

Package ‘EpiNow2’

February 5, 2026

Type Package

Title Estimate and Forecast Real-Time Infection Dynamics

Version 1.8.0

Description Estimates the time-varying reproduction number, rate of spread, and doubling time using a renewal equation approach combined with Bayesian inference via Stan. Supports Gaussian process and random walk priors for modelling changes in transmission over time. Accounts for delays between infection and observation (incubation period, reporting delays), right-truncation in recent data, day-of-week effects, and observation overdispersion. Can estimate relationships between primary and secondary outcomes (e.g., cases to hospitalisations or deaths) and forecast both. Runs across multiple regions in parallel. Based on Abbott et al. (2020) <[doi:10.12688/wellcomeopenres.16006.1](https://doi.org/10.12688/wellcomeopenres.16006.1)> and Gostic et al. (2020) <[doi:10.1101/2020.06.18.20134858](https://doi.org/10.1101/2020.06.18.20134858)>.

License MIT + file LICENSE

URL <https://epiforecasts.io/EpiNow2/>,
<https://epiforecasts.io/EpiNow2/dev/>,
<https://github.com/epiforecasts/EpiNow2>

BugReports <https://github.com/epiforecasts/EpiNow2/issues>

Depends R (>= 3.5.0)

Imports checkmate, cli, data.table (>= 1.15.0), futile.logger (>= 1.4), ggplot2, lifecycle, lubridate, methods, patchwork, posterior, primarycensored, purrr, R.utils (>= 2.0.0), Rcpp (>= 0.12.0), rlang (>= 0.4.7), rstan (>= 2.26.0), rstantools (>= 2.2.0), runner, scales, stats, truncnorm, utils

Suggests cmdstanr, future, future.apply, knitr, parallelly, progressr, rmarkdown, scoringutils, spelling, testthat, withr

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0)

Additional_repositories <https://production.r-multiverse.org/2025-12-15>

Biarch true

Config/testthat.edition 3

Config/Needs/dev covr, here, hexSticker, lintr, magick, pkgdown,
precommit, styler, usethis

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.3.3

SystemRequirements GNU make C++17

VignetteBuilder knitr

NeedsCompilation yes

Author Sam Abbott [aut] (ORCID: <<https://orcid.org/0000-0001-8057-8037>>),
Joel Hellewell [aut] (ORCID: <<https://orcid.org/0000-0003-2683-0849>>),
Katharine Sherratt [aut],
Katelyn Gostic [aut],
Joe Hickson [aut],
Hamada S. Badr [aut] (ORCID: <<https://orcid.org/0000-0002-9808-2344>>),
Michael DeWitt [aut] (ORCID: <<https://orcid.org/0000-0001-8940-1967>>),
James M. Azam [aut] (ORCID: <<https://orcid.org/0000-0001-5782-7330>>),
Adrian Lison [aut] (ORCID: <<https://orcid.org/0000-0002-6822-8437>>),
Robin Thompson [ctb],
Sophie Meakin [ctb],
James Munday [ctb],
Nikos Bosse [ctb],
Paul Mee [ctb],
Peter Ellis [ctb],
Pietro Monticone [ctb],
Lloyd Chapman [ctb],
Andrew Johnson [ctb],
Kaitlyn Johnson [ctb] (ORCID: <<https://orcid.org/0000-0001-8011-0012>>),
Adam Howes [ctb] (ORCID: <<https://orcid.org/0000-0003-2386-4031>>),
Sebastian Funk [aut, cre] (ORCID:
<<https://orcid.org/0000-0002-2842-3406>>)

Maintainer Sebastian Funk <sebastian.funk@lshtm.ac.uk>

Repository CRAN

Date/Publication 2026-02-04 23:30:02 UTC

Contents

<code>+.dist_spec</code>	5
<code>==.dist_spec</code>	5
<code>add_breakpoints</code>	6

apply_zero_threshold	7
backcalc_opts	8
bootstrapped_dist_fit	9
bound_dist	10
c.dist_spec	11
calc_CrI	12
calc_CrIs	12
calc_summary_measures	13
calc_summary_stats	14
clean_nowcasts	14
clean_regions	15
collapse	15
convert_to_logmean	16
convert_to_logsd	17
convolve_and_scale	17
delay_opts	19
discretise	20
Distributions	21
dist_fit	23
epinow	24
epinow2_cmdstan_model	28
estimate_delay	28
estimate_infections	29
estimate_secondary	32
estimate_truncation	35
example_confirmed	38
example_generation_time	38
example_incubation_period	39
example_reporting_delay	39
example_truncated	40
expose_stan_fns	40
extract_CrIs	41
extract_inits	41
extract_samples	42
extract_stan_param	43
fill_missing	43
filter_leading_zeros	45
filter_opts	46
fix_parameters	47
forecast_infections	47
forecast_opts	49
forecast_secondary	50
get_distribution	51
get_parameters	52
get_pmf	53
get_predictions	53
getRegional_results	55
get_samples	56

gp_opts	57
growth_to_R	59
gt_opts	60
is_constrained	61
make_conf	62
map_prob_change	62
max.dist_spec	63
mean.dist_spec	64
new_dist_spec	65
obs_opts	65
opts_list	67
plot.dist_spec	68
plot.estimate_infections	69
plot.estimate_secondary	70
plot.estimate_truncation	70
plot.forecast_infections	71
plot.forecast_secondary	72
plot_CrIs	72
plot_estimates	73
plot_summary	74
print.dist_spec	75
print.epinowfit	76
regional_epinow	76
regional_summary	79
report_plots	81
report_summary	82
rt_opts	82
run_region	85
R_to_growth	87
secondary_opts	87
setup_default_logging	88
setup_future	89
setup_logging	90
simulate_infections	91
simulate_secondary	93
stan_laplace_opts	95
stan_opts	96
stan_pathfinder_opts	97
stan_sampling_opts	98
stan_vb_opts	99
summary.epinow	100
summary.estimate_infections	101
summary.estimate_secondary	102
summary.estimate_truncation	103
summary.forecast_infections	103
trunc_opts	104
update_secondary_args	105

<code>+.dist_spec</code>	<i>Creates a delay distribution as the sum of two other delay distributions.</i>
--------------------------	--

Description

[Experimental]

Usage

```
## S3 method for class 'dist_spec'  
e1 + e2
```

Arguments

<code>e1</code>	The first delay distribution (of type <code><dist_spec></code>) to combine.
<code>e2</code>	The second delay distribution (of type <code><dist_spec></code>) to combine.

Value

A delay distribution representing the sum of the two delays

Examples

```
# A fixed lognormal distribution with mean 5 and sd 1.  
dist1 <- LogNormal(  
  meanlog = 1.6, sdlog = 1, max = 20  
)  
dist1 + dist1  
  
# An uncertain gamma distribution with shape and rate normally distributed  
# as Normal(3, 0.5) and Normal(2, 0.5) respectively  
dist2 <- Gamma(  
  shape = Normal(3, 0.5),  
  rate = Normal(2, 0.5),  
  max = 20  
)  
dist1 + dist2
```

<code>==.dist_spec</code>	<i>Compares two delay distributions</i>
---------------------------	---

Description

Compares two delay distributions

Usage

```
## S3 method for class 'dist_spec'
e1 == e2

## S3 method for class 'dist_spec'
e1 != e2
```

Arguments

e1 The first delay distribution (of type <dist_spec>) to combine.
 e2 The second delay distribution (of type <dist_spec>) to combine.

Value

TRUE or FALSE

Examples

```
Fixed(1) == Normal(1, 0.5)
```

add_breakpoints *Add breakpoints to certain dates in a data set.*

Description

Add breakpoints to certain dates in a data set.

Usage

```
add_breakpoints(data, dates = as.Date(character(0)))
```

Arguments

data A <data.frame> of disease reports (confirm) by date (date). confirm must be numeric and date must be in date format. Optionally, data can also have a logical accumulate column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the [fill_missing\(\)](#) function which helps add the accumulate column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the truncation argument. If all entries of confirm are missing (NA) the returned estimates will represent the prior distributions.

dates A vector of dates to use as breakpoints.

Value

A data.table with breakpoint set to 1 on each of the specified dates.

Examples

```
reported_cases <- add_breakpoints(example_confirmed, as.Date("2020-03-26"))
```

apply_zero_threshold *Convert zero case counts to NA (missing) if the 7-day average is above a threshold.*

Description

This function aims to detect spurious zeroes by comparing the 7-day average of the case counts to a threshold. If the 7-day average is above the threshold, the zero case count is replaced with NA.

Usage

```
apply_zero_threshold(data, threshold = Inf, obs_column = "confirm")
```

Arguments

data	A <code><data.frame></code> of disease reports (<code>confirm</code>) by date (<code>date</code>). <code>confirm</code> must be numeric and date must be in date format. Optionally, data can also have a logical accumulate column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the <code>fill_missing()</code> function which helps add the accumulate column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the <code>truncation</code> argument. If all entries of <code>confirm</code> are missing (NA) the returned estimates will represent the prior distributions.
threshold	Numeric, defaults to <code>Inf</code> . Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold at the time of a zero observation count then the zero is replaced with a missing (NA) count and thus ignored in the likelihood.
obs_column	Character (default: <code>"confirm"</code>). If given, only the column specified here will be used for checking missingness. This is useful if using a data set that has multiple columns of which one of them corresponds to observations that are to be processed here.

Value

A data.table with the zero threshold applied.

backcalc_opts	<i>Back Calculation Options</i>
---------------	---------------------------------

Description

[Stable] Defines a list specifying the optional arguments for the back calculation of cases. Only used if `rt` = `NULL`.

Usage

```
backcalc_opts(
  prior = c("reports", "none", "infections"),
  prior_window = 14,
  rt_window = 1
)
```

Arguments

<code>prior</code>	A character string defaulting to "reports". Defines the prior to use when deconvolving. Currently implemented options are to use smoothed mean delay shifted reported cases ("reports"), to use the estimated infections from the previous time step seeded for the first time step using mean shifted reported cases ("infections"), or no prior ("none"). Using no prior will result in poor real time performance. No prior and using infections are only supported when a Gaussian process is present. If observed data is not reliable then it a sensible first step is to explore increasing the <code>prior_window</code> with a sensible second step being to no longer use reported cases as a prior (i.e set <code>prior = "none"</code>).
<code>prior_window</code>	Integer, defaults to 14 days. The mean centred smoothing window to apply to mean shifted reports (used as a prior during back calculation). 7 days is minimum recommended settings as this smooths day of the week effects but depending on the quality of the data and the amount of information users wish to use as a prior (higher values equalling a less informative prior).
<code>rt_window</code>	Integer, defaults to 1. The size of the centred rolling average to use when estimating R_t . This must be odd so that the central estimate is included.

Value

A `<backcalc_opts>` object of back calculation settings.

Examples

```
# default settings
backcalc_opts()
```

`bootstrapped_dist_fit` *Fit a Subsampled Bootstrap to Integer Values and Summarise Distribution Parameters*

Description

[Stable] Fits an integer adjusted distribution to a subsampled bootstrap of data and then integrates the posterior samples into a single set of summary statistics. Can be used to generate a robust reporting delay that accounts for the fact the underlying delay likely varies over time or that the size of the available reporting delay sample may not be representative of the current case load.

Usage

```
bootstrapped_dist_fit(
  values,
  dist = "lognormal",
  samples = 2000,
  bootstraps = 10,
  bootstrap_samples = 250,
  max_value,
  verbose = FALSE
)
```

Arguments

<code>values</code>	Integer vector of values.
<code>dist</code>	Character string, which distribution to fit. Defaults to <code>lognormal</code> ("lognormal") but <code>gamma</code> ("gamma") is also supported.
<code>samples</code>	Numeric, number of samples to take overall from the bootstrapped posteriors.
<code>bootstraps</code>	Numeric, defaults to 1. The number of bootstrap samples (with replacement) of the delay distribution to take. If <code>samples</code> is less than <code>bootstraps</code> , <code>samples</code> takes the value of <code>bootstraps</code> .
<code>bootstrap_samples</code>	Numeric, defaults to 250. The number of samples to take in each bootstrap if the sample size of the supplied delay distribution is less than its value.
<code>max_value</code>	Numeric, defaults to the maximum value in the observed data. Maximum delay to allow (added to output but does impact fitting).
<code>verbose</code>	Logical, defaults to FALSE. Should progress messages be printed.

