex = 1.5
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_formatted', fileext = '.tiff'),
plot.objects = list(barplot.formatted, heatmap.formatted),
plot.objects.heights = c(1,3),
y.spacing = -3.75,
main = 'Formatted',
top.padding = 0
);

data.bars <- data.frame(

create.multipanelplot 161

x = sample(x = 5:35, size = 10),
y = seq(1,10,1)
);

data.cov <- data.frame(
x = rnorm(n = 10, mean = 0, sd = 0.75),
y = rnorm(n = 10, mean = 0, sd = 0.75),
z = rnorm(n = 10, mean = 0, sd = 0.75)
);

Create main barplot
bars <- create.barplot(

formula = x~y,
data = data.bars,
ylimits = c(0,35),
ylab.label = '',
sample.order = 'increasing',
border.lwd = 0,
yaxis.lab = seq(5,35,5),
yat = seq(5,35,5),
yaxis.tck = c(0,0),
xlab.label = ''
);

Make covariate bars out of heatmaps
cov.1 <- create.heatmap(

x = as.matrix(data.bars$y),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = default.colours(4),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,
total.col = 5,
print.colour.key = FALSE,
yaxis.tck = 0,
axes.lwd = 0
);

cov.2 <- create.heatmap(
x = as.matrix(data.cov$y),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = c("lightblue","dodgerblue2", "dodgerblue4"),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,
total.col = 4,
print.colour.key = FALSE,
yaxis.tck = 0
);

cov.3 <- create.heatmap(

162 create.multipanelplot

x = as.matrix(data.cov$z),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = c("grey","coral1"),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,
total.col = 3,
print.colour.key = FALSE,
yaxis.tck = 0
);

legendG <- legend.grob(
list(

legend = list(
colours = default.colours(4),
title = "Batch",
labels = LETTERS[1:4],
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("lightblue","dodgerblue2","dodgerblue4"),
title = "Grade",
labels = c("Low","Normal","High"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("grey","coral1"),
title = "Biomarker",
labels = c("Not present","Present"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
)

),
label.cex = 1.25,

title.cex = 1.25,
title.just = 'left',
title.fontface = 'bold.italic',
size = 3,
layout = c(1,3)
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_Barchart', fileext = '.tiff'),

create.multipanelplot 163

plot.objects = list(bars, cov.3, cov.2, cov.1),
plot.objects.heights = c(1, 0.1,0.1,0.1),
legend = list(right = list(fun = legendG)),
ylab.label = 'Response to Treatment',
main = 'Bar Chart',
x.spacing = 0,
y.spacing = 0.1
);

Set up plots for complex example

Dotmap
spot.sizes <- function(x) { 0.5 * abs(x); }
dotmap.dot.colours <- c('red','blue');
spot.colours <- function(x) {

colours <- rep('white', length(x));
colours[sign(x) == -1] <- dotmap.dot.colours[1];
colours[sign(x) == 1] <- dotmap.dot.colours[2];
return(colours);
};

Dotmap colours
orange <- rgb(249/255, 179/255, 142/255);
blue <- rgb(154/255, 163/255, 242/255);
green <- rgb(177/255, 213/255, 181/255);
bg.colours <- c(green, orange, blue, 'gold', 'skyblue', 'plum');

dotmap <- create.dotmap(
x = CNA[1:15,1:58],
bg.data = SNV[1:15,1:58],
Set the colour scheme
colour.scheme = bg.colours,
Set the breakpoints for the colour scheme (determined from the data)
at = c(0,1,2,4,6,7,8),
Specify the total number of colours (+1 for the fill colour)
total.colours = 7,
col.colour = 'white',
row.colour = 'white',
bg.alpha = 1,
yaxis.tck = c(1,0),
fill.colour = 'grey95',
spot.size.function = spot.sizes,
spot.colour.function = spot.colours,
xaxis.tck = 0,
xaxis.lab = c(rep('',100)),
bottom.padding = 0,
top.padding = 0,
left.padding = 0,
right.padding = 0,
yaxis.cex = 1
);

Dotmap legend

164 create.multipanelplot

dotmap.legend <- list(
legend = list(

colours = bg.colours,
labels = c('Nonsynonymous','Stop Gain','Frameshift deletion',

'Nonframeshift deletion', 'Splicing', 'Unknown'),
border = 'white',
title = 'SNV',
pch = 15
),

legend = list(
colours = dotmap.dot.colours,
labels = c('Gain','Loss'),
border = 'white',
title = 'CNA',
pch = 19
)

);

dotmap.legend.grob <- legend.grob(
legends = dotmap.legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Covariates
cov.colours <- c(

c('dodgerblue','pink'),
c('grey','darkseagreen1','seagreen2','springgreen3','springgreen4'),
c('peachpuff','tan4')
);

the heatmap expects numeric data
cov.data <- patient[-c(4:9)];
cov.data[cov.data == 'male'] <- 1;
cov.data[cov.data == 'female'] <- 2;
cov.data[is.na(cov.data)] <- 3;
cov.data[cov.data == 'I'] <- 4;
cov.data[cov.data == 'II'] <- 5;
cov.data[cov.data == 'III'] <- 6;
cov.data[cov.data == 'IV'] <- 7;
cov.data[cov.data == 'MSS'] <- 8;
cov.data[cov.data == 'MSI-High'] <- 9;
cov.data$sex <- as.numeric(cov.data$sex);
cov.data$stage <- as.numeric(cov.data$stage);
cov.data$msi <- as.numeric(cov.data$msi);

covariates <- create.heatmap(
x = cov.data,
clustering.method = 'none',
colour.scheme = as.vector(cov.colours),
total.colours = 10,
row.colour = 'white',

create.multipanelplot 165

col.colour = 'white',
grid.row = TRUE,
grid.col = TRUE,
xaxis.lab = c(rep('',100)),
yaxis.lab = c('Sex','Stage','MSI'),
yaxis.tck = c(0,0),
xaxis.tck = c(0,0),
xat = c(1:100),
print.colour.key = FALSE,
yaxis.cex = 1,
bottom.padding = 0,
top.padding = 0,
left.padding = 0,
right.padding = 0
);

Warning: number of columns exceeded limit (50), column lines are
turned off. Please set "force.grid.col" to TRUE to override this

Coviate Legends
cov.legends <- list(

legend = list(
colours = cov.colours[8:9],
labels = c('MSS','MSI-High'),
border = 'white',
title = 'MSI'
),

legend = list(
colours = cov.colours[3:7],
labels = c('NA', 'I','II','III','IV'),
border = 'white',
title = 'Stage'
),

legend = list(
colours = cov.colours[1:2],
labels = c('Male','Female'),
border = 'white',
title = 'Sex'
)

);

cov.legend.grob <- legend.grob(
legends = cov.legends,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7,
layout = c(3,1)
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_with_heatmap', fileext = '.tiff'),
plot.objects = list(dotmap,covariates),

166 create.multipanelplot

plot.objects.heights = c(1,0.2),
y.spacing = -0.8,
main = 'Dotmap',
top.padding = 2,
layout.height = 2,
legend = list(

bottom = list(
x = 0.10,
y = 0.50,
fun = cov.legend.grob
),

right = list(
x = 0.10,
y = 0.50,
fun = dotmap.legend.grob
)

),
resolution = 300
);

Add more plots, using more complex layout
grouped barplot
groupedbar.colours <- c('indianred1','indianred4');

count.SNV <- apply(SNV[1:15,], 2, function(x){length(which(!is.na(x)))});
count.CNA <- apply(CNA[1:15,], 2, function(x){length(which(!(x==0)))});

grouped.data <- data.frame(
values = c(count.SNV, count.CNA),
samples = rep(colnames(SNV),2),
group = rep(c('SNV','CNA'), each = 58)
);

grouped.barplot <- create.barplot(
formula = values ~ samples,
data = grouped.data,
groups = grouped.data$group,
col = groupedbar.colours,
top.padding = 0,
bottom.padding = 0,
left.padding = 0,
right.padding = 0,
border.col = 'white',
xlab.label = '',
ylab.label = 'Mutation',
yaxis.lab = c(0,5,10,15),
yat = c(0,5,10,15),
xaxis.lab = c(rep('',100)),
yaxis.tck = c(0,0),
xaxis.tck = c(0,0),
ylab.cex = 1.5,
yaxis.cex = 1,
axes.lwd = 2

create.multipanelplot 167

);

stacked barplot
col.one <- rgb(255/255, 225/255, 238/255);
col.two <- rgb(244/255, 224/255, 166/255);
col.thr <- rgb(177/255, 211/255, 154/255);
col.fou <- rgb(101/255, 180/255, 162/255);
col.fiv <- rgb(51/255, 106/255, 144/255);
stackedbar.colours <- c(col.one, col.two, col.thr, col.fou, col.fiv, 'orchid4');
stacked.data.labels <- c('C>A/G>T','C>T/G>A','C>G/G>C','T>A/A>T','T>G/A>C', 'T>C/A>G');

stacked.data <- data.frame(
values = c(patient$prop.CAGT, patient$prop.CTGA, patient$prop.CGGC, patient$prop.TAAT,

patient$prop.TGAC, patient$prop.TCAG),
divisions = rep(rownames(patient), 6),
group = rep(stacked.data.labels, each = 58)
);

Generate stacked barplot
stacked.barplot <- create.barplot(

formula = values ~ divisions,
data = stacked.data,
groups = stacked.data$group,
stack = TRUE,
col = stackedbar.colours,
border.col = 'white',
main = '',
xlab.label = '',
ylab.label = 'Proportion',
yaxis.lab = c(0,0.4,0.8),
yat = c(0,0.4,0.8),
xaxis.lab = c(rep('',100)),

yaxis.tck = c(0,0),
xaxis.tck = c(0,0),
ylab.cex = 1.5,
yaxis.cex = 1,
axes.lwd = 2
);

barchart legends
stackedbar.legend <- list(

legend = list(
colours = rev(stackedbar.colours),
labels = rev(stacked.data.labels),
border = 'white'
)

);

groupedbar.legend <- list(
legend = list(

colours = groupedbar.colours,
labels = c('CNA','SNV'),
border = 'white'

168 create.multipanelplot

)
);

groupedbar.legend.grob <- legend.grob(
legends = groupedbar.legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

stackedbar.legend.grob <- legend.grob(
legends = stackedbar.legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Expression change Segplot
locate matching genes
rows.to.keep <- which(match(rownames(microarray), rownames(SNV)[1:15], nomatch = 0) > 0);

segplot.data <- data.frame(
min = apply(microarray[rows.to.keep,1:58], 1, min),
max = apply(microarray[rows.to.keep,1:58], 1, max),
median = apply(microarray[rows.to.keep,1:58], 1, median),
order = seq(1,15,1)
);

segplot <- create.segplot(
formula = order ~ min + max,
data = segplot.data,
main = '',
xlab.label = '',
ylab.label = '',
centers = segplot.data$median,
yaxis.lab = c('','','','','',''),
xaxis.lab = c('0','2','4','6','8'),
xat = c(0,2,4,6,8),
yaxis.tck = c(0,0),
xaxis.tck = c(1,0),
axes.lwd = 2,

top.padding = 0,
left.padding = 0,
right.padding = 0,
bottom.padding = 0
);

Create multiplot

plots <- list(grouped.barplot,stacked.barplot,dotmap, segplot,covariates);
create.multipanelplot(

main.x = 0.47,
main.y = 0.5,

create.multipanelplot 169

plot.objects = plots,
plot.objects.heights = c(0.3, 0.3, 1, 0.15),
plot.objects.widths = c(1,0.2),
filename = tempfile(pattern = 'Multipanelplot_Complex', fileext = '.tiff'),
layout.height = 4,
layout.width = 2,
x.spacing = 0.2,
left.padding = 0,
layout.skip = c(FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE),
y.spacing = c(-1.35,-1.35,-1.5),
ylab.axis.padding = c(1,0),
legend = list(

left = list(
fun = dotmap.legend.grob,
args = list(

key = list(
points = list(

pch = c(15,15,19,19)
)

)
)

)
),
height = 12,
width = 12,
main = 'Complex',
top.padding = 2
);

Create a multiplot with a heatmap, key like legend and barplot

First create a heatmap object
simple.heatmap <- create.heatmap(patient[, 4:6],

clustering.method = 'none',
print.colour.key = FALSE,
same.as.matrix = FALSE,
colour.scheme = c('gray0','grey100'),
fill.colour = 'grey95',
xaxis.lab = c(rep('',100)),
xat = c(0,1,2,3,4,5,6,7,8),
yaxis.lab = c('','',''),
yat = c(0,1,2),
xlab.label = ''

);

and a simple bar plot
pvals <- data.frame(

order = c(1:3),
pvalue = -log10(c(0.0004, 0.045, 0.0001)),
stringsAsFactors = FALSE

)
#create bar plot
simple.bar <- create.barplot(

170 create.multipanelplot

formula = order ~ rev(pvalue),
data = pvals,
xlimits = c(0,5),
plot.horizontal=TRUE,
xlab.label = '',
ylab.label = '',
yaxis.lab = c(1,2,3)
);

then the covariates heatmap
cov.colours <- c(

c('dodgerblue','pink'),
c('grey','darkseagreen1','seagreen2','springgreen3','springgreen4'),
c('peachpuff','tan4')
);

the heatmap expects numeric data
cov.data <- patient[-c(4:9)];
cov.data[cov.data == 'male'] <- 1;
cov.data[cov.data == 'female'] <- 2;
cov.data[is.na(cov.data)] <- 3;
cov.data[cov.data == 'I'] <- 4;
cov.data[cov.data == 'II'] <- 5;
cov.data[cov.data == 'III'] <- 6;
cov.data[cov.data == 'IV'] <- 7;
cov.data[cov.data == 'MSS'] <- 8;
cov.data[cov.data == 'MSI-High'] <- 9;
cov.data$sex <- as.numeric(cov.data$sex);
cov.data$stage <- as.numeric(cov.data$stage);
cov.data$msi <- as.numeric(cov.data$msi);

covariates <- create.heatmap(
x = cov.data,
clustering.method = 'none',
colour.scheme = as.vector(cov.colours),
total.colours = 10,
row.colour = 'white',
col.colour = 'white',
grid.row = TRUE,
grid.col = TRUE,
yaxis.tck = 0,
print.colour.key = FALSE,
xaxis.lab = c('','',''),
xlab.label = '',
xat = c(1,2,3)
);

Warning: number of columns exceeded limit (50), column
lines are turned off. Please set "force.grid.col" to TRUE to override this

covariates2 <- create.heatmap(
x = patient[4],
clustering.method = 'none',

create.multipanelplot 171

colour.scheme = c("#00007F", "#007FFF"),
row.colour = 'white',
col.colour = 'white',
grid.row = TRUE,
grid.col = TRUE,
yaxis.tck = 0,
print.colour.key = FALSE,
xaxis.lab = c('','',''),
xlab.label = '',
xat = c(1,2,3)
);

Warning: number of rows exceeded limit (50), row
lines are turned off. Please set "force.grid.row" to TRUE to override this

cov.legends <- list(
legend = list(

colours = c("white", "black"),
labels = c('0','2'),
border = 'grey',
title = 'Tumour Mass (kg)',
continuous = TRUE,
height = 3
),

legend = list(
colours = cov.colours[8:9],
labels = c('MSS','MSI-High'),
border = 'white',
title = 'MSI'
),

legend = list(
colours = cov.colours[3:7],
labels = c('NA', 'I','II','III','IV'),
border = 'white',
title = 'Stage'
),

legend = list(
colours = cov.colours[1:2],
labels = c('Male','Female'),
border = 'white',
title = 'Sex'
),

legend = list(
colours = c("#00007F", "#007FFF"),
labels = c('0.09','0.72'),
border = 'grey',
title = 'CAGT',
continuous = TRUE,
height = 2,
width = 3,
angle = -90,
tck = 1,

172 create.multipanelplot

tck.number = 2,
at = c(0,100)
)

);

cov.legend.grob <- legend.grob(
legends = cov.legends,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Now bring it was together using multiplot
create.multipanelplot(

filename = tempfile(pattern = 'Multipanelplot_continousLegend', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.bar,covariates2,covariates),
plot.objects.heights = c(1,0.1,0.35),
plot.objects.widths = c(1,0.25),
layout.height = 3,
layout.width = 2,
layout.skip = c(FALSE, FALSE,FALSE,TRUE,FALSE,TRUE),
y.spacing = -0.1,
x.spacing = 0.5,
legend = list(

left = list(
fun = cov.legend.grob
)

),
main = 'Continous Legend',
top.legend.padding = 4,
top.padding = -2,
left.padding = 1
This parameter must be set for the legend to appear
);

create.multipanelplot(
filename = tempfile(pattern = 'Multipanelplot_manyPlots', fileext = '.tiff'),
main = 'Large Scale',
plot.objects = list(

simple.boxplot,
simple.heatmap,
simple.bar,
barplot.formatted,
dotmap,
grouped.barplot,
stacked.barplot,
covariates,
covariates2,
heatmap.formatted
),

plot.objects.heights = c(1,1,1,1),
plot.objects.widths = c(1,1, 1,1),
layout.height = 4,

create.multiplot 173

layout.width = 4,
top.legend.padding = 3,
layout.skip = c(FALSE, FALSE,FALSE,FALSE,FALSE,TRUE,

TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE),
y.spacing = c(-1,-1,-1),
x.spacing = c(1,2,3),
legend = list(

left = list(
fun = cov.legend.grob
)

),
height = 12,
width = 12
This parameter must be set for the legend to appear
);

create.multiplot Joins plots together

Description

Merges together multiple plots in the specified layout

Usage

create.multiplot(
plot.objects,
filename = NULL,
panel.heights = c(1,1),
panel.widths = 1,
main = NULL,
main.just = "center",
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
main.key.padding = 1,
ylab.padding = 5,
xlab.padding = 5,
xlab.to.xaxis.padding = 2,
right.padding = 1,
left.padding = 1,
top.padding = 0.5,
bottom.padding = 0.5,
xlab.label = NULL,
ylab.label = NULL,
xlab.cex = 2,

174 create.multiplot

ylab.cex = 2,
xlab.top.label = NULL,
xaxis.top.tck.lab = NULL,
xat.top = TRUE,
xlab.top.cex = 2,
xaxis.top.idx = NULL,
xlab.top.col = 'black',
xlab.top.just = "center",
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.labels = TRUE,
yaxis.labels = TRUE,
xaxis.alternating = 1,
yaxis.alternating = 1,
xat = TRUE,
yat = TRUE,
xlimits = NULL,
ylimits = NULL,
xaxis.rot = 0,
xaxis.rot.top = 0,
xaxis.fontface = 'bold',
y.tck.dist=0.5,
x.tck.dist=0.5,
yaxis.fontface = 'bold',
x.spacing = 1,
y.spacing = 1,
x.relation = 'same',
y.relation = 'same',
xaxis.tck = c(0.75,0.75),
yaxis.tck = c(0.75,0.75),
axes.lwd = 1.5,
key.right.padding = 1,
key.left.padding = 1,
key.bottom.padding = 1,
xlab.key.padding = 0.5,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
key = list(text = list(lab = c(''))),
legend = NULL,
print.new.legend = FALSE,
merge.legends = FALSE,
plot.layout = c(1,length(plot.objects)),
layout.skip=rep(FALSE,length(plot.objects)),

create.multiplot 175

description = 'Created with BoutrosLab.plotting.general',
plot.labels.to.retrieve = NULL,
style = 'BoutrosLab',
remove.all.border.lines = FALSE,
preload.default = 'custom',
plot.for.carry.over.when.same = 1,
get.dendrogram.from = NULL,
dendrogram.right.size = NULL,
dendrogram.right.x = NULL,
dendrogram.right.y = NULL,

dendrogram.top.size = NULL,
dendrogram.top.x = NULL,
dendrogram.top.y = NULL,
use.legacy.settings = FALSE

);

Arguments

plot.objects A list of plot objects. Goes in this order: Bottom Left, Bottom Right, Top Left,
Top Right

filename Filename for tiff output, or if NULL returns the trellis object itself

panel.heights A vector specifying relative heights of the panels. Default is c(1,1)

panel.widths A vector specifying relative widths of the panels. Default is 1

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 3
main.key.padding

A number specifying the distance of main to plot, defaults to 1

ylab.padding A number specifying the distance of y-axis to plot, defaults to 5

xlab.padding A number specifying the distance of x-axis to plot, defaults to 5
xlab.to.xaxis.padding

A number specifying the distance between xaxis and xlabel, defaults to 2

right.padding A number specifying the distance to the right margin, defaults to 1

left.padding A number specifying the distance to the left margin, defaults to 1

top.padding A number specifying the distance to the top margin, defaults to 0.5

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.5

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis labels, defaults to 1.5

ylab.cex Size of y-axis labels, defaults to 1.5

176 create.multiplot

xlab.top.label The label for the top x-axis
xaxis.top.tck.lab

A vector of tick labels for the top x-axis. Currently only supports labelling a
single top x-axis in the plot

xat.top A vector specifying tick positions for the top x-axis. Currently only supports a
single top x-axis in the plot. Note when labelling a top x-axis even if you’re not
labelling a bottom x-axis labels xat must still be defined (eg as a list of empty
vectors) or it will lead to unpredictable labelling

xlab.top.cex Size of top x-axis label

xaxis.top.idx Index of the plot for which you want top x-axis tick labels. Defaults to the last
plot specified. Currently only supports one plot.

