Package ‘Colossus’

January 23, 2026

Type Package

Title " " Risk Model Regression and Analysis with Complex Non-Linear
Models"

Version 1.4.9

URL https://ericgiunta.github.io/Colossus/,
https://github.com/ericgiunta/Colossus

BugReports https://github.com/ericgiunta/Colossus/issues

Description Performs survival analysis using general non-linear models. Risk mod-
els can be the sum or product of terms. Each term is the product of exponential/linear func-
tions of covariates. Additionally sub-terms can be defined as a sum of exponential, linear thresh-
old, and step functions. Cox Proportional haz-
ards <https://en.wikipedia.org/wiki/Proportional_hazards_model>, Pois-
son <https://en.wikipedia.org/wiki/Poisson_regression>, and Fine-Gray compet-
ing risks <https://www.publichealth.columbia.edu/research/
population-health-methods/competing-risk-analysis> regression are sup-
ported. This work was spon-
sored by NASA Grants 8ONSSC19MO0161 and 8ONSSC23MO0129 through a subcon-
tract from the National Council on Radiation Protection and Measurements (NCRP). The com-
puting for this project was performed on the Beocat Research Cluster at Kansas State Univer-
sity, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, ACI-
1440548, CHE-1726332, and NIH P20GM113109.

License GPL (>=3)

Imports Rcpp, data.table, parallel, stats, utils, rlang, methods,
callr, stringr, processx, dplyr, tibble, lubridate

LinkingTo Rcpp, RcppEigen, testthat
SystemRequirements make, C++17
RoxygenNote 7.3.3

Encoding UTF-8

Suggests knitr, rmarkdown, testthat, xml2, pandoc, spelling, survival,
splines, ggplot2

Config/testthat/edition 3


https://ericgiunta.github.io/Colossus/
https://github.com/ericgiunta/Colossus
https://github.com/ericgiunta/Colossus/issues
https://en.wikipedia.org/wiki/Proportional_hazards_model
https://en.wikipedia.org/wiki/Poisson_regression
https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis
https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis

VignetteBuilder knitr
Language en-US
Biarch TRUE
NeedsCompilation yes

Author Eric Giunta [aut, cre] (ORCID: <https://orcid.org/0000-0002-1577-766X>),
Amir Bahadori [ctb] (ORCID: <https://orcid.org/0000-0002-4589-105X>),
Dan Andresen [ctb] (ORCID: <https://orcid.org/0000-0003-2345-6695>),
Linda Walsh [ctb] (ORCID: <https://orcid.org/0000-0001-7399-9191>),
Benjamin French [ctb] (ORCID: <https://orcid.org/0000-0001-9265-5378>),
Lawrence Dauer [ctb] (ORCID: <https://orcid.org/0000-0002-5629-8462>),
John Boice Jr [ctb] (ORCID: <https://orcid.org/0000-0002-8755-1299>),
Kansas State University [cph],

NASA [fnd],
NCRP [fnd],
NRC [fnd]

Maintainer Eric Giunta <egiunta@ksu.edu>
Repository CRAN
Date/Publication 2026-01-23 17:40:02 UTC

Contents

CaseControlRun . . . . . . . . . . . . . e e
ColossusCoxXSUurv . . . . . . . . e e e e
ColossusLogitSurv . . . . . . . ...
ColossusPoisSurv . . . . . . . . ..
CoxRun . . . . . . e e e e
CoxRunMulti . . . . . . . . . . e
Date_Shift . . . . . . . . . e
EventAssignment . . . . . . . .. ...
EventAssignment.default . . . . . . ... ... oL Lo
EventAssignment.poisres . . . . . . . .. ... oo
EventAssignment.poisresbound . . . . . . ... ... oL Lo
Event_Count_Gen. . . . . . . . . . . . . . . e
Event_Time_Gen . . . . . . . . . . . . . . e
factorize . . . . . . . .. e
gen_time_dep . . . . . ...
get_form . . . . . ... e
get_form_joint . . . . ... L
Joint_Multiple_Events . . . . . . ... ..o
LikelihoodBound . . . . . . . . . . . .. ...
LikelihoodBound.coxres . . . . . . . . . . . . . . ... ...
LikelihoodBound.default . . . . . . ... ... ... ... ... ..........
LikelihoodBound.poisres . . . . . . . . . . . . . e
Likelihood_Ratio_Test . . . . . . . . . . . . . .. . . i
Linked Dose Formula . . . . . . . . . . . . . .
Linked_Lin_Exp_Para . . . ... ... ... ... . ... ...

Contents


https://orcid.org/0000-0002-1577-766X
https://orcid.org/0000-0002-4589-105X
https://orcid.org/0000-0003-2345-6695
https://orcid.org/0000-0001-7399-9191
https://orcid.org/0000-0001-9265-5378
https://orcid.org/0000-0002-5629-8462
https://orcid.org/0000-0002-8755-1299

CaseControlRun 3

LogisticRun . . . . . . . . . . e e e 29
OMP_Check . . . . . . . 30
PIOL.COXIES . . . . v v o o e e e e e e e e e e e e e e e e e e e 31
plotMartingale . . . . . . . . .. L e 32
plotMartingale.CoXres . . . . . . . . . . ... e e e e 33
plotMartingale.default . . . . . . .. ... ... oL 33
plotRisk . . . . . . 34
plotRisk.coxres . . . . . ... 34
plotRisk.default . . . . . . ... 35
plotSchoenfeld . . . . . .. . ... L 36
plotSchoenfeld.coxres . . . . . . . . . . . 36
plotSchoenfeld.default . . . . .. ... ... ... 37
plotSurvival . . . . ..o 37
plotSurvival.coxres . . . . . . . .. L 38
plotSurvival.default . . . . . . . . .. L 39
PoisRun . . . . . . .. 40
PoisRunJoint . . . . . . . . .. 42
PoisRunMulti . . . . . ... ... 43
PrINE.CASECONIES . . . o o v v v v e e e b e e e e e e e e e e e e e e 46
PrINL.COXTES . . . . v o it i o e e e e e e e e e e e e e e 46
print.coxresbound . . . . . ... L L 47
printlogitres . . . . . . L. e e e e e e 48
PIINLPOISIES . . . o o o o o vt i e e e e e e e e e e e 48
print.poisresbound . . . . ... L 49
RelativeRisk . . . . . . . . . o 50
RelativeRisk.coxres . . . . . . .. ... 50
RelativeRisk.default . . . . . . . . . .. .. 51
Replace_Missing . . . . . . . . . 0 o i e e e e 52
Residual . . . . . . . . . 53
Residual.default . . . . . . ... ... 53
Residual.poisres . . . . . . . . . . .. 54
System_Version . . . . . . . . ... e e e e e e e 55
Time_Since . . . . . . . . e e 55
Index 57
CaseControlRun Fully runs a case-control regression model, returning the model and
results
Description

CaseControlRun uses a formula, data.table, and list of controls to prepare and run a Colossus
matched case-control regression function



Usage

CaseControlRun(

model,
df,

CaseControlRun

a_n = list(c(@)),
keep_constant = c(0),
control = list(),
conditional_threshold = 50,
gradient_control = list(),
single = FALSE,

observed_info

= FALSE,

cons_mat = as.matrix(c(9)),

cons_vec =

c(0),

norm = "null”,

Arguments

model

df
a_n

keep_constant
control

either a formula written for the get_form function, or the model result from the
get_form function.

a data.table containing the columns of interest

list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

binary values to denote which parameters to change

list of parameters controlling the convergence, see the Control_Options vignette
for details

conditional_threshold

threshold above which unconditional logistic regression is used to calculate like-
lihoods in a matched group

gradient_control

single

observed_info

cons_mat

cons_vec

norm

a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations

a boolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

Matrix containing coefficients for a system of linear constraints, formatted as
matrix

Vector containing constants for a system of linear constraints, formatted as vec-
tor

methods used to normalize the covariates. Default is *null” for no normalization.
Other options include 'max’ to normalize by the absolute maximum and *'mean’
to normalize by the mean

can include the named entries for the control list parameter



ColossusCoxSurv 5

Value

returns a class fully describing the model and the regression results

Examples

library(data.table)

df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age” = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status” = c(0, 0, 1, o, 1, 0, 0),

"a" =c(o, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c¢" = c(lo, 11, 10, 11, 12, 9, 11),
"d" = c(o, 0, 0, 1, 1, 1, 1),
"e" = c(0, 0, 1, 0, 0, 9, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax"” = 1
)

formula <- CaseCon_Strata(Cancer_Status, e) ~
loglinear(a, b, ¢, @) + plinear(d, @) + multiplicative()
res <- CaseControlRun(formula, df,
a_n = list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4)),
control = control

ColossusCoxSurv Interprets basic cox survival formula RHS

Description

ColossusCoxSurv assigns and interprets interval columns for cox model. This functions is called
using the arguments for Cox in the right-hand side of the formula. Uses an interval start time, end
time, and event status. These are expected to be in order or named: tstart, tend, and event. The
Fine-Gray and Stratified versions use strata and weight named options or the last two entries.