Value

A `<dist_spec>` object summarising the bootstrapped distribution

Examples

```
# lognormal
# bootstraps and samples have been reduced for this example
# for real analyses, use more
delays <- rlnorm(500, log(5), 1)
out <- bootstrapped_dist_fit(delays,
  samples = 500, bootstraps = 2,
  dist = "lognormal"
)
out
```

bound_dist

Define bounds of a <dist_spec>

Description

[Experimental] This sets attributes for further processing

Usage

```
bound_dist(x, max = Inf, cdf_cutoff = 0)
```

Arguments

<code>x</code>	A <dist_spec>.
<code>max</code>	Numeric, maximum value of the distribution. The distribution will be truncated at this value. Default: <code>Inf</code> , i.e. no maximum.
<code>cdf_cutoff</code>	Numeric; the desired CDF cutoff. Any part of the cumulative distribution function beyond 1 minus the value of this argument is removed. Default: <code>0</code> , i.e. use the full distribution.

Value

a <dist_spec> with relevant attributes set that define its bounds

c.dist_spec	<i>Combines multiple delay distributions for further processing</i>
-------------	---

Description

[Experimental] This combines the parameters so that they can be fed as multiple delay distributions to `epinow()` or `estimate_infections()`.

Note that distributions that already are combinations of other distributions cannot be combined with other combinations of distributions.

Usage

```
## S3 method for class 'dist_spec'  
c(...)
```

Arguments

... The delay distributions to combine

Value

Combined delay distributions (with class `<dist_spec>`)

Examples

```
# A fixed lognormal distribution with mean 5 and sd 1.  
dist1 <- LogNormal(  
  meanlog = 1.6, sdlog = 1, max = 20  
)  
dist1 + dist1  
  
# An uncertain gamma distribution with shape and rate normally distributed  
# as Normal(3, 0.5) and Normal(2, 0.5) respectively  
dist2 <- Gamma(  
  shape = Normal(3, 0.5),  
  rate = Normal(2, 0.5),  
  max = 20  
)  
c(dist1, dist2)
```

calc_CrI*Calculate Credible Interval*

Description

[Stable] Adds symmetric a credible interval based on quantiles.

Usage

```
calc_CrI(samples, summarise_by = NULL, CrI = 0.9)
```

Arguments

<code>samples</code>	A data.table containing at least a value variable
<code>summarise_by</code>	A character vector of variables to group by.
<code>CrI</code>	Numeric between 0 and 1. The credible interval for which to return values. Defaults to 0.9.

Value

A data.table containing the upper and lower bounds for the specified credible interval.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add 90% credible interval
calc_CrI(samples)
# add 90% credible interval grouped by type
calc_CrI(samples, summarise_by = "type")
```

calc_CrIs*Calculate Credible Intervals*

Description

[Stable] Adds symmetric credible intervals based on quantiles.

Usage

```
calc_CrIs(samples, summarise_by = NULL, CrIs = c(0.2, 0.5, 0.9))
```

Arguments

<code>samples</code>	A data.table containing at least a value variable
<code>summarise_by</code>	A character vector of variables to group by.
<code>CrIs</code>	Numeric vector of credible intervals to calculate.

Value

A data.table containing the `summarise_by` variables and the specified lower and upper credible intervals.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add credible intervals
calc_CrIs(samples)
# add 90% credible interval grouped by type
calc_CrIs(samples, summarise_by = "type")
```

`calc_summary_measures` *Calculate All Summary Measures*

Description

[Stable] Calculate summary statistics and credible intervals from a `<data.frame>` by group.

Usage

```
calc_summary_measures(
  samples,
  summarise_by = NULL,
  order_by = NULL,
  CrIs = c(0.2, 0.5, 0.9)
)
```

Arguments

<code>samples</code>	A data.table containing at least a value variable
<code>summarise_by</code>	A character vector of variables to group by.
<code>order_by</code>	A character vector of parameters to order by, defaults to all <code>summarise_by</code> variables.
<code>CrIs</code>	Numeric vector of credible intervals to calculate.

Value

A data.table containing summary statistics by group.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_measures(samples)
# by type
calc_summary_measures(samples, summarise_by = "type")
```

calc_summary_stats	<i>Calculate Summary Statistics</i>
--------------------	-------------------------------------

Description

[Stable] Calculate summary statistics from a `<data.frame>` by group. Currently supports the mean, median and standard deviation.

Usage

```
calc_summary_stats(samples, summarise_by = NULL)
```

Arguments

<code>samples</code>	A data.table containing at least a value variable
<code>summarise_by</code>	A character vector of variables to group by.

Value

A data.table containing the upper and lower bounds for the specified credible interval

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_stats(samples)
# by type
calc_summary_stats(samples, summarise_by = "type")
```

clean_nowcasts	<i>Clean Nowcasts for a Supplied Date</i>
----------------	---

Description

[Stable] This function removes nowcasts in the format produced by EpiNow2 from a target directory for the date supplied.

Usage

```
clean_nowcasts(date = Sys.Date(), nowcast_dir = ".")
```

Arguments

<code>date</code>	Date object. Defaults to today's date
<code>nowcast_dir</code>	Character string giving the filepath to the nowcast results directory. Defaults to the current directory.

Value

No return value, called for side effects

clean_regions	<i>Clean Regions</i>
---------------	----------------------

Description

[Stable] Removes regions with insufficient time points, and provides logging information on the input.

Usage

```
clean_regions(data, non_zero_points)
```

Arguments

`data` A `<data.frame>` of disease reports (confirm) by date (date), and region (region).

`non_zero_points`

Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 7.

Value

A data frame of cleaned regional data

See Also

[regional_epinow\(\)](#)

collapse	<i>Collapse nonparametric distributions in a <dist_spec></i>
----------	--

Description

[Experimental] This convolves any consecutive nonparametric distributions contained in the `<dist_spec>`.

Usage

```
## S3 method for class 'dist_spec'  
collapse(x, ...)
```

Arguments

`x` A `<dist_spec>`
`...` ignored

Value

A <dist_spec> where consecutive nonparametric distributions have been convolved

Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)

# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
  meanlog = Normal(3, 0.5),
  sdlog = Normal(2, 0.5),
  max = 20
)

# The maxf the sum of two distributions
collapse(discretise(dist1 + dist2, strict = FALSE))
```

convert_to_logmean

Convert mean and sd to log mean for a log normal distribution

Description

[Stable] Convert from mean and standard deviation to the log mean of the lognormal distribution. Useful for defining distributions supported by [estimate_infections\(\)](#), [epinow\(\)](#), and [regional_epinow\(\)](#).

Usage

```
convert_to_logmean(mean, sd)
```

Arguments

mean	Numeric, mean of a distribution
sd	Numeric, standard deviation of a distribution

Value

The log mean of a lognormal distribution

Examples

```
convert_to_logmean(2, 1)
```

convert_to_logsd	<i>Convert mean and sd to log standard deviation for a log normal distribution</i>
------------------	--

Description

[Stable] Convert from mean and standard deviation to the log standard deviation of the lognormal distribution. Useful for defining distributions supported by [estimate_infections\(\)](#), [epinow\(\)](#), and [regional_epinow\(\)](#).

Usage

```
convert_to_logsd(mean, sd)
```

Arguments

mean	Numeric, mean of a distribution
sd	Numeric, standard deviation of a distribution

Value

The log standard deviation of a lognormal distribution

Examples

```
convert_to_logsd(2, 1)
```

convolve_and_scale	<i>Convolve and scale a time series</i>
--------------------	---

Description

This applies a lognormal convolution with given, potentially time-varying parameters representing the parameters of the lognormal distribution used for the convolution and an optional scaling factor. This is akin to the model used in [estimate_secondary\(\)](#) and [simulate_secondary\(\)](#).

Usage

```
convolve_and_scale(
  data,
  type = c("incidence", "prevalence"),
  family = c("none", "poisson", "negbin"),
  delay_max = 30,
  ...
)
```

Arguments

data	A <code><data.frame></code> containing the date of report and primary cases as a numeric vector.
type	A character string indicating the type of observation the secondary reports are. Options include: <ul style="list-style-type: none"> • "incidence": Assumes that secondary reports equal a convolution of previously observed primary reported cases. An example application is deaths from an infectious disease predicted by reported cases of that disease (or estimated infections). • "prevalence": Assumes that secondary reports are cumulative and are defined by currently observed primary reports minus a convolution of secondary reports. An example application is hospital bed usage predicted by hospital admissions.
family	Character string defining the observation model. Options are Negative binomial ("negbin"), the default, Poisson ("poisson"), and "none" meaning the expectation is returned.
delay_max	Integer, defaulting to 30 days. The maximum delay used in the convolution model.
...	Additional parameters to pass to the observation model (i.e <code>rnbinom</code> or <code>rpois</code>).

Details

Up to version 1.4.0 this function was called [simulate_secondary\(\)](#).

Value

A `<data.frame>` containing simulated data in the format required by [estimate_secondary\(\)](#).

See Also

[estimate_secondary\(\)](#)

Examples

```
# load data.table for manipulation
library(data.table)

##### Incidence data example #####
# make some example secondary incidence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]

# Assume that only 40 percent of cases are reported
cases[, scaling := 0.4]

# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.8][, sdlog := 0.5]
```

```

# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "incidence")
cases
##### Prevalence data example #####
# make some example prevalence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]

# Assume that only 30 percent of cases are reported
cases[, scaling := 0.3]

# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.6][, sdlog := 0.8]

# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "prevalence")
cases

```

delay_opts*Delay Distribution Options*

Description

[Stable] Returns delay distributions formatted for usage by downstream functions.

Usage

```
delay_opts(dist = Fixed(0), default_cdf_cutoff = 0.001, weight_prior = TRUE)
```

Arguments

dist	A delay distribution or series of delay distributions. Default is a fixed distribution with all mass at 0, i.e. no delay.
default_cdf_cutoff	Numeric; default CDF cutoff to be used if an unconstrained distribution is passed as dist. If dist is already constrained by having a maximum or CDF cutoff this is ignored. Note that this can only be done for <dist_spec> objects with fixed parameters.
weight_prior	Logical; if TRUE (default), any priors given in dist will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE, no weight will be applied, i.e. any parameters in dist will be treated as a single parameters.

Value

A <delay_opts> object summarising the input delay distributions.

See Also

[convert_to_logmean\(\)](#) [convert_to_logsd\(\)](#) [bootstrapped_dist_fit\(\)](#) [Distributions](#)

Examples

```
# no delays
delay_opts()

# A single delay that has uncertainty
delay <- LogNormal(
  meanlog = Normal(1, 0.2),
  sdlog = Normal(0.5, 0.1),
  max = 14
)
delay_opts(delay)

# A single delay without uncertainty
delay <- LogNormal(meanlog = 1, sdlog = 0.5, max = 14)
delay_opts(delay)

# Multiple delays (in this case twice the same)
delay_opts(delay + delay)
```

discretise

Discretise a <dist_spec>

Description

[Experimental]

Usage