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

xaxis.labels Names to give the x-axis labels, defaults to lattice default behaviour

yaxis.labels Names to give the y-axis labels, defaults to lattice default behaviour
xaxis.alternating

Gives control of axis tick marks (1 bottom only, 2 top only, 3 both top and
bottom), default to 1 which means only bottom axis tick marks are drawn, set to
0 to remove tick marks

yaxis.alternating

Gives control of axis labelling, defaults to 1 which means only left axis labels
are drawn, set to 0 to remove tick marks

xat Vector listing where the x-axis labels should be drawn

yat Vector listing where the y-axis labels should be drawn

xlimits Vector listing where the x-axis limits should be for each subplot. Defaults to
NULL to let R figure out the limits

ylimits Vector listing where the y-axis limits should be for each subplot. Defaults to
NULL to let R figure out the limits

xaxis.rot Rotation of bottom x-axis labels

xaxis.rot.top Rotation of top x-axis labels

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

x.spacing A number specifying the horizontal distance between plots, defaults to 1

y.spacing A number specifying the vertical distance between plots, defaults to 1

x.relation A character string that determines how x-axis limits are calculated for each
panel. Possible values are “same” (default), “free” and “sliced”. See ?xyplot

create.multiplot 177

y.relation A character string that determines how y-axis limits are calculated for each
panel. Possible values are “same” (default), “free” and “sliced”. See ?xyplot

xaxis.tck A vector of length 2 that determines the size of x-axis tick marks. Defaults to
c(0.75, 0.75).

yaxis.tck A vector of length 2 that determines the size of y-axis tick marks. Defaults to
c(0.75, 0.75).

x.tck.dist A number specifying the distance between x-axis labels and tick marks. Defaults
to 0.5.

y.tck.dist A number specifying the distance between y-axis labels and tick marks. Defaults
to 0.5.

axes.lwd Width of border. Note it also changes the colourkey border and ticks
key.right.padding

Space between right-most plot and any keys/legends
key.left.padding

Space between left-most plot and any keys/legends
key.bottom.padding

Space between bottom-most plot and any keys/legends
xlab.key.padding

Space between bottom-most xlab and any keys/legends

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

key Add a key to the plot: see xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See ?xyplot.

print.new.legend

Override default behaviour of merging legends imported from plots, can specify
custom legend, default is FALSE. TRUE will cancel merge.legends functionality

merge.legends FALSE means only legend from first plot is used, TRUE retrieves legends from
all plots. Multiple legends share the same “space”:see c.trellis.

plot.layout A vector specifying the layout of the plots, defaults to a single column/ c(1,length(plot.objects))

layout.skip A vector specifying which positions in the layout grid to leave blank/skip, de-
faults to not skipping any spots in the layout / rep(FALSE,length(plot.objects)).
Goes in this order: Bottom Left, Bottom Right, Top Left, Top Right

description Short description of image/plot; default NULL.
plot.labels.to.retrieve

a vector of the indices referencing which plots in plot.objects should have there
limits, at, and axis labels retrived in the multiplot vs using the arguments speci-
fied to multiplot

178 create.multiplot

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

remove.all.border.lines

defaults to FALSE. Flag for whether all borders around plots should be removed.
preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
plot.for.carry.over.when.same

which plot
get.dendrogram.from

which plot to retrieve dendrogram from
dendrogram.right.size

size of right side dendrogram
dendrogram.right.x

x position of right side dendrogram
dendrogram.right.y

y position of right side dendrogram
dendrogram.top.size

size of top side dendrogram
dendrogram.top.x

x position of top side dendrogram
dendrogram.top.y

y position of top side dendrogram
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Ken Chu and Denise Mak

create.multiplot 179

Examples

set.seed(12345);

begin by creating the individual plots which will be combined into a multiplot
dist <- data.frame(

a = rnorm(100, 1),
b = rnorm(100, 3),
c = rnorm(100, 5)
);

simple.data <- data.frame(
x = c(dist$a, dist$b, dist$c),
y = rep(LETTERS[1:3], each = 100)
);

fill.squares <- matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 1), ncol = 3, byrow = TRUE);
rownames(fill.squares) <- c("Drug I only", "Drug II only" , "Drugs I & II");
colnames(fill.squares) <- levels(factor(simple.data$y));

Create plot # 1
simple.boxplot <- create.boxplot(

formula = x ~ y,
data = simple.data,
col = 'lightgrey'
);

Create plot # 2
simple.heatmap <- create.heatmap(

x = t(fill.squares),
clustering.method = 'none',
shrink = 0.8,
colour.scheme = c("white", "grey20"),
fill.colour = "white",
print.colour.key = FALSE
);

Simple example of multiplot
This example uses the defaults set in simple.heatmap and simple.boxplot
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Simple', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.boxplot),
main = "Simple",
xlab.label = c("Patient Group"),
The plotting function throws an error if this is not included
ylab.label = c("Sugar Level", "Drug Regimen"),
ylab.padding = 7,
Parameters set in the multiplot will override settings in individual plots
xaxis.cex = 0.7,
yaxis.cex = 0.7,

resolution = 100
);

180 create.multiplot

Simple example of multiplot with adjusted plot sizes
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Simple_Plot_Sizes', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.boxplot),
main = "Simple plot sizes",
xlab.label = c("Patient Group"),
y-axis labels must be spaced with tabs or spaces to properly align
ylab.label = c("", "Sugar Level", "", "Drug Regimen"),
ylab.padding = 7,
xaxis.cex = 0.7,
yaxis.cex = 0.7,
Set the relative heights of the plots
panel.heights = c(3,1),

resolution = 100
);

simple.violin <- create.violinplot(
formula = x ~ y,
data = simple.data,
col = 'lightgrey'
);

Simple example of multiplot with custom layout
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Simple_Layout', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.boxplot, simple.violin),
main = "Simple layout",
xlab.label = c("Patient Group"),
ylab.label = c("", "Sugar Level", "", "Drug Regimen"),
ylab.padding = 7,
xaxis.cex = 0.7,
yaxis.cex = 0.7,
panel.heights = c(3,1),
Set how many rows & columns are in the layout
plot.layout = c(2,2),
Set whether to plot or not in the space (fills from bottom left to top right)
layout.skip = c(FALSE, TRUE, FALSE, FALSE),
Move plots closer together
x.spacing = 0,
Remove doubled internal axis
yat = list(

seq(1,3,1),
seq(-2, 8, 2),
c()
),

resolution = 100
);

Example of how to take parameter values from individual plots
This programming structure allows for including the individual customization
of plots to the final multiplot
all_data <- data.frame(

a = rnorm(n = 25, mean = 0, sd = 0.75),

create.multiplot 181

b = rnorm(n = 25, mean = 0, sd = 0.75),
c = rnorm(n = 25, mean = 0, sd = 0.75),
d = rnorm(n = 25, mean = 0, sd = 0.75),
e = rnorm(n = 25, mean = 0, sd = 0.75),
f = rnorm(n = 25, mean = 0, sd = 0.75),
x = rnorm(n = 25, mean = 5),
y = seq(1, 25, 1)
);

plot.heatmap <- function(all_data){
save the parameter values that will be reused in the multiplot
multiplot_visuals <- list(

xlab.label = '',
xaxis.labels = NULL,
xat = NULL,
ylab.label = 'Genes of Interest',
yaxis.labels = c("BRCA1", "BRCA2", "APC", "TIN", "ARG", "FOO"),
yat = c(1,2,3,4,5,6)
);

create the plot -- this allows for previewing of the individual plot
heatmap.formatted <- create.heatmap(

x = all_data[,1:6],
clustering.method = 'none',
colour.scheme = c('magenta','white','green'),
print.colour.key = FALSE,
xlab.label = multiplot_visuals$xlab.label,
xaxis.lab = multiplot_visuals$xaxis.labels,
xat = multiplot_visuals$xat,
ylab.label = multiplot_visuals$ylab.label,
yaxis.lab = multiplot_visuals$yaxis.labels,
yat = multiplot_visuals$yat
);

return both the plot and the relevant parameter values
return(

list(
the_plot = heatmap.formatted,
visuals = multiplot_visuals
)

)
}

plot.barplot <- function(all_data) {

save the parameter values that will be reused in the multiplot
multiplot_visuals <- list(

xlab.label = '',
xaxis.labels = NULL,
xat = NULL,
ylab.label = 'Importance',
yaxis.labels = seq(1, ceiling(max(all_data$x)), 1),
yat = seq(1, ceiling(max(all_data$x)), 1)

182 create.multiplot

);

create the plot -- this allows for previewing of the individual plot
barplot.formatted <- create.barplot(

formula = x ~ y,
data = all_data[,7:8],
border.lwd = 0,
col = 'grey',
xlab.label = multiplot_visuals$xlab.label,
xaxis.lab = multiplot_visuals$xaxis.labels,
xat = multiplot_visuals$xat,
ylab.label = multiplot_visuals$ylab.label,
yaxis.lab = multiplot_visuals$yaxis.labels,
yat = multiplot_visuals$yat
);

return both the plot and the relevant parameter values
return(

list(
the_plot = barplot.formatted,
visuals = multiplot_visuals
)

)
}

plot_functions <- c('plot.heatmap', 'plot.barplot');

run the functions
all_plots <- lapply(

plot_functions,
function(funName){

eval(parse(text = paste0(funName, '(all_data)')))
}

);

create.multiplot(
filename = tempfile(pattern = 'Multiplot_Formatting', fileext = '.tiff'),
main = "Formatting",
plot.objects = lapply(all_plots, function(aPlot) aPlot$the_plot),
panel.heights = c(1,3),
xaxis.cex = 1,
yaxis.cex = 1,
ylab.padding = 8,
yat = lapply(all_plots,function(aPlot) aPlot$visuals$yat),
xlab.label = lapply(all_plots,function(aPlot) aPlot$visuals$xlab.label),
ylab.label = rev(lapply(all_plots,function(aPlot) aPlot$visuals$ylab.label)),
yaxis.labels = lapply(all_plots,function(aPlot) aPlot$visuals$yaxis.labels),
resolution = 100
);

data_bars <- data.frame(
x = sample(x = 5:35, size = 10),
y = seq(1,10,1)

create.multiplot 183

);

data_cov <- data.frame(
x = rnorm(n = 10, mean = 0, sd = 0.75),
y = rnorm(n = 10, mean = 0, sd = 0.75),
z = rnorm(n = 10, mean = 0, sd = 0.75)
);

Create main barplot
bars <- create.barplot(

formula = x~y,
data = data_bars,
ylimits = c(0,35),
sample.order = 'increasing',
border.lwd = 0
);

Make covariate bars out of heatmaps
cov_1 <- create.heatmap(

x = as.matrix(data_bars$y),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = default.colours(4),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,
total.col = 5,
print.colour.key = FALSE,
yaxis.tck = 0,
axes.lwd = 0
);

cov_2 <- create.heatmap(
x = as.matrix(data_cov$y),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = c("lightblue","dodgerblue2", "dodgerblue4"),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,
total.col = 4,
print.colour.key = FALSE,
yaxis.tck = 0
);

cov_3 <- create.heatmap(
x = as.matrix(data_cov$z),
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = c("grey","coral1"),
grid.col = TRUE,
col.colour = 'black',
col.lwd = 10,

184 create.multiplot

total.col = 3,
print.colour.key = FALSE,
yaxis.tck = 0
);

Generate legends outside of individual functions
legend <- legend.grob(

list(
legend = list(

colours = default.colours(4),
title = "Batch",
labels = LETTERS[1:4],
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("lightblue","dodgerblue2","dodgerblue4"),
title = "Grade",
labels = c("Low","Normal","High"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("grey","coral1"),
title = "Biomarker",
labels = c("Not present","Present"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
)

),
title.just = 'left'
);

Assemble plot using multiplot function
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Barchart', fileext = '.tiff'),
main = 'Multiplot with bar chart',
plot.objects = list(cov_3, cov_2, cov_1, bars),
ylab.label = c("\t", "Response to treatment","\t"),
xlab.label = "Sample characteristics",
panel.heights = c(1, 0.05,0.05,0.05),
y.spacing = c(-1, -1, -1, 0),
xaxis.lab = NULL,
yaxis.lab = list(NULL, NULL, NULL, seq(0, 350, 50)),
legend = list(right = list(fun = legend)),
print.new.legend = TRUE,
xaxis.alternating = 0,

create.multiplot 185

main.cex = 1,
ylab.cex = 1,
xlab.cex = 1,
xlab.to.xaxis.padding = -2,
yaxis.cex = 1,
description = "Multiplot example created by BoutrosLab.plotting.general",
resolution = 200
);

gene_data <- data.frame(
x = rnorm(n = 25, mean = 0, sd = 0.75),
y = rnorm(n = 25, mean = 0, sd = 0.75),
z = rnorm(n = 25, mean = 0, sd = 0.75),
v = rnorm(n = 25, mean = 0, sd = 0.75),
w = rnorm(n = 25, mean = 0, sd = 0.75),
a = rnorm(n = 25, mean = 0, sd = 0.75),
b = rnorm(n = 25, mean = 0, sd = 0.75),
c = rnorm(n = 25, mean = 0, sd = 0.75)
);

main heatmap
main <- create.heatmap(

x = gene_data,
xaxis.tck = 0,
yaxis.tck = 0,
colourkey.cex = 1,
clustering.method = 'none',
axes.lwd = 1,
ylab.label = 'y',
xlab.label = 'x',
yaxis.fontface = 1,
xaxis.fontface = 1,
xlab.cex = 1,
ylab.cex = 1,
main.cex = 1,
colour.scheme = c('red','white','turquoise')
);

key_data <- data.frame(
x <- seq(-50,50,1)
);

colour key for heatmap
key <- create.heatmap(

x = key_data,
clustering.method = 'none',
scale.data = FALSE,
colour.scheme = c('turquoise','white','red'),
print.colour.key = FALSE,
yaxis.tck = 0,
xat = c(10,90),
xaxis.lab = c('low', 'high')

186 create.multiplot

);

top_data <- data.frame(
x = rnorm(n = 25, mean = 0, sd = 0.75),
y = seq(1,25,1)
);

top barplot
top <- create.barplot(

formula = x~y,
data = top_data,
border.lwd = 0
);

side_data <- data.frame(
x = rnorm(n = 8, mean = 0, sd = 0.75),
y = seq(1,8,1)
);

side barplot
side <- create.barplot(

formula = x~y,
data = side_data,
border.lwd = 0,
sample.order = 'decreasing',
plot.horizontal = TRUE
);

assembling final figure
create.multiplot(

filename = tempfile(pattern = 'Multiplot_with_heatmap', fileext = '.tiff'),
main = 'Multiplot with heatmap',
plot.objects = list(key, main, side, top),
panel.heights = c(0.25, 1, 0.05),
panel.widths = c(1, 0.25),
plot.layout = c(2, 3),
layout.skip = c(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE),
xaxis.alternating = 0,
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1,
ylab.cex = 1,
xlab.label = c('\t', 'Samples', '\t', ' Importance'),
ylab.label = c('Amount (g)', '\t', '\t', 'Genes', '\t', '\t'),
ylab.padding = 6,
xlab.to.xaxis.padding = 0,
xaxis.lab = list(

c("",'low',"", "",'high', ""),
LETTERS[1:25],
seq(0,5,1),
NULL
),

yaxis.lab = list(

create.multiplot 187

NULL,
replicate(8, paste(sample(LETTERS, 4, replace = TRUE), collapse = "")),
NULL,
seq(0,4,0.05)
),

x.spacing = -0.5,
y.spacing = c(0,-1),
xaxis.fontface = 1,
yaxis.fontface = 1
);

Set up plots for complex example

Dotmap
spot_sizes <- function(x) { 0.5 * abs(x); }
dotmap_dot_colours <- c('red','blue');
spot_colours <- function(x) {

colours <- rep('white', length(x));
colours[sign(x) == -1] <- dotmap_dot_colours[1];
colours[sign(x) == 1] <- dotmap_dot_colours[2];
return(colours);
};

Dotmap colours
orange <- rgb(249/255, 179/255, 142/255);
blue <- rgb(154/255, 163/255, 242/255);
green <- rgb(177/255, 213/255, 181/255);
bg.colours <- c(green, orange, blue, 'gold', 'skyblue', 'plum');

dotmap <- create.dotmap(
x = CNA[1:15,1:58],
bg.data = SNV[1:15,1:58],
Set the colour scheme
colour.scheme = bg.colours,
Set the breakpoints for the colour scheme (determined from the data)
at = c(0,1,2,4,6,7,8),
Specify the total number of colours (+1 for the fill colour)
total.colours = 7,
col.colour = 'white',
row.colour = 'white',
bg.alpha = 1,
fill.colour = 'grey95',
spot.size.function = spot_sizes,
spot.colour.function = spot_colours,
xaxis.tck = 0,
xaxis.cex = 0.7,
yaxis.cex = 0.7,
xaxis.rot = 90
);

Dotmap legend
dotmap_legend <- list(

legend = list(

188 create.multiplot

colours = bg.colours,
labels = c('Nonsynonymous','Stop Gain','Frameshift deletion',

'Nonframeshift deletion', 'Splicing', 'Unknown'),
border = 'white',
title = 'SNV',
pch = 15
),

legend = list(
colours = dotmap_dot_colours,
labels = c('Gain','Loss'),
border = 'white',
title = 'CNA',
pch = 19
)

);

dotmap_legend.grob <- legend.grob(
legends = dotmap_legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Covariates
cov.colours <- c(

c('dodgerblue','pink'),
c('grey','darkseagreen1','seagreen2','springgreen3','springgreen4'),
c('peachpuff','tan4')
);

the heatmap expects numeric data
cov.data <- patient[-c(4:9)];
cov.data[cov.data == 'male'] <- 1;
cov.data[cov.data == 'female'] <- 2;
cov.data[is.na(cov.data)] <- 3;
cov.data[cov.data == 'I'] <- 4;
cov.data[cov.data == 'II'] <- 5;
cov.data[cov.data == 'III'] <- 6;
cov.data[cov.data == 'IV'] <- 7;
cov.data[cov.data == 'MSS'] <- 8;
cov.data[cov.data == 'MSI-High'] <- 9;
cov.data$sex <- as.numeric(cov.data$sex);
cov.data$stage <- as.numeric(cov.data$stage);
cov.data$msi <- as.numeric(cov.data$msi);

covariates <- create.heatmap(
x = cov.data,
clustering.method = 'none',
colour.scheme = as.vector(cov.colours),
total.colours = 10,
row.colour = 'white',
col.colour = 'white',
grid.row = TRUE,

create.multiplot 189

grid.col = TRUE,
yaxis.tck = 0,
print.colour.key = FALSE
);

Coviate Legends
cov_legends <- list(

legend = list(
colours = cov.colours[8:9],
labels = c('MSS','MSI-High'),
border = 'white',
title = 'MSI'
),

legend = list(
colours = cov.colours[3:7],
labels = c('NA', 'I','II','III','IV'),
border = 'white',
title = 'Stage'
),

legend = list(
colours = cov.colours[1:2],
labels = c('Male','Female'),
border = 'white',
title = 'Sex'
)

);

cov_legend.grob <- legend.grob(
legends = cov_legends,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7,
layout = c(3,1)
);

Multiplot of dotmap and covariates
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Dotmap_Cov', fileext = '.tiff'),
plot.objects = list(covariates, dotmap),
main = 'Dotmap & covariates',
panel.heights = c(1,0.1),
Set some of the yat to NULL to let R figure it out
yat = c(seq(1,15,1), NULL),
xat = NULL,
yaxis.lab = list(

c('Sex','Stage','MSI'),
rev(rownames(SNV)[1:15])
),

yaxis.cex = 0.7,
y.spacing = -1,
legend = list(

bottom = list(
x = 0.10,

190 create.multiplot

y = 0.50,
fun = cov_legend.grob
),

right = list(
x = 0.10,
y = 0.50,
fun = dotmap_legend.grob
)

),
This parameter must be set for the legend to appear
print.new.legend = TRUE,
Adding spacing for the legend
bottom.padding = 5
);

Add more plots, using more complex layout
grouped barplot
groupedbar_colours <- c('indianred1','indianred4');

count.SNV <- apply(SNV[1:15,], 2, function(x){length(which(!is.na(x)))});
count.CNA <- apply(CNA[1:15,], 2, function(x){length(which(!(x==0)))});

grouped_data <- data.frame(
values = c(count.SNV, count.CNA),
samples = rep(colnames(SNV),2),
group = rep(c('SNV','CNA'), each = 58)
);

grouped_barplot <- create.barplot(
formula = values ~ samples,
data = grouped_data,
groups = grouped_data$group,
col = groupedbar_colours,
border.col = 'white'
);

stacked barplot
col_one <- rgb(255/255, 225/255, 238/255);
col_two <- rgb(244/255, 224/255, 166/255);
col_thr <- rgb(177/255, 211/255, 154/255);
col_fou <- rgb(101/255, 180/255, 162/255);
col_fiv <- rgb(51/255, 106/255, 144/255);
stackedbar_colours <- c(col_one, col_two, col_thr, col_fou, col_fiv, 'orchid4');
stacked_data_labels <- c('C>A/G>T','C>T/G>A','C>G/G>C','T>A/A>T','T>G/A>C', 'T>C/A>G');

stacked_data <- data.frame(
values = c(patient$prop.CAGT, patient$prop.CTGA, patient$prop.CGGC, patient$prop.TAAT,

patient$prop.TGAC, patient$prop.TCAG),
divisions = rep(rownames(patient), 6),
group = rep(stacked_data_labels, each = 58)
);

Generate stacked barplot

create.multiplot 191

stacked_barplot <- create.barplot(
formula = values ~ divisions,
data = stacked_data,
groups = stacked_data$group,
stack = TRUE,
col = stackedbar_colours,
border.col = 'white'
);

barchart legends
stackedbar_legend <- list(

legend = list(
colours = rev(stackedbar_colours),
labels = rev(stacked_data_labels),
border = 'white'
)

);

groupedbar_legend <- list(
legend = list(

colours = groupedbar_colours,
labels = c('CNA','SNV'),
border = 'white'
)

);

groupedbar_legend.grob <- legend.grob(
legends = groupedbar_legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

stackedbar_legend.grob <- legend.grob(
legends = stackedbar_legend,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Expression change Segplot
locate matching genes
rows.to.keep <- which(match(rownames(microarray), rownames(SNV)[1:15], nomatch = 0) > 0);

segplot.data <- data.frame(
min = apply(microarray[rows.to.keep,1:58], 1, min),
max = apply(microarray[rows.to.keep,1:58], 1, max),
median = apply(microarray[rows.to.keep,1:58], 1, median),
order = seq(1,15,1)
);

segplot <- create.segplot(
formula = order ~ min + max,

192 create.multiplot

data = segplot.data,
main = 'Medians',
centers = segplot.data$median,
pch = 15
);

Create multiplot
plots <- list(covariates, dotmap, segplot, stacked_barplot, grouped_barplot);

create.multiplot(
filename = tempfile(pattern = 'Multiplot_Complex', fileext = '.tiff'),
main = 'Complex',
These dimensions make the plot look much more proportional
width = 12,
height = 8,
plot.objects = plots,
panel.heights = c(0.2, 0.2, 1, 0.1),
panel.widths = c(1,0.1),
plot.layout = c(2, 4),
layout.skip = c(FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE),
xaxis.lab = list(

NULL,
NULL,
seq(0,14,2),
NULL,
NULL),

yaxis.lab = list(
c('Sex','Stage','MSI'),
rownames(SNV)[1:15],
NULL,
seq(0.0,1.0,0.2),
seq(0,16,4)
),

x.spacing = -0.5,
y.spacing = -1.5,
xaxis.cex = 0.7,
yaxis.cex = 0.7,
xat = list(