Usage

ColossusCoxSurv(...)

Arguments

Value

entries for a cox survival object, tstart, tend, and event. Either in order or named.
If unnamed and two entries, tend and event are assumed.

returns list with interval endpoints and event



6 ColossusPoisSurv

See Also

Other Formula Interpretation: ColossusLogitSurv(), ColossusPoisSurv(), get_form(), get_form_joint()

ColossusLogitSurv Interprets basic logistic survival formula RHS with no grouping

Description
ColossusLogitSurv assigns and interprets columns for trials and events in logistic model with no
grouping.

Usage

ColossusLogitSurv(...)

Arguments
entries for a Logistic object, trials and events. trials not provided assumes one
trial per row.

Value

returns list with event

See Also

Other Formula Interpretation: ColossusCoxSurv(), ColossusPoisSurv(), get_form(), get_form_joint()

ColossusPoisSurv Interprets basic poisson survival formula RHS

Description

ColossusPoisSurv assigns and interprets interval columns for poisson model. This functions is
called using the arguments for Poisson or Poisson_Strata in the right-hand side of the formula.
Uses an person-year column, number of events, and any strata columns. The first two are expected
to be in order or named: pyr and event. Anything beyond the event name is assumed to be strata if
Poisson_Strata is used.

Usage

ColossusPoisSurv(...)



CoxRun 7

Arguments
entries for a Poisson object with or without strata, pyr, event, and any strata
columns. Either in order or named. The first two are assumed to be pyr and
event, the rest assumed to be strata columns

Value

returns list with duration, strata if used, and event

See Also

Other Formula Interpretation: ColossusCoxSurv(), ColossusLogitSurv(), get_form(), get_form_joint()

CoxRun Fully runs a cox or fine-gray regression model, returning the model
and results

Description

CoxRun uses a formula, data.table, and list of controls to prepare and run a Colossus cox or fine-gray
regression function

Usage

CoxRun(
model,
df,
a_n = list(c(@)),
keep_constant = c(9@),
control = list(),
gradient_control = list(),
single = FALSE,
observed_info = FALSE,
cons_mat = as.matrix(c(@)),
cons_vec = c(0),

norm = "null”,
)
Arguments
model either a formula written for the get_form function, or the model result from the
get_form function.
df a data.table containing the columns of interest
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.



keep_constant

control

CoxRun

binary values to denote which parameters to change

list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control

single

observed_info

cons_mat

cons_vec

norm

Value

a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations

a boolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

Matrix containing coefficients for a system of linear constraints, formatted as
matrix

Vector containing constants for a system of linear constraints, formatted as vec-
tor

methods used to normalize the covariates. Default is *null’ for no normalization.
Other options include max’ to normalize by the absolute maximum and *mean’
to normalize by the mean

can include the named entries for the control list parameter

returns a class fully describing the model and the regression results

See Also

Other Cox Wrapper Functions: CoxRunMulti(), LikelihoodBound. coxres()

Examples

library(data.table)

df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),

"Cancer_Status”

= c(18, 20, 18, 19, 21, 20, 18),

= C(@, 0’ 1, 0, 1! @, 0)’

"a" =c(o, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c" = c(lo, 11, 10, 11, 12, 9, 11),
"d" = c(o, 0, 0, 1, 1, 1, 1),
"e" = c(0, 0, 1, 0, 0, 0, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax" = 1
)

formula <- Cox(Starting_Age, Ending_Age, Cancer_Status) ~
loglinear(a, b, c, @) + plinear(d, @) + multiplicative()
res <- CoxRun(formula, df,



CoxRunMulti 9

a_n = list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4)),
control = control

)
CoxRunMulti Fully runs a cox or fine-gray regression model with multiple column
realizations, returning the model and results
Description

CoxRunMulti uses a formula, data.table, and list of controls to prepare and run a Colossus cox or
fine-gray regression function

Usage

CoxRunMulti(
model,
df,
a_n = list(c(@)),
keep_constant = c(0),
realization_columns = matrix(c("temp@@", "temp@1"”, "temp10"”, "temp11"), nrow = 2),
realization_index = c("temp@”, "templ"),
control = list(),
gradient_control = list(),
single = FALSE,
observed_info = FALSE,
fma = FALSE,
mcml = FALSE,
cons_mat = as.matrix(c(9)),
cons_vec = c(0@),

)
Arguments
model either a formula written for the get_form function, or the model result from the
get_form function.
df a data.table containing the columns of interest
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

keep_constant binary values to denote which parameters to change

realization_columns
used for multi-realization regressions. Matrix of column names with rows for
each column with realizations, columns for each realization



10 CoxRunMulti

realization_index
used for multi-realization regressions. Vector of column names, one for each
column with realizations. Each name should be used in the "names" variable in
the equation definition

control list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control
a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

single a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations

observed_info aboolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

fma a boolean to denote that the Frequentist Model Averaging method should be
used

mcml a boolean to denote that the Monte Carlo Maximum Likelihood method should
be used

cons_mat Matrix containing coefficients for a system of linear constraints, formatted as
matrix

cons_vec Vector containing constants for a system of linear constraints, formatted as vec-
tor

can include the named entries for the control list parameter

Value

returns a class fully describing the model and the regression results

See Also

Other Cox Wrapper Functions: CoxRun(), LikelihoodBound.coxres()

Examples

library(data.table)
df <- data.table::data.table(
"UserID"” = c(112, 114, 213, 214, 115, 116, 117),
"te" = c(18, 20, 18, 19, 21, 20, 18),
"t1" = c(30, 45, 57, 47, 36, 60, 55),
"lung” = c(o, 0, 1, 0, 1, 0, 0),
"dose” = c(0, 1, 1, 0, 1, @, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = @, max = 5))

df$rand@ <- floor(runif(nrow(df), min = @, max = 5))
df$randl <- floor(runif(nrow(df), min = @, max = 5))
df$rand2 <- floor(runif(nrow(df), min = @, max = 5))

names <- c("dose”, "rand")



Date_Shift 11

realization_columns <- matrix(c("rand@", "rand1"”, "rand2"), nrow = 1)
realization_index <- c("rand")
control <- list(

"ncores” =1, "1r" = 0.75, "maxiter” =1,

"halfmax” = 2, "epsilon" = 1e-6,

"deriv_epsilon” = le-6, "step_max" = 1.0,
"thres_step_max" = 100.0,

"verbose" = 0, "ties” = "breslow”, "double_step” = 1

)
formula <- Cox(t@, t1, lung) ~ loglinear(dose, rand, @) + multiplicative()
res <- CoxRun(formula, df, control = control)

Date_Shift Automates creating a date difference column

Description

Date_Shift generates a new dataframe with a column containing time difference in a given unit

Usage

Date_Shift(df, dcol@, dcoll, col_name, units = "days")

Arguments
df a data.table containing the columns of interest
dcole list of starting month, day, and year
dcoli list of ending month, day, and year
col_name vector of new column names
units time unit to use
Value

returns the updated dataframe

See Also

Other Data Cleaning Functions: Event_Count_Gen(), Event_Time_Gen(), Joint_Multiple_Events(),
Replace_Missing(), Time_Since(), factorize(), gen_time_dep()

Examples

library(data.table)
mo <- c(1, 1, 2, 2)
ml <- c(2, 2, 3, 3)
do <- c(1, 2, 3, 4)
d1 <- c(6, 7, 8, 9)
y0 <- c(1990, 1991, 1997, 1998)



12 EventAssignment.default

y1 <= c(2001, 2003, 2005, 2006)
df <- data.table::data.table("m@"” = m@, "m1"” =m1, "de" =do, "d1" =d1, "y@" =y0, "y1" =y1)
df <- Date_Shift(df, c("me”, "de”, "ye"), c(’m1”, "d1”, "y1"), "date_since")

EventAssignment Generic background/excess event calculation function

Description

EventAssignment Generic background/excess event calculation function

Usage
EventAssignment(x, df, ...)

Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest

extended for other necessary parameters

EventAssignment.default
Predicts how many events are due to baseline vs excess

Description

EventAssignment Generic background/excess event calculation function, by default nothing hap-

pens
Usage
## Default S3 method:
EventAssignment(x, df, ...)
Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest

extended for other necessary parameters



EventAssignment.poisres 13

EventAssignment.poisres

Predicts how many events are due to baseline vs excess for a completed
poisson model

Description

EventAssignment.poisres uses user provided data, person-year/event columns, vectors specify-
ing the model, and options to calculate background and excess events for a solved Poisson regression

Usage

## S3 method for class 'poisres'
EventAssignment(
X,
df,
assign_control = list(),
control = list(),

a_n = cQ),
)
Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest

assign_control control list for bounds calculated

control list of parameters controlling the convergence, see the Control_Options vignette
for details

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the assign_control list parameter

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisresbound(),LikelihoodBound.poisres(),
PoisRun(), PoisRunJoint (), PoisRunMulti(), Residual.poisres()



14 EventAssignment.poisresbound

EventAssignment.poisresbound
Predicts how many events are due to baseline vs excess for a completed
poisson likelihood boundary regression

Description

EventAssignment.poisresbound uses user provided data, person-year/event columns, vectors
specifying the model, and options to calculate background and excess events for a solved Poisson
regression

Usage

## S3 method for class 'poisresbound'
EventAssignment(

X,

df,

assign_control = list(),

control = list(),

a_n = cQ),
)
Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest

assign_control control list for bounds calculated

control list of parameters controlling the convergence, see the Control_Options vignette
for details

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the assign_control list parameter

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), LikelihoodBound.poisres(),
PoisRun(), PoisRunJoint (), PoisRunMulti(), Residual.poisres()



Event Count_Gen 15

Event_Count_Gen uses a table, list of categories, and list of event summaries to generate
person-count tables

Description

Event_Count_Gen generates event-count tables

Usage

Event_Count_Gen(table, categ, events, verbose = FALSE)

Arguments
table dataframe with every category/event column needed
categ list with category columns and methods, methods can be either strings or lists of
boundaries
events list of columns to summarize, supports counts and means and renaming the sum-
mary column
verbose integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.
Value

returns a grouped table and a list of category boundaries used

See Also

Other Data Cleaning Functions: Date_Shift(), Event_Time_Gen(), Joint_Multiple_Events(),
Replace_Missing(), Time_Since(), factorize(), gen_time_dep()

Examples

library(data.table)

a<-c(, 1,2, 3, 4,5, 6)

b <-c(1, 2, 3, 4, 5,6, 7)
c<-c(o, 1,0, 0,0,1, 0
table <- data.table::data.table(

nan

a" = a,
Hbll = b

)
"C” = c



16

categ <- list(

Event _Time_Gen

na" = "9/3/577",

"b" = list(

lower = c(-1, 3, 6),
upper = c(3, 6, 10),

name = c("low”, "medium”, "high")
)
event <- list(
"c" = "count AS cases”,
"a" = "mean”, "b” = "mean”

)

e <- Event_Count_Gen(table, categ, event, T)

Event_Time_Gen

uses a table, list of categories, list of summaries, list of events, and
person-year information to generate person-time tables

Description

Event_Time_Gen generates event-time tables

Usage

Event_Time_Gen(table, pyr, categ, summaries, events, verbose = FALSE)

Arguments

table

pyr
categ

summaries

events

verbose

Value

dataframe with every category/event column needed
list with entry and exit lists, containing day/month/year columns in the table

list with category columns and methods, methods can be either strings or lists of
boundaries, includes a time category or entry/exit are both required for the pyr
list

list of columns to summarize, supports counts, means, and weighted means by
person-year and renaming the summary column

list of events or interests, checks if events are within each time interval

integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.

returns a grouped table and a list of category boundaries used



factorize 17

See Also
Other Data Cleaning Functions: Date_Shift(), Event_Count_Gen(), Joint_Multiple_Events(),

Replace_Missing(), Time_Since(), factorize(), gen_time_dep()

Examples

library(data.table)

a<-c(o,1, 2 3,45, 6)
b <-c(1, 2, 3, 4, 5,6, 7)
c<-c(o, 1,0, 0,0,1, 0
d<-c(, 2, 3, 4, 5,6, 7)
e <-c(2, 3, 4, 5, 6, 7, 8
f <= c(

1900, 1900, 1900, 1900,
1900, 1900, 1900

)

g<-c(1, 2, 3,4,5,6,7)
h<-c(2, 3, 4,5,6, 7, 8
i <= c(

1901, 1902, 1903, 1904,
1905, 1906, 1907

)

table <- data.table::data.table(
"a" = a, "b" = b, "c¢" =c,
"d" =d, "e" =e, "f" =f,
"g" =g, "h" =h, "i" =i

)

categ <- list(
"a" = "-1/3/5]7"

)

summary <- list(
"c" = "count AS cases”

)

events <- list("c")

pyr <- list(
entry = list(year = "f"),
exit = list(year = "i"),
unit = "years"”

)

e <- Event_Time_Gen(table, pyr, categ, summary, events)

factorize Splits a parameter into factors

Description

factorize uses user provided list of columns to define new parameter for each unique value and
update the data.table. Not for interaction terms



18 gen_time_dep

Usage

factorize(df, col_list, verbose = 0)

Arguments
df a data.table containing the columns of interest
col_list an array of column names that should have factor terms defined
verbose integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.
Value

returns a list with two named fields. df for the updated dataframe, and cols for the new column
names

See Also

Other Data Cleaning Functions: Date_Shift(), Event_Count_Gen(), Event_Time_Gen(), Joint_Multiple_Events(),
Replace_Missing(), Time_Since(), gen_time_dep()

Examples

library(data.table)

a<-c(@, 1,2, 3, 4,5, 6)

b <-c(1, 2, 3, 4,5, 6, 7)
c<-c(o,1,2,1,0,1,0)

df <- data.table::data.table("a” = a, "b" = b, "c" = ¢c)
col_list <- c("c")

val <- factorize(df, col_list)

df <- valgdf

new_col <- val$cols

gen_time_dep Applies time dependence to parameters

Description

gen_time_dep generates a new dataframe with time dependent covariates by applying a grid in
time



gen_time_dep 19

Usage
gen_time_dep(
df,
timel,
time2,
evento,
iscox,
dt,
new_names,
dep_cols,
func_form,
fname,
tform,
nthreads = as.numeric(detectCores())
)
Arguments
df a data.table containing the columns of interest
timel column used for time period starts
time2 column used for time period end
evento column used for event status
iscox boolean if rows not at event times should not be kept, rows are removed if true. a
Cox proportional hazards model does not use rows with intervals not containing
event times
dt spacing in time for new rows
new_names list of new names to use instead of default, default used if entry is "
dep_cols columns that are not needed in the new dataframe
func_form vector of functions to apply to each time-dependent covariate. Of the form
func(df, time) returning a vector of the new column value
fname filename used for new dataframe
tform list of string function identifiers, used for linear/step
nthreads number of threads to use, do not use more threads than available on your ma-
chine
Value

returns the updated dataframe

See Also

Other Data Cleaning Functions: Date_Shift(), Event_Count_Gen(), Event_Time_Gen(), Joint_Multiple_Events(),
Replace_Missing(), Time_Since(), factorize()



20 get_form

Examples

library(data.table)

# Adapted from the tests

a <- c(20, 20, 5, 10, 15)

b <-c(1, 2,1, 1,2

c<-c(0, 0,1, 1,1

df <- data.table::data.table("a” = a, "b" = b, "c" = ¢)
timel <- "%trunc%”

time2 <- "a"

event <- "c¢"

control <- list(

"Ir" = 0.75, "maxiter” = -1, "halfmax” =5, "epsilon” = 1e-9,
"deriv_epsilon” = 1e-9, "step_max" = 1.0,

"thres_step_max" = 100.0,

"verbose” = FALSE, "ties"” = "breslow”, "double_step” = 1

)
grt_f <- function(df, time_col) {
return((df[, "b"] * df[, get(time_col)I)[[111)
3
func_form <- c("1lin")
df_new <- gen_time_dep(
df, timel, time2, event, TRUE, 0.01, c("grt"), c(Q),
c(grt_f), paste("test”, "_new.csv"”, sep = ""), func_form, 1
)

file.remove("test_new.csv")

get_form Interprets a Colossus formula and makes necessary changes to data

Description

get_form uses a formula and data.table, to fully describe the model for a Colossus regression
function.