```
## S3 method for class 'dist_spec'
discretise(x, strict = TRUE, remove_trailing_zeros = TRUE, ...)
discretize(x, ...)
```

Arguments

<code>x</code>	A <dist_spec>
<code>strict</code>	Logical; If TRUE (default) an error will be thrown if a distribution cannot be discretised (e.g., because no finite maximum has been specified or parameters are uncertain). If FALSE then any distribution that cannot be discretised will be returned as is.
<code>remove_trailing_zeros</code>	Logical; If TRUE (default), trailing zeroes in the resulting PMF will be removed. If FALSE, trailing zeroes will be retained.
<code>...</code>	ignored

Value

A <dist_spec> where all distributions with constant parameters are nonparametric.

Methodological details

The probability mass function is computed using the {primarycensored} package, which provides double censored PMF calculations. This correctly represents the probability mass function of a double censored distribution arising from the difference of two censored events.

The probability mass function of the discretised probability distribution is a vector where the first entry corresponds to the integral over the (0,1] interval of the corresponding continuous distribution (probability of integer 0), the second entry corresponds to the (0,2] interval (probability mass of integer 1), the third entry corresponds to the (1, 3] interval (probability mass of integer 2), etc.

References

Charniga, K., et al. "Best practices for estimating and reporting epidemiological delay distributions of infectious diseases using public health surveillance and healthcare data", *arXiv e-prints*, 2024. [doi:10.48550/arXiv.2405.08841](https://doi.org/10.48550/arXiv.2405.08841) Park, S. W., et al., "Estimating epidemiological delay distributions for infectious diseases", *medRxiv*, 2024. [doi:10.1101/2024.01.12.24301247](https://doi.org/10.1101/2024.01.12.24301247) Abbott S., et al., "primarycensored: Primary Event Censored Distributions", 2025. [doi:10.5281/zenodo.13632839](https://doi.org/10.5281/zenodo.13632839)

Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)

# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
  meanlog = Normal(3, 0.5),
  sdlog = Normal(2, 0.5),
  max = 20
)

# The maxf the sum of two distributions
discretise(dist1 + dist2, strict = FALSE)
```

Description

Probability distributions

Generates a nonparametric distribution.

Usage

```
LogNormal(meanlog, sdlog, mean, sd, ...)
Gamma(shape, rate, scale, mean, sd, ...)
Normal(mean, sd, ...)
Fixed(value, ...)
NonParametric(pmf, ...)
```

Arguments

meanlog, sdlog	mean and standard deviation of the distribution on the log scale with default values of 0 and 1 respectively.
mean, sd	mean and standard deviation of the distribution
...	arguments to define the limits of the distribution that will be passed to bound_dist()
shape, scale	shape and scale parameters. Must be positive, scale strictly.
rate	an alternative way to specify the scale.
value	Value of the fixed (delta) distribution
pmf	Probability mass of the given distribution; this is passed as a zero-indexed numeric vector (i.e. the first entry represents the probability mass of zero). If not summing to one it will be normalised to sum to one internally.

Details

Probability distributions are ubiquitous in EpiNow2, usually representing epidemiological delays (e.g., the generation time for delays between becoming infecting and infecting others; or reporting delays)

They are generated using functions that have a name corresponding to the probability distribution that is being used. They generate `dist_spec` objects that are then passed to the models underlying EpiNow2. All parameters can be given either as fixed values (a numeric value) or as uncertain values (a `dist_sepc`). If given as uncertain values, currently only normally distributed parameters (generated using `Normal()`) are supported.

Each distribution has a representation in terms of "natural" parameters (the ones used in stan) but can sometimes also be specified using other parameters such as the mean or standard deviation of the distribution. If not given as natural parameters then these will be calculated from the given parameters. If they have uncertainty, this will be done by random sampling from the given uncertainty and converting resulting parameters to their natural representation.

Currently available distributions are lognormal, gamma, normal, fixed (delta) and nonparametric. The nonparametric is a special case where the probability mass function is given directly as a numeric vector.

Value

A `dist_spec` representing a distribution of the given specification.

Examples

```
LogNormal(mean = 4, sd = 1)
LogNormal(mean = 4, sd = 1, max = 10)
# If specifying uncertain parameters, use the natural parameters
LogNormal(meanlog = Normal(1.5, 0.5), sdlog = 0.25, max = 10)
Gamma(mean = 4, sd = 1)
Gamma(shape = 16, rate = 4)
Gamma(shape = Normal(16, 2), rate = Normal(4, 1))
Normal(mean = 4, sd = 1)
Normal(mean = 4, sd = 1, max = 10)
Fixed(value = 3)
Fixed(value = 3.5)
NonParametric(c(0.1, 0.3, 0.2, 0.4))
NonParametric(c(0.1, 0.3, 0.2, 0.1, 0.1))
```

dist_fit

Fit an Integer Adjusted Exponential, Gamma or Lognormal distributions

Description

[Stable] Fits an integer adjusted exponential, gamma or lognormal distribution using stan.

Usage

```
dist_fit(
  values = NULL,
  samples = 1000,
  cores = 1,
  chains = 2,
  dist = "exp",
  verbose = FALSE,
  backend = "rstan"
)
```

Arguments

values	Numeric vector of values
samples	Numeric, number of samples to take. Must be ≥ 1000 . Defaults to 1000.
cores	Numeric, defaults to 1. Number of CPU cores to use (no effect if greater than the number of chains).
chains	Numeric, defaults to 2. Number of MCMC chains to use. More is better with the minimum being two.
dist	Character string, which distribution to fit. Defaults to exponential ("exp") but gamma ("gamma") and lognormal ("lognormal") are also supported.
verbose	Logical, defaults to FALSE. Should verbose progress messages be printed.
backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".

Value

A stan fit of an interval censored distribution

Examples

```
# integer adjusted exponential model
dist_fit(rexp(1:100, 2),
  samples = 1000, dist = "exp",
  cores = ifelse(interactive(), 4, 1), verbose = TRUE
)

# integer adjusted gamma model
dist_fit(rgamma(1:100, 5, 5),
  samples = 1000, dist = "gamma",
  cores = ifelse(interactive(), 4, 1), verbose = TRUE
)

# integer adjusted lognormal model
dist_fit(rlnorm(1:100, log(5), 0.2),
  samples = 1000, dist = "lognormal",
  cores = ifelse(interactive(), 4, 1), verbose = TRUE
)
```

Description

[Stable] This function wraps the functionality of `estimate_infections()` in order to estimate Rt and cases by date of infection and forecast these infections into the future. In addition to the functionality of `estimate_infections()` it produces additional summary output useful for reporting results and interpreting them as well as error catching and reporting, making it particularly useful for production use e.g. running at set intervals on a dedicated server.

Usage

```
epinow(
  data,
  generation_time = gt_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  forecast = forecast_opts(),
```

```

stan = stan_opts(),
CrIs = c(0.2, 0.5, 0.9),
return_output = is.null(target_folder),
output = c("samples", "plots", "latest", "fit", "timing", "estimate_infections"),
plot_args = list(),
target_folder = NULL,
target_date,
logs = tempdir(),
id = "epinow",
verbose = interactive(),
filter_leading_zeros = TRUE,
zero_threshold = Inf,
horizon
)

```

Arguments

data	A <code><data.frame></code> of disease reports (<code>confirm</code>) by date (<code>date</code>). <code>confirm</code> must be numeric and date must be in date format. Optionally, data can also have a logical <code>accumulate</code> column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the <code>fill_missing()</code> function which helps add the <code>accumulate</code> column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the <code>truncation</code> argument. If all entries of <code>confirm</code> are missing (NA) the returned estimates will represent the prior distributions.
generation_time	A call to <code>gt_opts()</code> (or its alias <code>generation_time_opts()</code>) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.
rt	A list of options as generated by <code>rt_opts()</code> defining Rt estimation. Defaults to <code>rt_opts()</code> . To generate new infections using the non-mechanistic model instead of the renewal equation model, use <code>rt = NULL</code> . The non-mechanistic model internally uses the setting <code>rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0")</code> .
backcalc	A list of options as generated by <code>backcalc_opts()</code> to define the back calculation. Defaults to <code>backcalc_opts()</code> .
gp	A list of options as generated by <code>gp_opts()</code> to define the Gaussian process. Defaults to <code>gp_opts()</code> . Set to <code>NULL</code> to disable the Gaussian process.

obs	A list of options as generated by <code>obs_opts()</code> defining the observation model. Defaults to <code>obs_opts()</code> .
forecast	A list of options as generated by <code>forecast_opts()</code> defining the forecast options. Defaults to <code>forecast_opts()</code> . If NULL then no forecasting will be done.
stan	A list of stan options as generated by <code>stan_opts()</code> . Defaults to <code>stan_opts()</code> . Can be used to override data, init, and verbose settings if desired.
CrIs	Numeric vector of credible intervals to calculate.
return_output	Logical, defaults to FALSE. Should output be returned, this automatically updates to TRUE if no directory for saving is specified.
output	A character vector of optional output to return. Supported options are samples ("samples"), plots ("plots"), the run time ("timing"), copying the dated folder into a latest folder (if <code>target_folder</code> is not null, set using "latest"), the stan fit ("fit"), and the full <code>estimate_infections()</code> return object ("estimate_infections"). The default is to return all options.
plot_args	A list of optional arguments passed to <code>plot.estimate_infections()</code> .
target_folder	Character string specifying where to save results (will create if not present).
target_date	Date, defaults to maximum found in the data if not specified.
logs	Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if <code>logs</code> is set to NULL. If specifying a custom logging setup then the code for <code>setup_default_logging()</code> and the <code>setup_logging()</code> function are a sensible place to start.
id	A character string used to assign logging information on error. Used by <code>regional_epinow()</code> to assign errors to regions. Alter the default to run with error catching.
verbose	Logical, defaults to TRUE when used interactively and otherwise FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from <code>futile.logger</code> . See <code>setup_logging</code> for more detailed logging options.
filter_leading_zeros	Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.
zero_threshold	[Experimental] Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using <code>fill</code> .
horizon	Deprecated; use <code>forecast</code> instead to specify the predictive horizon

Value

An `<epinow>` object (inheriting from `<estimate_infections>`) containing:

- `fit`: The stan fit object.
- `args`: A list of arguments used for fitting (stan data).
- `observations`: The input data (`<data.frame>`).
- `timing`: The run time (if output includes "timing").