NULL,
NULL,
seq(0,10,2.5),
NULL,
NULL
),

yat = list(
seq(1,3,1),
seq(1,15,1),
NULL,
seq(0.0,1.0,0.2),
seq(0,16,4)
),

ylab.label = c('Mutation', 'Proportion','\t','\t','\t','\t','\t'),
ylab.cex = 0.7,

create.multiplot 193

xlab.cex = 0.7,
xlab.to.xaxis.padding = 2,
key.bottom.padding = 5,
bottom.padding = 5,
right.padding = 8,
legend = list(

bottom = list(
x = 0.10,
y = 0.50,
fun = cov_legend.grob
),

inside = list(
x = 0.91,
y = 0.96,
fun = groupedbar_legend.grob
),

inside = list(
x = 0.91,
y = 0.86,
fun = stackedbar_legend.grob
),

left = list(
fun = dotmap_legend.grob,
args = list(

key = list(
points = list(

pch = c(15,15,19,19)
)

)
)

)
),

print.new.legend = TRUE,
resolution = 200
);

Nature style
create.multiplot(

filename = tempfile(pattern = 'Multiplot_Nature_style', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.boxplot),
main = "Nature style",
ylab.padding = 7,
xaxis.cex = 0.7,
yaxis.cex = 0.7,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = c(expression(paste('italicized ', italic('a'))),
expression(paste('italicized ', italic('b')))),

demonstrating how to create en-dashes

194 create.multiplot

xlab.label = c(expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3))),
resolution = 200
);

Create a multiplot with a heatmap, key like legend and barplot

First create a heatmap object
simple.heatmap <- create.heatmap(patient[, 4:6],

clustering.method = 'none',
print.colour.key = FALSE,
scale=TRUE,
same.as.matrix = FALSE,
colour.scheme = c('gray0','grey100'),
fill.colour = 'grey95'

);

and a simple bar plot
pvals <- data.frame(

order = c(1:3),
pvalue = -log10(c(0.0004, 0.045, 0.0001)),
stringsAsFactors = FALSE
)

#create bar plot
simple.bar <- create.barplot(

formula = order ~ rev(pvalue),
data = pvals,
xlimits = c(0,5),
plot.horizontal=TRUE
);

then the covariates heatmap
cov.colours <- c(

c('dodgerblue','pink'),
c('grey','darkseagreen1','seagreen2','springgreen3','springgreen4'),
c('peachpuff','tan4')
);

the heatmap expects numeric data
cov.data <- patient[-c(4:9)];
cov.data[cov.data == 'male'] <- 1;
cov.data[cov.data == 'female'] <- 2;
cov.data[is.na(cov.data)] <- 3;
cov.data[cov.data == 'I'] <- 4;
cov.data[cov.data == 'II'] <- 5;
cov.data[cov.data == 'III'] <- 6;
cov.data[cov.data == 'IV'] <- 7;
cov.data[cov.data == 'MSS'] <- 8;
cov.data[cov.data == 'MSI-High'] <- 9;
cov.data$sex <- as.numeric(cov.data$sex);
cov.data$stage <- as.numeric(cov.data$stage);
cov.data$msi <- as.numeric(cov.data$msi);

create.multiplot 195

covariates <- create.heatmap(
x = cov.data,
clustering.method = 'none',
colour.scheme = as.vector(cov.colours),
total.colours = 10,
row.colour = 'white',
col.colour = 'white',
grid.row = TRUE,
grid.col = TRUE,
yaxis.tck = 0,
print.colour.key = FALSE
);

covariates2 <- create.heatmap(
x = patient[4],
clustering.method = 'none',
colour.scheme = c("#00007F", "#007FFF"),
row.colour = 'white',
col.colour = 'white',
grid.row = TRUE,
grid.col = TRUE,
yaxis.tck = 0,
print.colour.key = FALSE
);

cov_legends <- list(
legend = list(

colours = c("white", "black"),
labels = c('0','2'),
border = 'grey',
title = 'Tumour Mass (kg)',
continuous = TRUE,

height = 3
),

legend = list(
colours = cov.colours[8:9],
labels = c('MSS','MSI-High'),
border = 'white',
title = 'MSI'
),

legend = list(
colours = cov.colours[3:7],
labels = c('NA', 'I','II','III','IV'),
border = 'white',
title = 'Stage'
),

legend = list(
colours = cov.colours[1:2],
labels = c('Male','Female'),
border = 'white',
title = 'Sex'
),

legend = list(
colours = c("#00007F", "#007FFF"),

196 create.multiplot

labels = c('0.09','0.72'),
border = 'grey',
title = 'CAGT',

continuous = TRUE,
height = 2,

width = 3,
angle = -90,
tck = 1,
tck.number = 2,
at = c(0,100)

)
);

cov_legend.grob <- legend.grob(
legends = cov_legends,
title.just = 'left',
label.cex = 0.7,
title.cex = 0.7
);

Now bring it was together using multiplot
create.multiplot(

main = 'multiplot with colour key legend',
main.cex = 1,
filename = tempfile(pattern = 'MultiPlot_With_ColorKey_Legend', fileext = '.tiff'),
plot.objects = list(covariates, covariates2, simple.heatmap, simple.bar),
panel.heights = c(1,0.1,0.35),
panel.widths = c(1,0.25),
plot.layout = c(2,3),
layout.skip = c(FALSE, TRUE, FALSE, TRUE,FALSE,FALSE),
xaxis.alternating = 1,
Set some of the yat to NULL to let R figure it out
yaxis.lab = list(

c('Sex','Stage','MSI'),
NULL,

c('one','two','three'),
NULL
),

xaxis.lab = list(
NULL,
NULL,

NULL,
seq(0,5,1)

),
xat = list(

NULL,
NULL,

NULL,
seq(0,5,1)

),
yaxis.tck = 0,
xlab.to.xaxis.padding = 0,
yaxis.cex = 0.5,

create.multiplot 197

xaxis.cex = 0.5,
xlab.cex = 0.75,
ylab.cex = 0.75,
xlab.label = c('\t', 'samples', '\t', ' -log10 pval'),
ylab.label = c("", "Test", "","CAGT", "covariates"),
y.spacing = 0,
x.spacing = 0,
legend = list(

left = list(
x = 0.10,
y = 0.50,
fun = cov_legend.grob
)

),
left.padding = 2.5,
This parameter must be set for the legend to appear
print.new.legend = TRUE
);

BarPlotDataRetLabels <- data.frame(x = c("test1","test2","test3","test4"),
y = c(10000,13000,12000,6700))

HeatMapDataRetLabels <- matrix(nrow = 4, ncol = 4, data = rnorm(16,1,1))

bpRet <- create.barplot(
formula = y~x,
data = BarPlotDataRetLabels,
xaxis.lab = NULL,
xat = 0
);
hmRet <- create.heatmap(
x= HeatMapDataRetLabels,
yaxis.lab = c("Gene 1", "Gene 2", "Gene 3", "Gene 4"),
yat = c(1,2,3,4),
clustering.method = 'none'
);

create.multiplot(
filename = tempfile(pattern = 'Multiplot_RetrievePlotLabels', fileext = '.tiff'),
plot.objects = list(hmRet,bpRet,bpRet),
print.new.legend = TRUE,
xlab.label = c('Samples'),
ylab.padding = 12,
y.spacing = c(0,0),
panel.heights = c(0.25,1,0.25),
plot.labels.to.retrieve = c(1,2,3)
);

create.multiplot(
filename = tempfile(pattern = 'Multiplot_Retrieve_Specefic_Labels', fileext = '.tiff'),

plot.objects = list(simple.heatmap, simple.boxplot),
main = "Simple",
xlab.label = c("Patient Group"),

xaxis.labels = c("1","Drug Regimen"),

198 create.multiplot

The plotting function throws an error if this is not included
ylab.label = c("Sugar Level", "Drug Regimen"),
ylab.padding = 7,
Parameters set in the multiplot will override settings in individual plots
xaxis.cex = 0.7,
yaxis.cex = 0.7,

yaxis.labels = c(NA,NA),
xat = list(TRUE,TRUE),
yat = list(TRUE,TRUE),
plot.labels.to.retrieve = c(1),
xlimits = list(NULL,c("A","B","C")),
ylimits = list(NULL,c(-3,10))

);

Dendrogram provided
dist <- data.frame(

a = rnorm(100, 1),
b = rnorm(100, 3),
c = rnorm(100, 5)
);

simple.data <- data.frame(
x = c(dist$a, dist$b, dist$c),
y = rep(LETTERS[1:3], each = 100)
);

col.dendrogram <- BoutrosLab.plotting.general::create.dendrogram(
x = microarray[1:20, 1:20],
cluster.dimension = 'col'
);

row.dendrogram <- BoutrosLab.plotting.general::create.dendrogram(
x = microarray[1:20, 1:20],
cluster.dimension = 'row'
);

simple.boxplot <- create.boxplot(
formula = x ~ y,
data = simple.data,
col = 'lightgrey'
);

simple.heatmap <- create.heatmap(
x = microarray[1:20, 1:20],
main = 'Dendrogram provided',
xlab.label = 'Genes',
ylab.label = 'Samples',
xaxis.lab = NA,
yaxis.lab = 1:20,
xaxis.cex = 0.75,
yaxis.cex = 0.75,
xaxis.fontface = 1,
yaxis.fontface = 1,
colourkey.cex = 1,

create.multiplot 199

colourkey.labels.at = seq(2,12,1),
colour.alpha = 'automatic',

note: row/column dendrograms are switched because the function inverts rows and columns
clustering.method = 'none',
row.dendrogram = col.dendrogram,
col.dendrogram = row.dendrogram,
Adjusting the size of the dendrogram
right.dendrogram.size = 3,
top.dendrogram.size = 2.5,
description = 'Heatmap created using BoutrosLab.plotting.general'
);

legend <- legend.grob(
list(

legend = list(
colours = default.colours(4),
title = "Batch",
labels = LETTERS[1:4],
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("lightblue","dodgerblue2","dodgerblue4"),
title = "Grade",
labels = c("Low","Normal","High"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
),

legend = list(
colours = c("grey","coral1"),
title = "Biomarker",
labels = c("Not present","Present"),
size = 3,
title.cex = 1,
label.cex = 1,
border = 'black'
)

),
title.just = 'left'
);

create.multiplot(
filename = tempfile(pattern = 'MultiPlot_getDendrograms', fileext = '.tiff'),
plot.objects = list(simple.heatmap, simple.boxplot),
main = "Simple",
xlab.label = c("Patient Group"),

y.spacing = 3,
The plotting function throws an error if this is not included
ylab.label = c("Sugar Level", "Drug Regimen"),
ylab.padding = 7,

200 create.polygonplot

Parameters set in the multiplot will override settings in individual plots
xaxis.cex = 0.7,
yaxis.cex = 0.7,

yaxis.lab = list(
c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),
c(-2,-1,0,1,2,3,4,5)
),
xaxis.lab = list(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20),c(1,2,3)),
xaxis.rot = 45,
xaxis.rot.top = 90,

legend = list(right = list(fun = legend)),
print.new.legend = TRUE,
get.dendrogram.from = 1,
dendrogram.right.size = 0.40, dendrogram.right.x = 29, dendrogram.right.y = 67,
dendrogram.top.size = 1, dendrogram.top.x = 110, dendrogram.top.y = -180

);

create.polygonplot Make a polygonplot

Description

Takes a data.frame and creates a polygon

Usage

create.polygonplot(
formula,
data,
filename = NULL,
groups = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
max,
min,
col = 'white',
alpha = 0.5,
border.col = 'black',
strip.col = 'white',
strip.cex = 1,
type = 'p',
cex = 0.75,
pch = 19,
lwd = 1,

create.polygonplot 201

lty = 1,
axes.lwd = 1,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.log = FALSE,
yaxis.log = FALSE,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = 1,
yaxis.tck = 1,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
top.padding = 0.5,
bottom.padding = 2,
right.padding = 1,
left.padding = 2,
ylab.axis.padding = 0,
add.border = FALSE,
add.xy.border = NULL,
add.median = FALSE,
median.lty = 3,
median.lwd = 1.5,

202 create.polygonplot

use.loess.border = FALSE,
use.loess.median = FALSE,
median = NULL,
median.col = 'black',
extra.points = NULL,
extra.points.pch = 21,
extra.points.type = 'p',
extra.points.col = 'black',
extra.points.fill = 'white',
extra.points.cex = 1,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
xgrid.at = xat,
ygrid.at = yat,
grid.lty = 1,
grid.col = 'grey',
grid.lwd = 0.3,
add.xyline = FALSE,
xyline.col = 'black',
xyline.lwd = 1,
xyline.lty = 1,
abline.h = NULL,
abline.v = NULL,
abline.col = 'black',
abline.lwd = 1,
abline.lty = 1,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
key = NULL,
legend = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',

create.polygonplot 203

use.legacy.settings = FALSE,
inside.legend.auto = FALSE
);

Arguments

formula The formula used to extract the boxplot components from the data-frame

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

groups The grouping variable in the data-frame

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title

max Max values for polygon

min Min values for polygon

col Fill colour of polygon, defaults to white

alpha Transparency of polygons when several are plotted, defaults to 0.5.

border.col Border colour(s) of polygon(s), defaults to black

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

type Plot type

cex Character expansion for plotting symbol

pch Plotting character

lwd Specifies line width, defaults to 1

lty Specifies line style, defaults to 1 (solid)

axes.lwd Thickness of width of axes lines

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

204 create.polygonplot

xlab.top.y The y location of the top y-axis label

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xlimits Two-element vector giving the x-axis limits

ylimits Two-element vector giving the y-axis limits

xat Vector listing where the x-axis labels should be drawn

yat Vector listing where the y-axis labels should be drawn

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

.

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

top.padding A number specifying the distance to the top margin, defaults to 0.5

bottom.padding A number specifying the distance to the bottom margin, defaults to 2

right.padding A number specifying the distance to the right margin, defaults to 1

left.padding A number specifying the distance to the left margin, defaults to 2
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 0

,

create.polygonplot 205

add.border Add xy border to polygon, default is FALSE

add.xy.border DEPRECATED: Use ‘add.border‘ argument instead

add.median Add median line, default is FALSE

median.lty Median line type

median.lwd Median line width, defaults to 1.5
use.loess.border

Use loess curve for border instead of max/min values, default is FALSE
use.loess.median

Use loess curve for median values, default is FALSE

median Median values for median line

median.col Median line colour, default is black

extra.points If not set to NULL (default), add a set of extra points to the plot. A list of two
numeric vectors named “x” and “y” giving the co-ordinates of the points to be
added

extra.points.pch

A vector specifying the types of extra points to add to the plot. Defaults to 21
extra.points.type

A vector specifying the plot type. Defaults to “p”
extra.points.col

A vector specifying the border colours of the extra points to add to the plot.
Defaults to “black”

extra.points.fill

A vector specifying the fill colours of the extra points to add to the plot. Defaults
to “white”

extra.points.cex

A vector specifying the sizes of the extra points to add to the plot. Defaults to 1

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle

xgrid.at A vector listing the co-ordinates at which vertical grid-lines should be drawn.
Default suppresses drawing of vertical grid-lines

ygrid.at A vector listing the co-ordinates at which horizontal grid-lines should be drawn.
Default suppresses drawing of horizontal grid-lines

grid.lty Specifies the line type to use for the grid-lines. Defaults to 1 (solid lines)

206 create.polygonplot

grid.col Specifies the colour to use for the grid-lines. Defaults to “grey”

grid.lwd Specifies the width of the grid-lines. Defaults to 0.3

add.xyline Allow y=x line to be drawn, default is FALSE

xyline.col y=x line colour, defaults to black

xyline.lwd Specifies y=x line width, defaults to 1

xyline.lty Specifies y=x line style, defaults to 1 (solid)

abline.h Allow horizontal line to be drawn, default to NULL

abline.v Allow vertical line to be drawn, default to NULL

abline.col Horizontal line colour, defaults to black

abline.lwd Specifies horizontal line width, defaults to 1

abline.lty Specifies horizontal line style, defaults to 1 (solid)

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text

key Add a key to the plot. See xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL.

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

create.polygonplot 207

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Denise Mak

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

temp <- matrix(runif(1010), ncol = 10) + sort(runif(101));

simple.data <- data.frame(
x = 0:100,
max = apply(temp, 1, max),
min = apply(temp, 1, min)
);

create.polygonplot(
filename = tempfile(pattern = 'Polygon_Simple', fileext = '.tiff'),
formula = NA ~ x,
data = simple.data,
max = simple.data$max,
min = simple.data$min,
main = 'Simple',
xlimits = c(0,100),
ylimits = c (0,2),
col = default.colours(1),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Compare two genes across increasing numbers of samples
data1 <- microarray[1,1:58];
data2 <- microarray[2,1:58];

gene1 <- as.data.frame(matrix(nrow = 58, ncol = 58));

208 create.polygonplot

gene2 <- as.data.frame(matrix(nrow = 58, ncol = 58));

fill.matrix <- function(x, gene, data){
for(i in x){

gene[i, 1:i] <- rep(NA, i);
gene[i, i:58] <- rep(as.numeric(data[i]), 58-i+1);
}

return(gene);
};

gene1 <- fill.matrix(1:58, gene1, data1);
gene1 <- t(matrix(unlist(gene1), ncol = 58, byrow = TRUE));

gene2 <- fill.matrix(1:58, gene2, data2);
gene2 <- t(matrix(unlist(gene2), ncol = 58, byrow = TRUE));

Set up the data
polygon.data.gene1 <- data.frame(

x = 1:58,
max = apply(gene1, 2, function(x) {max(x, na.rm = TRUE)}),
median = apply(gene1, 2, function(x) {median(x, na.rm = TRUE)}),
min = apply(gene1, 2, function(x) {min(x, na.rm = TRUE)}),
set = rownames(microarray[1,]),
extra = apply(microarray[1:58], 2, function(x) {median(x)})
);

polygon.data.two.genes <- rbind(
polygon.data.gene1,
data.frame(

x = 1:58,
max = apply(gene2, 2, function(x) {max(x, na.rm = TRUE)}),
median = apply(gene2, 2, function(x) {median(x, na.rm = TRUE)}),
min = apply(gene2, 2, function(x) {min(x, na.rm = TRUE)}),
set = rownames(microarray[2,]),
extra = apply(microarray[1:58], 2, function(x) {median(x)})
)

)

Minimal Input
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Minimal_Input', fileext = '.tiff'),
formula = NA ~ x,
data = polygon.data.gene1,
max = polygon.data.gene1$max,
min = polygon.data.gene1$min,
main = 'Minimal input',
xlimits = c(0,58),
ylimits = c (2,5),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Axes & Labels

create.polygonplot 209

create.polygonplot(
filename = tempfile(pattern = 'Polygon_Axes_Labels', fileext = '.tiff'),
formula = NA ~ x,
data = polygon.data.gene1,
max = polygon.data.gene1$max,
min = polygon.data.gene1$min,
main = 'Axes & labels',
xlimits = c(0,58),
ylimits = c (0,10),
Axes & Labels
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 10, 2),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Colour
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Colour', fileext = '.tiff'),
formula = NA ~ x,
data = polygon.data.gene1,
max = polygon.data.gene1$max,
min = polygon.data.gene1$min,
main = 'Colour',
xlimits = c(0,58),
ylimits = c (0,10),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 10, 2),
Colour
col = default.colours(1),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Add median line and points
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Median_Points', fileext = '.tiff'),

210 create.polygonplot

formula = NA ~ x,
data = polygon.data.gene1,
max = polygon.data.gene1$max,
min = polygon.data.gene1$min,
Median
median = polygon.data.gene1$median,
add.median = TRUE,
main = 'Plotting character',
xlimits = c(0,58),
ylimits = c (0,10),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 10, 2),
col = default.colours(1),
border points
add.border = TRUE,
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Additional Data
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Extra_Data', fileext = '.tiff'),
formula = NA ~ x,
divide data
groups = set,
data = polygon.data.two.genes,
max = polygon.data.two.genes$max,
min = polygon.data.two.genes$min,
main = 'Two data sets',
median = polygon.data.two.genes$median,
add.median = TRUE,
xlimits = c(0,58),
ylimits = c (0,15),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 14, 2),
Increasing number of colours

create.polygonplot 211

col = default.colours(2),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 100
);

Legend
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Legend', fileext = '.tiff'),
formula = NA ~ x,
groups = set,
data = polygon.data.two.genes,
max = polygon.data.two.genes$max,
min = polygon.data.two.genes$min,
main = 'Legend',
median = polygon.data.two.genes$median,
add.median = TRUE,
xlimits = c(0,58),
ylimits = c (0,15),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 14, 2),
col = default.colours(2),
Adding legend
key = list(

text = list(
lab = rownames(microarray[1:2,]),
cex = 0.8,
col = 'black'
),

points = list(
pch = 15,
col = default.colours(2),
cex = 2
),

x = 0.04,
y = 0.93,
padding.text = 3,
columns = 1
),

description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 200
);

Panel Organiation
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Panel', fileext = '.tiff'),

212 create.polygonplot

divide data
formula = NA ~ x | set,
data = polygon.data.two.genes,
max = polygon.data.two.genes$max,
min = polygon.data.two.genes$min,
main = 'Panel',
median = polygon.data.two.genes$median,
add.median = TRUE,
xlimits = c(0,58),
ylimits = c (0,15),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 14, 2),
col = default.colours(1),
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 200
);

Extra Points
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Extra_Points', fileext = '.tiff'),
formula = NA ~ x,
groups = set,
data = polygon.data.two.genes,
max = polygon.data.two.genes$max,
min = polygon.data.two.genes$min,
main = 'Extra points',
median = polygon.data.two.genes$median,
add.median = TRUE,
xlimits = c(0,58),
ylimits = c (0,15),
xlab.label = 'Samples',
ylab.label = 'Value',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 14, 2),
col = default.colours(2),
Add to legend
key = list(

text = list(
lab = c(rownames(microarray[1:2,]), 'All genes'),

create.polygonplot 213

cex = 0.8,
col = 'black'
),

points = list(
pch = c(15, 15, 3),
col = c(default.colours(2), 'red'),
cex = c(2, 2, 0.7)
),

x = 0.04,
y = 0.93,
padding.text = 3,
columns = 1
),

Extra points
extra.points = list(

x = polygon.data.two.genes$x,
y = polygon.data.two.genes$extra
),

extra.points.col = 'red',
extra.points.pch = 3,
extra.points.type = c('p', 'l'),
extra.points.cex = 0.7,
description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.polygonplot(

filename = tempfile(pattern = 'Polygon_Nature_style', fileext = '.tiff'),
formula = NA ~ x,
groups = set,
data = polygon.data.two.genes,
max = polygon.data.two.genes$max,
min = polygon.data.two.genes$min,
main = 'Nature style',
median = polygon.data.two.genes$median,
add.median = TRUE,
xlimits = c(0,58),
ylimits = c (0,15),
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xat = seq(0, 58, 5),
yat = seq(0, 14, 2),
col = default.colours(2),
Adding legend
key = list(

text = list(
lab = rownames(microarray[1:2,]),
cex = 0.8,

214 create.qqplot.comparison

col = 'black'
),

points = list(
pch = 15,
col = default.colours(2),
cex = 2
),

x = 0.04,
y = 0.93,
padding.text = 3,
columns = 1
),

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Polygon created by BoutrosLab.plotting.general',
resolution = 1200
);

create.qqplot.comparison

Make a quantile-quantile plot of two samples

Description

Takes two samples and creates a qq plot for comparing two distributions, possibly conditioned on
other variables