Usage

get_form(formula, df, nthreads = as.numeric(detectCores())/2)

Arguments
formula a formula object, written in Colossus notation. See the Unified Equation Repre-
sentation vignette for details.
df a data.table containing the columns of interest
nthreads number of threads to use, do not use more threads than available on your ma-

chine



get_form_joint 21

Value

returns a class fully describing the model and the updated data

See Also

Other Formula Interpretation: ColossusCoxSurv(), ColossusLogitSurv(), ColossusPoisSurv(),
get_form_joint()

Examples

library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID"” = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status” = c(0, 0, 1, o, 1, 0, 0),
"a" =c(o, 1, 1, 0, 1, 0, 1),
"o o= (1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"e" = c(l0, 11, 10, 11, 12, 9, 11),
"d” = C(o’ e’ e’ 1’ 1’ 1’ 1)’
"e” = c(0, 0, 1, 0, 0, 0, 1)

)

formula <- Cox(Starting_Age, Ending_Age, Cancer_Status) ~
loglinear(a, b, c, @) + plinear(d, @) + multiplicative()

model <- get_form(formula, df, 1)

get_form_joint Interprets a Poisson joint formula and makes necessary changes to
data

Description

get_form_joint uses two event formula, a shared formula, and data.table, to fully describe the
model for a joint Poisson model.

Usage

get_form_joint(formula_list, df, nthreads = as.numeric(detectCores())/2)

Arguments

formula_list a list of formula objects, each written in Colossus notation. See the Unified
Equation Representation vignette for details. Each formula should include the
elements specific to the specified event column. The list can include an entry
named "shared" to denote shared terms. The person-year and strata columns
should be the same.

df a data.table containing the columns of interest

nthreads number of threads to use, do not use more threads than available on your ma-
chine



22 Joint_Multiple_Events

Value

returns a class fully describing the model and the updated data

See Also

Other Formula Interpretation: ColossusCoxSurv (), ColossusLogitSurv(), ColossusPoisSurv(),
get_form()

Joint_Multiple_Events Automates creating data for a joint competing risks analysis

Description

Joint_Multiple_Events generates input for a regression with multiple non-independent events
and models

Usage

Joint_Multiple_Events(
df,
events,
name_list,
term_n_list = list(),
tform_list = list(),
keep_constant_list = list(),
a_n_list = 1list()

)
Arguments
df a data.table containing the columns of interest
events vector of event column names
name_list list of vectors for columns for event specific or shared model elements, required
term_n_list list of vectors for term numbers for event specific or shared model elements,
defaults to term O
tform_list list of vectors for subterm types for event specific or shared model elements,

defaults to loglinear
keep_constant_list

list of vectors for constant elements for event specific or shared model elements,
defaults to free (0)

a_n_list list of vectors for parameter values for event specific or shared model elements,
defaults to term O

Value

returns the updated dataframe and model inputs



LikelihoodBound 23

See Also

Other Data Cleaning Functions: Date_Shift(),Event_Count_Gen(),Event_Time_Gen(), Replace_Missing(),
Time_Since(), factorize(), gen_time_dep()

Examples
library(data.table)
a<-c(0, 0,0, 1,1, 1
b<-c(1, 1,1, 2, 2, 2)
c<-c(@, 1,2, 2,1, 0
d<-c(1, 1, 0,01, 1
e <-c(@,1,1,1, 0, 0
df <- data.table("t0" = a, "t1" = b, "e@" =c, "el” =d, "fac" = e)
timel <- "t0"
time2 <- "t1"
df$pyr <- df$t1 - df$te
pyr <- "pyr”
events <- c("e@", "el")

names_e@ <- c("fac")

names_el <- c("fac")
names_shared <- c("t@", "to")
term_n_e0@ <- c(0@)

term_n_el <- c(0@)

term_n_shared <- c(@, 0)
tform_e@ <- c("loglin")
tform_el <- c("loglin")
tform_shared <- c("quad_slope”, "loglin_top")
keep_constant_ed <- c(0)
keep_constant_el <- c(0)
keep_constant_shared <- c(@, 0)
a_n_ed <- c(-0.1)

a_n_el <- c(0.1)

a_n_shared <- c(0.001, -0.02)

name_list <- list("”shared” = names_shared, "e@" = names_e@, "el1"” = names_el)
term_n_list <- list("shared” = term_n_shared, "e@" = term_n_e@, "el"” = term_n_el)
tform_list <- list("shared” = tform_shared, "e@" = tform_e0@, "el"” = tform_el)
keep_constant_list <- list(

"shared” = keep_constant_shared,

"e@" = keep_constant_e@, "el"” = keep_constant_el
)
a_n_list <- list("shared” = a_n_shared, "e@" = a_n_e@, "el” = a_n_el)

val <- Joint_Multiple_Events(
df, events, name_list, term_n_list,
tform_list, keep_constant_list, a_n_list

)

LikelihoodBound Generic likelihood boundary calculation function




24 LikelihoodBound.coxres

Description

LikelihoodBound Generic likelihood boundary calculation function

Usage

LikelihoodBound(x, df, curve_control = list(), control = list(), ...)
Arguments

X result object from a regression, class coxres or poisres

df a data.table containing the columns of interest

curve_control a list of control options for the likelihood boundary regression. See the Con-
trol_Options vignette for details.

control list of parameters controlling the convergence, see the Control_Options vignette
for details

extended for other necessary parameters

LikelihoodBound. coxres
Calculates the likelihood boundary for a completed cox model

Description

LikelihoodBound. coxres solves the confidence interval for a cox model, starting at the optimum
point and iteratively optimizing end-points of intervals.

Usage

## S3 method for class 'coxres'

LikelihoodBound(x, df, curve_control = list(), control = list(), ...)
Arguments

X result object from a regression, class coxres

df a data.table containing the columns of interest

curve_control a list of control options for the likelihood boundary regression. See the Con-
trol_Options vignette for details.

control list of parameters controlling the convergence, see the Control_Options vignette
for details

can include the named entries for the curve_control list parameter

Value

returns a list of the final results



LikelihoodBound.default 25

See Also

Other Cox Wrapper Functions: CoxRun(), CoxRunMulti()

LikelihoodBound.default
Generic likelihood boundary calculation function, default option

Description

LikelihoodBound Generic likelihood boundary calculation function, by default nothing happens

Usage

## Default S3 method:

LikelihoodBound(x, df, curve_control = list(), control = list(), ...)
Arguments

X result object from a regression, class coxres or poisres

df a data.table containing the columns of interest

curve_control a list of control options for the likelihood boundary regression. See the Con-
trol_Options vignette for details.

control list of parameters controlling the convergence, see the Control_Options vignette
for details

extended for other necessary parameters

LikelihoodBound.poisres
Calculates the likelihood boundary for a completed Poisson model

Description
LikelihoodBound.poisres solves the confidence interval for a Poisson model, starting at the op-
timum point and iteratively optimizing end-points of intervals.