See Also

[get_samples\(\)](#) [get_predictions\(\)](#) [get_parameters\(\)](#) [estimate_infections\(\)](#) [forecast_infections\(\)](#)
[regional_epinow\(\)](#)

Examples

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))

# set an example generation time. In practice this should use an estimate
# from the literature or be estimated from data
generation_time <- Gamma(
  shape = Normal(1.3, 0.3),
  rate = Normal(0.37, 0.09),
  max = 14
)
# set an example incubation period. In practice this should use an estimate
# from the literature or be estimated from data
incubation_period <- LogNormal(
  meanlog = Normal(1.6, 0.06),
  sdlog = Normal(0.4, 0.07),
  max = 14
)
# set an example reporting delay. In practice this should use an estimate
# from the literature or be estimated from data
reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10)

# example case data
reported_cases <- example_confirmed[1:40]

# estimate Rt and nowcast/forecast cases by date of infection
# samples and calculation time have been reduced for this example
# for real analyses, use at least samples = 2000
out <- epinow(
  data = reported_cases,
  generation_time = gt_opts(generation_time),
  rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1)),
  delays = delay_opts(incubation_period + reporting_delay),
  stan = stan_opts(samples = 100, warmup = 200)
)
# summary of the latest estimates
summary(out)
# plot estimates
plot(out)

# summary of R estimates
summary(out, type = "parameters", params = "R")

options(old_opts)
```

`epinow2_cmdstan_model` *Load and compile an EpiNow2 cmdstanr model*

Description

The function has been adapted from a similar function in the `epinowcast` package (Copyright holder: `epinowcast` authors, under MIT License).

Usage

```
epinow2_cmdstan_model(
  model = "estimate_infections",
  dir = system.file("stan", package = "EpiNow2"),
  verbose = FALSE,
  ...
)
```

Arguments

<code>model</code>	A character string indicating the model to use. Needs to be present in <code>dir</code> (with extension <code>.stan</code>). Defaults to "estimate_infections".
<code>dir</code>	A character string specifying the path to any stan files to include in the model. If missing the package default is used.
<code>verbose</code>	Logical, defaults to TRUE. Should verbose messages be shown.
<code>...</code>	Additional arguments passed to <code>cmdstanr::cmdstan_model()</code> .

Value

A `cmdstanr` model.

`estimate_delay` *Estimate a Delay Distribution*

Description

[Maturing] Estimate a log normal delay distribution from a vector of integer delays. Currently this function is a simple wrapper for `bootstrapped_dist_fit()`.

Usage

```
estimate_delay(delays, ...)
```

Arguments

<code>delays</code>	Integer vector of delays
<code>...</code>	Arguments to pass to internal methods.

Value

A <dist_spec> summarising the bootstrapped distribution

See Also

[bootstrapped_dist_fit\(\)](#)

Examples

```
# bootstraps and samples have been reduced for this example
delays <- rlnorm(500, log(5), 1)
estimate_delay(delays, samples = 500, bootstraps = 2)
```

<code>estimate_infections</code>	<i>Estimate Infections, the Time-Varying Reproduction Number and the Rate of Growth</i>
----------------------------------	---

Description

[Maturing] Uses a non-parametric approach to reconstruct cases by date of infection from reported cases. It uses either a generative Rt model or non-parametric back calculation to estimate underlying latent infections and then maps these infections to observed cases via uncertain reporting delays and a flexible observation model. See the examples and function arguments for the details of all options. The default settings may not be sufficient for your use case so the number of warmup samples (`stan_args = list(warmup)`) may need to be increased as may the overall number of samples. Follow the links provided by any warnings messages to diagnose issues with the MCMC fit. It is recommended to explore several of the Rt estimation approaches supported as not all of them may be suited to users own use cases. See [here](#) for an example of using `estimate_infections` within the `epinow` wrapper to estimate Rt for Covid-19 in a country from the ECDC data source.

Usage

```
estimate_infections(
  data,
  generation_time = gt_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  forecast = forecast_opts(),
  stan = stan_opts(),
  CrIs = c(0.2, 0.5, 0.9),
  weigh_delay_priors = TRUE,
  id = "estimate_infections",
```

```

    verbose = interactive(),
    filter_leading_zeros = TRUE,
    zero_threshold = Inf,
    horizon
)

```

Arguments

data	A <code><data.frame></code> of disease reports (<code>confirm</code>) by date (<code>date</code>). <code>confirm</code> must be numeric and date must be in date format. Optionally, data can also have a logical <code>accumulate</code> column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the <code>fill_missing()</code> function which helps add the <code>accumulate</code> column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the <code>truncation</code> argument. If all entries of <code>confirm</code> are missing (NA) the returned estimates will represent the prior distributions.
generation_time	A call to <code>gt_opts()</code> (or its alias <code>generation_time_opts()</code>) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.
rt	A list of options as generated by <code>rt_opts()</code> defining Rt estimation. Defaults to <code>rt_opts()</code> . To generate new infections using the non-mechanistic model instead of the renewal equation model, use <code>rt = NULL</code> . The non-mechanistic model internally uses the setting <code>rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0")</code> .
backcalc	A list of options as generated by <code>backcalc_opts()</code> to define the back calculation. Defaults to <code>backcalc_opts()</code> .
gp	A list of options as generated by <code>gp_opts()</code> to define the Gaussian process. Defaults to <code>gp_opts()</code> . Set to <code>NULL</code> to disable the Gaussian process.
obs	A list of options as generated by <code>obs_opts()</code> defining the observation model. Defaults to <code>obs_opts()</code> .
forecast	A list of options as generated by <code>forecast_opts()</code> defining the forecast options. Defaults to <code>forecast_opts()</code> . If <code>NULL</code> then no forecasting will be done.
stan	A list of stan options as generated by <code>stan_opts()</code> . Defaults to <code>stan_opts()</code> . Can be used to override <code>data</code> , <code>init</code> , and <code>verbose</code> settings if desired.
CrIs	Deprecated; specify credible intervals when using <code>summary()</code> or <code>plot()</code>
weigh_delay_priors	Deprecated; this is now specified at the distribution level in <code>generation_time_opts()</code> , <code>delay_opts()</code> and <code>trunc_opts()</code> using the <code>weight_prior</code> argument.

id	A character string used to assign logging information on error. Used by regional_epinow() to assign errors to regions. Alter the default to run with error catching.
verbose	Logical, defaults to TRUE when used interactively and otherwise FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from <code>futile.logger</code> . See <code>setup_logging</code> for more detailed logging options.
filter_leading_zeros	Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.
zero_threshold	[Experimental] Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using <code>fill</code> .
horizon	Deprecated; use <code>forecast</code> instead to specify the predictive horizon

Value

An `<estimate_infections>` object containing:

- `fit`: The stan fit object.
- `args`: A list of arguments used for fitting (stan data).
- `observations`: The input data (`<data.frame>`).

See Also

[get_samples\(\)](#) [get_predictions\(\)](#) [get_parameters\(\)](#) [epinow\(\)](#) [regional_epinow\(\)](#) [forecast_infections\(\)](#) [estimate_truncation\(\)](#)

Examples

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))

# get example case counts
reported_cases <- example_confirmed[1:40]

# set an example generation time. In practice this should use an estimate
# from the literature or be estimated from data
generation_time <- Gamma(
  shape = Normal(1.3, 0.3),
  rate = Normal(0.37, 0.09),
  max = 14
)
# set an example incubation period. In practice this should use an estimate
# from the literature or be estimated from data
incubation_period <- LogNormal(
  meanlog = Normal(1.6, 0.06),
  sdlog = Normal(0.4, 0.07),
  max = 14
)
```

```

# set an example reporting delay. In practice this should use an estimate
# from the literature or be estimated from data
reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10)

# for more examples, see the "estimate_infections examples" vignette
# samples and calculation time have been reduced for this example
# for real analyses, use at least samples = 2000
def <- estimate_infections(reported_cases,
  generation_time = gt_opts(generation_time),
  delays = delay_opts(incubation_period + reporting_delay),
  rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1)),
  stan = stan_opts(samples = 100, warmup = 200)
)
# real time estimates
summary(def)
# summary plot
plot(def)
options(old_opts)

```

estimate_secondary *Estimate a Secondary Observation from a Primary Observation*

Description

[**Stable**] Estimates the relationship between a primary and secondary observation, for example hospital admissions and deaths or hospital admissions and bed occupancy. See `secondary_opts()` for model structure options. See parameter documentation for model defaults and options. See the examples for case studies using synthetic data and [here](#) for an example of forecasting Covid-19 deaths from Covid-19 cases. See [here](#) for a prototype function that may be used to estimate and forecast a secondary observation from a primary across multiple regions and [here](#) # nolint for an application forecasting Covid-19 deaths in Germany and Poland.

Usage

```

estimate_secondary(
  data,
  secondary = secondary_opts(),
  delays = delay_opts(LogNormal(meanlog = Normal(2.5, 0.5), sdlog = Normal(0.47, 0.25),
    max = 30), weight_prior = FALSE),
  truncation = trunc_opts(),
  obs = obs_opts(),
  stan = stan_opts(),
  burn_in = 14,
  CrIs = c(0.2, 0.5, 0.9),
  priors = NULL,
  model = NULL,
  weigh_delay_priors = FALSE,

```

```

    verbose = interactive(),
    filter_leading_zeros = FALSE,
    zero_threshold = Inf
)

```

Arguments

data	A <data.frame> containing the date of report and both primary and secondary reports. Optionally this can also have a logical accumulate column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the fill_missing() function which helps add the accumulate column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the truncation argument.
secondary	A call to secondary_opts() or a list containing the following binary variables: cumulative, historic, primary_hist_additive, current, primary_current_additive. These parameters control the structure of the secondary model, see secondary_opts() for details.
delays	A call to delay_opts() defining delay distributions between primary and secondary observations. See the documentation of delay_opts() for details. By default a diffuse prior is assumed with a mean of 14 days and standard deviation of 7 days (with a standard deviation of 0.5 and 0.25 respectively on the log scale).
truncation	A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts() , i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate.
obs	A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts() .
stan	A list of stan options as generated by stan_opts() . Defaults to stan_opts() . Can be used to override data, init, and verbose settings if desired.
burn_in	Integer, defaults to 14 days. The number of data points to use for estimation but not to fit to at the beginning of the time series. This must be less than the number of observations.
CrIs	Deprecated; specify credible intervals when using summary() or plot()
priors	A <data.frame> of named priors to be used in model fitting rather than the defaults supplied from other arguments. This is typically useful if wanting to inform an estimate from the posterior of another model fit.
model	A compiled stan model to override the default model. May be useful for package developers or those developing extensions.
weigh_delay_priors	Logical. If TRUE, all delay distribution priors will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE (default), no weight will be applied, i.e. delay distributions will be treated as a single parameters.

verbose Logical, should model fitting progress be returned. Defaults to `interactive()`.
 filter_leading_zeros Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.
 zero_threshold **[Experimental]** Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using `fill`.

Value

An `<estimate_secondary>` object containing:

- `fit`: The stan fit object.
- `args`: A list of arguments used for fitting (stan data).
- `observations`: The input data (`<data.frame>`).

See Also

`get_samples()` `get_predictions()` `get_parameters()`

Examples

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))

# load data.table for manipulation
library(data.table)

##### Incidence data example #####
# make some example secondary incidence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]
# Assume that only 40 percent of cases are reported
cases[, scaling := 0.4]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.8][, sdlog := 0.5]

# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "incidence")
#
# fit model to example data specifying a weak prior for fraction reported
# with a secondary case
inc <- estimate_secondary(cases[1:60],
  obs = obs_opts(scale = Normal(mean = 0.2, sd = 0.2), week_effect = FALSE)
)
plot(inc, primary = TRUE)

# forecast future secondary cases from primary
inc_preds <- forecast_secondary(
```

```

inc, cases[seq(61, .N)][, value := primary]
)
plot(inc_preds, new_obs = cases, from = "2020-05-01")

##### Prevalence data example #####
# make some example prevalence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]
# Assume that only 30 percent of cases are reported
cases[, scaling := 0.3]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.6][, sdlog := 0.8]

# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "prevalence")

# fit model to example prevalence data
prev <- estimate_secondary(cases[1:100],
  secondary = secondary_opts(type = "prevalence"),
  obs = obs_opts(
    week_effect = FALSE,
    scale = Normal(mean = 0.4, sd = 0.1)
  )
)
plot(prev, primary = TRUE)

# forecast future secondary cases from primary
prev_preds <- forecast_secondary(
  prev, cases[seq(101, .N)][, value := primary]
)
plot(prev_preds, new_obs = cases, from = "2020-06-01")

options(old_opts)

```

estimate_truncation *Estimate Truncation of Observed Data*

Description

[Stable] Estimates a truncation distribution from multiple snapshots of the same data source over time. This distribution can then be used passed to the `truncation` argument in [regional_epinow\(\)](#), [epinow\(\)](#), and [estimate_infections\(\)](#) to adjust for truncated data and propagate the uncertainty associated with data truncation into the estimates.

See [here](#) for an example of using this approach on Covid-19 data in England. The functionality offered by this function is now available in a more principled manner in the [epinowcast R package](#).

The model of truncation is as follows:

1. The truncation distribution is assumed to be discretised log normal with a mean and standard deviation that is informed by the data.
2. The data set with the latest observations is adjusted for truncation using the truncation distribution.
3. Earlier data sets are recreated by applying the truncation distribution to the adjusted latest observations in the time period of the earlier data set. These data sets are then compared to the earlier observations assuming a negative binomial observation model with an additive noise term to deal with zero observations.

This model is then fit using `stan` with standard normal, or half normal, prior for the mean, standard deviation, 1 over the square root of the overdispersion and additive noise term.

This approach assumes that:

- Current truncation is related to past truncation.
- Truncation is a multiplicative scaling of underlying reported cases.
- Truncation is log normally distributed.

Usage