Usage

create.qqplot.comparison(
x,
data = NULL,
filename = NULL,
groups = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
aspect = 'fill',

create.qqplot.comparison 215

prepanel = NULL,
xlab.label = NULL,
ylab.label = NULL,
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.log = FALSE,
yaxis.log = FALSE,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = 1,
yaxis.tck = 1,
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
add.grid = FALSE,
xgrid.at = xat,
ygrid.at = yat,
type = 'p',
cex = 0.75,
pch = 19,
col = 'black',
lwd = 1,
lty = 1,
axes.lwd = 2.25,
key = list(text = list(lab = c(''))),
legend = NULL,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,

216 create.qqplot.comparison

col.rectangle = 'transparent',
alpha.rectangle = 1,
top.padding = 3,
bottom.padding = 0.7,
left.padding = 0.5,
right.padding = 0.1,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,
inside.legend.auto = FALSE
);

Arguments

x A formula or a list of two numeric vectors

data An optional data source if x is a formula

filename Filename for tiff output, or if NULL returns the trellis object itself

aspect This argument controls the physical aspect ratio of the panels, defaults to “fill”

prepanel A function that takes the same arguments as the “panel”

add.grid Default manner of drawing grid lines - for custom grids, use type = c(’p’,’g’)
and set the xat, yat, xgrid.at, ygrid.at parameters

groups The grouping variable in the data-frame

main The main plot title

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

xlab.label The label for the x-axis

ylab.label The label for the y-axis

main.cex Size of the overall plot title, defaults to 3

xlab.cex Size of x-axis label, defaults to 2.5

ylab.cex Size of y-axis label, defaults to 2.5

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

create.qqplot.comparison 217

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

xgrid.at Vector listing where the x-axis grid lines should be drawn, defaults to xat

ygrid.at Vector listing where the y-axis grid lines should be drawn, defaults to yat

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.cex Size of x-axis scales, defaults to 1.5

yaxis.cex Size of y-axis scales, defaults to 1.5

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

type Plot type

cex Character expansion for plotting symbol

pch Plotting character

col Point/line colour

lwd Specifies line width, defaults to 1

lty Specifies line style, defaults to 1 (solid)

axes.lwd Thickness of width of axes lines

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

top.padding A number giving the top padding in multiples of the lattice default

bottom.padding A number giving the bottom padding in multiples of the lattice default

left.padding A number giving the left padding in multiples of the lattice default

218 create.qqplot.comparison

right.padding A number giving the right padding in multiples of the lattice default

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600

enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL.

add.rectangle Allow a rectangle to be drawn, default is FALSE

xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn

ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn

xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area

alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs

use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Author(s)

Ying Wu

See Also

qq, lattice or the Lattice book for an overview of the package.

create.qqplot.comparison 219

Examples

set.seed(12345);

create.qqplot.comparison(
filename = tempfile(pattern = 'QQcomparison_Simple', fileext = '.tiff'),
x = list(rnorm(100), rnorm(100)),
resolution = 50
);

Minimal Input
create.qqplot.comparison(

filename = tempfile(pattern = 'QQcomparison_Minimal_Input', fileext = '.tiff'),
x = list(microarray[1:500,2], microarray[1:500,2]),
main = 'Minimal input',
description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 50
);

Axes & Labels
create.qqplot.comparison(

filename = tempfile(pattern = 'QQcomparison_Axes_Labels', fileext = '.tiff'),
x = list(microarray[1:500,2], microarray[1:500,2]),
main = 'Axes & labels',
adding axes and labels
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlab.cex = 1.5,
ylab.cex = 1.5,
adding grid for good measure
add.grid = TRUE,
description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 100
);

Formula input

'Formula' format of data
chr.locations <- microarray$Chr[1:500];
chr.locations <- replace(chr.locations, which(chr.locations == 1), 'Chromosome 1');
chr.locations <- replace(chr.locations, which(chr.locations == 2), 'Chromosome 2');

qqplot.data <- data.frame(
sample = c(rep('Sample 1', 500), rep('Sample 2', 500)),
value = c(microarray[1:500,1], microarray[1:500,2]),
chr = chr.locations
);

create.qqplot.comparison(
filename = tempfile(pattern = 'QQcomparison_Formula', fileext = '.tiff'),
Using a different input method
x = sample ~ value,

220 create.qqplot.comparison

data = qqplot.data,
main = 'Formula input',
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xaxis.lab = seq(0, 15, 5),
yaxis.lab = seq(0, 15, 5),
xlimits = c(0, 17),
ylimits = c(0, 17),
xlab.cex = 1.5,
ylab.cex = 1.5,
add.grid = TRUE,
description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 200
);

Groups & Legend
create.qqplot.comparison(
filename = tempfile(pattern = 'QQcomparison_Groups_Legend', fileext = '.tiff'),

x = sample ~ value,
data = qqplot.data,
Using fake grouping for the sake of illustration
groups = qqplot.data$chr,
Set colours to differente the gruops
col = default.colours(3),
Setting different plotting characters
pch = c(15, 16),
main = 'Groups & legend',
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlab.cex = 1.5,
ylab.cex = 1.5,
add.grid = TRUE,
Adding legend to explain groups
key = list(

text = list(
lab = c('1','2'),
cex = 1.5,
col = 'black'
),

points = list(
pch = c(15, 16),
col = default.colours(2),
cex = 1
),

x = 0.04,
y = 0.95,
padding.text = 2
),

description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 200
);

create.qqplot.fit 221

Multiple qq plots
create.qqplot.comparison(

filename = tempfile(pattern = 'QQcomparison_Multiple', fileext = '.tiff'),
x = sample ~ value | chr,
data = qqplot.data,
main = 'Multiple plots',
xlab.label = 'Sample 1',
ylab.label = 'Sample 2',
xlab.cex = 1.5,
ylab.cex = 1.5,
add.grid = TRUE,
description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.qqplot.comparison(

filename = tempfile(pattern = 'QQcomparison_Nature_style', fileext = '.tiff'),
x = sample ~ value,
data = qqplot.data,
main = 'Nature style',
xlab.cex = 1.5,
ylab.cex = 1.5,
add.grid = TRUE,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'QQplot comparison created by BoutrosLab.plotting.general',
resolution = 200
);

create.qqplot.fit Make a quantile-quantile plot of a sample

Description

Takes a sample and creates a qq plot against a theoretical distribution, possibly conditioned on other
variables.

Usage

create.qqplot.fit(

222 create.qqplot.fit

x,
data = NA,
filename = NULL,
groups = NULL,
confidence.bands = FALSE,
conf = 0.95,

confidence.method = 'both',
reference.line.method = 'quartiles',
distribution = qnorm,
aspect = 'fill',

prepanel = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,

xlab.label = NULL,
ylab.label = NULL,
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',

xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,

xlab.top.y = 0,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,

xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',

yaxis.fontface = 'bold',
xaxis.log = FALSE,
yaxis.log = FALSE,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = 1,

yaxis.tck = 1,
add.grid = FALSE,
xgrid.at = xat,

create.qqplot.fit 223

ygrid.at = yat,
type = 'p',
cex = 0.75,
pch = 19,
col = 'black',

col.line = 'grey',
lwd = 2,
lty = 1,
axes.lwd = 2.25,
key = list(text = list(lab = c(''))),
legend = NULL,

add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,

ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
top.padding = 3,
bottom.padding = 0.7,

left.padding = 0.5,
right.padding = 0.1,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,

enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',

style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,
inside.legend.auto = FALSE
);

Arguments

x A formula or a numeric vector

data An optional data source if x is a formula

filename Filename for tiff output, or if NULL returns the trellis object itself

groups The grouping variable in the data-frame
confidence.bands

Add confidence bands or not, default to FALSE. Note that in this function, the
confidence band can only be added to a single plot, not for multi-qq plot.

conf Confidence level, default to 0.95
confidence.method

Methods used to draw confidence bands: “simultaneous”, “pointwise”, “both”,
defaults to “both”.

224 create.qqplot.fit

reference.line.method

Methods used to draw reference line and must be one of “quartiles”(default),
“diagonal”, “robust”. “quartiles” will draw a line across 1/4 and 3/4 quantiles,
“diagonal” will draw a 0-1 line, “robust” will draw a best fit line basing on linear
model. Note: for multi-panel plot, only the default one is applicable.

distribution A quantile function that takes a vector of probabilities as argument and produces
the corresponding quantiles from a theoretical distribution, defaults to “qnorm”,
that is normal distribution.

aspect This argument controls the physical aspect ratio of the panels, defaults to “fill”

prepanel A function that takes the same arguments as the “panel”

main The main plot title

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of the overall plot title, defaults to 3

xlab.label x-axis title

ylab.label y-axis title

xlab.cex Size of x-axis label, defaults to 2.5

ylab.cex Size of y-axis label, defaults to 2.5

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis scales, defaults to 1.5

yaxis.cex Size of y-axis scales, defaults to 1.5

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

create.qqplot.fit 225

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 1

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

add.grid Default manner of drawing grid lines

xgrid.at Vector listing where the x-axis grid lines should be drawn, defaults to xat

ygrid.at Vector listing where the y-axis grid lines should be drawn, defaults to yat

type Plot type

cex Character expansion for plotting symbol

pch Plotting character

col Point colour

col.line QQ line colour, defaults to grey

lwd Specifies line width, defaults to 2

lty Specifies line style, defaults to 1 (solid)

axes.lwd Thickness of width of axes lines

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

top.padding A number giving the top padding in multiples of the lattice default

bottom.padding A number giving the bottom padding in multiples of the lattice default

left.padding A number giving the left padding in multiples of the lattice default

right.padding A number giving the right padding in multiples of the lattice default

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

226 create.qqplot.fit

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL.

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

Note that the confidence band only works for a single panel qq plot, not for grouped data and
multi-qq plot. Why? What’s missing?

Author(s)

Ying Wu

See Also

qqmath, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Simple', fileext = '.tiff'),
x = rnorm(300),
choosing to compare against a uniform distribution
distribution = qunif,
resolution = 100
);

Minimal Input
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Minimal_Input', fileext = '.tiff'),
x = microarray[1:500,1],
choosing to compare against a uniform distribution
distribution = qunif,

create.qqplot.fit 227

main = 'Minimal input',
description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Axes and Labels
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Axes_Labels', fileext = '.tiff'),
x = microarray[1:500,1],
distribution = qunif,
main = 'Axes & labels',
Adding axes labels
xlab.label = 'qunif',
ylab.label = 'sample values',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Confidence bands
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Confidence_Bands', fileext = '.tiff'),
x = microarray[1:500,1],
distribution = qunif,
main = 'Confidence bands',
xlab.label = 'qunif',
ylab.label = 'sample values',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
Adding confidence bands (auto-generates legend)
confidence.bands = TRUE,
confidence.method = 'both',
description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Multiple qq plot conditioned on a variable
'Formula' format of data
chr.locations <- microarray$Chr[1:500];
chr.locations <- replace(chr.locations, which(chr.locations == 1), 'Chromosome 1');
chr.locations <- replace(chr.locations, which(chr.locations == 2), 'Chromosome 2');

228 create.qqplot.fit

qqplot.data <- data.frame(
value = microarray[1:500,1],
chr = chr.locations
);

create.qqplot.fit(
filename = tempfile(pattern = 'QQfit_Multiple', fileext = '.tiff'),
x = ~ value | chr,
data = qqplot.data,
distribution = qunif,
main = 'Multiple plots',
xlab.label = 'qunif',
ylab.label = 'sample values',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
confidence.bands = TRUE,
confidence.method = 'simultaneous',
description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Grouped qq plot
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Grouped', fileext = '.tiff'),
x = ~ value,
data = qqplot.data,
Adding groups
groups = qqplot.data$chr,
Colouring groups
col = default.colours(2),
Setting different plotting characters
pch = c(15, 19),
distribution = qunif,
main = 'Grouped & legend',
xlab.label = 'qunif',
ylab.label = 'sample values',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
confidence.bands = TRUE,
confidence.method = 'simultaneous',
Adding legend for groups
key = list(

create.qqplot.fit 229

text = list(
lab = c('1','2'),
cex = 1,
col = 'black'
),

points = list(
pch = c(15, 19),
col = default.colours(2),
cex = 1
),

x = 0.04,
y = 0.95,
padding.text = 2
),

description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Correlation Key
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Correlation_Key', fileext = '.tiff'),
x = ~ value,
data = qqplot.data,
groups = qqplot.data$chr,
col = default.colours(2),
pch = c(15, 19),
distribution = qunif,
main = 'Correlation key',
xlab.label = 'qunif',
ylab.label = 'sample values',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
confidence.bands = TRUE,
confidence.method = 'simultaneous',
Adjusting legend to contain multiple keys
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
text = list(

lab = c('1','2'),
cex = 1,
col = 'black'
),

points = list(
pch = c(15, 19),
col = default.colours(2),

230 create.qqplot.fit

cex = 1
),

x = 0.14,
y = 0.80,
padding.text = 2

)
)

),
inside = list(

fun = draw.key,
args = list(

key = get.corr.key(
x = runif(500),
y = qqplot.data$value,
label.items = c('spearman', 'kendall','beta1'),
alpha.background = 0,
key.cex = 1
)

),
x = 0.75,
y = 0.20,
corner = c(0,1)
)

),
description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 100
);

Nature style
create.qqplot.fit(

filename = tempfile(pattern = 'QQfit_Nature_style', fileext = '.tiff'),
x = microarray[1:500,1],
distribution = qunif,
main = 'Nature style',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.fontface = 1,
yaxis.fontface = 1,
xaxis.cex = 1,
yaxis.cex = 1,
add.grid = TRUE,
confidence.bands = TRUE,
confidence.method = 'both',

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

create.qqplot.fit.confidence.interval 231

description = 'QQplot fit created by BoutrosLab.plotting.general',
resolution = 1200
);

create.qqplot.fit.confidence.interval

Create the confidence bands for a one-sample qq plot

Description

Returns the values of constructing the confidence bands for a one-sample qq plot

Usage

create.qqplot.fit.confidence.interval(x, distribution = qnorm, conf = 0.95,
conf.method = "both", reference.line.method = "quartiles");

Arguments

x A numeric vector

distribution A quantile function that takes a vector of probabilities as argument and produces
the corresponding quantiles from a theoretical distribution, defaults to "qnorm",
that is normal distribution.

conf Confidence level, default to 0.95

conf.method Methods used to draw confidence bands and must be one of "simultaneous",
"pointwise", "both"(default).

reference.line.method

Methods used to draw reference line and must be one of "quartiles"(default),
"diagonal", "robust".

Value

Returns the values of creating the upper and lower bands for the qq plot.

Warning

Note that this function works only for a single panel qq plot, not for grouped data and multi-qq plot.

Author(s)

Ying Wu

232 create.scatterplot

Examples

tmp.x <- rnorm(100);

tmp.confidence.interval <- create.qqplot.fit.confidence.interval(tmp.x);

qqnorm(tmp.x);
qqline(tmp.x);
lines(tmp.confidence.interval$z, tmp.confidence.interval$upper.pw, lty = 2, col = "brown");
lines(tmp.confidence.interval$z, tmp.confidence.interval$lower.pw, lty = 2, col = "brown");
lines(tmp.confidence.interval$z[tmp.confidence.interval$u],

tmp.confidence.interval$upper.sim, lty = 2, col = "blue");
lines(tmp.confidence.interval$z[tmp.confidence.interval$l],

tmp.confidence.interval$lower.sim, lty = 2, col = "blue");

legend(1, -1.5, c("simultaneous", "pointwise"), col = c("blue", "brown"), lty = 2, bty = "n");

create.scatterplot Make a scatterplot

Description

Takes a data.frame and creates a scatterplot

Usage

create.scatterplot(
formula,
data,
filename = NULL,
groups = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,

main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),

xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',

xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,

xlab.top.y = 0,

create.scatterplot 233

xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
xaxis.lab = NA,
yaxis.lab = NA,
xaxis.log = FALSE,
yaxis.log = FALSE,

xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.tck = c(1,1),
yaxis.tck = c(1,1),
add.grid = FALSE,
xgrid.at = xat,

ygrid.at = yat,
grid.colour = NULL,
horizontal = FALSE,
type = 'p',
cex = 0.75,
pch = 19,
col = 'black',
col.border = 'black',
lwd = 1,
lty = 1,
alpha = 1,
axes.lwd = 1,
strip.col = 'white',
strip.cex = 1,
strip.fontface = 'bold',
y.error.up = NULL,
y.error.down = y.error.up,
x.error.right = NULL,
x.error.left = x.error.right,
y.error.bar.col = 'black',
x.error.bar.col = y.error.bar.col,
error.whisker.angle = 90,
error.bar.lwd = 1,
error.bar.length = 0.1,
key = list(text = list(lab = c(''))),
legend = NULL,
top.padding = 0.1,
bottom.padding = 0.7,

234 create.scatterplot

right.padding = 0.1,
left.padding = 0.5,
key.top = 0.1,
key.left.padding = 0,
ylab.axis.padding = 1,
axis.key.padding = 1,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
add.axes = FALSE,
axes.lty = 'dashed',
add.xyline = FALSE,
xyline.col = 'black',
xyline.lwd = 1,
xyline.lty = 1,
abline.h = NULL,
abline.v = NULL,
abline.col = 'black',
abline.lwd = 1,
abline.lty = 1,
add.curves = FALSE,
curves.exprs = NULL,
curves.from = min(data, na.rm = TRUE),
curves.to = max(data, na.rm = TRUE),
curves.col = 'black',
curves.lwd = 2,
curves.lty = 1,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
add.points = FALSE,
points.x = NULL,
points.y = NULL,
points.pch = 19,
points.col = 'black',
points.col.border = 'black',
points.cex = 1,
add.line.segments = FALSE,
line.start = NULL,
line.end = NULL,
line.col = 'black',

create.scatterplot 235

line.lwd = 1,
add.text = FALSE,
text.labels = NULL,
text.x = NULL,
text.y = NULL,
text.col = 'black',
text.cex = 1,
text.fontface = 'bold',
text.guess.labels = FALSE,
text.guess.skip.labels = TRUE,
text.guess.ignore.radius = FALSE,
text.guess.ignore.rectangle = FALSE,
text.guess.radius.factor = 1,
text.guess.buffer.factor = 1,
text.guess.label.position = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
group.specific.colouring = TRUE,
use.legacy.settings = FALSE,
inside.legend.auto = FALSE,
regions.labels = c(),

regions.start = c(),
regions.stop = c(),
regions.color = c("red"),
regions.cex = 1,
regions.alpha = 1,

lollipop.bar.y = NULL,
lollipop.bar.color = "gray",
...
);

Arguments

formula The formula used to extract the x & y components from the data-frame. Trans-
forming data within formula is not compatible with automatic scaling with ‘xat‘
or ‘yat‘.