Usage

## S3 method for class 'poisres'
LikelihoodBound(x, df, curve_control = list(), control = list(), ...)



26 Likelihood_Ratio_Test

Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest

curve_control a list of control options for the likelihood boundary regression. See the Con-
trol_Options vignette for details.

control list of parameters controlling the convergence, see the Control_Options vignette
for details

can include the named entries for the curve_control list parameter

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), EventAssignment.poisresbound(),
PoisRun(), PoisRunJoint (), PoisRunMulti(), Residual.poisres()

Likelihood_Ratio_Test Defines the likelihood ratio test

Description

Likelihood_Ratio_Test uses two models and calculates the ratio

Usage

Likelihood_Ratio_Test(alternative_model, null_model)

Arguments

alternative_model
the new model of interest in list form, output from a Poisson regression

null_model a model to compare against, in list form

Value

returns the score statistic



Linked_Dose_Formula 27

Examples

library(data.table)
# In an actual example, one would run two seperate RunCoxRegression regressions,

# assigning the results to e@ and el

a<-c(o,1,2,3,4,5,6,0,1, 2,3, 45, 6)
b<-c(1, 2,3,4,5,6,7,1,2,3,4,5,6,7)
c<-c(1,0,1,0,1,0, 0, 0 0,0, 0, 0, 0, 0)
d<-c¢@, 4,5, 6,7,8,9,1,2,1,1, 2,1, 2
e<-c(1,2,0, 0,1,2,0,0,1,2,0, 0,1, 2)

df <- data.table("a"” = a, "b" =b, "¢c" =¢c, "d" =d, "e" =¢€)
keep_constant <- c(0)
a_n <- c(-0.1, 0.1, 0.1, 0.2)
control <- list("ncores” = 1, "maxiter” = 10, "verbose” = 0)
model <- Cox(a, b, c¢) ~ plinear(d * d, @) + loglinear(factor(e))
alternative_model <- CoxRun(model, df, control = control,

a_n = a_n, keep_constant = c(0, 1, 0))
null_model <- CoxRun(Cox(a, b, c) ~ null(), df, control = control)
score <- Likelihood_Ratio_Test(alternative_model, null_model)

Linked_Dose_Formula Calculates Full Parameter list for Special Dose Formula

Description

Linked_Dose_Formula Calculates all parameters for linear-quadratic and linear-exponential linked
formulas

Usage

Linked_Dose_Formula(tforms, paras, verbose = 0)

Arguments
tforms list of formula types
paras list of formula parameters
verbose integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.
Value

returns list of full parameters



28 Linked_Lin_Exp_Para

Examples

library(data. table)

tforms <- list("cov_0" = "quad”, "cov_1" = "exp")

paras <- list("cov_0" = c(1, 3.45), "cov_1" = c(1.2, 4.5, 0.1))
full_paras <- Linked_Dose_Formula(tforms, paras)

Linked_Lin_Exp_Para Calculates The Additional Parameter For a linear-exponential for-
mula with known maximum

Description

Linked_Lin_Exp_Para Calculates what the additional parameter would be for a desired maximum

Usage

Linked_Lin_Exp_Para(y, a@, al_goal, verbose = 0)

Arguments
y point formula switch
a0 linear slope
al_goal exponential maximum desired
verbose integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.
Value

returns parameter used by Colossus

Examples

library(data.table)

y <- 7.6

a0 <- 1.2

al_goal <- 15

full_paras <- Linked_Lin_Exp_Para(y, a0, al_goal)



LogisticRun

29

LogisticRun

Fully runs a logistic regression model, returning the model and results

Description
LogisticRun uses
regression function

Usage

LogisticRun(
model,
df,

a formula, data.table, and list of controls to prepare and run a Colossus logistic

a_n = list(c(0)),

keep_constant

= c(0),

control = list(),
gradient_control = list(),

link = "odds"

’

single = FALSE,

observed_info
cons_mat = as

= FALSE,

.matrix(c(@)),

cons_vec = c(0@),

norm = "null”

Arguments

model

df

a_n

keep_constant

control

’

either a formula written for the get_form function, or the model result from the
get_form function.

a data.table containing the columns of interest

list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

binary values to denote which parameters to change

list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control

link

single

a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

Used in logistic regression, the linking function relating the input model and
event probability. Current options are "odds", "ident", and "loglink" for the
odds ratio, identity, and complimentary loglink options.

a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations



30

observed_info

OMP_Check

a boolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

cons_mat Matrix containing coefficients for a system of linear constraints, formatted as
matrix

cons_vec Vector containing constants for a system of linear constraints, formatted as vec-
tor

norm methods used to normalize the covariates. Default is "null’ for no normalization.
Other options include *'max’ to normalize by the absolute maximum and *mean’
to normalize by the mean
can include the named entries for the control list parameter

Value

returns a class fully describing the model and the regression results

Examples

library(data.table)

df <- data.table::data.table(
"UserID” = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"” = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status” = c(0, 0, 1, o, 1, 0, 0),
"a" = c(o, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"c" = c(lo, 11, 10, 11, 12, 9, 11),
"d" = c(o, 0, 0, 1, 1, 1, 1),
"e" = c(0, 0, 1, 0, 9, 0, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax” = 1
)

formula <- logit(Cancer_Status) ~
loglinear(a, b, c, @) + plinear(d, @) + multiplicative()

res <- LogisticRun(formula, df, a_n = c(1.1, -0.1, 0.2, 0.5), control = control)

OMP_Check Checks the OMP flag

Description

OMP_Check Called directly from R, checks the omp flag and returns true if omp is enabled

Usage

OMP_Check ()



plot.coxres 31

Value

boolean: True for OMP allowed

plot.coxres Performs Cox Proportional Hazard model plots

Description

plot.coxres uses user provided data, time/event columns, vectors specifying the model, and op-
tions to choose and save plots

Usage
## S3 method for class 'coxres'
plot(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

Value

saves the plots in the current directory and returns the data used for plots

See Also

Other Plotting Wrapper Functions: plotMartingale.coxres(), plotRisk.coxres(), plotSchoenfeld.coxres(),
plotSurvival.coxres()

Examples

library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(

"UserID"” = c(112, 114, 213, 214, 115, 116, 117),

"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),

"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),

"Cancer_Status"” = c(0, 0, 1, o, 1, 0, 0),

"a" =c(o, 1, 1, 0, 1, 0, 1),

"B o= (1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"e" = c(l0, 11, 10, 11, 12, 9, 11),



32 plotMartingale

"d" = c(e, @, 0, 1, 1, 1, 1)

)

control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax” = 1

)

formula <- Cox(Starting_Age, Ending_Age, Cancer_Status) ~
loglinear(a, b, ¢, @) + plinear(d, @) + multiplicative()
res <- CoxRun(formula, df,
control = control,
a_n = list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4))
)
plot_options <- list(
"type" = c("surv", paste(tempfile(),

n n

run”,

sep = ""
)), "studyid" = "UserID”,
"verbose” = FALSE

)

res_plot <- plot(res, df, plot_options)

plotMartingale Generic Martingale Residual Plotting function

Description

plotMartingale Generic Martingale Residual Plotting

Usage
plotMartingale(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter



plotMartingale.coxres 33

plotMartingale.coxres Performs Cox Proportional Hazard model martingale residual plots

Description

plotMartingale.coxres uses user provided data, time/event columns, vectors specifying the model,
and options to choose and save plots

Usage
## S3 method for class 'coxres'
plotMartingale(x, df, plot_options, a_n = c(Q), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest
plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

Value

returns the data used for plots

See Also

Other Plotting Wrapper Functions: plot.coxres(), plotRisk.coxres(), plotSchoenfeld.coxres(),
plotSurvival.coxres()

plotMartingale.default
Generic Martingale Residual Plotting function, default option

Description

plotMartingale.default Generic Martingale Residual Plotting, by default nothing happens

Usage

## Default S3 method:
plotMartingale(x, df, plot_options, a_n = c(), ...)



34 plotRisk.coxres

Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest
plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

plotRisk Generic Risk Plotting function

Description

plotRisk Generic Risk Plotting

Usage
plotRisk(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

plotRisk.coxres Performs Cox Proportional Hazard model hazard ratio plots

Description
plotRisk.coxres uses user provided data, time/event columns, vectors specifying the model, and
options to choose and save plots

Usage

## S3 method for class 'coxres'
plotRisk(x, df, plot_options, a_n = c(), ...)



plotRisk.default 35

Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

Value

returns the data used for plots

See Also

Other Plotting Wrapper Functions: plot.coxres(), plotMartingale. coxres(), plotSchoenfeld.coxres(),
plotSurvival.coxres()

plotRisk.default Generic Risk Plotting function, default option

Description

plotRisk.default Generic Risk Plotting, by default nothing happens

Usage
## Default S3 method:
plotRisk(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter



36 plotSchoenfeld.coxres

plotSchoenfeld Generic Schoenfeld Residual Plotting function

Description

plotSchoenfeld Generic Schoenfeld Residual Plotting

Usage
plotSchoenfeld(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

plotSchoenfeld.coxres Performs Cox Proportional Hazard model schoenfeld residual plots

Description

plotSchoenfeld. coxres uses user provided data, time/event columns, vectors specifying the model,
and options to choose and save plots

Usage
## S3 method for class 'coxres'
plotSchoenfeld(x, df, plot_options, a_n = c(Q), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest
plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter



plotSchoenfeld.default 37

Value

returns the data used for plots

See Also

Other Plotting Wrapper Functions: plot.coxres(), plotMartingale.coxres(), plotRisk.coxres(),
plotSurvival.coxres()

plotSchoenfeld.default
Generic Schoenfeld Residual Plotting function, default option

Description

plotSchoenfeld.default Generic Schoenfeld Residual Plotting, by default nothing happens

Usage
## Default S3 method:
plotSchoenfeld(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

plotSurvival Generic Survival Plotting function

Description

plotSurvival Generic Survival Plotting

Usage

plotSurvival(x, df, plot_options, a_n = c(), ...)



38 plotSurvival.coxres

Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

plotSurvival.coxres Performs Cox Proportional Hazard model survival plots

Description

plotSurvival.coxres uses user provided data, time/event columns, vectors specifying the model,
and options to choose and save plots

Usage
## S3 method for class 'coxres'
plotSurvival(x, df, plot_options, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

Value

returns the data used for plots

See Also

Other Plotting Wrapper Functions: plot.coxres(), plotMartingale.coxres(), plotRisk.coxres(),
plotSchoenfeld. coxres()



plotSurvival.default 39

Examples

library(data. table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"” = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status” = c(o, 0, 1, o, 1, 0, 0),
"a" = c(o, 1, 1, 0, 1, 0, 1),
"b" = c(C1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c¢" = c(l0, 11, 10, 11, 12, 9, 11),
"d" = c(o, 0, 0, 1, 1, 1, 1)

)

control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax" = 1

)

formula <- Cox(Starting_Age, Ending_Age, Cancer_Status) ~
loglinear(a, b, c, @) + plinear(d, @) + multiplicative()
res <- CoxRun(formula, df,
control = control,
a_n = list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4))
)
plot_options <- list(
"fname" = paste(tempfile(),

n n

run”,
sep =

), "studyid" = "UserID",

"verbose” = FALSE

)
res_plot <- plotSurvival(res, df, plot_options)

nn

plotSurvival.default Generic Survival Plotting function, default option

Description

plotSurvival.default Generic Survival Plotting, by default nothing happens

Usage

## Default S3 method:

plotSurvival(x, df, plot_options, a_n = c(), ...)
Arguments

X result object from a regression, class coxres

df a data.table containing the columns of interest



40 PoisRun

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different
options

a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

can include the named entries for the plot_options parameter

PoisRun Fully runs a poisson regression model, returning the model and results

Description

PoisRun uses a formula, data.table, and list of controls to prepare and run a Colossus poisson
regression function

Usage

PoisRun(
model,
df,
a_n = list(c(0)),
keep_constant = c(0),
control = list(),
gradient_control = list(),
single = FALSE,
observed_info = FALSE,
cons_mat = as.matrix(c(9)),
cons_vec = c(0),

norm = "null”,
)
Arguments
model either a formula written for the get_form function, or the model result from the
get_form function.
df a data.table containing the columns of interest
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.
keep_constant binary values to denote which parameters to change

control list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control
a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details



PoisRun 41

single a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations

observed_info aboolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

cons_mat Matrix containing coefficients for a system of linear constraints, formatted as
matrix

cons_vec Vector containing constants for a system of linear constraints, formatted as vec-
tor

norm methods used to normalize the covariates. Default is 'null’ for no normalization.

Other options include *'max’ to normalize by the absolute maximum and *mean’
to normalize by the mean

can include the named entries for the control list parameter

Value

returns a class fully describing the model and the regression results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), EventAssignment.poisresbound(),
LikelihoodBound.poisres(), PoisRunJoint(), PoisRunMulti(), Residual.poisres()

Examples

library(data.table)

df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status” = c(0, 0, 1, o, 1, 0, 0),
"a" =c(o, 1, 1, 0, 1, 0, 1),
"ot = (1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"c¢" = c(lo, 11, 10, 11, 12, 9, 11),
"d" = c(o, @0, 0, 1, 1, 1, 1),
"e" = c(o, 0, 1, 0, 0, 0, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax" = 1
)

formula <- Pois(Ending_Age, Cancer_Status) ~
loglinear(a, b, ¢, @) + plinear(d, @) + multiplicative()
res <- PoisRun(formula, df, a_n = c(1.1, -0.1, 0.2, 0.5), control = control)



42

PoisRunJoint

PoisRunJoint

Fully runs a joint poisson regression model, returning the model and
results

Description

PoisRunJoint uses a list of formula, data.table, and list of controls to prepare and run a Colossus
poisson regression function on a joint dataset

Usage

PoisRunJoint(
model,
df,

a_n = list(c(9@)),
keep_constant = c(0),
control = list(),
gradient_control = list(),
single = FALSE,

observed_info

= FALSE,

cons_mat = as.matrix(c(0)),

cons_vec =

c(0),

norm = "null”,

Arguments

model

df

a_n

keep_constant

control

either a formula written for the get_form function, or the model result from the
get_form function.

a data.table containing the columns of interest

list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.

binary values to denote which parameters to change

list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control

single

observed_info

a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations

a boolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix



PoisRunMulti 43

cons_mat Matrix containing coefficients for a system of linear constraints, formatted as
matrix

cons_vec Vector containing constants for a system of linear constraints, formatted as vec-
tor

norm methods used to normalize the covariates. Default is *null’ for no normalization.

Other options include *max’ to normalize by the absolute maximum and *mean’
to normalize by the mean

can include the named entries for the control list parameter

Value

returns a class fully describing the model and the regression results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), EventAssignment.poisresbound(),
LikelihoodBound.poisres(), PoisRun(), PoisRunMulti(), Residual.poisres()

Examples

library(data.table)

df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status"” = c(0, 0, 1, @, 1, 0, 0),
"Flu_Status” = c(o, 1, 0, 0, 1, 0, 1),
"a" =c(o, 1, 1, 0, 1, 0, 1),
"o = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"c" = c(lo, 11, 10, 11, 12, 9, 11),
"d" = c(o, 0, 0, 1, 1, 1, 1),
"e" = c(0, 0, 1, 0, 0, 0, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax" = 1
)

formula_list <- list(Pois(Ending_Age, Cancer_Status) ~ plinear(d, 0),
Pois(Ending_Age, Flu_Status) ~ loglinear(d, ),
"shared” = Pois(Ending_Age) ~ loglinear(a, b, c, 0)

)

res <- PoisRunJoint(formula_list, df, control = control)

PoisRunMulti Fully runs a poisson regression model with multiple column realiza-
tions, returning the model and results




44 PoisRunMulti

Description

PoisRunMulti uses a formula, data.table, and list of controls to prepare and run a Colossus poisson
regression function

Usage

PoisRunMulti(
model,
df,
a_n = list(c(@)),
keep_constant = c(0),
realization_columns = matrix(c("temp@@"”, "temp@1"”, "temp10", "temp11"), nrow = 2),
realization_index = c("temp@”, "templ"),
control = list(),
gradient_control = list(),
single = FALSE,
observed_info = FALSE,
fma = FALSE,
mcml = FALSE,
cons_mat = as.matrix(c(@)),
cons_vec = c(0@),

)
Arguments
model either a formula written for the get_form function, or the model result from the
get_form function.
df a data.table containing the columns of interest
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

keep_constant binary values to denote which parameters to change
realization_columns
used for multi-realization regressions. Matrix of column names with rows for
each column with realizations, columns for each realization
realization_index
used for multi-realization regressions. Vector of column names, one for each
column with realizations. Each name should be used in the "names" variable in
the equation definition

control list of parameters controlling the convergence, see the Control_Options vignette
for details

gradient_control
a list of control options for the gradient descent algorithm. If any value is given,
a gradient descent algorithm is used instead of Newton-Raphson. See the Con-
trol_Options vignette for details

single a boolean to denote that only the log-likelihood should be calculated and re-
turned, no derivatives or iterations