```
estimate_truncation(
  data,
  truncation = trunc_opts(LogNormal(meanlog = Normal(0, 1), sdlog = Normal(1, 1), max =
    10)),
  stan = stan_opts(),
  CrIs = c(0.2, 0.5, 0.9),
  filter_leading_zeros = FALSE,
  zero_threshold = Inf,
  verbose = TRUE,
  ...
)
```

Arguments

<code>data</code>	A list of <code><data.frame></code> s each containing a date variable and a confirm (numeric) variable. Each data set should be a snapshot of the reported data over time. All data sets must contain a complete vector of dates.
<code>truncation</code>	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.
<code>stan</code>	A list of stan options as generated by <code>stan_opts()</code> . Defaults to <code>stan_opts()</code> . Can be used to override data, init, and verbose settings if desired.
<code>CrIs</code>	Numeric vector of credible intervals to calculate.
<code>filter_leading_zeros</code>	Logical, defaults to FALSE. Should zeros at the start of the time series be filtered out.

zero_threshold	[Experimental] Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using fill.
verbose	Logical, should model fitting progress be returned.
...	Additional parameters to pass to rstan::sampling() .

Value

An `<estimate_truncation>` object containing:

- `observations`: The input data (list of `<data.frame>`s).
- `args`: A list of arguments used for fitting (stan data).
- `fit`: The stan fit object.

See Also

[get_samples\(\)](#) [get_predictions\(\)](#) [get_parameters\(\)](#)

Examples

```

# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))

# fit model to example data
# See [example_truncated] for more details
# iterations and calculation time have been reduced for this example
# for real analyses, use more
est <- estimate_truncation(example_truncated,
  verbose = interactive(),
  chains = 2, iter = 200
)

# extract the estimated truncation distribution
get_parameters(est)[["truncation"]]
# summarise the truncation distribution parameters
summary(est)
# validation plot of observations vs estimates
plot(est)

# Pass the truncation distribution to `epinow()`.
# Note, we're using the last snapshot as the observed data as it contains
# all the previous snapshots. Also, we're using the default options for
# illustrative purposes only.
out <- epitnow(
  generation_time = generation_time_opts(example_generation_time),
  example_truncated[[5]],
  truncation = trunc_opts(get_parameters(est)[["truncation"]])
)
plot(out)
options(old_opts)

```

`example_confirmed` *Example Confirmed Case Data Set*

Description

[Stable] An example data frame of observed cases

Usage

```
example_confirmed
```

Format

A data frame containing cases reported on each date.

`example_generation_time`
Example generation time

Description

[Stable] An example of a generation time estimate. See here for details: <https://github.com/epiforecasts/EpiNow2/blob/main/raw/generation-time.R>

Usage

```
example_generation_time
```

Format

A `dist_spec` object summarising the distribution

```
example_incubation_period
```

Example incubation period

Description

[Stable] An example of an incubation period estimate. See here for details: <https://github.com/epiforecasts/EpiNow2/blob/main/raw/incubation-period.R> # nolint

Usage

```
example_incubation_period
```

Format

A `dist_spec` object summarising the distribution

```
example_reporting_delay
```

Example reporting delay

Description

[Stable] An example of an reporting delay estimate. See here for details: <https://github.com/epiforecasts/EpiNow2/blob/main/raw/reporting-delay.R> # nolint

Usage

```
example_reporting_delay
```

Format

A `dist_spec` object summarising the distribution

example_truncated	<i>Example Case Data Set with Truncation</i>
-------------------	--

Description

[Stable] An example dataset of observed cases with truncation applied. This data is generated internally for use in the example of `estimate_truncation()`. For details on how the data is generated, see <https://github.com/epiforecasts/EpiNow2/blob/main/data-raw/truncated.R> #nolint

Usage

```
example_truncated
```

Format

A list of `data.tables` containing cases reported on each date until a point of truncation. Each element of the list is a `data.table` with the following columns:

date Date of case report.

confirm Number of confirmed cases.

expose_stan_fns	<i>Expose internal package stan functions in R</i>
-----------------	--

Description

[Stable] This function exposes internal stan functions in R from a user supplied list of target files. Allows for testing of stan functions in R and potentially user use in R code.

Usage

```
expose_stan_fns(files, target_dir, ...)
```

Arguments

files	A character vector indicating the target files.
target_dir	A character string indicating the target directory for the file.
...	Additional arguments passed to <code>rstan::expose_stan_functions()</code> .

Value

No return value, called for side effects

extract_CrIs	<i>Extract Credible Intervals Present</i>
--------------	---

Description

[Stable] Helper function to extract the credible intervals present in a `<data.frame>`.

Usage

```
extract_CrIs(summarised)
```

Arguments

summarised A `<data.frame>` as processed by `calc_CrIs`

Value

A numeric vector of credible intervals detected in the `<data.frame>`.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
summarised <- calc_CrIs(samples,
  summarise_by = "type",
  CrIs = c(seq(0.05, 0.95, 0.05)))
)
extract_CrIs(summarised)
```

extract_inits	<i>Generate initial conditions from a Stan fit</i>
---------------	--

Description

[Experimental] Extracts posterior samples to use to initialise a full model fit. This may be useful for certain data sets where the sampler gets stuck or cannot easily be initialised. In `estimate_infections()`, `epinow()` and `regional_epinow()` this option can be engaged by setting `stan_opts(init_fit = <stanfit>)`.

This implementation is based on the approach taken in `epidemia` authored by James Scott.

Usage

```
extract_inits(fit, current_inits, exclude_list = NULL, samples = 50)
```

Arguments

fit	A <code><stanfit></code> object.
current_inits	A function that returns a list of initial conditions (such as <code>create_initial_conditions()</code>). Only used in <code>exclude_list</code> is specified.
exclude_list	A character vector of parameters to not initialise from the fit object, defaulting to <code>NULL</code> .
samples	Numeric, defaults to 50. Number of posterior samples.

Value

A function that when called returns a set of initial conditions as a named list.

<code>extract_samples</code>	<i>Extract all samples from a stan fit</i>
------------------------------	--

Description

If the object argument is a `<stanfit>` object, it simply returns the result of `rstan::extract()`. If it is a `<CmdStanMCMC>` it returns samples in the same format as `rstan::extract()` does for `<stanfit>` objects.

Usage

```
extract_samples(stan_fit, pars = NULL, include = TRUE)
```

Arguments

stan_fit	A <code><stanfit></code> or <code><CmdStanMCMC></code> object as returned by <code>fit_model()</code> .
pars	Any selection of parameters to extract
include	whether the parameters specified in <code>pars</code> should be included (TRUE, the default) or excluded (FALSE)

Value

List of data.tables with samples

extract_stan_param	<i>Extract a parameter summary from a Stan object</i>
--------------------	---

Description

[Stable] Extracts summarised parameter posteriors from a `stanfit` object using `rstan::summary()` in a format consistent with other summary functions in `{EpiNow2}`.

Usage

```
extract_stan_param(
  fit,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  var_names = FALSE
)
```

Arguments

fit	A <code><stanfit></code> object.
params	A character vector of parameters to extract. Defaults to all parameters.
CrIs	Numeric vector of credible intervals to calculate.
var_names	Logical defaults to FALSE. Should variables be named. Automatically set to TRUE if multiple parameters are to be extracted.

Value

A `<data.table>` summarising parameter posteriors. Contains a following variables: `variable`, `mean`, `mean_se`, `sd`, `median`, and `lower_`, `upper_` followed by credible interval labels indicating the credible intervals present.

fill_missing	<i>Fill missing data in a data set to prepare it for use within the package</i>
--------------	---

Description

[Experimental] This function ensures that all days between the first and last date in the data are present. It adds an `accumulate` column that indicates whether modelled observations should be accumulated onto a later data point. This is useful for modelling data that is reported less frequently than daily, e.g. weekly incidence data, as well as other reporting artifacts such as delayed weekend reporting. The function can also be used to fill in missing observations with zeros.

Usage

```
fill_missing(
  data,
  missing_dates = c("ignore", "accumulate", "zero"),
  missing_obs = c("ignore", "accumulate", "zero"),
  initial_accumulate,
  obs_column = "confirm",
  by = NULL
)
```

Arguments

<code>data</code>	Data frame with a date column. The other columns depend on the model that the data are to be used, e.g. <code>estimate_infections()</code> or <code>estimate_secondary()</code> . See the documentation there for the expected format. The data must not already have an accumulate function, otherwise the function will fail with an error.
<code>missing_dates</code>	Character. Options are "ignore" (the default), "accumulate" and "zero". This determines how missing dates in the data are interpreted. If set to "ignore", any missing dates in the observation data will be interpreted as missing and skipped in the likelihood. If set to "accumulate", modelled observations on dates that are missing in the data will be accumulated and added to the next non-missing data point. This can be used to model incidence data that is reported less frequently than daily. In that case, the first data point is not included in the likelihood (unless <code>initial_accumulate</code> is set to a value greater than one) but used only to reset modelled observations to zero. If "zero" then all observations on missing dates will be assumed to be of value 0.
<code>missing_obs</code>	Character. How to process dates that exist in the data but have observations with NA values. The options available are the same ones as for the <code>missing_dates</code> argument.
<code>initial_accumulate</code>	Integer. The number of initial dates to accumulate if <code>missing_dates</code> or <code>missing_obs</code> is set to "accumulate". This argument needs to have a minimum of 1. If it is set to 1 then no accumulation is happening on the first data point. If it is greater than 1 then dates are added to the beginning of the data set to get to be able to have a sufficient number of modelled observations accumulated onto the first data point. For modelling weekly incidence data this should be set to 7. If accumulating and the first data point is not NA and this argument is not set, then if all dates in the data have the same gap this will be taken as initial accumulation and a warning given to inform the user. If not all gaps are the same the first data point will be removed with a warning.
<code>obs_column</code>	Character (default: "confirm"). If given, only the column specified here will be used for checking missingness. This is useful if using a data set that has multiple columns of which one of them corresponds to observations that are to be processed here.
<code>by</code>	Character vector. Name(s) of any additional column(s) where data processing should be done separately for each value in the column. This is useful when

using data representing e.g. multiple geographies. If `NULL` (default) no such grouping is done.

Value

a `data.table` with an `accumulate` column that indicates whether values are accumulated (see the documentation of the `data` argument in `estimate_infections()`)

Examples

```
cases <- data.table::copy(example_confirmed)
## calculate weekly sum
cases[, confirm := data.table::frollsum(confirm, 7)]
## limit to dates once a week
cases <- cases[seq(7, nrow(cases), 7)]
## set the second observation to missing
cases[2, confirm := NA]
## fill missing data
fill_missing(cases, missing_dates = "accumulate", initial_accumulate = 7)
```

`filter_leading_zeros` *Filter leading zeros from a data set.*

Description

Filter leading zeros from a data set.

Usage

```
filter_leading_zeros(data, obs_column = "confirm", by = NULL)
```

Arguments

<code>data</code>	A <code><data.frame></code> of disease reports (<code>confirm</code>) by date (<code>date</code>). <code>confirm</code> must be numeric and <code>date</code> must be in date format. Optionally, <code>data</code> can also have a logical <code>accumulate</code> column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the <code>fill_missing()</code> function which helps add the <code>accumulate</code> column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the <code>truncation</code> argument. If all entries of <code>confirm</code> are missing (<code>NA</code>) the returned estimates will represent the prior distributions.
<code>obs_column</code>	Character (default: <code>"confirm"</code>). If given, only the column specified here will be used for checking missingness. This is useful if using a data set that has multiple columns of which one of them corresponds to observations that are to be processed here.

by	Character vector. Name(s) of any additional column(s) where data processing should be done separately for each value in the column. This is useful when using data representing e.g. multiple geographies. If NULL (default) no such grouping is done.
----	--

Value

A data.table with leading zeros removed.