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

groups The grouping variable in the data-frame

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

236 create.scatterplot

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title

xlab.label x-axis label

ylab.label y-axis label

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Accepts a vector listing where x-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes x-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

yat Accepts a vector listing where y-axis ticks should be drawn or if automatic scal-
ing is desired, one of three strings: “auto”, “auto.linear” or “auto.log”. Auto-
matic scaling fixes y-axis tick locations, labels, and data values dependent given
data. “auto” will determine whether linear or logarithmic scaling fits the given
data best, “auto.linear” or “auto.log” will force data to be scaled linearly or loga-
rithmically respectively. Defaults to lattice automatic (TRUE). For more details
see ‘auto.axis()‘.

xaxis.lab Vector listing x-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with xat will overwrite user input. Set to NULL to remove x-axis labels.

yaxis.lab Vector listing y-axis tick labels, defaults to automatic (TRUE). Using automatic
scaling with yat will overwrite user input. Set to NULL to remove y-axis labels.

xaxis.log Logical indicating whether x-variable should be in logarithmic scale (and what
base if numeric)

yaxis.log Logical indicating whether y-variable should be in logarithmic scale (and what
base if numeric)

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

create.scatterplot 237

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

yaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

add.grid Logical stating wheter or not the grid should be drawn on the plot

xgrid.at Vector listing where the x-axis grid lines should be drawn, defaults to xat

ygrid.at Vector listing where the y-axis grid lines should be drawn, defaults to yat

grid.colour ability to set individual grid line colours

horizontal xyplot-specific function that allows you to change if type=’h’ draws lines to the
vertical or horizontal axis

type Accepts character vector of one or more elements defining how x and y are to
be plotted. Accepted elements include: "p" to draw points, "l" to connect points
with lines, "h" to draw vertical or horizonal line segments from the points to the
origin, "s" or "S" to plot as a step curve, "g" to add a grid, and "r" to add a linear
regression line. For more options and detail see "type" parameter in "xyplot"
documentation.

cex Character expansion for plotting symbol

pch Plotting character

col Point/line colour

col.border Colour of border when points pch >= 21. Defaults to “black”

lwd Specifies line width, defaults to 1

lty Specifies line style, defaults to 1 (solid)

alpha Specifies line transparency, defaults to 1 (opaque)

axes.lwd Thickness of width of axes lines

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

strip.fontface Strip title fontface, defaults to bold

y.error.up upward error vector. Defaults to NULL. When y.error.up is NULL, vertical error
bar is not drawn

y.error.down Downward error vector. Defaults to y.error.down to show symmetric error bars

x.error.right Rightward error vector. Defaults to NULL. When x.error.right is NULL, hori-
zontal error bar is not drawn

x.error.left Leftward error vector. Defaults to x.error.right to show symmetric error bars
y.error.bar.col

Colour of vertical error bar. Defaults to “black”

238 create.scatterplot

x.error.bar.col

Colour of horizontal error bar. Defaults to “black”
error.whisker.angle

Angle of the whisker drawn on error bar. Defaults to 90 degree

error.bar.lwd Error bar line width. Defaults to 1
error.bar.length

Length of the error bar whiskers. Defaults to 0.1

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.1

left.padding A number specifying the distance to the left margin, defaults to 0.5

key.top A number specifying the distance at top of key, defaults to 0.1
key.left.padding

Amount of padding to go onto any legend on the left
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 1
axis.key.padding

A number specifying the distance from the y-axis to the key, defaults to 1

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

add.axes Allow axis lines to be turned on or off, default is FALSE

axes.lty Specifies axis line style, defaults to “dashed”

add.xyline Allow y=x line to be drawn, default is FALSE

xyline.col y=x line colour, defaults to black

xyline.lwd Specifies y=x line width, defaults to 1

xyline.lty Specifies y=x line style, defaults to 1 (solid)

abline.h Allow horizontal line to be drawn, default to NULL

abline.v Allow vertical line to be drawn, default to NULL

abline.col Horizontal line colour, defaults to black

abline.lwd Specifies horizontal line width, defaults to 1

create.scatterplot 239

abline.lty Specifies horizontal line style, defaults to 1 (solid)

add.curves Allow curves to drawn, default is FALSE

curves.exprs A list of functions, expressions, or calls using “x” as a variable that specify the
curves to be drawn

curves.from Specifies the x co-ordinates at which the start of each curve should be drawn,
defaults to drawing the curves to the left edge of the plotting region

curves.to Specifies the x co-ordinates at which the end of each curve should be drawn,
defaults to drawing the curves to the right edge of the plotting region

curves.col Specifies colours of curves, default is black for each curve

curves.lwd Specifies width of curves, default is 1 for each curve

curves.lty Specifies type of curves, default is 1 (solid) for each curve

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x ooordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

add.points Allow additional points to be drawn, default is FALSE

points.x The x co-ordinates where additional points should be drawn

points.y The y co-ordinates where additional points should be drawn

points.pch The plotting character for additional points

points.col The colour of additional points
points.col.border

Colour of the border of additional points if points.pch >= 21. Defaults to black

points.cex The size of additional points
add.line.segments

Allow additional line segments to be drawn, default is FALSE

line.start The y co-ordinates where additional line segments should start

line.end The y co-ordinates where additional line segments should end

line.col The colour of additional line segments, default is black

line.lwd The line width of additional line segments, default is 1

add.text Allow additional text to be drawn, default is FALSE

text.labels Labels for additional text

text.x The x co-ordinates where additional text should be placed

text.y The y co-ordinates where additional text should be placed

240 create.scatterplot

text.col The colour of additional text

text.cex The size of additional text

text.fontface The fontface for additional text
text.guess.labels

Allows automatic labeling by considering values in text.x and text.y as a data
point to be labelled, default is FALSE

text.guess.skip.labels

Provides an option to disregard automatic labelling algorithm if no space is
available around a data point, thus forcing labelling if a collision is likely, default
is TRUE

text.guess.ignore.radius

Allows the automatic labeling algorithm to ignore the radius space of a data
point, useful to label a cluster of data points with a single text box, default is
FALSE

text.guess.ignore.rectangle

Allows the atuomatic labeling algorithm to ignore the rectangle space of multi-
ple potential label positions, default is FALSE

text.guess.radius.factor

A numeric value to factor the radius value to alter distance from the label and
the data point

text.guess.buffer.factor

A numeric value to factor the buffer value to alter the space which is used to
consider if data.points are potentially going to collide

text.guess.label.position

A numeric value between 0 and 360 to specify the percise angle of a text box
center and the positive x-axis. Angles move counter-clockwise beginning at the
positive x axis

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
group.specific.colouring

Variable to specify if group specific multi colouring for error bars is enforced
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

create.scatterplot 241

regions.labels Labels for each of the regions on the lollipop plots bars

regions.start start x value of each of the regions

regions.stop stop value for each of the regions

regions.color color of each of the regions

regions.cex size of the text of each of the regions

regions.alpha alpha of each of the regions

lollipop.bar.y y location of top of the lollipop plot bar – defaults to right above the bottom y
axis

lollipop.bar.color

color of the lollipop plot bar

... Additional arguments to be passed to xyplot

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

xyplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = rnorm(800),
y = rnorm(800)
);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Simple', fileext = '.tiff'),

242 create.scatterplot

formula = y ~ x,
data = simple.data,
resolution = 50
);

scatter.data <- data.frame(
sample.one = microarray[1:800,1],
sample.two = microarray[1:800,2],
chr = microarray$Chr[1:800]
);

Minimal Input
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Minimal_Input', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Minimal Input',
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 50
);

Axes & Labels
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Axes_Labels', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Axes & Labels',
Axes and labels
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 50
);

Log-Scaled Axis
log.data <- data.frame(

x = rnorm(800),
y = 10 ** rnorm(800, mean = 5, sd = 2)
);

create.scatterplot(
formula = y ~ x,
data = log.data,

create.scatterplot 243

Log base 10 scale y-axis
yat = 'auto.log',
main = 'Log Scaled',
description = 'Scatter created by BoutrosLab.plotting.general',
resolution = 50
);

Colour & Plotting Character
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Colour_Pch', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Colour & Pch',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
setting the colour
col = default.colours(2)[2],
setting the plotting character type & size
pch = 21,
cex = 1.5,
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

Colour depth
create colour scheme to illustrate adding a colourkey
chr.palette <- colour.gradient(default.colours(2)[2], 800);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Colour_Depth', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Colour Depth',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,

244 create.scatterplot

xlab.cex = 1.5,
ylab.cex = 1.5,
setting the colour
col = chr.palette,
setting the plotting character type & size
pch = 19,
cex = 1,
adding key for colours
key.top = 1.5,
legend = list(

bottom = list(
fun = draw.colorkey,
args = list(

key = list(
col = chr.palette,
at = 1:800,
tick.number = 3,
space = 'bottom',
size = 1,
width = 1.25,
height = 1,
labels = list(

labels = 1:3,
cex = 1,

at = c(1, which(scatter.data$chr == 2)[1], which(scatter.data$chr == 3)[1])
)

)
)

)
),

description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

Groups & Legend
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Groups_Legend', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Groups & Legend',
using arbitrary groups for the sake of illustration
groups = scatter.data$chr,
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,

create.scatterplot 245

ylab.cex = 1.5,
col = default.colours(3),
Adding legend for groups
key = list(

text = list(
lab = c('1','2','3'),
cex = 1,
col = 'black'
),

points = list(
pch = 19,
col = default.colours(3),
cex = 1
),

x = 0.04,
y = 0.95,
padding.text = 2
),

description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

Correlation Key
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Correlation_Key', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Correlation Key',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
col = 'black',
pch = 21,
Adding correlation key
legend = list(

inside = list(
fun = draw.key,
args = list(

key = get.corr.key(
x = scatter.data$sample.one,
y = scatter.data$sample.two,
label.items = c('spearman','spearman.p','kendall','beta1'),
alpha.background = 0,
key.cex = 1

246 create.scatterplot

)
),

x = 0.04,
y = 0.95,
corner = c(0,1)
)

),
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

Panel Organization
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Panel_numeric_conditional', fileext = '.tiff'),
formula = sample.two ~ sample.one | chr,
data = scatter.data,
main = 'Panel',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
set up panel layout
layout = c(1,3),
yrelation = 'free',
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

scatter.data$chromosome <- as.character(scatter.data$chr);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Panel_character_conditional', fileext = '.tiff'),
formula = sample.two ~ sample.one | chromosome,
data = scatter.data,
main = 'Panel',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),

create.scatterplot 247

xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
set up panel layout
layout = c(1,3),
yrelation = 'free',
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 100
);

Covariates
cov.colours <- as.character(microarray$Chr[1:800]);
cov.colours[cov.colours == '1'] <- default.colours(3, palette.type = 'chromosomes')[1];
cov.colours[cov.colours == '2'] <- default.colours(3, palette.type = 'chromosomes')[2];
cov.colours[cov.colours == '3'] <- default.colours(3, palette.type = 'chromosomes')[3];

cov <- list(
rect = list(

col = 'transparent',
fill = cov.colours
)

);

cov.grob <- covariates.grob(
covariates = cov,
ord = c(1:length(cov.colours)),
side = 'top',
size = 1
);

cov.legend <- list(
legend = list(

colours = default.colours(3, palette.type = 'chromosomes'),
labels = c('1', '2', '3'),
title = 'Chromosome',
border = 'transparent'
)

);

cov.legend.grob <- legend.grob(
legends = cov.legend
);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Covariates', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,

248 create.scatterplot

main = 'Covariates',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
Adding covariate & legend
legend = list(

bottom = list(fun = cov.grob),
right = list(fun = cov.legend.grob)
),

Ensuring sufficient spacing for covariate
key.top = 3,
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

Error bars
error.data <- data.frame(

chr = (microarray$Start)[1:20],
values = apply(microarray[1:20,1:58], 1, mean),
error = apply(microarray[1:20,1:58], 1, sd)
);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Error_Bars', fileext = '.tiff'),
formula = values ~ chr,
data = error.data,
main = 'Error Bars',
xlab.label = 'Base pair location on chromosome one',
ylab.label = 'Gene expression change',
xat = seq(0, 16, 2),
yat = seq(0, 14, 2),
xlimits = c(0, 15),
ylimits = c(0, 13),
Format xaxes
xaxis.lab = c(

scientific.notation(0, 1),
scientific.notation(1000000, 1),
scientific.notation(2000000, 1),
scientific.notation(3000000, 1),
scientific.notation(4000000, 1),
scientific.notation(5000000, 1),

create.scatterplot 249

scientific.notation(6000000, 1),
scientific.notation(7000000, 1)
),

xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 19,
col = 'black',
fill = 'transparent',
Specifying error bars
error.bar.lwd = 1,
error.whisker.angle = 120,
y.error.up = error.data$error,
y.error.bar.col = 'black',
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Error_Bars_MultiColor', fileext = '.tiff'),
formula = values ~ chr,
data = error.data,
main = 'Error Bars',
xlab.label = 'Base pair location on chromosome one',
ylab.label = 'Gene expression change',
xat = seq(0, 16, 2),
yat = seq(0, 14, 2),
xlimits = c(0, 15),
ylimits = c(0, 13),
Format xaxes
xaxis.lab = c(

scientific.notation(0, 1),
scientific.notation(1000000, 1),
scientific.notation(2000000, 1),
scientific.notation(3000000, 1),
scientific.notation(4000000, 1),
scientific.notation(5000000, 1),
scientific.notation(6000000, 1),
scientific.notation(7000000, 1)
),

xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 19,
col = 'black',

250 create.scatterplot

fill = 'transparent',
Specifying error bars
error.bar.lwd = 1,
error.whisker.angle = 120,
y.error.up = error.data$error,
y.error.bar.col = c('black','red','blue'),
description = 'Scatter plot created by BoutrosLab.plotting.general',
group.specific.colouring = FALSE,
resolution = 200
);

Gridlines
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Gridlines', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Gridlines',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
Adding gridlines
type = c('p','g'),
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

lines & background rectangle
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Lines_BG', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Lines & BG rectangle',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,

create.scatterplot 251

xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
type = c('p','g'),
add xy line
add.xyline = TRUE,
xyline.lty = 3,
xyline.col = 'red',
xyline.lwd = 3,
add background rectangle
add.rectangle = TRUE,
xleft.rectangle = which(scatter.data$chr == 2)[1]/800*15,
xright.rectangle = which(scatter.data$chr == 3)[1]/800*15,
ybottom.rectangle = 0,
ytop.rectangle = 15,
col.rectangle = 'grey',
alpha.rectangle = 0.5,
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

attach lines to points
create.scatterplot(

filename = tempfile(pattern = 'Scatterplot_Lines', fileext = '.tiff'),
formula = sample.two ~ sample.one | chr,
data = scatter.data,
main = 'Lines',
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
attach lines
type = c('h','p'),
layout = c(1,3),
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

252 create.scatterplot

ROC curve
set.seed(123456);

class.values <- runif(50, 0, 1);
observed.values <- sample(c(0,1), size = 50, replace = TRUE);
cutoffs <- seq(1,0,-0.01);
tprs <- c();
fprs <- c();

for (c in cutoffs) {
roc.classification <- rep(0, length(class.values));
roc.classification[class.values >= c] <- 1;
roc.results <- table(

factor(roc.classification, levels = c(0,1)),
factor(observed.values, levels = c(0,1)),
dnn = c('pred', 'obs')
);

tprs <- c(tprs, roc.results[2,2] / (roc.results[2,2] + roc.results[1,2]));
fprs <- c(fprs, roc.results[2,1] / (roc.results[2,1] + roc.results[1,1]));
}

roc.data <- data.frame(cutoff = cutoffs, TPR = tprs, FPR = fprs);
points.x <- roc.data[match(c(0.25, 0.5, 0.75), roc.data$cutoff), 'FPR'];
points.y <- roc.data[match(c(0.25, 0.5, 0.75), roc.data$cutoff), 'TPR'];

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_ROC', fileext = '.tiff'),
formula = TPR ~ FPR,
data = roc.data,
main = 'ROC',
xlab.label = 'False positive rate',
ylab.label = 'True positive rate',
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
To plot ROC curve, add "s" or "S" to type vector.
"s" connects points with the vertical segment first.
"S" connects points with the horizontal segment first.
type = 's',
lwd = 3,
add.xyline = TRUE,
xyline.col = 'grey',
add.points = TRUE,
points.x = points.x,
points.y = points.y,
points.col = c('blue', 'darkgreen', 'red'),
add.text = TRUE,
text.labels = paste('cutoff = ', c(0.25, 0.5, 0.75), sep = ''),
#text.x = points.x - 0.14,
#text.y = points.y + 0.03,

create.scatterplot 253

text.x = points.x,
text.y = points.y,
text.guess.labels = TRUE,
text.guess.label.position = 155,
text.guess.radius.factor = 2.5,
description = 'Scatter plot created by BoutrosLab.plotting.general',
resolution = 200
);

Volcano Plots
fold.change <- apply(microarray[,1:29], 1, mean) - apply(microarray[,30:58], 1, mean);

fake.microarray <- microarray[,1:58] - log(mean(apply(microarray[,1:58],1, mean)));
fake.microarray[,30:58] <- fake.microarray[,30:58] + mean(fold.change);
fake.microarray[fake.microarray < 0] <- 0;

p.values <- apply(fake.microarray[,1:58], 1, function(x) {t.test(x=x[1:29],y=x[30:58])$p.value});
fold.change <- apply(fake.microarray[, 1:29], 1, mean) - apply(fake.microarray[, 30:58], 1,mean);
p.values.adjusted <- p.adjust(p.values, 'fdr');

dot.colours <- vector(length=length(p.values));
dot.colours[p.values.adjusted < .05 & fold.change < 0] <- 'green';
dot.colours[p.values.adjusted < .05 & fold.change > 0] <- 'red';
dot.colours[p.values.adjusted > .05] <- 'black';

volcano.data <- data.frame(
p.values = -log10(p.values.adjusted),
fold.change = fold.change
);

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Volcano_Plot', fileext = '.tiff'),
formula = p.values ~ fold.change,
data = volcano.data,
col = dot.colours,
alpha = .5,
yat = c(0,2,4,6,8),
ylimits = c(-0.1,8.1),
yaxis.lab = expression(10^0,10^-2,10^-4,10^-6,10^-8),
yaxis.cex = 1.5,
xaxis.cex = 1.5,
xlab.label = 'foldChange',
ylab.label = 'pValues',
xlab.cex = 1.75,
ylab.cex = 1.75,
resolution = 200
);

Automatic Labeling
interesting.fold.change <- (fold.change < -.9 | fold.change > .9);
interesting.p.value <- (-log10(p.values.adjusted) < 8 & -log10(p.values.adjusted) > 2);
interesting.points <- interesting.fold.change & interesting.p.value;

254 create.scatterplot

text.x <- fold.change[interesting.points];
text.y <- (-log10(p.values.adjusted))[interesting.points];
text.labels <- rownames(microarray)[interesting.points];

create.scatterplot(
filename = tempfile(pattern = 'Scatterplot_Volcano_Plot_With_Labels', fileext = '.tiff'),
formula = p.values ~ fold.change,
data = volcano.data,
alpha = .5,
yat = c(0,2,4,6,8),
ylimits = c(-0.1,8.1),
xlimits = c(-1.5,1.5),
yaxis.lab = expression(10^0,10^-2,10^-4,10^-6,10^-8),
yaxis.cex = 1.5,
xaxis.cex = 1.5,
xlab.label = 'foldChange',
ylab.label = 'pValues',
xlab.cex = 1.75,
ylab.cex = 1.75,
add.text = TRUE,
text.x = text.x,
text.y = text.y,
text.labels = text.labels,
text.guess.labels = TRUE,
resolution = 200
);

With line segments
line.data <- data.frame(

group = as.factor(c('A','B','C')),
x = sample(1:10,3),
y = sample(1:10,3),
z = sample(1:10,3)
);

create.scatterplot(
(x+y+z) ~ group,
line.data,
filename = tempfile(pattern = 'Scatterplot_with_LineSegments', fileext = '.tiff'),
cex = 0,
add.line.segments = TRUE,
line.start = list(

rep(0,nrow(line.data)),
line.data$x,
c(line.data$x + line.data$y)
),

line.end = list(
line.data$x,
c(line.data$x + line.data$y),
c(line.data$x + line.data$y + line.data$z)
),

line.col = list('red','blue','green'),

create.segplot 255

line.lwd = list(3,3,3),
resolution = 200
);

lollipop.data <- data.frame(
y = seq(1,100,1),
x = rnorm(100)
);

create.lollipopplot(
filename = tempfile(pattern = 'Lollipop_Simple', fileext = '.tiff'),
formula = x ~ y,
data = lollipop.data,
main = 'Lollipop plot',
xaxis.cex = 1,
xlimits = c(-1,102),
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
pch = 21,
col = 'black',
fill = 'transparent',
description = 'Scatter plot created by BoutrosLab.plotting.general',
regions.start = c(1,26,48),
regions.stop = c(15,35,72),
regions.labels = c("test 1", "test2", "test 3"),
regions.color = c("#66b3ff", "#5cd65c", "#ff3333"),
resolution = 200
);

create.segplot Make a segplot

Description

Takes a data.frame and creates a segplot

Usage

create.segplot(
formula,
data,
filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,

256 create.segplot

main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = 1,
yaxis.tck = 1,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
abline.h = NULL,
abline.v = NULL,
abline.lty = 1,
abline.lwd = 1,
abline.col = 'black',
segments.col = 'black',
segments.lwd = 1,
layout = NULL,
as.table = FALSE,
x.spacing = 0,
y.spacing = 0,
x.relation = 'same',
y.relation = 'same',
top.padding = 0.5,
bottom.padding = 2,
right.padding = 1,
left.padding = 2,
ylab.axis.padding = 0,
level = NULL,

create.segplot 257

col.regions = NULL,
centers = NULL,
plot.horizontal = TRUE,
draw.bands = FALSE,
pch = 16,
symbol.col = 'black',
symbol.cex = 1,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
axes.lwd = 1,
key = NULL,
legend = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,
inside.legend.auto = FALSE,
disable.factor.sorting = FALSE
)

Arguments

formula The formula used to extract the x & y components from the data-frame

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 3

xlab.label x-axis label

ylab.label y-axis label

xlab.cex Size of x-axis label, defaults to 2

ylab.cex Size of y-axis label, defaults to 2

xlab.col Colour of the x-axis label, defaults to “black”

258 create.segplot

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis scales, defaults to 1.5

yaxis.cex Size of y-axis scales, defaults to 1.5

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales, defaults to “plain”

yaxis.fontface Fontface for the y-axis scales, defaults to “plain”

xaxis.rot Counterclockwise rotation of text in x-axis scales in degrees, defaults to 0

yaxis.rot Counterclockwise rotation of text in y-axis scales in degrees, defaults to 0

xaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

yaxis.tck Specifies the length of the tick mark, defaults to 1 for both top and bottom axes

xlimits Two-element vector giving the x-axis limits, defaults to automatic

ylimits Two-element vector giving the y-axis limits, defaults to automatic

xat Vector listing where the x-axis labels should be drawn, defaults to automatic

yat Vector listing where the y-axis labels should be drawn, defaults to automatic

abline.h Allow horizontal line to be drawn, default to NULL

abline.v Allow vertical line to be drawn, default to NULL

abline.lty Specifies horizontal line style, defaults to 1 (solid)

abline.lwd Specifies horizontal line width, defaults to 1

abline.col Horizontal line colour, defaults to black

segments.col Colour of segments, defaults to “black”

segments.lwd Line width of segments, defaults to 1

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

as.table Specifies panel drawing order, default is FALSE which draws panels from bot-
tom left corner, moving right then up. Set to TRUE to draw from top left corner,
moving right then down

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

x.relation Allows x-axis scales to vary if set to “free”, defaults to “same”

create.segplot 259

y.relation Allows y-axis scales to vary if set to “free”, defaults to “same”

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.1

left.padding A number specifying the distance to the left margin, defaults to 0.5
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 1

,

level Optional covariate that determines colour coding of the segments, if specified
overwrites segments.col, can contain actual colors or values to determine colors,
then col.regions should be defined

col.regions Vector of colors, define if level is numeric

centers Optional vector for centers of segments, defaults to NULL
plot.horizontal

Logical whether segments should be drawn horizontally (default) or vertically

draw.bands Logical to specify whether to draw lines (default) or rectangles

pch Plotting character for centers

symbol.col Colour of plotting character for centers, defaults to “black”

symbol.cex Size of plotting character for centers, defaults to 1

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

axes.lwd Specifies axes line width, defaults to 1

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

260 create.segplot

description Short description of image/plot; default NULL

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function
disable.factor.sorting

Disable barplot auto sorting factors alphabetically/numerically

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

levelplot, segplot or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
min = runif(10,5,15),
max = runif(10,15,25),
labels = as.factor(LETTERS[1:10])
);

create.segplot(

create.segplot 261

filename = tempfile(pattern = 'Segplot_simple', fileext = '.tiff'),
formula = labels ~ min + max,
data = simple.data,
resolution = 50
);

load some data
length.of.gene <- apply(microarray[1:10,60:61], 1, diff);
bin.length <- length.of.gene;
bin.length[which(bin.length < 20000)] <- 'A';
bin.length[which(bin.length < 40000)] <- 'B';
bin.length[which(bin.length < 60000)] <- 'C';

segplot.data <- data.frame(
min = apply(microarray[1:10,1:58], 1, min),
max = apply(microarray[1:10,1:58], 1, max),
median = apply(microarray[1:10,1:58], 1, median),
gene = as.factor(rownames(microarray)[1:10]),
approximating length of gene
length = as.factor(bin.length)
);