PoisRunMulti 45

observed_info aboolean to denote that the observed information matrix should be used to cal-
culate the standard error for parameters, not the expected information matrix

fma a boolean to denote that the Frequentist Model Averaging method should be
used

mcml a boolean to denote that the Monte Carlo Maximum Likelihood method should
be used

cons_mat Matrix containing coefficients for a system of linear constraints, formatted as
matrix

cons_vec Vector containing constants for a system of linear constraints, formatted as vec-
tor

can include the named entries for the control list parameter

Value

returns a class fully describing the model and the regression results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), EventAssignment.poisresbound(),
LikelihoodBound.poisres(), PoisRun(), PoisRunJoint(), Residual.poisres()

Examples

library(data. table)
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"tQ" = c(18, 20, 18, 19, 21, 20, 18),
"t1" = c(30, 45, 57, 47, 36, 60, 55),
"lung” = c(@, 0, 1, 0, 1, @, @),
"dose” = c(0, 1, 1, 0, 1, @, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = @, max = 5))
df$rand@ <- floor(runif(nrow(df), min = @, max = 5))

df$randl <- floor(runif(nrow(df), min = @, max = 5))
df$rand2 <- floor(runif(nrow(df), min = @, max = 5))
names <- c("dose”, "rand")
realization_columns <- matrix(c("rand@”, "rand1”, "rand2"), nrow = 1)
realization_index <- c("rand")
control <- list(
"ncores” =1, "1r" = @.75, "maxiter" =1,
"halfmax” = 2, "epsilon" = 1e-6,
"deriv_epsilon” = 1e-6, "step_max" = 1.0,
"thres_step_max" = 100.0,
"verbose" = 0, "ties"” = "breslow”, "double_step” = 1

)
formula <- Pois(t1, lung) ~ loglinear(CONST, dose, rand, @) + multiplicative()
res <- PoisRun(formula, df, control = control)



46 print.coxres

print.caseconres Prints a case-control regression output clearly

Description

print.caseconres uses the list output from a regression, prints off a table of results and summa-
rizes the score and convergence.

Usage
## S3 method for class 'caseconres'
print(x, ...)
Arguments
X result object from a regression, class caseconres
can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits
Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.coxres(), print.coxresbound(),
print.logitres(), print.poisres(), print.poisresbound()

print.coxres Prints a cox regression output clearly

Description

print.coxres uses the list output from a regression, prints off a table of results and summarizes
the score and convergence.

Usage
## S3 method for class 'coxres'
print(x, ...)
Arguments
X result object from a regression, class coxres

can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits



print.coxresbound 47

Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.caseconres(), print.coxresbound(),
print.logitres(), print.poisres(), print.poisresbound()

print.coxresbound Prints a cox likelihood boundary regression output clearly

Description

print.coxresbound uses the list output from a regression, prints off a table of results and summa-
rizes the score and convergence.

Usage
## S3 method for class 'coxresbound'
print(x, ...)
Arguments
X result object from a regression, class coxresbound
can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits
Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.caseconres(),print.coxres(),
print.logitres(), print.poisres(), print.poisresbound()



48 print.poisres

print.logitres Prints a logistic regression output clearly

Description

print.logitres uses the list output from a regression, prints off a table of results and summarizes
the score and convergence.

Usage
## S3 method for class 'logitres'
print(x, ...)
Arguments
X result object from a regression, class logitres
can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits
Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.caseconres(),print.coxres(),
print.coxresbound(), print.poisres(), print.poisresbound()

print.poisres Prints a poisson regression output clearly

Description

print.poisres uses the list output from a regression, prints off a table of results and summarizes
the score and convergence.

Usage
## S3 method for class 'poisres'
print(x, ...)
Arguments
X result object from a regression, class poisres

can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits



print.poisresbound 49

Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.caseconres(), print.coxres(),
print.coxresbound(), print.logitres(), print.poisresbound()

print.poisresbound Prints a poisson likelihood boundary regression output clearly

Description

print.poisresbound uses the list output from a regression, prints off a table of results and sum-
marizes the score and convergence.

Usage
## S3 method for class 'poisresbound'’
print(x, ...)
Arguments
X result object from a regression, class poisresbound
can include the number of digits, named digit, or an unnamed integer entry
assumed to be digits
Value

return nothing, prints the results to console

See Also

Other Output and Information Functions: System_Version(), print.caseconres(),print.coxres(),
print.coxresbound(), print.logitres(), print.poisres()



50 RelativeRisk.coxres

RelativeRisk Generic relative risk calculation function

Description

RelativeRisk Generic relative risk calculation function

Usage

RelativeRisk(x, df, ...)
Arguments

X result object from a regression, class coxres

df a data.table containing the columns of interest

extended for other necessary parameters
RelativeRisk.coxres Calculates hazard ratios for a reference vector

Description

coxres.RelativeRisk uses a cox result object and data, to evaluate relative risk in the data using
the risk model from the result

Usage
## S3 method for class 'coxres'
RelativeRisk(x, df, a_n = c(), ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest
a_n list of initial parameter values, used to determine the number of parameters.

May be either a list of vectors or a single vector.

extended to match any future parameters needed

Value

returns a class fully describing the model and the regression results



RelativeRisk.default 51

Examples

library(data.table)

df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status"” = c(0, 0, 1, @, 1, 0, 0),
"a" =c(o, 1, 1, o0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),

"c" = c(lo, 11, 10, 11, 12, 9, 11),
"d” = c(o, 0, 0, 1, 1, 1, 1),
"e" = c(0, 0, 1, 0, 0, 0, 1)
)
control <- list(
"ncores” =1, "1r" = 0.75, "maxiters” = c(1, 1),
"halfmax" = 1
)

formula <- Cox(Starting_Age, Ending_Age, Cancer_Status) ~
loglinear(a, b, c, @) + plinear(d, @) + multiplicative()

res <- CoxRun(formula, df,
a_n = list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4)),
control = control

)

res_risk <- RelativeRisk(res, df)

RelativeRisk.default  Generic relative risk calculation function, default option

Description

RelativeRisk.default Generic relative risk calculation function, by default nothing happens

Usage
## Default S3 method:
RelativeRisk(x, df, ...)
Arguments
X result object from a regression, class coxres
df a data.table containing the columns of interest

extended for other necessary parameters



52 Replace_Missing

Replace_Missing Automatically assigns missing values in listed columns

Description

Replace_Missing checks each column and fills in NA values

Usage

Replace_Missing(df, name_list, msv, verbose = FALSE)

Arguments
df a data.table containing the columns of interest
name_list vector of string column names to check
msv value to replace na with, same used for every column used
verbose integer valued 0-4 controlling what information is printed to the terminal. Each
level includes the lower levels. O: silent, 1: errors printed, 2: warnings printed,
3: notes printed, 4: debug information printed. Errors are situations that stop
the regression, warnings are situations that assume default values that the user
might not have intended, notes provide information on regression progress, and
debug prints out C++ progress and intermediate results. The default level is 2
and True/False is converted to 3/0.
Value

returns a filled datatable

See Also

Other Data Cleaning Functions: Date_Shift(),Event_Count_Gen(),Event_Time_Gen(), Joint_Multiple_Events(),
Time_Since(), factorize(), gen_time_dep()

Examples

library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"” = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, NA, 47, 36, NA, 55),
"Cancer_Status” = c(0, 0, 1, o, 1, 0, 0)
)
df <- Replace_Missing(df, c("Starting_Age"”, "Ending_Age"), 70)



Residual 53

Residual Generic Residual calculation function

Description

Residual Generic Residual calculation function

Usage

Residual(x, df, ...)