Examples

```
cases <- data.frame(
  date = as.Date("2020-01-01") + 0:10,
  confirm = c(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
)
filter_leading_zeros(cases)
```

filter_opts

Filter Options for a Target Region

Description

[Maturing] A helper function that allows the selection of region specific settings if present and otherwise applies the overarching settings.

Usage

```
filter_opts(opts, region)
```

Arguments

opts	Either a list of calls to an <code>_opts()</code> function or a single call to an <code>_opts()</code> function.
region	A character string indicating a region of interest.

Value

A list of options

fix_parameters	<i>Fix the parameters of a <dist_spec></i>
----------------	--

Description

[Experimental] If the given <dist_spec> has any uncertainty, it is removed and the corresponding distribution converted into a fixed one.

Usage

```
## S3 method for class 'dist_spec'
fix_parameters(x, strategy = c("mean", "sample"), ...)
```

Arguments

x	A <dist_spec>
strategy	Character; either "mean" (use the mean estimates of the mean and standard deviation) or "sample" (randomly sample mean and standard deviation from uncertainty given in the <dist_spec>)
...	ignored

Value

A <dist_spec> object without uncertainty

Examples

```
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist <- Gamma(
  shape = Normal(3, 0.5),
  rate = Normal(2, 0.5),
  max = 20
)
fix_parameters(dist)
```

forecast_infections	<i>Forecast infections from a given fit and trajectory of the time-varying reproduction number</i>
---------------------	--

Description

[Stable] This function simulates infections using an existing fit to observed cases but with a modified time-varying reproduction number. This can be used to explore forecast models or past counterfactuals. Simulations can be run in parallel using [future::plan\(\)](#).

Usage

```
forecast_infections(
  estimates,
  R = NULL,
  model = NULL,
  samples = NULL,
  batch_size = 10,
  backend = "rstan",
  verbose = interactive()
)
```

Arguments

estimates	The estimates element of an epinow() run that has been done with output = "fit", or the result of estimate_infections() with <code>return_fit</code> set to TRUE.
R	A numeric vector of reproduction numbers; these will overwrite the reproduction numbers contained in <code>estimates</code> , except elements set to NA. Alternatively accepts a <code><data.frame></code> containing at least date and value (integer) variables and optionally <code>sample</code> . More (or fewer) days than in the original fit can be simulated.
model	A compiled stan model as returned by rstan::stan_model() .
samples	Numeric, number of posterior samples to simulate from. The default is to use all samples in the <code>estimates</code> input.
batch_size	Numeric, defaults to 10. Size of batches in which to simulate. May decrease run times due to reduced IO costs but this is still being evaluated. If set to NULL then all simulations are done at once.
backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
verbose	Logical defaults to interactive() . If the <code>progressr</code> package is available, a progress bar will be shown.

Value

A `<forecast_infections>` object containing simulated infections and cases from the specified scenario. The structure is similar to [estimate_infections\(\)](#) output but contains `samples` rather than `fit`.

See Also

[generation_time_opts\(\)](#) [delay_opts\(\)](#) [rt_opts\(\)](#) [estimate_infections\(\)](#) [trunc_opts\(\)](#)
[stan_opts\(\)](#) [obs_opts\(\)](#) [gp_opts\(\)](#)

Examples

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))
```

```

# get example case counts
reported_cases <- example_confirmed[1:40]

# fit model to data to recover Rt estimates
# samples and calculation time have been reduced for this example
# for real analyses, use at least samples = 2000
est <- estimate_infections(reported_cases,
  generation_time = generation_time_opts(example_generation_time),
  delays = delay_opts(example_incubation_period + example_reporting_delay),
  rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1), rw = 7),
  obs = obs_opts(scale = Normal(mean = 0.1, sd = 0.01)),
  gp = NULL,
  forecast = forecast_opts(horizon = 0),
  stan = stan_opts(samples = 100, warmup = 200)
)

# update Rt trajectory and simulate new infections using it
# keeping the first 30 days' estimates and adding a 10-day forecast
R <- c(rep(NA_real_, 30), rep(0.8, 10))
sims <- forecast_infections(est, R)
plot(sims)

options(old_opts)

```

forecast_opts

Forecast options

Description

[Stable] Defines a list specifying the arguments passed to underlying stan backend functions via [stan_sampling_opts\(\)](#) and [stan_vb_opts\(\)](#). Custom settings can be supplied which override the defaults.

Usage

```
forecast_opts(horizon = 7, accumulate)
```

Arguments

horizon	Numeric, defaults to 7. Number of days into the future to forecast.
accumulate	Integer, the number of days to accumulate in forecasts, if any. If not given and observations are accumulated at constant frequency in the data used for fitting then the same accumulation will be used in forecasts unless set explicitly here.

Value

A <forecast_opts> object of forecast setting.

See Also[fill_missing\(\)](#)**Examples**

```
forecast_opts(horizon = 28, accumulate = 7)
```

forecast_secondary	Forecast	Secondary	Observations	Given	a	Fit	from	estimate_secondary
--------------------	----------	-----------	--------------	-------	---	-----	------	--------------------

Description

[Experimental] This function forecasts secondary observations using the output of [estimate_secondary\(\)](#) and either observed primary data or a forecast of primary observations. See the examples of [estimate_secondary\(\)](#) for one use case. It can also be combined with [estimate_infections\(\)](#) to produce a forecast for a secondary observation from a forecast of a primary observation. See the examples of [estimate_secondary\(\)](#) for example use cases on synthetic data. See [here](#) for an example of forecasting Covid-19 deaths from Covid-19 cases.

Usage

```
forecast_secondary(
  estimate,
  primary,
  primary_variable = "reported_cases",
  model = NULL,
  backend = "rstan",
  samples = NULL,
  all_dates = FALSE,
  CrIs = c(0.2, 0.5, 0.9)
)
```

Arguments

estimate	An object of class "estimate_secondary" as produced by estimate_secondary() .
primary	A <data.frame> containing at least date and value (integer) variables and optionally sample. Used as the primary observation used to forecast the secondary observations. Alternatively, this may be an object of class "estimate_infections" as produced by estimate_infections() . If primary is of class "estimate_infections" then the internal samples will be filtered to have a minimum date ahead of those observed in the estimate object.
primary_variable	A character string indicating the primary variable, defaulting to "reported_cases". Only used when primary is of class <estimate_infections>.
model	A compiled stan model as returned by rstan::stan_model() .

backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
samples	Numeric, number of posterior samples to simulate from. The default is to use all samples in the primary input when present. If not present the default is to use 1000 samples.
all_dates	Logical, defaults to FALSE. Should a forecast for all dates and not just those in the forecast horizon be returned.
CrIs	Deprecated; specify credible intervals when using summary() or plot()

Value

A list containing: `predictions` (a `<data.frame>` ordered by date with the primary, and secondary observations, and a summary of the forecast secondary observations. For primary observations in the forecast horizon when uncertainty is present the median is used), `samples` a `<data.frame>` of forecast secondary observation posterior samples, and `forecast` a summary of the forecast secondary observation posterior.

See Also

[estimate_secondary\(\)](#)

get_distribution *Get the distribution of a <dist_spec>*

Description

[Experimental]

Usage

`get_distribution(x, id = NULL)`

Arguments

x	A <code><dist_spec></code> .
id	Integer; the id of the distribution to use (if x is a composite distribution). If x is a single distribution this is ignored and can be left at its default value of NULL.

Value

A character string naming the distribution (or "nonparametric")

Examples

```
dist <- Gamma(shape = 3, rate = 2, max = 10)
get_distribution(dist)
```

get_parameters	<i>Get parameters from distributions or fitted models</i>
----------------	---

Description

[Experimental] Generic function to extract parameters. For `dist_spec` objects, extracts the distribution parameters (e.g., shape and rate for `Gamma`). For fitted model objects, extracts estimated parameters and delays as `dist_spec` objects that can be used as priors.

Usage

```
get_parameters(x, ...)

## S3 method for class 'dist_spec'
get_parameters(x, id = NULL, ...)

## S3 method for class 'epinowfit'
get_parameters(x, ...)
```

Arguments

<code>x</code>	A <code>dist_spec</code> object or fitted model object
<code>...</code>	Additional arguments passed to methods
<code>id</code>	Numeric index of the distribution to extract (for multi- component <code>dist_spec</code> objects). If <code>NULL</code> (default), extracts from the first component.

Value

For `dist_spec`: a list of distribution parameters. For fitted models: a named list of `dist_spec` objects.

Examples

```
# For dist_spec objects
dist <- Gamma(shape = 3, rate = 2)
get_parameters(dist)

## Not run:
# For fitted models - extract estimated distributions
dists <- get_parameters(fit)
names(dists)

## End(Not run)
```

get_pmf*Get the probability mass function of a nonparametric distribution*

Description**[Experimental]****Usage**

get_pmf(x, id = NULL)

Arguments

x	A <dist_spec>.
id	Integer; the id of the distribution to use (if x is a composite distribution). If x is a single distribution this is ignored and can be left at its default value of NULL.

Value

The pmf of the distribution

Examples

```
dist <- discretise(Gamma(shape = 3, rate = 2, max = 10))
get_pmf(dist)
```

get_predictions*Get predictions from a fitted model*

Description

[Stable] Extracts predictions from a fitted model. For `estimate_infections()` returns predicted reported cases, for `estimate_secondary()` returns predicted secondary observations. For `estimate_truncation()` returns reconstructed observations adjusted for truncation.

Usage

```
get_predictions(object, ...)

## S3 method for class 'estimate_infections'
get_predictions(
  object,
  format = c("summary", "sample", "quantile"),
  CrIs = c(0.2, 0.5, 0.9),
  quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...
```

```

)
## S3 method for class 'estimate_secondary'
get_predictions(
  object,
  format = c("summary", "sample", "quantile"),
  CrIs = c(0.2, 0.5, 0.9),
  quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...
)
## S3 method for class 'forecast_infections'
get_predictions(
  object,
  format = c("summary", "sample", "quantile"),
  CrIs = c(0.2, 0.5, 0.9),
  quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...
)
## S3 method for class 'forecast_secondary'
get_predictions(
  object,
  format = c("summary", "sample", "quantile"),
  CrIs = c(0.2, 0.5, 0.9),
  quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...
)
## S3 method for class 'estimate_truncation'
get_predictions(
  object,
  format = c("summary", "sample", "quantile"),
  CrIs = c(0.2, 0.5, 0.9),
  quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  ...
)

```

Arguments

object	A fitted model object (e.g., from <code>estimate_infections()</code> , <code>estimate_secondary()</code> , or <code>estimate_truncation()</code>)
...	Additional arguments (currently unused)
format	Character string specifying the output format: <ul style="list-style-type: none"> • "summary" (default): summary statistics (mean, sd, median, CrIs) • "sample": raw posterior samples for <code>scoringutils::as_forecast_sample()</code> • "quantile": quantile predictions for <code>scoringutils::as_forecast_quantile()</code>

CrIs	Numeric vector of credible intervals to return. Defaults to c(0.2, 0.5, 0.9). Only used when format = "summary".
quantiles	Numeric vector of quantile levels to return. Defaults to c(0.05, 0.25, 0.5, 0.75, 0.95). Only used when format = "quantile".

Value

A data.table with columns depending on format:

- format = "summary": date, mean, sd, median, and credible intervals
- format = "sample": forecast_date, date, horizon, sample, predicted
- format = "quantile": forecast_date, date, horizon, quantile_level, predicted

Examples

```
## Not run:
# After fitting a model
# Get summary predictions (default)
predictions <- get_predictions(fit)

# Get sample-level predictions for scoringutils
samples <- get_predictions(fit, format = "sample")

# Get quantile predictions for scoringutils
quantiles <- get_predictions(fit, format = "quantile")

## End(Not run)
```

getRegionalResults *Get Combined Regional Results*

Description

[Stable] Summarises results across regions either from input or from disk. See the examples for details.

Usage

```
getRegionalResults(
  regional_output,
  results_dir,
  date,
  samples = TRUE,
  forecast = FALSE
)
```

Arguments

regional_output	A list of output as produced by <code>regional_epinow()</code> and stored in the regional list.
results_dir	A character string indicating the folder containing the {EpiNow2} results to extract.
date	A Character string (in the format "yyyy-mm-dd") indicating the date to extract data for. Defaults to "latest" which finds the latest results available.
samples	Logical, defaults to TRUE. Should samples be returned.
forecast	Logical, defaults to FALSE. Should forecast results be returned.

Value

A list of estimates, forecasts and estimated cases by date of report.

Examples

```
# get example multiregion estimates
regional_out <- readRDS(system.file(
  package = "EpiNow2", "extdata", "example_regional_epinow.rds"
))

# from output
results <- get_regional_results(regional_out$regional, samples = FALSE)
```

get_samples	<i>Get posterior samples from a fitted model</i>
-------------	--

Description

[Stable] Extracts posterior samples from a fitted model, combining all parameters into a single data.table with dates and metadata.

Usage

```
get_samples(object, ...)