Minimal Input using real data
create.segplot(

filename = tempfile(pattern = 'Segplot_Minimal_Input', fileext = '.tiff'),
formula = gene ~ min + max,
data = segplot.data,
main = 'Minimal input',
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Axes & Labels
create.segplot(

filename = tempfile(pattern = 'Segplot_Axes_Labels', fileext = '.tiff'),
formula = gene ~ min + max,
data = segplot.data,
main = 'Axes & labels',
Formatting axes
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Bands

262 create.segplot

create.segplot(
filename = tempfile(pattern = 'Segplot_Bands', fileext = '.tiff'),
formula = gene ~ min + max,
data = segplot.data,
main = 'Bands',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
drawing rectangles instead of lines
draw.bands = TRUE,
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Colours
create.segplot(

filename = tempfile(pattern = 'Segplot_Colours', fileext = '.tiff'),
formula = reorder(gene, median) ~ min + max,
data = segplot.data,
main = 'Colours',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
draw.bands = FALSE,
Changing the colours based on a covariate ('level' parameter)
level = segplot.data$length,
col.regions = default.colours(3),
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Median
create.segplot(

filename = tempfile(pattern = 'Segplot_Median', fileext = '.tiff'),
formula = gene ~ min + max,
data = segplot.data,
main = 'Medians',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,

create.segplot 263

xlimits = c(0,13),
draw.bands = FALSE,
xat = seq(0, 12, 2),
level = segplot.data$length,
col.regions = default.colours(3),
Adding center values
centers = segplot.data$median,
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Reorder by center value
create.segplot(

filename = tempfile(pattern = 'Segplot_Reorder', fileext = '.tiff'),
formula = reorder(gene, median) ~ min + max,
data = segplot.data,
main = 'Reordered',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
draw.bands = FALSE,
centers = segplot.data$median,
level = segplot.data$length,
col.regions = default.colours(3),
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Legend
create.segplot(

filename = tempfile(pattern = 'Segplot_Legend', fileext = '.tiff'),
formula = reorder(gene, median) ~ min + max,
data = segplot.data,
main = 'Legend',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
draw.bands = FALSE,
centers = segplot.data$median,
level = segplot.data$length,
col.regions = default.colours(3),
Adding legend to explain colours
legend = list(

264 create.segplot

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 19,
cex = 1
),

text = list(
lab = c('1-20000 bp', '20001-40000 bp','40001-60000 bp')
),

padding.text = 1,
cex = 1
)

),
x = 0.60,
y = 0.15,
corner = c(0,1)
)

),
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Background
create.segplot(

filename = tempfile(pattern = 'Segplot_Background', fileext = '.tiff'),
formula = reorder(gene, median) ~ min + max,
data = segplot.data,
main = 'Background rectangle',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
draw.bands = FALSE,
centers = segplot.data$median,
level = segplot.data$length,
col.regions = default.colours(3),
Adding legend to explain colours
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 19,
cex = 1

create.segplot 265

),
text = list(

lab = c('1-20000 bp', '20001-40000 bp','40001-60000 bp')
),

padding.text = 1,
cex = 1
)

),
x = 0.50,
y = 0.15,
corner = c(0,1)
)

),
adding background shading
add.rectangle = TRUE,
xleft.rectangle = 0,
ybottom.rectangle = seq(0.5, 8.5, 2),
xright.rectangle = 13,
ytop.rectangle = seq(1.5, 9.5, 2),
col.rectangle = 'grey',
alpha.rectangle = 0.5,
description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

Nature style
create.segplot(

filename = tempfile(pattern = 'Segplot_Nature_style', fileext = '.tiff'),
formula = reorder(gene, median) ~ min + max,
data = segplot.data,
main = 'Nature style',
xaxis.cex = 1,
yaxis.cex = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
xlimits = c(0,13),
xat = seq(0, 12, 2),
draw.bands = FALSE,
centers = segplot.data$median,
level = segplot.data$length,
col.regions = default.colours(3),
legend = list(

inside = list(
fun = draw.key,
args = list(

key = list(
points = list(

col = default.colours(3),
pch = 19,
cex = 1
),

text = list(
lab = c('1-20000 bp', '20001-40000 bp','40001-60000 bp')

266 create.stripplot

),
padding.text = 1,
cex = 1
)

),
x = 0.50,
y = 0.15,
corner = c(0,1)
)

),
add.rectangle = TRUE,
xleft.rectangle = 0,
ybottom.rectangle = seq(0.5, 8.5, 2),
xright.rectangle = 13,
ytop.rectangle = seq(1.5, 9.5, 2),
col.rectangle = 'grey',
alpha.rectangle = 0.5,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Segplot created by BoutrosLab.plotting.general',
resolution = 100
);

example of bands and lines
create.segplot(

filename = tempfile(pattern = 'Segplot_BandsAndLines', fileext = '.tiff'),
formula = labels ~ min + max,
data = simple.data,
draw.bands = c(1,3,5,7,9),
resolution = 200
);

create.stripplot Make a strip-plot

Description

Takes a formula and a data.frame and creates a strip-plot

create.stripplot 267

Usage

create.stripplot(
formula,
data,
filename = NULL,
groups = NULL,
jitter.data = FALSE,
jitter.factor = 1,
jitter.amount = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,
xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = 0,
yaxis.tck = 1,
xlimits = NULL,
ylimits = NULL,
xat = TRUE,
yat = TRUE,
lwd = 1,
pch = 19,
col = 'black',
col.border = 'black',
fill = 'transparent',
colour.alpha = 1,

268 create.stripplot

cex = 0.75,
top.padding = 0.1,
bottom.padding = 0.7,
right.padding = 0.3,
left.padding = 0.5,
ylab.axis.padding = 1,
layout = NULL,
as.table = TRUE,
x.spacing = 0,
y.spacing = 0,
add.median = FALSE,
median.values = NULL,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,
strip.col = 'white',
strip.cex = 1,
strip.fontface = 'bold',
key = NULL,
legend = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1600,
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,

inside.legend.auto = FALSE,
disable.factor.sorting = FALSE
)

Arguments

formula The formula used to extract the x & y components from the data-frame

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

groups The grouping variable in the data-frame

jitter.data Allow data to be staggered, default is FALSE

jitter.factor Numeric value to apply to jitter, default is 1

jitter.amount Numeric; amount of noise to add, default is NULL

create.stripplot 269

main The main title for the plot (space is reclaimed if NULL)

s

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title

xlab.label X-axis label

ylab.label Y-axis label

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis scales, defaults to 2

yaxis.cex Size of y-axis scales, defaults to 2

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.rot Rotation of y-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to 0

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to 1

xlimits Two-element vector giving the x-axis limits, default is automatic

ylimits Two-element vector giving the y-axis limits, default is automatic

xat Vector listing where the x-axis labels should be drawn, default is automatic

yat Vector listing where the y-axis labels should be drawn, default is automatic

lwd Line width, defaults to 1

pch The plotting character (defaults to filled circles)

col Colour of the plotting character (defaults to black)

270 create.stripplot

col.border Colour of border when pch > 21. Defaults to black

fill Fill colour of the plotting character if pch set to 21:25 (defaults to transparent)

colour.alpha Bias to be added to colour selection (defaults to 1)

cex The size of the plotting character

top.padding A number specifying the distance to the top margin, defaults to 0.1

bottom.padding A number specifying the distance to the bottom margin, defaults to 0.7

right.padding A number specifying the distance to the right margin, defaults to 0.3

left.padding A number specifying the distance to the left margin, defaults to 0.5
ylab.axis.padding

A number specifying the distance of ylabel to the y-axis, defaults to 1

layout A vector specifying the number of columns, rows (e.g., c(2,1). Default is NULL;
see lattice::xyplot for more details

.

as.table Specifies panel drawing order, default is TRUE to draw from top left corner,
moving right then down. Set to FALSE to draw panels from bottom left corner,
moving right then up

x.spacing A number specifying the distance between panels along the x-axis, defaults to 0

y.spacing A number specifying the distance between panels along the y-axis, defaults to 0

add.median TRUE/FALSE indicating whether lines should be drawn at the group medians,
default is FALSE

median.values A vector of values representing the median of each group, default is NULL

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

strip.col Strip background colour, defaults to “white”

strip.cex Strip title character expansion

strip.fontface Strip text fontface, defaults to bold

key A list giving the key (legend). The default suppresses drawing

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

height Figure height, defaults to 6 inches

create.stripplot 271

width Figure width, defaults to 6 inches

size.units Figure units, defaults to inches

resolution Figure resolution in dpi, defaults to 1600

enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs

use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

inside.legend.auto

boolean specifying whether or not to use the automatic inside legend function

disable.factor.sorting

Disable barplot auto sorting factors alphabetically/numerically

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

stripplot, lattice or the Lattice book for an overview of the package.

272 create.stripplot

Examples

set.seed(12345);

simple.data <- data.frame(
x = c(rep(rnorm(50),5)),
y = as.factor(sample(LETTERS[1:5],250,TRUE))
);

create.stripplot(
filename = tempfile(pattern = 'Stripplot_simple', fileext = '.tiff'),
formula = x ~ y,
data = simple.data,
resolution = 50
);

load real datasets
stripplot.data <- data.frame(

values = c(t(microarray[1:10, 1:58])),
genes = rep(rownames(microarray)[1:10], each = 58),
sex = patient$sex,
stringsAsFactors = TRUE
);

Minimal Input using real data
create.stripplot(

filename = tempfile(pattern = 'Stripplot_Minimal_Input', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'Minimal input',
description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 50
);

Axes & Labels
create.stripplot(

filename = tempfile(pattern = 'Stripplot_Axes_Labels', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'Axes & labels',
formatting axes
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 100

create.stripplot 273

);

Colour & Legend
create.stripplot(

filename = tempfile(pattern = 'Stripplot_Colour_Legend', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'Colour & legend',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
Colour & points adjustment
groups = stripplot.data$sex,
col = c('pink', 'skyblue'),
pch = 19,
colour.alpha = 0.5,
cex = 1,
Legend
key = list(

space = 'right',
text = list(

lab = levels(stripplot.data$sex),
cex = 1,
col = 'black'
),

points = list(
pch = 19,
col = c('pink','skyblue'),
alpha = 0.5,
cex = 1
),

padding.text = 3
),

description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 100
);

Jitter
create.stripplot(

filename = tempfile(pattern = 'Stripplot_Jitter', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'Low Jitter',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',

274 create.stripplot

xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
groups = stripplot.data$sex,
col = c('pink', 'skyblue'),
pch = 19,
colour.alpha = 0.5,
cex = 1,
key = list(

space = 'right',
text = list(

lab = levels(stripplot.data$sex),
cex = 1,
col = 'black'
),

points = list(
pch = 19,
col = c('pink','skyblue'),
alpha = 0.4,
cex = 1
),

padding.text = 3
),

Custom jitter
jitter.data = TRUE,
description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 200
);

Jitter
create.stripplot(

filename = tempfile(pattern = 'Stripplot_High_Jitter', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'High Jitter',
xlab.label = 'Change in gene expression',
ylab.label = 'Gene',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
groups = stripplot.data$sex,
col = c('pink', 'skyblue'),
pch = 19,

create.stripplot 275

colour.alpha = 0.5,
cex = 1,
key = list(

space = 'right',
text = list(

lab = levels(stripplot.data$sex),
cex = 1,
col = 'black'
),

points = list(
pch = 19,
col = c('pink','skyblue'),
alpha = 0.4,
cex = 1
),

padding.text = 3
),

Custom jitter
jitter.data = TRUE,
jitter.factor = 0.5,
jitter.amount = 0.33,
description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 200
);

Nature style
create.stripplot(

filename = tempfile(pattern = 'Stripplot_Nature_style', fileext = '.tiff'),
formula = genes ~ values,
data = stripplot.data,
main = 'Nature style',
xlab.cex = 1.5,
ylab.cex = 1.5,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlimits = c(0,13),
xat = seq(0,12,2),
groups = stripplot.data$sex,
col = c('pink', 'skyblue'),
pch = 19,
colour.alpha = 0.5,
cex = 1,
key = list(

space = 'right',
text = list(

lab = levels(stripplot.data$sex),
cex = 1,
col = 'black'
),

points = list(
pch = 19,

276 create.violinplot

col = c('pink','skyblue'),
alpha = 0.4,
cex = 1
),

padding.text = 3
),

jitter.data = TRUE,
jitter.factor = 0.5,
jitter.amount = 0.33,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.label = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.label = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Stripplot created by BoutrosLab.plotting.general',
resolution = 200
);

create.violinplot Make a violin plot

Description

This function takes a dataframe and writes a pretty TIFF violin plot

Usage

create.violinplot(
formula,
data,
filename = NULL,
main = NULL,
main.just = 'center',
main.x = 0.5,
main.y = 0.5,
main.cex = 3,
xlab.label = tail(sub('~', '', formula[-2]), 1),
ylab.label = tail(sub('~', '', formula[-3]), 1),
xlab.cex = 2,
ylab.cex = 2,
xlab.col = 'black',
ylab.col = 'black',
xlab.top.label = NULL,

create.violinplot 277

xlab.top.cex = 2,
xlab.top.col = 'black',
xlab.top.just = 'center',
xlab.top.x = 0.5,
xlab.top.y = 0,
xaxis.lab = TRUE,
yaxis.lab = TRUE,
xaxis.cex = 1.5,
yaxis.cex = 1.5,
xaxis.col = 'black',
yaxis.col = 'black',
xaxis.fontface = 'bold',
yaxis.fontface = 'bold',
xaxis.rot = 0,
yaxis.rot = 0,
xaxis.tck = c(1,0),
yaxis.tck = c(1,1),
xlimits = NULL,
xat = TRUE,
ylimits = NULL,
yat = TRUE,
col = 'black',
lwd = 1,
border.lwd = 1,
bandwidth = 'nrd0',
bandwidth.adjust = 1,
extra.points = NULL,
extra.points.pch = 21,
extra.points.col = 'white',
extra.points.border = 'black',
extra.points.cex = 1,
start = NULL,
end = NULL,
scale = FALSE,
plot.horizontal = FALSE,
top.padding = 0.1,
bottom.padding = 0.7,
left.padding = 0.5,
right.padding = 0.3,
key = NULL,
legend = NULL,
add.rectangle = FALSE,
xleft.rectangle = NULL,
ybottom.rectangle = NULL,
xright.rectangle = NULL,
ytop.rectangle = NULL,
col.rectangle = 'transparent',
alpha.rectangle = 1,

278 create.violinplot

height = 6,
width = 6,
resolution = 1600,
size.units = 'in',
enable.warnings = FALSE,
description = 'Created with BoutrosLab.plotting.general',
style = 'BoutrosLab',
preload.default = 'custom',
use.legacy.settings = FALSE,
disable.factor.sorting = FALSE,
strip.col = 'white',
strip.cex = 1,
strip.fontface = 'bold',
layout = NULL
)

Arguments

formula The formula used to extract the violin components from the data-frame

data The data-frame to plot

filename Filename for tiff output, or if NULL returns the trellis object itself

main The main title for the plot (space is reclaimed if NULL)

main.just The justification of the main title for the plot, default is centered

main.x The x location of the main title, deault is 0.5

main.y The y location of the main title, default is 0.5

main.cex Size of text for main plot title, defaults to 3

xlab.label The label for the x-axis

ylab.label The label for the y-axis

xlab.cex Size of x-axis label, defaults to 3

ylab.cex Size of y-axis label, defaults to 3

xlab.col Colour of the x-axis label, defaults to “black”

ylab.col Colour of the y-axis label, defaults to “black”

xlab.top.label The label for the top x-axis

xlab.top.cex Size of top x-axis label

xlab.top.col Colour of the top x-axis label

xlab.top.just Justification of the top x-axis label, defaults to centered

xlab.top.x The x location of the top x-axis label

xlab.top.y The y location of the top y-axis label

xaxis.lab Vector listing x-axis tick labels, defaults to automatic

yaxis.lab Vector listing y-axis tick labels, defaults to automatic

xaxis.cex Size of x-axis tick labels, defaults to 2

yaxis.cex Size of y-axis tick labels, defaults to 2

create.violinplot 279

xaxis.col Colour of the x-axis tick labels, defaults to “black”

yaxis.col Colour of the y-axis tick labels, defaults to “black”

xaxis.fontface Fontface for the x-axis scales

yaxis.fontface Fontface for the y-axis scales

xaxis.rot Rotation of x-axis tick labels; defaults to 0

yaxis.rot Rotation of y-axis tick labels; defaults to 0

xaxis.tck Specifies the length of the tick marks for x-axis, defaults to c(1,0)

yaxis.tck Specifies the length of the tick marks for y-axis, defaults to c(1,1)

xlimits Two-element vector giving the x-axis limits, default is automatic

xat Vector listing where the x-axis labels should be drawn, default is automatic

ylimits Two-element vector giving the y-axis limits, default is automatic

yat Vector listing where the y-axis labels should be drawn, default is automatic

col Colour to use for filling the interior of the violin plots, defaults to “black”

lwd Line width, defaults to 1

border.lwd Width of the exterior boundary of the violin plots, defaults to 1

bandwidth Smoothing bandwidth, or character string giving rule to choose bandwidth (’nrd0’,
’nrd’, ’ucv’, ’bcv’, ’sj’, or ’sj-ste’). Passed to base R function density, via lat-
tice::bwplot.

bandwidth.adjust

Adjustment parameter for the bandwidth (bandwidth used is bandwidth*bandwidth.adjust).
Makes it easy to specify bandwidth as a proportion of the default.

extra.points A list of numeric vectors, each one of length equal to the number of violins to
be plotted. Specifies a set or sets of extra points to be plotted along the vertical
spine of each violin plot. Defaults to NULL (no points to be added)

extra.points.pch

A vector of the same length as extra.points specifying the symbol to use for each
set of points. Defaults to 21

extra.points.col

A vector of the same length as extra.points specifying the colour to use for each
set of points. Defaults to “white”

extra.points.border

A vector of the same length as extra.points specifying the border colour to use
for points >=21. Defaults to “black”

extra.points.cex

A vector of the same length as extra.points specifying the size of each set of
points. Defaults to 1

start Start of boundary cutoff, default is NULL for no boundary

end End of boundary cutoff, default is NULL for no boundary

scale Logical; Scales the violin plots, see ?panel.violin for more details, default is
FALSE

280 create.violinplot

plot.horizontal

Logical; Determines whether to draw violin plot horizontally or vertically; de-
fault is FALSE; If horizontal is FALSE, x will be coerced to a factor or shingle,
and vise versa.

top.padding A number giving the top padding in multiples of the lattice default

bottom.padding A number giving the bottom padding in multiples of the lattice default

left.padding A number giving the left padding in multiples of the lattice default

right.padding A number giving the right padding in multiples of the lattice default

key Add a key to the plot. See xyplot.

legend Add a legend to the plot. Helpful for adding multiple keys and adding keys to
the margins of the plot. See xyplot.

add.rectangle Allow a rectangle to be drawn, default is FALSE
xleft.rectangle

Specifies the left x coordinate of the rectangle to be drawn
ybottom.rectangle

Specifies the bottom y coordinate of the rectangle to be drawn
xright.rectangle

Specifies the right x coordinate of the rectangle to be drawn

ytop.rectangle Specifies the top y coordinate of the rectangle to be drawn

col.rectangle Specifies the colour to fill the rectangle’s area
alpha.rectangle

Specifies the colour bias of the rectangle to be drawn

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

resolution Figure resolution in dpi, defaults to 1600

size.units Figure units, defaults to inches
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image/plot; default NULL

style defaults to “BoutrosLab”, also accepts “Nature”, which changes parameters ac-
cording to Nature formatting requirements

preload.default

ability to set multiple sets of diffrent defaults depending on publication needs
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)
disable.factor.sorting

Disable barplot auto sorting factors alphabetically/numerically

strip.col Strip background colour, defaults to “white”

strip.cex Size of text in Strip titles

strip.fontface Strip title fontface, defaults to bold. 1 = plain, 2 = bold, 3 = italics, 4 = bold and
italics

layout A vector specifying the number of columns, rows (e.g., c(2,1)).

create.violinplot 281

Value

If filename is NULL then returns the trellis object, otherwise creates a plot and returns a 0/1 success
code.

Warning

If this function is called without capturing the return value, or specifying a filename, it may crash
while trying to draw the histogram. In particular, if a script that uses such a call of create histogram
is called by reading the script in from the command line, it will fail badly, with an error message
about unavailable fonts:

Error in grid.Call.graphics("L_text", as.graphicsAnnot(x$label), x$x,)
Invalid font type

Calls: print ... drawDetails.text -> grid.Call.graphics -> .Call.graphics

Author(s)

Paul C. Boutros

See Also

bwplot, lattice or the Lattice book for an overview of the package.