Arguments
X result object from a regression, class coxres or poisres
df a data.table containing the columns of interest
extended for other necessary parameters
Residual.default Generic Residual calculation function, default option
Description

Residual.default Generic Residual calculation function, by default nothing happens

Usage

## Default S3 method:
Residual(x, df, ...)

Arguments
X result object from a regression, class coxres or poisres
df a data.table containing the columns of interest

extended for other necessary parameters



54 Residual.poisres

Residual.poisres Calculates the Residuals for a completed poisson model

Description

Residual.poisres uses user provided data, person-year/event columns, vectors specifying the
model, and options to calculate residuals for a solved Poisson regression

Usage
## S3 method for class 'poisres'
Residual(
X,
df,
control = list(),
a_n = cQ),

pearson = FALSE,
deviance = FALSE,

)
Arguments
X result object from a regression, class poisres
df a data.table containing the columns of interest
control list of parameters controlling the convergence, see the Control_Options vignette
for details
a_n list of initial parameter values, used to determine the number of parameters.
May be either a list of vectors or a single vector.
pearson boolean to calculate pearson residuals
deviance boolean to calculate deviance residuals
can include the named entries for the assign_control list parameter
Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: EventAssignment.poisres(), EventAssignment.poisresbound(),
LikelihoodBound.poisres(), PoisRun(), PoisRunJoint(), PoisRunMulti()



System_ Version 55

System_Version Checks OS, compilers, and OMP

Description

System_Version checks OS, default R c++ compiler, and if OMP is enabled

Usage

System_Version()

Value

returns a list of results

See Also

Other Output and Information Functions: print.caseconres(), print.coxres(), print.coxresbound(),
print.logitres(), print.poisres(), print.poisresbound()

Time_Since Automates creating a date since a reference column

Description

Time_Since generates a new dataframe with a column containing time since a reference in a given

unit
Usage
Time_Since(df, dcol@, tref, col_name, units = "days")
Arguments
df a data.table containing the columns of interest
dcolo list of ending month, day, and year
tref reference time in date format
col_name vector of new column names
units time unit to use
Value

returns the updated dataframe



56 Time_Since

See Also

Other Data Cleaning Functions: Date_Shift(), Event_Count_Gen(), Event_Time_Gen(), Joint_Multiple_Events(),
Replace_Missing(), factorize(), gen_time_dep()

Examples

library(data.table)

mo <- c(1, 1, 2, 2)

ml <- c(2, 2, 3, 3)

do <- c(1, 2, 3, 4)

dl <- c(6, 7, 8, 9)

y0 <- c(1990, 1991, 1997, 1998)
y1 <- c(2001, 2003, 2005, 2006)
df <- data.table::data.table(

"me" = mo, "ml” =ml,
"de" = de, "d1" = d1,
"o = yo, "y1" = yi

)
tref <- strptime(”3-22-1997", format = "%m-%d-%Y", tz = "UTC")
df <- Time_Since(df, c("m1", "d1", "y1"), tref, "date_since")



Index

* Case Control Wrapper Functions + Poisson Wrapper Functions
CaseControlRun, 3 EventAssignment.poisres, 13

* Cox Analysis Functions EventAssignment.poisresbound, 14
RelativeRisk.coxres, 50 LikelihoodBound.poisres, 25

* Cox Wrapper Functions PoisRun, 40
CoxRun, 7 PoisRunJoint, 42
CoxRunMulti, 9 PoisRunMulti, 43
LikelihoodBound. coxres, 24 Residual.poisres, 54

x Data Cleaning Functions
Date_Shift, 11 CaseControlRun, 3
Event_Count_Gen, 15 ColossusCoxSurv, 5,6, 7,21, 22
Event_Time_Gen, 16 ColossusLogitSurv, 6,6,7,21, 22
facto;ize’I7 ColossusPoisSurv, 6, 6, 21, 22
gen_time_dep, 18 CoxRun, 7, 10, 25
Joint_Multiple_Events, 22 CoxRunMulti, 8,9, 25

Replace_Missing, 52
Time_Since, 55

* Formula Interpretation
ColossusCoxSurv, 5
ColossusLogitSurv, 6
ColossusPoisSurv, 6
get_form, 20
get_form_joint, 21

Date_Shift, 11, 15, 17-19, 23, 52, 56

Event_Count_Gen, 11, 15, 17-19, 23, 52, 56
Event_Time_Gen, 11, 15,16, 18, 19,23, 52, 56
EventAssignment, 12
EventAssignment.default, 12
EventAssignment.poisres, 13, 14, 26, 41,

Logistic W Functi 43,45, 54

* Logls 1'c .rapper unctions EventAssignment.poisresbound, /3, 14, 26,
LogisticRun, 29 4] 43.45. 54

* Output and Information Functions T
print. caseconres, 46 factorize, 11,15, 17,17, 19, 23, 52, 56
print.coxres, 46
print.coxresbound, 47 gen_time_dep, /1, 15, 17, 18,18, 23, 52, 56
print.logitres, 48 get_form, 6, 7, 20, 22
print.poisres, 48 get_form_joint, 6, 7, 21, 21
print.poisresbound, 49
System_Version, 55 Joint_Multiple_Events, /1, 15, 17-19, 22,

* Plotting Wrapper Functions 52,56
plot.coxres, 31
plotMartingale.coxres, 33 Likelihood_Ratio_Test, 26
plotRisk.coxres, 34 LikelihoodBound, 23
plotSchoenfeld.coxres, 36 LikelihoodBound. coxres, 8, 10, 24
plotSurvival.coxres, 38 LikelihoodBound.default, 25

57



58

LikelihoodBound.poisres, 13, 14, 25,41,

43,45, 54
Linked_Dose_Formula, 27
Linked_Lin_Exp_Para, 28
LogisticRun, 29

OMP_Check, 30

plot.coxres, 31, 33, 35, 37, 38
plotMartingale, 32
plotMartingale.coxres, 31, 33, 35, 37, 38
plotMartingale.default, 33
plotRisk, 34
plotRisk.coxres, 31, 33, 34, 37, 38
plotRisk.default, 35
plotSchoenfeld, 36
plotSchoenfeld. coxres, 31, 33, 35, 36, 38
plotSchoenfeld.default, 37
plotSurvival, 37
plotSurvival.coxres, 31, 33, 35, 37, 38
plotSurvival.default, 39
PoisRun, 13, 14, 26, 40, 43, 45, 54
PoisRunJoint, 13, 14, 26, 41, 42, 45, 54
PoisRunMulti, 13, 14, 26,41, 43, 43, 54
print.caseconres, 46, 47-49, 55
print.coxres, 46, 46, 4749, 55
print.coxresbound, 46, 47,47, 48, 49, 55
print.logitres, 46, 47,48, 49, 55
print.poisres, 4648, 48, 49, 55
print.poisresbound, 4649, 49, 55

RelativeRisk, 50
RelativeRisk.coxres, 50
RelativeRisk.default, 51
Replace_Missing, 11, 15, 17-19, 23,52, 56
Residual, 53

Residual.default, 53
Residual.poisres, 13, 14, 26,41, 43,45, 54

System_Version, 4649, 55

Time_Since, 11,15, 17-19, 23, 52,55

INDEX



	CaseControlRun
	ColossusCoxSurv
	ColossusLogitSurv
	ColossusPoisSurv
	CoxRun
	CoxRunMulti
	Date_Shift
	EventAssignment
	EventAssignment.default
	EventAssignment.poisres
	EventAssignment.poisresbound
	Event_Count_Gen
	Event_Time_Gen
	factorize
	gen_time_dep
	get_form
	get_form_joint
	Joint_Multiple_Events
	LikelihoodBound
	LikelihoodBound.coxres
	LikelihoodBound.default
	LikelihoodBound.poisres
	Likelihood_Ratio_Test
	Linked_Dose_Formula
	Linked_Lin_Exp_Para
	LogisticRun
	OMP_Check
	plot.coxres
	plotMartingale
	plotMartingale.coxres
	plotMartingale.default
	plotRisk
	plotRisk.coxres
	plotRisk.default
	plotSchoenfeld
	plotSchoenfeld.coxres
	plotSchoenfeld.default
	plotSurvival
	plotSurvival.coxres
	plotSurvival.default
	PoisRun
	PoisRunJoint
	PoisRunMulti
	print.caseconres
	print.coxres
	print.coxresbound
	print.logitres
	print.poisres
	print.poisresbound
	RelativeRisk
	RelativeRisk.coxres
	RelativeRisk.default
	Replace_Missing
	Residual
	Residual.default
	Residual.poisres
	System_Version
	Time_Since
	Index