Examples

set.seed(12345);

simple.data <- data.frame(
x = c(rep(rnorm(50),5)),
y = as.factor(sample(LETTERS[1:5],250,TRUE))
);

create.violinplot(
filename = tempfile(pattern = 'Violinplot_Simple', fileext = '.tiff'),
formula = x ~ y,
data = simple.data,
resolution = 100
);

load real datasets
violin.data <- data.frame(

values = c(t(microarray[1:10, 1:58])),
genes = rep(rownames(microarray)[1:10], each = 58),
sex = patient$sex
);

Minimal input
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Minimal_Input', fileext = '.tiff'),

282 create.violinplot

formula = values ~ genes,
data = violin.data,
main = 'Minimal input',
xaxis.rot = 90,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Axes & Labels
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Axes_Labels', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Axes & labels',
xaxis.rot = 90,
Adjusting axes
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Range
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Range', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Range',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
adjusted y-axis limits
ylimits = c(0, 11),
yat = seq(0, 10, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
Specify range
start = 1,
end = 10,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100

create.violinplot 283

);

Scaling
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Scale', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Scale',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
Scale
scale = TRUE,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Extra points
median.points <- unlist(tapply(violin.data$values, violin.data$genes, median));
top.points <- unlist(tapply(violin.data$values, violin.data$genes, quantile, 0.90));

create.violinplot(
filename = tempfile(pattern = 'Violinplot_Points', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Extra points',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
Adding median and 90th percentile
extra.points = list(median.points, top.points),
extra.points.pch = 21,
extra.points.col = c('white','grey'),
extra.points.cex = 0.5,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100

284 create.violinplot

);

Colours
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Colour', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Colour',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
extra.points = list(median.points, top.points),
extra.points.pch = 21,
extra.points.col = c('white','grey'),
extra.points.cex = 0.5,
Colour
col = 'dodgerblue',
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Custom labels
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Custom_Labels', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Custom labels',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 16),
yat = c(0,1,2,4,8,16),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
extra.points = list(median.points, top.points),
extra.points.pch = 21,
extra.points.col = c('white','grey'),
extra.points.cex = 0.5,
col = 'dodgerblue',
customizing labels
yaxis.lab = c(

create.violinplot 285

0,
expression(paste('2'^'0')),
expression(paste('2'^'1')),
expression(paste('2'^'2')),
expression(paste('2'^'4')),
expression(paste('2'^'5'))
),

description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Orientation
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Orientation', fileext = '.tiff'),
switch formula
formula = genes ~ values,
data = violin.data,
main = 'Orientation',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
ylab.label = 'Gene',
xlab.label = 'Change in expression',
xlab.cex = 1.5,
ylab.cex = 1.5,
extra.points = list(median.points, top.points),
extra.points.pch = 21,
extra.points.col = c('white','grey'),
extra.points.cex = 0.5,
col = 'dodgerblue',
orientation
plot.horizontal = TRUE,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

background
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Background', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Background rectangle',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.label = 'Gene',
ylab.label = 'Change in expression',

286 create.violinplot

xlab.cex = 1.5,
ylab.cex = 1.5,
extra.points = list(median.points, top.points),
extra.points.pch = 21,
extra.points.col = c('white','grey'),
extra.points.cex = 0.5,
col = 'dodgerblue',
background
add.rectangle = TRUE,
xleft.rectangle = seq(0.5, 8.5, 2),
ybottom.rectangle = 0,
xright.rectangle = seq(1.5, 9.5, 2),
ytop.rectangle = 13,
col.rectangle = 'grey',
alpha.rectangle = 0.5,
description = 'Violinplot created by BoutrosLab.plotting.general',
resolution = 100
);

Nature style
create.violinplot(

filename = tempfile(pattern = 'Violinplot_Nature_style', fileext = '.tiff'),
formula = values ~ genes,
data = violin.data,
main = 'Nature style',
xaxis.rot = 90,
xaxis.cex = 1,
yaxis.cex = 1,
ylimits = c(0, 13),
yat = seq(0, 12, 2),
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
col = 'dodgerblue',
add.rectangle = TRUE,
xleft.rectangle = seq(0.5, 8.5, 2),
ybottom.rectangle = 0,
xright.rectangle = seq(1.5, 9.5, 2),
ytop.rectangle = 13,
col.rectangle = 'grey',
alpha.rectangle = 0.5,

set style to Nature
style = 'Nature',

demonstrating how to italicize character variables
ylab.lab = expression(paste('italicized ', italic('a'))),

demonstrating how to create en-dashes
xlab.lab = expression(paste('en dashs: 1','\u2013', '10'^'\u2013', ''^3)),

description = 'Violinplot created by BoutrosLab.plotting.general',

critical.value.ks.test 287

resolution = 200
);

critical.value.ks.test

Critical Value for Kolmogorov-Smirnov Test

Description

Takes a sample size and a confidence level and computes the corresponding critical value basing on
the kolmogorov-smirnov test

Usage

critical.value.ks.test(n, conf, alternative = "two.sided");

Arguments

n The sample size

conf The confidence level

alternative Indicates the alternative hypothesis and must be one of "two.sided"(default),
"one-sided".

Value

The corresponding critical value

Author(s)

Ying Wu

Examples

critical.value.ks.test(10, 0.95);
critical.value.ks.test(100, 0.95, alternative = "one-sided");

288 default.colours

default.colours Provides default colour schemes.

Description

Returns colour schemes based on user input. Used to provide default colour schemes for simple
cases.

Usage

default.colours(
number.of.colours = 2,
palette.type = 'qual',
is.greyscale = TRUE,
is.venn = FALSE
);

Arguments

number.of.colours

The number of colours requested for the colour scheme.

palette.type The type of colour scheme requested. Only palette types of “seq”, “div”, “qual”,
“pastel”, “survival”, “dotmap”, “spiral.sunrise”, “spiral.morning”, “spiral.dusk”,
“spiral.noon”, “spiral.afternoon”, “spiral.dawn”, and “spiral.night” are accepted.
Legacy colour palettes are available under “chromosomes”, “old.qual1”, “old.qual2”,
“old.seq”, and “old.div”. “seq” corresponds to sequential colour schemes, “div”
corresponds to diverging colour schemes, and “qual” corresponds to qualitative
colour schemes - “pastel” is a pastel version of this palette. “survival” is useful
for survival plots, as the first two colour are blue and red, following convention.
The remaining colour schemes are not tied to a specific use-case.

is.greyscale Boolean asking whether or the colour scheme should be greyscale-compatible.
Defaults to TRUE. The purpose of this parameter is to warn users if they ask
for a colour scheme that is not greyscale-compatible. Regardless of the value of
is.greyscale, the same colour scheme will be provided.

is.venn Boolean determining whether or not the colour scheme is to be used for a venn
diagram. If TRUE, the palette type should be set to NULL. For venn diagrams,
text colours are also provided.

Details

For further information on colour schemes, refer to the plotting guide.)

Author(s)

Christine P’ng

display.colours 289

Examples

default.colours(number.of.colours = 6, is.greyscale = FALSE, palette.type = 'div')
Returns:
[1] "#B32B2B" "#DD4E4E" "#EB7C7C" "#F7BEBE" "#BEF4F7" "#80CDD1"

default.colours(number.of.colours = 3, palette.type = NULL, is.venn = TRUE)
Returns:
[1] "red" "dodgerblue" "yellow"
[1] "darkred" "darkblue" "darkorange"
The second line of colours is the corresponding text colour

default.colours(number.of.colours = c('2','5','3'), c('binary','seq','seq'))
Returns:
[[1]]
[1] "white" "chartreuse3"

[[2]]
[1] "lavenderblush" "pink" "palevioletred1" "violetred1"
[5] "maroon"

[[3]]
[1] "aliceblue" "lightblue1" "lightskyblue"

default.colours(5, 'spiral.sunrise');
Returns:
[1] "#336A90" "#65B4A2" "#B1D39A" "#F4E0A6" "#FFE1EE"

display.colours Function to display R colors, as well as corresponding R grey colours.

Description

Displays R colors and their corresponding R grey colours.

Usage

display.colours(
cols,
names = cols
);

Arguments

cols Vector of colours to be displayed.
names The names of the colours. Defaults to equal the input of cols

Details

For further information on colour schemes, refer to the colour guide (in Resources/general)

290 display.statistical.result

Author(s)

Christine P’ng

Examples

display.colours('red');
Red and Grey are displayed

display.colours(default.colours(5));
Five default colours and their grey values are displayed

test.colours <- force.colour.scheme(c('skin','nerve'), 'tissue');
display.colours(test.colours);

display.statistical.result

Utility function to display statistical result in a plot

Description

A utility function to display statistical result in a plot in scientific notation (when appropriate)

Usage

display.statistical.result(
x,
lower.cutoff = 2.2e-50,
scientific.cutoff = 0.001,
digits = 2,
statistic.type = 'P',
symbol = ': '
);

Arguments

x Numeric value to be displayed

lower.cutoff For values of x smaller than lower.cutoff, the return value will be "< lower.cutoff".
Defaults to 2.2e-16

scientific.cutoff

For values of x larger or equal to scientific.cutoff, standard notation will be used
(rather than scientific notation). Defaults to 0.001

digits Number of decimal places of precision to be shown

statistic.type Type of statistic to be displayed, defaults to “P”.

symbol Symbol prior to statistic to be displayed, defaults to “: ”.

dist 291

Value

Returns an expression

Author(s)

Nathalie Moon

See Also

scientific.notation

Examples

set.seed(100);

display.statistical.result(x = 0.00000000000000000000234);
display.statistical.result(x = 0.023, statistic.type = 'Q');
display.statistical.result(x = 0.001, scientific.cutoff = 0.01, symbol = ' = ');

dist Distance Matrix Computation

Description

This function computes and returns the distance matrix computed by using the specified distance
measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

Arguments

x a numeric matrix, data frame or "dist" object.

method the distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski", or "jaccard". Any un-
ambiguous substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist.

upper logical value indicating whether the upper triangle of the distance matrix should
be printed by print.dist.

p The power of the Minkowski distance.

292 dist

Details

Available distance measures are (written for two vectors x and y):

euclidean: Usual square distance between the two vectors (2 norm).

maximum: Maximum distance between two components of x and y (supremum norm)

manhattan: Absolute distance between the two vectors (1 norm).

canberra:
∑

i |xi − yi|/|xi + yi|. Terms with zero numerator and denominator are omitted from
the sum and treated as if the values were missing.
This is intended for non-negative values (e.g. counts): taking the absolute value of the denom-
inator is a 1998 R modification to avoid negative distances.

binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements
are ‘on’ and zero elements are ‘off’. The distance is the proportion of bits in which only one
is on amongst those in which at least one is on.

minkowski: The p norm, the pth root of the sum of the pth powers of the differences of the com-
ponents.

jaccard: The proportion of items that are not in both sets. For binary data, the output is equal to
dist(method ="binary")

Missing values are allowed, and are excluded from all computations involving the rows within
which they occur. Further, when Inf values are involved, all pairs of values are excluded when
their contribution to the distance gave NaN or NA. If some columns are excluded in calculating a
Euclidean, Manhattan, Canberra or Minkowski distance, the sum is scaled up proportionally to the
number of columns used. If all pairs are excluded when calculating a particular distance, the value
is NA.

The "dist" method of as.matrix() and as.dist() can be used for conversion between objects
of class "dist" and conventional distance matrices.

Value

dist returns an object of class "dist".

The lower triangle of the distance matrix stored by columns in a vector, say do. If n is the number
of observations, i.e., n <- attr(do, "Size"), then for i < j ≤ n, the dissimilarity between (row)
i and j is do[n*(i-1) - i*(i-1)/2 + j-i]. The length of the vector is n ∗ (n− 1)/2, i.e., of order
n2.

The object has the following attributes (besides "class" equal to "dist"):

Size integer, the number of observations in the dataset.

Labels optionally, contains the labels, if any, of the observations of the dataset.

Diag, Upper logicals corresponding to the arguments diag and upper above, specifying how
the object should be printed.

call optionally, the call used to create the object.

method optionally, the distance method used; resulting from dist(), the (match.arg()ed)
method argument.

dist 293

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. Academic Press.

Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling. Theory and Applications.
Springer.

See Also

daisy in the cluster package with more possibilities in the case of mixed (continuous / categorical)
variables. hclust.

Examples

x <- matrix(rnorm(100), nrow=5)
dist(x)
dist(x, diag = TRUE)
dist(x, upper = TRUE)
m <- as.matrix(dist(x))
d <- as.dist(m)
stopifnot(d == dist(x))

Use correlations between variables "as distance"
dd <- as.dist((1 - cor(USJudgeRatings))/2)
round(1000 * dd) # (prints more nicely)
plot(hclust(dd)) # to see a dendrogram of clustered variables

example of binary and canberra distances.
x <- c(0, 0, 1, 1, 1, 1)
y <- c(1, 0, 1, 1, 0, 1)
dist(rbind(x,y), method= "binary")
answer 0.4 = 2/5
dist(rbind(x,y), method= "canberra")
answer 2 * (6/5)
dist(rbind(x,y), method= "jaccard")
answer 0.4 = 2/5

To find the names
labels(eurodist)

Examples involving "Inf" :
1)
x[6] <- Inf
(m2 <- rbind(x,y))
dist(m2, method="binary")# warning, answer 0.5 = 2/4
These all give "Inf":
stopifnot(Inf == dist(m2, method= "euclidean"),

Inf == dist(m2, method= "maximum"),
Inf == dist(m2, method= "manhattan"))

"Inf" is same as very large number:
x1 <- x; x1[6] <- 1e100

294 force.colour.scheme

stopifnot(dist(cbind(x ,y), method="canberra") ==
print(dist(cbind(x1,y), method="canberra")))

2)
y[6] <- Inf #-> 6-th pair is excluded
dist(rbind(x,y), method="binary") # warning; 0.5
dist(rbind(x,y), method="canberra") # 3
dist(rbind(x,y), method="maximum") # 1
dist(rbind(x,y), method="manhattan")# 2.4

force.colour.scheme Based on predefined colour schemes, returns a vector of correspond-
ing colours.

Description

Takes a vector of character strings and an scheme returns the matching colours as a vector.

Usage

force.colour.scheme(
x = NA,
scheme,
fill.colour = 'slategrey',
include.names = FALSE,
return.factor = FALSE,
return.scheme = FALSE
);

Arguments

x The input character or numeric vector, defaults to NA incase return.scheme =
TRUE.

scheme A string representing a predefined scheme. Available schemes are: “anno-
var.annotation”, “annovar.annotation.collapsed”, “annovar.annotation.collapsed2”,
“tissue”, “sex”, “stage”, “risk”, “MSI”, “tumour”, “CNV”, “organism”

, “chromosome” and “biomolecule”

fill.colour Value to enter when value of x not present in scheme.

include.names Should the output be a named vector or not?

return.factor Should factors (scheme names) be returned?

return.scheme Should the scheme list be returned?

force.colour.scheme 295

Details

The input character options for each colour scheme are as follows: annovar.annotation

• nonsynonymous snv

• stopgain snv

• stoploss snv

• frameshift deletion

• frameshift substitution

• splicing

• synonymous snv

annovar.annotation.collapsed

• nonsynonymous snv

• stopgain snv

• stoploss SNV

• frameshift indel

• splicing

annovar.annotation.collapsed2

• nonsynonymous

• stopgain-stoploss

• splicing

• frameshift indel

• synonymous

• utr5-utr3

• nonframeshift indel

• intronic

• intergenic

• other

tissue

• cartilage

• bone

• adipose

• bladder

• kidney

• blood

• heart

• muscle

296 force.colour.scheme

• hypothalamus

• pituitary

• thyroid

• parathyroid

• skin

• salivarygland

• esophagus

• stomach

• liver

• gallbladder

• pancreas

• intestine

• colon

• pharynx

• larynx

• trachea

• diaphragm

• lung

• nerve

• spine

• brain

• eye

• breast

• ovary

• uterus

• prostate

• testes

• lymph

• leukocyte

• spleen

sex

• male

• female

stage

• I

• II

force.colour.scheme 297

• III

• IV

risk

• High

• Low

MSI

• MSI-High

• MSI-Low

• MSS

tumour

• Primary

• Metastatic

CNV

• Amplification

• Deletion

• LOH

• Neutral

organism

• Human

• Rat

• Mouse

chromosome

• 1 - 22

• X

• Y

biomolecule

• DNA

• RNA

• Protein

• Carbohydrate

• Lipid

clinicalt3

• t0

298 force.colour.scheme

• t1

• t2

• t3

• t4

• t5

clinicalt9

• t1a

• t1b

• t1c

• t2a

• t2b

• t2c

• t3a

• t3b

• t3c

gleason.score

• 3+3

• 3+4

• 4+4

• 4+5

• 3+5

• 5+3

• 5+4

• 5+5

• missing

• NA

gleason.sum

• 5

• 6

• 7

• 8

• 9

• missing

• NA

tissue.color

force.colour.scheme 299

• blood

• frozen

• ffpe

psa.categorical

• 0 - 9.9

• 10 - 19.9

• >= 20

age.categorical.default

• <50

• 50 - 60

• 60 - 70

• >= 70

age.categorical.prostate

• <40

• 40 - 50

• 50 - 65

• 65 - 70

• >= 70

age.gradient

psa.gradient

heteroplasmy

• 0 - 0.2

• 0.2 - 0.4

• 0.4 - 0.6

• 0.6 - 1.0

mt.annotation

• MT-DLOOP

• MT-T*

• MT-RNR*

• MT-ND1

• MT-ND2

• MT-ND3

• MT-ND4L

• MT-ND4L/MT-ND4

• MT-ND4

300 force.colour.scheme

• MT-ND5

• MT-ND6

• MT-CO1

• MT-CO2

• MT-CO3

• MT-ATP6/MT-CO3

• MT-ATP6

• MT-ATP8/MT-ATP6

• MT-ATP8

• MT-CYB

• MT-NC*

• MT-OL*

isup.grade

• 1

• 2

• 3

• 4

• 5

Value

If multiple returns are requested, outputs a list (return.factor: factor length x with scheme names;
scheme: list containing scheme names and colours; colours: vector length x with the required
colours).

Author(s)

Nicholas Harding

Examples

annovar.output <- c('nonsynonymous snv', 'stopgain snv', 'none', 'stoploss snv',
'frameshift deletion', 'frameshift substitution', 'splicing', 'none');
force.colour.scheme(annovar.output,'annovar.annotation');
force.colour.scheme(annovar.output,'annovar.annotation', 'white');

generate.at.final 301

generate.at.final Generates alternative default tick mark locations for cre-
ate.densityplot() and create.scatterplot()

Description

Generates the tick mark locations for the output graphic of create.densityplot(), based on the values
to the arguments of that function. This is needed to ensure the grid line and tick mark locations
agree with each other.

Usage

generate.at.final(
at.input,
limits,
data.vector
);

Arguments

at.input either a logical scalar or a numeric vector

limits either NULL or a numeric vector of length 2

data.vector a numeric vector

Value

Returns a numeric vector containing the tick mark locations of the densityplot.

Author(s)

Kenneth C.K. Chu

get.corr.key Correlation Key

Description

A function for adding correlation key legends to scatterplots.

302 get.corr.key

Usage

get.corr.key(
x,
y,
label.items = c("spearman", "spearman.p"),
x.pos = 0.03,
y.pos = 0.97,
key.corner = NULL,
key.cex = 1,
key.title = NULL,
title.cex = 1,
alpha.background = 0,
num.decimals = 2,

border = 'white'
)

Arguments

x A vector of values

y Another vector of values with the same length as x

label.items A vector of things to include in the key. Any combination of the following can be
used. c("spearman","pearson","kendall","beta0", beta1,"spearman.p","pearson.p","kendall.p","beta1.p",
"beta.robust", "beta.robust.p"). "all" is an alternative to the full list.

x.pos Horizontal position of the key corner

y.pos Vertical position of the key corner

key.corner The corner of the key defaults to the closest corner of the plot. This helps over-
come some variable character and row sizing.

key.cex Specifies the size of font for the key, defaults to 1.

key.title The title of the key. Defaults to NULL

title.cex The size of the key title. Defaults to 1
alpha.background

A value from 0 to 1 indicating the transparency of the legend box.

num.decimals Number of decimal places to keep for spearman, pearson and kendall correla-
tions. Defaults to 2.

border Adds border around the key with the color specified, alpha background cannot
be 0. Defaults to White.

Value

Returns a key in the format specified in the xyplot documentation.

Author(s)

Daryl Waggott

get.corr.key 303

See Also

xyplot, plotmath

Examples

create some temporary data
tmp.data <- data.frame(

x = c(
runif(n = 15, min = 0, max = 20),
runif(n = 15, min = 80, max = 100),
runif(n = 70, min = 0, max = 100)
),

y = c(
runif(n = 15, min = 0, max = 20),
runif(n = 15, min = 80, max = 100),
runif(n = 70, min = 0, max = 100)
)

);

a simple scatterplot with correlation key
BoutrosLab.plotting.general::create.scatterplot(

formula = y ~ x,
data = tmp.data,
filename = tempfile(pattern = 'get.corr.key-scatterplot', fileext = '.tiff'),
xlab.label = 'X Axis Title',
ylab.label = 'Y Axis Title',
xlimits = c(0,100),
ylimits = c(0,100),
xat = seq(0,100,25),
yat = seq(0,100,25),
add.axes = FALSE,
key = BoutrosLab.plotting.general::get.corr.key(

tmp.data$y,
tmp.data$x,
label.items = c('spearman', 'spearman.p', 'kendall', 'beta1', 'beta1.p')
)

);

compare beta1 vs a robust estimate of the slope

add an outlier
tmp.data <- rbind(tmp.data, c(2000,100));

BoutrosLab.plotting.general::create.scatterplot(
formula = y ~ x,
data = tmp.data,
filename = tempfile(pattern = 'get.corr.key.robust-scatterplot', fileext = '.tiff'),
xlab.label = 'X Axis Title',
ylab.label = 'Y Axis Title',
xlimits = c(0,100),
ylimits = c(0,100),

304 get.correlation.p.and.corr

xat = seq(0,100,25),
yat = seq(0,100,25),
add.axes = FALSE,
key = BoutrosLab.plotting.general::get.corr.key(

tmp.data$y,
tmp.data$x,
label.items = c('beta1', 'beta1.robust','beta1.p','beta1.robust.p')
)

);

see create.scatterplot for an example of creating multiple keys using legends

get.correlation.p.and.corr

Calculate a correlation and its statistical significance

Description

Returns the correlation and p-value for two variables using a user-specified correlation metric. P-
values are estimated analytically, not via permutation-testing.

Usage

get.correlation.p.and.corr(x, y, alternative = 'two.sided', method = 'pearson');

Arguments

x Vector of numbers to analyze

y Vector of numbers to analyze

alternative What is the null-hypothesis?

method The correlation technique to use (passed directly to cor.test)

Value

Returns a two-element vector containing the correlation and its p-value.

Author(s)

Paul C. Boutros

get.defaults 305

Examples

get.correlation.p.and.corr(
x = runif(100),
y = runif(100),
method = 'pearson'
);

get.correlation.p.and.corr(
x = sample(1:10, 100, replace = TRUE),
y = runif(100),
method = 'spearman'
);

get.defaults Get operating system specific default properties

Description

Returns the value for the property requested

Usage

get.defaults(
property = 'fontfamily',
os.type = .Platform$OS.type,
add.to.list = NULL,
use.legacy.settings = FALSE
);

Arguments

property The property to be retrieved

os.type operating system (optional). valid values are: “windows”, “unix”

add.to.list appends the requested property to this parameter
use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

Value

Returns the value (list if add.to.list is passed) for the property requested given the os.type parameter.
If latter is missing, it attempts to find user’s operating system

Author(s)

Syed Haider

306 get.line.breaks

Examples

returns the fontfamily for current OS
get.defaults(property = "fontfamily");

returns the fontfamily for unix
get.defaults(property = "fontfamily", os.type = 'windows');

get.line.breaks Get line breaks

Description

Given a vector, returns the indices (and an adjustment to draw lines between cells) where the value is
not equal to the preceding value. Main use intended to be in row.lines arguments to create.heatmap

Usage

get.line.breaks(
x
);

Arguments

x A vector, numeric, factor or character.

Value

A vector of integers representing the break points in the vector x

Author(s)

Nicholas Harding

Examples

set.seed(12345);
values <- sample(
default.colours(3),
20,
replace = TRUE
);
get.line.breaks(values);

legend.grob 307

legend.grob Generate a legend grob

Description

Takes a list and generates a grob representing one or more legends

Usage

legend.grob(
legends,
label.cex = 1,
title.cex = 1,
title.just = 'centre',
title.fontface = 'bold',
title.y.coord = 1,
font.family = NULL,
size = 3,
border = NULL,
border.padding = 1,
layout = c(1, length(legends)),
between.col = 1,
between.row = 1,
use.legacy.settings = FALSE,

x = 0.5,
y = 0.5,

background.col = "white",
background.alpha = 0
);

Arguments

legends A list defining one or more legends. Each must be a separate component called
’legend’. Each component is a list with components ’colours’, ’labels’, ’border’
(optional), ’title’ (optional), and ’size’ (optional).
The ’colours’ component is a vector of fill colours to be used for the rectangles,
the ’labels’ component is a vector of text labels corresponding to the colours,
the ’border’ component specifies the colours of the rectangle borders (defaults
to black), and the ’title’ component is a character string representing a title for
the legend.

label.cex Size of text labels in the legends, defaults to 1.

title.cex Size of titles in the legends, defaults to 1.

title.just Justification of titles in the legends. Defaults to ’centre’.

title.fontface Font face of titles in the legends (’plain’, ’bold’, ’italic’, etc.)

title.y.coord Vertical position of title. Set to 1 for normal position, increase values >1 to raise
the title higher.

308 legend.grob

font.family Font to be used for legend text. If NULL, the default font is used.

size Width of the legend boxes in ’character’ units. If a ’size’ argument is specified
for a legend component, it will override this value.

border A list of parameters (passed to gpar) specifying line options for the legend bor-
der. If NULL, no border is drawn.

border.padding The amount of empty space (split equally on both sides) to add between the
legend and its border, in ’lines’ units. Defaults to 1.

layout Numeric vector of length 2 specifying the number of columns and rows for the
legend layout. Defaults to a 1-column layout. Note that legends are added to the
layout in a row-wise order.

between.col Amount of space to add between columns in the layout, in ’lines’ units. Defaults
to 0.5.

between.row Amount of space to add between rows in the layout, in ’lines’ units. Defaults to
0.5.

use.legacy.settings

boolean to set wheter or not to use legacy mode settings (font)

x x coordinate in npc coordinate system

y y coordinate in npc coordinate system

background.col colour for the background of the legend grob
background.alpha

alpha for the background of the legend grob

Value

Returns an grob representing the legend(s)

Implementation

This function was initially created to be called from create.heatmap to draw a covariate legend.
The decision to use a grob (grid graphical object) to represent the legend was made based on the
format of the levelplot function in the lattice package. Since the legend argument of the
function requires grobs, it was easiest to create a grob to represent the legend and then, if necessary,
add this to any existing grobs (dendrograms, etc.) in the create.heatmap function using a grid
layout.
An alternative method of creating the legend using the barchart function was tested, but it was
unclear how to merge this barchart with the heatmap since the c.trellis function attempts to
unify the format of the two images, and the use of viewports required that the plots be drawn,
eliminating the possibility of suppressing output and saving the final graph as a trellis object.

Author(s)

Lauren Chong

See Also

create.heatmap, draw.key, gpar

legend.grob 309

Examples

The 'cairo' graphics is preferred but on M1 Macs this is not available
bitmap.type = getOption('bitmapType')
if (capabilities('cairo')) {
bitmap.type <- 'cairo';
}

create list representing two legends
legends1 <- list(

legend = list(
colours = c('orange', 'chartreuse4', 'darkorchid4'),
labels = c('Group 1', 'Group 2', 'Group 3'),
border = c('orange', 'chartreuse4', 'darkorchid4'),
title = 'Legend #1'
),

legend = list(
colours = c('firebrick3', 'lightgrey'),
labels = c('Case', 'Control')
)

);

create a legend grob using defaults
legend.grob1 <- legend.grob(

legends = legends1
);

tiff(
filename = tempfile(pattern = 'legend_grob1', fileext = '.tiff'),
type = bitmap.type,
width = 5,
height = 5,
units = 'in',
res = 800,
compression = 'lzw'
);

grid.draw(legend.grob1);
dev.off();

create the same legend with some customizations
legend.grob2 <- legend.grob(

legends = legends1,
label.cex = 1.25,
title.cex = 1.25,
title.just = 'left',
title.fontface = 'bold.italic',
size = 4,
border = list(),
layout = c(2,1)
);

tiff(
filename = tempfile(pattern = 'legend_grob2', fileext = '.tiff'),
type = bitmap.type,
width = 5,

310 legend.grob

height = 5,
units = 'in',
res = 800,
compression = 'lzw'
);

grid.draw(legend.grob2);
dev.off();

create a legend where the title is underlined (see ?plotmath), add space between rows
legends2 <- list(

legend = list(
colours = c('orange', 'chartreuse4', 'darkorchid4'),
labels = c('Group 1', 'Group 2', 'Group 3'),
title = expression(underline('Legend #1'))
),

Use dots instead of rectangles
point = list(

colours = c('firebrick3', 'lightgrey'),
labels = c('A label', 'A longer label'),
Set dot size
cex = 1.5
)

);

create the new legend and use more complex border
legend.grob3 <- legend.grob(

legends = legends2,
border = list(col = 'blue', lwd = 2, lty = 3),
border.padding = 1.5,
between.row = 3
);

tiff(
filename = tempfile(pattern = 'legend_grob3', fileext = '.tiff'),
type = bitmap.type,
width = 5,
height = 5,
units = 'in',
res = 800,
compression = 'lzw'
);

grid.draw(legend.grob3);
dev.off();

Make a legend where the size of boxes is customized
legends3 <- list(

legend = list(
colours = c('orange', 'chartreuse4', 'darkorchid4'),
labels = c('Group 1', 'Group 2', 'Group 3'),
title = 'Legend #1',
size = c(3,2,1)
),

legend = list(
colours = NULL,

microarray 311

labels = c('+', '-'),
border = 'transparent',
title = 'Disease status',
size = 0.5
)

);
legend.grob4 <- legend.grob(

legends = legends3
);

tiff(
filename = tempfile(pattern = 'legend_grob4', fileext = '.tiff'),
type = bitmap.type,
width = 5,
height = 5,
units = 'in',
res = 800,
compression = 'lzw'
);

grid.draw(legend.grob4);
dev.off();

microarray Microarray dataset of colon cancer patients

Description

Gene expression level changes of 2382 genes across 58 colon cancer patients. Additional data on
the genes include chromosomal location and p-values. Additional data on the patient samples is
found in in the "patient" dataset. The same patient samples are described in the "SNV" and "CNA"
datasets.

Usage

microarray

Format

A data frame with 62 columns and 2383 rows. Columns 1-58 indicate the cancer patient sample.
Columns 59-61 indicate the (sorted) chromosomal location by "Chr", "Start", and "End". Column
62 contains adjusted p-values. Each row is a different gene, and the row names are the gene names.

Author(s)

Christine P’ng

312 patient

Examples

create.dotmap(
filename = tempfile(pattern = 'Using_microarray_dataset', fileext = '.tiff'),
x = microarray[1:5,1:5],
main = 'microarray data',
spot.size.function = function(x) {abs(x)/3;},
xaxis.cex = 0.8,

yaxis.cex = 0.8,
xaxis.rot = 90,

description = 'Dotmap created by BoutrosLab.plotting.general'
);

panel.BL.bwplot A lattice::panel.bwplot replacement that fixes colouring issues

Description

Function lattice::bwplot() shows unexpected and unintuitive behaviour when colouring parameters
of par.settings are vectors. The function panel.BL.bwplot fixes these issues. It should be called only
from lattice::bwplot(). Use with caution. This function is invoked by create.boxplot

Arguments

... Pass through argument. See lattice::bwplot() for further details.
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

Author(s)

Mehrdad Shamsi

See Also

create.boxplot

patient Dataset describing qualities of 58 colon cancer patients

Description

A number of qualities describing 58 colon cancer patients. The same patient samples are described
in the "microarray", "SNV" and "CNA" datasets.

Usage

patient

patient 313

Format

A data frame with 5 columns and 58 rows. Each row indicates a different patient sample, with the
following columns describing a feature of the sample:

sex The sex of the paient, either "male" or "female"

stage The stage of the patient’s cancer, one of "I", "II", "III", "IV", or NA

msi The microsatellite instabiltiy of the cancer, either "MSS" or "MSI-High"

prop.CAGT The proportion of C to A or G to T base changes between the sample and reference
genome

prop.CTGA The proportion of C to T or G to A base changes between the sample and reference
genome

prop.CGGC The proportion of C to G or G to C base changes between the sample and reference
genome

prop.TAAT The proportion of T to A or A to T base changes between the sample and reference
genome

prop.TGAC The proportion of T to G or A to C base changes between the sample and reference
genome

prop.TCAG The proportion of T to C or A to G base changes between the sample and reference
genome

Author(s)

Christine P’ng

Examples

use sample to set colour scheme
sex.colours <- replace(as.vector(patient$sex), which(patient$sex == 'male'),'dodgerblue');
sex.colours <- replace(sex.colours, which(patient$sex == 'female'), 'pink');
len <- apply(SNV[1:15], 2, function(x){mutation.count <- length(which(x == 1))});

create.barplot(
filename = tempfile(pattern = 'Using_patient_dataset', fileext = '.tiff'),
formula = len ~ colnames(SNV[1:15]) ,
data = SNV,
main = 'patient dataset',
xaxis.rot = 45,
ylimits = c(0,30),
yat = seq(0,30,5),
col = sex.colours,
description = 'Barplot created by BoutrosLab.plotting.general'
);

314 scientific.notation

pcawg.colours Return standard PCAWG colour palettes.

Description

Return standard PCAWG colour palettes. Case insensitive.

Usage

pcawg.colours(
x = NULL,
scheme = NULL,
fill.colour = 'slategrey',
return.scheme = FALSE);

Arguments

x Chracter vector with terms to be mapped to colours. Ignored if scheme=’all’ or
return.scheme=TRUE.

scheme String specifying desired colour scheme. To see all available schemes, use
scheme=’all’, returns.scheme=FALSE.

fill.colour Unrecognized output will be filled with this colour. Default to ’slategrey’.
return.scheme TRUE/FALSE. Set to true to return full specified scheme. Set to false to map x

to colours.

Details

For further information on colour schemes, refer to the plotting guide.)

Author(s)

Jennifer Aguiar & Constance Li

scientific.notation Use scientific notation in plots

Description

Returns an expression or list for plotting data in scientific notation

Usage

scientific.notation(
x,
digits = 1,
type = 'expression'
);

show.available.palettes 315

Arguments

x The number we want in scientific notation.

digits How many decimal places to keep.

type The format to return the value in. Defaults to ’expression’, also accepts ’list’

Value

Generates scientific notation either as an expression or list.

Author(s)

Paul C. Boutros

show.available.palettes

Display the available colour palettes

Description

Displays the available colour palettes

Usage

show.available.palettes(
type = 'general',
filename = NULL,
height = 5,
width = 8,
resolution = 300
);

Arguments

type Either “general”, “specific”, or “both” (default)

filename Filename for tiff output, or if NULL returns the trellis object itself

height Figure height, defaults to 8 inches – this is optimal for the specific schemes

width Figure width, defaults to 12 – this is optimal for the specific schemes

resolution Figure resolution in dpi, defaults to 300

Author(s)

Christine P’ng

316 SNV

Examples

show.available.palettes(
filename = tempfile(pattern = 'show_case_specific_schemes', fileext = '.tiff'),
type = 'specific',
width = 10
);

show.available.palettes(
filename = tempfile(pattern = 'default_schemes', fileext = '.tiff'),
type = 'general',
height = 6,
width = 8
);

SNV Single nucleotide variant (SNV) data from colon cancer patients

Description

SNV calls from 30 genes across 58 colon cancer patients. Additional data on the patient samples
is found in in the "patient" dataset. The same patient samples are described in the "microarray"
and "CNA" datasets.

Usage

SNV

Format

A data frame with 58 columns and 30 rows. The columns indicate the patient sample, and the rows
indicate the gene. The contents of the data frame are either NA (indicating no SNV call was made)
or one of:

• 1 - nonsynonymous SNV

• 2 - stopgain SNV

• 3 - frameshift insertion

• 4 - frameshift deletion

• 5 - nonframeshift insertion

• 6 - nonframeshift deletion

• 7 - splicing

• 8 - unknown

Author(s)

Christine P’ng

thousands.split 317

Examples

len <- apply(SNV[1:15], 2, function(x){mutation.count <- length(which(x == 1))});

create.barplot(
filename = tempfile(pattern = 'Using_SNV_dataset', fileext = '.tiff'),
formula = len ~ colnames(SNV[1:15]) ,
data = SNV,
main = 'SNV dataset',
xaxis.rot = 45,
ylimits = c(0,30),
yat = seq(0,30,5),
description = 'Barplot created by BoutrosLab.plotting.general'
);

thousands.split Divide strings into groups of thousands

Description

Takes a single number or list, and converts them into a new string with commas to mark the thousand
multiples

Usage

thousands.split(
nums

)

Arguments

nums The numbers to be divided

Author(s)

Jeffrey Green

Examples

thousands.split(2344)

nums = c(1,2,34343,56565645645,676756,3434)

thousands.split(nums)

scatter.data <- data.frame(
sample.one = microarray[1:800,1],
sample.two = microarray[1:800,2],
chr = microarray$Chr[1:800]
);

318 write.metadata

create.scatterplot(
filename = tempfile(pattern = 'Test_Divide_Thousands', fileext = '.tiff'),
formula = sample.two ~ sample.one,
data = scatter.data,
main = 'Axes & Labels',
Axes and labels
xlab.label = colnames(microarray[1]),
ylab.label = colnames(microarray[2]),
yaxis.lab = thousands.split(c(1,2323,4545,567676,454,76767678678,89,787)),
xat = seq(0, 16, 2),
yat = seq(0, 16, 2),
xlimits = c(0, 15),
ylimits = c(0, 15),
xaxis.cex = 1,
yaxis.cex = 1,
xaxis.fontface = 1,
yaxis.fontface = 1,
xlab.cex = 1.5,
ylab.cex = 1.5,
description = 'Scatter plot created by BoutrosLab.plotting.general'
);

write.metadata Writes Metadata

Description

Utilizes exiftool to write metadata to generated plots. Writes the R version, lattice version, lattice-
Extra version, BoutrosLab.plotting.general version, BoutrosLab.plotting.survival version, operating
system, machine, author, image description.

Usage

write.metadata(
filename = NULL,
description = NULL,
verbose = FALSE
);

Arguments

filename Filename for output, or if NULL (default value) returns image unchanged.

description Short description of image; default NULL

verbose Option to standard output; default FALSE

write.plot 319

Value

If filename is NULL, returns the image unchanged. If description is NULL, then the image is
returned without the description tag.

Note: an easy way to view the metadata is by using the exiftool command.

Author(s)

Esther Jung

write.plot Simplifies plotting by standardizing and centralizing all output-
handling

Description

Handle various graphics-driver weirdness and writes an output file and returns 1 or returns the
trellis.object

Usage

write.plot(
trellis.object,
filename = NULL,
additional.trellis.objects = NULL,
additional.trellis.locations = NULL,
height = 6,
width = 6,
size.units = 'in',
resolution = 1000,
enable.warnings = FALSE,
description = "Created with BoutrosLab.plotting.general"
);

Arguments

trellis.object A trellis object to be plotted

filename Filename for output, or if NULL (default value) returns the trellis object itself.
Will automatically grab the extension used.

additional.trellis.objects

List of additional trellis objects to add to main plot. Default to NULL
additional.trellis.locations

List of coordinates for additional trellis objects. Must be represented using vari-
able names ’xleft’, ’ybottom’, ’xright’ and ’ytop’. Defaults to NULL

height Figure height, defaults to 6 inches

width Figure width, defaults to 6 inches

320 write.plot

size.units Figure units, defaults to ’in’

resolution Figure resolution, defaults to 1000
enable.warnings

Print warnings if set to TRUE, defaults to FALSE

description Short description of image; default NULL

Value

Returns the trellis.object if filename is NULL or writes the plot to file if a filename is specified.

Author(s)

Paul C. Boutros

Examples

set.seed(253647)
create test data
tmp.data <- data.frame(

x = c(
runif(n = 150, min = 0, max = 20),
runif(n = 150, min = 40, max = 60),
runif(n = 700, min = 0, max = 40)
),

y = c(
runif(n = 150, min = 0, max = 20),
runif(n = 150, min = 40, max = 60),
runif(n = 700, min = 0, max = 40)
)

);

main.plot <- create.densityplot(
x = list(

X = tmp.data$x,
Y = tmp.data$y
),

xlab.label = 'X Axis Title',
ylab.label = 'Y Axis Title',
xlimits = c(-50,150),
ylimits = c(0,0.03),
xat = seq(-50,150,50),
yat = seq(0,0.03,0.005),
description = 'Image description goes here'
);

secondary.plot <- create.densityplot(
x = list(

X = tmp.data$x,
Y = tmp.data$y
),

xlab.label = '',

write.plot 321

ylab.label = '',
xlimits = c(50,75),
ylimits = c(0,0.015),
xat = seq(0,150,10),
yat = seq(0,0.015,0.005),
xaxis.tck = 0,
description = 'Image description goes here'
);

write.plot(
filename = tempfile(pattern = 'write_plot_example', fileext = '.tiff'),
trellis.object = main.plot,
additional.trellis.objects = list(secondary.plot),
additional.trellis.locations = list(

xleft = 0.6,
ybottom = 0.5,
xright =0.97,
ytop = 0.9
),

resolution = 50 # Lowering resolution decreases file size
);

Index

∗ RGB
colour.gradient, 5
show.available.palettes, 315

∗ aplot
panel.BL.bwplot, 312

∗ cluster
create.dendrogram, 52
create.heatmap, 82
dist, 291

∗ colour
colour.gradient, 5
default.colours, 288
display.colours, 289
pcawg.colours, 314
show.available.palettes, 315

∗ datasets
CNA, 4
microarray, 311
patient, 312
SNV, 316

∗ dissimilarity
dist, 291

∗ grey
colour.gradient, 5
display.colours, 289
show.available.palettes, 315

∗ hplot
create.barplot, 9
create.boxplot, 35
create.densityplot, 54
create.dotmap, 64
create.heatmap, 82
create.hexbinplot, 111
create.histogram, 125
create.lollipopplot, 133
create.manhattanplot, 142
create.multipanelplot, 154
create.multiplot, 173
create.polygonplot, 200

create.qqplot.comparison, 214
create.qqplot.fit, 221
create.scatterplot, 232
create.segplot, 255
create.stripplot, 266
create.violinplot, 276
display.statistical.result, 290

∗ htest
critical.value.ks.test, 287
get.correlation.p.and.corr, 304

∗ iplot
create.qqplot.fit.confidence.interval,

231
generate.at.final, 301
get.defaults, 305
scientific.notation, 314
write.plot, 319

∗ multivariate
dist, 291

∗ scheme
colour.gradient, 5
default.colours, 288
display.colours, 289
pcawg.colours, 314
show.available.palettes, 315

∗ write
write.metadata, 318

∗ xyplot
create.colourkey, 50
get.corr.key, 301

auto.axis, 3

barchart, 17
bwplot, 41, 281

call, 292
CNA, 4
color.gradient (colour.gradient), 5
colour.gradient, 5

322

INDEX 323

covariates.grob, 6, 92
create.barplot, 9
create.boxplot, 35, 312
create.colorkey (create.colourkey), 50
create.colourkey, 50
create.dendrogram, 52, 92
create.densityplot, 54
create.dotmap, 64
create.gif, 80
create.heatmap, 82, 308
create.hexbinplot, 111
create.histogram, 125
create.lollipopplot, 133
create.manhattanplot, 142
create.multipanelplot, 154
create.multiplot, 173
create.polygonplot, 200
create.qqplot.comparison, 214
create.qqplot.fit, 221
create.qqplot.fit.confidence.interval,

231
create.scatterplot, 232
create.segplot, 255
create.stripplot, 266
create.violinplot, 276
critical.value.ks.test, 287

daisy, 293
default.colors (default.colours), 288
default.colours, 288
display.colors (display.colours), 289
display.colours, 289
display.statistical.result, 290
dist, 291, 292
do.call, 117
draw.key, 308

force.color.scheme
(force.colour.scheme), 294

force.colour.scheme, 294

generate.at.final, 301
get.corr.key, 301
get.correlation.p.and.corr, 304
get.defaults, 305
get.line.breaks, 306
gpar, 7, 308

hclust, 293

histogram, 130

lattice, 4, 17, 41, 59, 70, 81, 118, 130, 142,
149, 207, 218, 226, 241, 271, 281

lattice::ltext, 16
legend.grob, 92, 307
levelplot, 70, 260

match.arg, 292
microarray, 311
missing, 117

panel.BL.bwplot, 312
patient, 312
pcawg.colors (pcawg.colours), 314
pcawg.colours, 314

qq, 218
qqmath, 226

scientific.notation, 314
segplot, 260
show.available.palettes, 315
SNV, 316
stripplot, 4, 81, 271
substitute, 117

thousands.split, 317

write.metadata, 318
write.plot, 319

xyplot, 59, 70, 118, 142, 149, 207, 241

	auto.axis
	CNA
	colour.gradient
	covariates.grob
	create.barplot
	create.boxplot
	create.colourkey
	create.dendrogram
	create.densityplot
	create.dotmap
	create.gif
	create.heatmap
	create.hexbinplot
	create.histogram
	create.lollipopplot
	create.manhattanplot
	create.multipanelplot
	create.multiplot
	create.polygonplot
	create.qqplot.comparison
	create.qqplot.fit
	create.qqplot.fit.confidence.interval
	create.scatterplot
	create.segplot
	create.stripplot
	create.violinplot
	critical.value.ks.test
	default.colours
	display.colours
	display.statistical.result
	dist
	force.colour.scheme
	generate.at.final
	get.corr.key
	get.correlation.p.and.corr
	get.defaults
	get.line.breaks
	legend.grob
	microarray
	panel.BL.bwplot
	patient
	pcawg.colours
	scientific.notation
	show.available.palettes
	SNV
	thousands.split
	write.metadata
	write.plot
	Index