## S3 method for class 'estimate_infections'
get_samples(object, ...)

## S3 method for class 'epinow'
get_samples(object, ...)

## S3 method for class 'forecast_infections'
get_samples(object, ...)
```

```
## S3 method for class 'estimate_secondary'
get_samples(object, ...)

## S3 method for class 'forecast_secondary'
get_samples(object, ...)

## S3 method for class 'estimate_truncation'
get_samples(object, ...)
```

Arguments

object	A fitted model object (e.g., from <code>estimate_infections()</code>)
...	Additional arguments (currently unused)

Value

A `data.table` with columns: date, variable, strat, sample, time, value, type. Contains all posterior samples for all parameters.

Examples

```
## Not run:
# After fitting a model
samples <- get_samples(fit)
# Filter to specific parameters
R_samples <- samples[variable == "R"]

## End(Not run)
```

gp_opts

Approximate Gaussian Process Settings

Description

[Stable] Defines a list specifying the structure of the approximate Gaussian process. Custom settings can be supplied which override the defaults.

Usage

```
gp_opts(
  basis_prop = 0.2,
  boundary_scale = 1.5,
  ls_mean = 21,
  ls_sd = 7,
  ls_min = 0,
  ls_max = 60,
  ls = LogNormal(mean = 21, sd = 7, max = 60),
  alpha = Normal(mean = 0, sd = 0.01),
```

```

kernel = c("matern", "se", "ou", "periodic"),
matern_order = 3/2,
w0 = 1,
alpha_mean,
alpha_sd
)

```

Arguments

<code>basis_prop</code>	Numeric, the proportion of time points to use as basis functions. Defaults to 0.2. Decreasing this value results in a decrease in accuracy but a faster compute time (with increasing it having the first effect). In general smaller posterior length scales require a higher proportion of basis functions. See (Riutort-Mayol et al. 2020 https://arxiv.org/abs/2004.11408) for advice on updating this default.
<code>boundary_scale</code>	Numeric, defaults to 1.5. Boundary scale of the approximate Gaussian process. See (Riutort-Mayol et al. 2020 https://arxiv.org/abs/2004.11408) for advice on updating this default.
<code>ls_mean</code>	Deprecated; use <code>ls</code> instead.
<code>ls_sd</code>	Deprecated; use <code>ls</code> instead.
<code>ls_min</code>	Deprecated; use <code>ls</code> instead.
<code>ls_max</code>	Deprecated; use <code>ls</code> instead.
<code>ls</code>	A <code><dist_spec></code> giving the prior distribution of the lengthscale parameter of the Gaussian process kernel on the scale of days. Defaults to a Lognormal distribution with mean 21 days, sd 7 days and maximum 60 days: <code>LogNormal(mean = 21, sd = 7, max = 60)</code> (a lower limit of 0 will be enforced automatically to ensure positivity)
<code>alpha</code>	A <code><dist_spec></code> giving the prior distribution of the magnitude parameter of the Gaussian process kernel. Should be approximately the expected standard deviation of the Gaussian process (logged <code>Rt</code> in case of the renewal model, logged infections in case of the nonmechanistic model). Defaults to a half-normal distribution with mean 0 and sd 0.01: <code>Normal(mean = 0, sd = 0.01)</code> (a lower limit of 0 will be enforced automatically to ensure positivity)
<code>kernel</code>	Character string, the type of kernel required. Currently supporting the Matérn kernel ("matern"), squared exponential kernel ("se"), periodic kernel, Ornstein-Uhlenbeck #' kernel ("ou"), and the periodic kernel ("periodic").
<code>matern_order</code>	Numeric, defaults to 3/2. Order of Matérn Kernel to use. Common choices are 1/2, 3/2, and 5/2. If <code>kernel</code> is set to "ou", <code>matern_order</code> will be automatically set to 1/2. Only used if the kernel is set to "matern".
<code>w0</code>	Numeric, defaults to 1.0. Fundamental frequency for periodic kernel. They are only used if <code>kernel</code> is set to "periodic".
<code>alpha_mean</code>	Deprecated; use <code>alpha</code> instead.
<code>alpha_sd</code>	Deprecated; use <code>alpha</code> instead.

Value

A <gp_opts> object of settings defining the Gaussian process

Examples

```
# default settings
gp_opts()

# add a custom length scale
gp_opts(ls = LogNormal(mean = 4, sd = 1, max = 20))

# use linear kernel
gp_opts(kernel = "periodic")
```

growth_to_R

Convert Growth Rates to Reproduction numbers.

Description

[Questioning] See [here](#) # nolint for justification. Now handled internally by stan so may be removed in future updates if no user demand.

Usage

```
growth_to_R(r, gamma_mean, gamma_sd)
```

Arguments

r	Numeric, rate of growth estimates.
gamma_mean	Numeric, mean of the gamma distribution
gamma_sd	Numeric, standard deviation of the gamma distribution .

Value

Numeric vector of reproduction number estimates

Examples

```
growth_to_R(0.2, 4, 1)
```

gt_opts*Generation Time Distribution Options*

Description

[Stable] Returns generation time parameters in a format for lower level model use.

Usage

```
gt_opts(dist = Fixed(1), default_cdf_cutoff = 0.001, weight_prior = TRUE)

generation_time_opts(
  dist = Fixed(1),
  default_cdf_cutoff = 0.001,
  weight_prior = TRUE
)
```

Arguments

dist A delay distribution or series of delay distributions . If no distribution is given a fixed generation time of 1 will be assumed. If passing a nonparametric distribution the first element should be zero (see *Details* section)

default_cdf_cutoff Numeric; default CDF cutoff to be used if an unconstrained distribution is passed as dist. If dist is already constrained by having a maximum or CDF cutoff this is ignored. Note that this can only be done for <dist_spec> objects with fixed parameters.

weight_prior Logical; if TRUE (default), any priors given in dist will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE, no weight will be applied, i.e. any parameters in dist will be treated as a single parameters.

Details

Because the discretised renewal equation used in the package does not support zero generation times, any distribution specified here will be left-truncated at one, i.e. the first element of the nonparametric or discretised probability distribution used for the generation time is set to zero and the resulting distribution renormalised.

Value

A <generation_time_opts> object summarising the input delay distributions.

See Also

[convert_to_logmean\(\)](#) [convert_to_logsdf\(\)](#) [bootstrapped_dist_fit\(\)](#) [Gamma\(\)](#) [LogNormal\(\)](#)
[Fixed\(\)](#)

Examples

```
# default settings with a fixed generation time of 1
generation_time_opts()

# A fixed gamma distributed generation time
generation_time_opts(Gamma(mean = 3, sd = 2, max = 14))

# An uncertain gamma distributed generation time
generation_time_opts(
  Gamma(
    shape = Normal(mean = 3, sd = 1),
    rate = Normal(mean = 2, sd = 0.5),
    max = 14
  )
)

# An example generation time
gt_opts(example_generation_time)
```

is_constrained

Check if a <dist_spec> is constrained, i.e. has a finite maximum or nonzero CDF cutoff.

Description

[Experimental]

Usage

```
## S3 method for class 'dist_spec'
is_constrained(x, ...)
```

Arguments

x	A <dist_spec>
...	ignored

Value

Logical; TRUE if x is constrained

Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)

# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
```

```

meanlog = Normal(3, 0.5),
sdlog = Normal(2, 0.5),
max = 20
)

# both distributions are constrained and therefore so is the sum
is_constrained(dist1 + dist2)

```

make_conf*Format Credible Intervals*

Description

[Stable] Combines a list of values into formatted credible intervals.

Usage

```
make_conf(value, CrI = 90, reverse = FALSE)
```

Arguments

value	List of value to map into a string. Requires, point, lower, and upper.
CrI	Numeric, credible interval to report. Defaults to 90.
reverse	Logical, defaults to FALSE. Should the reported credible interval be switched.

Value

A character vector formatted for reporting

Examples

```

value <- list(median = 2, lower_90 = 1, upper_90 = 3)
make_conf(value)

```

map_prob_change*Categorise the Probability of Change for Rt*

Description

[Stable] Categorises a numeric variable into "Increasing" (< 0.05), "Likely increasing" (< 0.4), "Stable" (< 0.6), "Likely decreasing" (< 0.95), "Decreasing" (<= 1)

Usage

```
map_prob_change(var)
```

Arguments

var	Numeric variable to be categorised
-----	------------------------------------

Value

A character variable.

Examples

```
var <- seq(0.01, 1, 0.01)
var

map_prob_change(var)
```

max.dist_spec

Returns the maximum of one or more delay distribution

Description

[Experimental] This works out the maximum of all the (parametric / nonparametric) delay distributions combined in the passed <dist_spec> (ignoring any uncertainty in parameters)

Usage

```
## S3 method for class 'dist_spec'
max(x, ...)
```

Arguments

x	The <dist_spec> to use
...	Not used

Value

A vector of means.

Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)
max(dist1)

# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
  meanlog = Normal(3, 0.5),
  sdlog = Normal(2, 0.5),
  max = 20
```

```

)
max(dist2)

# The max the sum of two distributions
max(dist1 + dist2)

```

mean.dist_spec

Returns the mean of one or more delay distribution

Description

[Experimental] This works out the mean of all the (parametric / nonparametric) delay distributions combined in the passed <dist_spec>.

Usage

```
## S3 method for class 'dist_spec'
mean(x, ..., ignore_uncertainty = FALSE)
```

Arguments

x	The <dist_spec> to use
...	Not used
ignore_uncertainty	Logical; whether to ignore any uncertainty in parameters. If set to FALSE (the default) then the mean of any uncertain parameters will be returned as NA.

Examples

```

# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 5, sd = 1, max = 20)
mean(dist1)

# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
  shape = Normal(3, 0.5),
  rate = Normal(2, 0.5),
  max = 20
)
mean(dist2)

# The mean of the sum of two distributions
mean(dist1 + dist2)

```

new_dist_spec	<i>Internal function for generating a dist_spec given parameters and a distribution.</i>
---------------	--

Description

[Experimental] This will convert all parameters to natural parameters before generating a dist_spec. If they have uncertainty this will be done using sampling.

Usage

```
new_dist_spec(params, distribution, max = Inf, cdf_cutoff = 0)
```

Arguments

params	Parameters of the distribution (including max)
distribution	Character; the distribution to use.
max	Numeric, maximum value of the distribution. The distribution will be truncated at this value. Default: Inf, i.e. no maximum.
cdf_cutoff	Numeric; the desired CDF cutoff. Any part of the cumulative distribution function beyond 1 minus the value of this argument is removed. Default: 0, i.e. use the full distribution.

Value

A dist_spec of the given specification.

Examples

```
new_dist_spec(  
  params = list(mean = 2, sd = 1),  
  distribution = "normal"  
)
```

obs_opts	<i>Observation Model Options</i>
----------	----------------------------------

Description

[Stable] Defines a list specifying the structure of the observation model. Custom settings can be supplied which override the defaults.

Usage

```
obs_opts(
  family = c("negbin", "poisson"),
  dispersion = Normal(mean = 0, sd = 0.25),
  weight = 1,
  week_effect = TRUE,
  week_length = 7,
  scale = Fixed(1),
  na = c("missing", "accumulate"),
  likelihood = TRUE,
  return_likelihood = FALSE,
  phi
)
```

Arguments

<code>family</code>	Character string defining the observation model. Options are Negative binomial ("negbin"), the default, and Poisson.
<code>dispersion</code>	A <code><dist_spec></code> specifying a prior on the dispersion parameter of the reporting process, used only if <code>family</code> is "negbin". Internally parameterised such that this parameter is one over the square root of the <code>phi</code> parameter for overdispersion of the negative binomial distribution . Defaults to a half-normal distribution with mean of 0 and standard deviation of 0.25: <code>Normal(mean = 0, sd = 0.25)</code> . A lower limit of zero will be enforced automatically.
<code>weight</code>	Numeric, defaults to 1. Weight to give the observed data in the log density.
<code>week_effect</code>	Logical defaulting to TRUE. Should a day of the week effect be used in the observation model.
<code>week_length</code>	Numeric assumed length of the week in days, defaulting to 7 days. This can be modified if data aggregated over a period other than a week or if data has a non-weekly periodicity.
<code>scale</code>	A <code><dist_spec></code> specifying a prior on the scaling factor to be applied to map latent infections (convolved to date of report). Defaults to a fixed value of 1, i.e. no scaling: <code>Fixed(1)</code> . A lower limit of zero will be enforced automatically. If setting to a prior distribution and no overreporting is expected, it might be sensible to set a maximum of 1 via the <code>max</code> option when declaring the distribution.
<code>na</code>	Deprecated; use the <code>fill_missing()</code> function instead
<code>likelihood</code>	Logical, defaults to TRUE. Should the likelihood be included in the model.
<code>return_likelihood</code>	Logical, defaults to FALSE. Should the likelihood be returned by the model.
<code>phi</code>	deprecated; use <code>dispersion</code> instead

Value

An `<obs_opts>` object of observation model settings.

Examples

```
# default settings
obs_opts()

# Turn off day of the week effect
obs_opts(week_effect = TRUE)

# Scale reported data
obs_opts(scale = Normal(mean = 0.2, sd = 0.02))
```

opts_list

Forecast optiong

Description

[Maturing] Define a list of `_opts()` to pass to `regional_epinow()` `_opts()` accepting arguments. This is useful when different settings are needed between regions within a single `regional_epinow()` call. Using `opts_list()` the defaults can be applied to all regions present with an override passed to regions as necessary (either within `opts_list()` or externally).

Usage

```
opts_list(opts, reported_cases, ...)
```

Arguments

opts	An <code>_opts()</code> function call such as <code>rt_opts()</code> .
reported_cases	A data frame containing a region variable indicating the target regions.
...	Optional override for region defaults. See the examples for use case.

Value

A named list of options per region which can be passed to the `_opt` accepting arguments of `regional_epinow`.

See Also

[regional_epinow\(\)](#) [rt_opts\(\)](#)

Examples

```
# uses example case vector
cases <- example_confirmed[1:40]
cases <- data.table::rbindlist(list(
  data.table::copy(cases)[, region := "testland"],
  cases[, region := "realland"]
))

# default settings
```

```

opts_list(rt_opts(), cases)

# add a weekly random walk in realland
opts_list(rt_opts(), cases, realland = rt_opts(rw = 7))

# add a weekly random walk externally
rt <- opts_list(rt_opts(), cases)
rt$realland$rw <- 7
rt

```

plot.dist_spec	<i>Plot PMF and CDF for a dist_spec object</i>
----------------	--

Description

[Experimental] This function takes a `<dist_spec>` object and plots its probability mass function (PMF) and cumulative distribution function (CDF) using `{ggplot2}`.

Usage

```
## S3 method for class 'dist_spec'
plot(x, samples = 50L, res = 1, cumulative = TRUE, ...)
```

Arguments

<code>x</code>	A <code><dist_spec></code> object
<code>samples</code>	Integer; Number of samples to generate for distributions with uncertain parameters (default: 50).
<code>res</code>	Numeric; Resolution of the PMF and CDF (default: 1, i.e. integer discretisation).
<code>cumulative</code>	Logical; whether to plot the cumulative distribution in addition to the probability mass function
<code>...</code>	ignored

Examples

```

# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 1.6, sd = 0.5, max = 20)
# Plot discretised distribution with 1 day discretisation window
plot(dist1)
# Plot discretised distribution with 0.01 day discretisation window
plot(dist1, res = 0.01, cumulative = FALSE)

# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
  shape = Normal(3, 0.5),
  rate = Normal(2, 0.5),

```

```
    max = 20
)
plot(dist2)

# Multiple distributions with 0.1 discretisation window and do not plot the
# cumulative distribution
plot(dist1 + dist2, res = 0.1, cumulative = FALSE)
```

plot.estimate_infections

Plot method for estimate_infections

Description

[Maturing] plot method for class <estimate_infections>.

Usage

```
## S3 method for class 'estimate_infections'
plot(x, type = "summary", CrIs = c(0.2, 0.5, 0.9), ...)
```

Arguments

x	A list of output as produced by estimate_infections
type	A character vector indicating the name of the plot to return. Defaults to "summary" with supported options being "infections", "reports", "R", "growth_rate", "summary", "all". If "all" is supplied all plots are generated.
CrIs	Numeric vector of credible intervals to calculate.
...	Pass additional arguments to report_plots

Value

List of plots as produced by [report_plots\(\)](#)

See Also

[report_plots\(\)](#)

Examples

```
# get example output
out <- readRDS(system.file(
  package = "EpiNow2", "extdata", "example_estimate_infections.rds"
))

# plot with error bars instead of ribbons
plot(out, style = "linerange")
```

plot.estimate_secondary*Plot method for estimate_secondary*

Description

[Experimental] plot method for class "estimate_secondary".

Usage

```
## S3 method for class 'estimate_secondary'  
plot(x, primary = FALSE, from = NULL, to = NULL, new_obs = NULL, ...)
```

Arguments

<code>x</code>	A list of output as produced by <code>estimate_secondary</code>
<code>primary</code>	Logical, defaults to FALSE. Should primary reports also be plot?
<code>from</code>	Date object indicating when to plot from.
<code>to</code>	Date object indicating when to plot up to.
<code>new_obs</code>	A <code><data.frame></code> containing the columns date and secondary which replace the secondary observations stored in the <code>estimate_secondary</code> output.
<code>...</code>	Pass additional arguments to plot function. Not currently in use.

Value

A ggplot object.

See Also

[estimate_secondary\(\)](#)

plot.estimate_truncation*Plot method for estimate_truncation*

Description

[Experimental] `plot()` method for class `<estimate_truncation>`. Returns a plot faceted over each dataset used in fitting with the latest observations as columns, the data observed at the time (and so truncated) as dots and the truncation adjusted estimates as a ribbon.

Usage

```
## S3 method for class 'estimate_truncation'  
plot(x, ...)
```

Arguments

- x A list of output as produced by [estimate_truncation\(\)](#)
- ... Pass additional arguments to plot function. Not currently in use.

Value

ggplot2 object

See Also

[estimate_truncation\(\)](#)

plot.forecast_infections

Plot method for forecast_infections

Description

[Maturing] plot method for class <forecast_infections>.

Usage

```
## S3 method for class 'forecast_infections'  
plot(x, type = "summary", CrIs = c(0.2, 0.5, 0.9), ...)
```

Arguments

- x A list of output as produced by [forecast_infections](#)
- type A character vector indicating the name of the plot to return. Defaults to "summary" with supported options being "infections", "reports", "R", "growth_rate", "summary", "all". If "all" is supplied all plots are generated.
- CrIs Numeric vector of credible intervals to calculate.
- ... Pass additional arguments to [report_plots](#)

Value

List of plots as produced by [report_plots\(\)](#)

See Also

[report_plots\(\)](#) [forecast_infections\(\)](#)

plot.forecast_secondary*Plot method for forecast_secondary objects*

Description**[Stable]** Plot method for forecast secondary observations.**Usage**

```
## S3 method for class 'forecast_secondary'
plot(x, primary = FALSE, from = NULL, to = NULL, new_obs = NULL, ...)
```

Arguments

x	A list of output as produced by estimate_secondary
primary	Logical, defaults to FALSE. Should primary reports also be plot?
from	Date object indicating when to plot from.
to	Date object indicating when to plot up to.
new_obs	A <data.frame> containing the columns date and secondary which replace the secondary observations stored in the estimate_secondary output.
...	Pass additional arguments to plot function. Not currently in use.

plot_CrIs*Plot EpiNow2 Credible Intervals*

Description**[Stable]** Adds credible intervals to a plot, either as ribbons or error bars.**Usage**

```
plot_CrIs(plot, CrIs, alpha, linewidth, style = c("ribbon", "linerange"))
```

Arguments

plot	A {ggplot2} plot
CrIs	Numeric list of credible intervals present in the data. As produced by extract_CrIs() .
alpha	Numeric, overall alpha of the target line range.
linewidth	Numeric, line width of the default line range.
style	Character string indicating the plot style. Options are "ribbon" (default) for shaded ribbon plots or "linerange" for error bars.

Value

A {ggplot2} plot.

plot_estimates *Plot Estimates*

Description

[Questioning] Allows users to plot the output from `estimate_infections()` easily. In future releases it may be deprecated in favour of increasing the functionality of the S3 plot methods.

Usage

```
plot_estimates(  
  estimate,  
  reported,  
  ylab,  
  hline,  
  obs_as_col = TRUE,  
  max_plot = 10,  
  estimate_type = c("Estimate", "Estimate based on partial data", "Forecast"),  
  style = c("ribbon", "linerange")  
)
```

Arguments

estimate	A <code><data.table></code> of estimates containing the following variables: date, type (must contain "estimate", "estimate based on partial data" and optionally "forecast").
reported	A <code><data.table></code> of reported cases with the following variables: date, confirm.
ylab	Character string. Title for the plot y axis.
hline	Numeric, if supplied gives the horizontal intercept for a indicator line.
obs_as_col	Logical, defaults to TRUE. Should observed data, if supplied, be plotted using columns or as points (linked using a line).
max_plot	Numeric, defaults to 10. A multiplicative upper bound on the number of cases shown on the plot. Based on the maximum number of reported cases.
estimate_type	Character vector indicating the type of data to plot. Default to all types with supported options being: "Estimate", "Estimate based on partial data", and "Forecast".
style	Character string indicating the plot style for credible intervals. Options are "ribbon" (default) for shaded ribbon plots or "linerange" for error bars. Error bars can be clearer for weekly or aggregated data.

Value

A `ggplot2` object

Examples

```

# get example model results
out <- readRDS(system.file(
  package = "EpiNow2", "extdata", "example_estimate_infections.rds"
))

# plot infections
plot_estimates(
  estimate = summary(out, type = "parameters", param = "infections"),
  reported = out$observations,
  ylab = "Cases", max_plot = 2
) + ggplot2::facet_wrap(~type, scales = "free_y")

# plot reported cases estimated via Rt
plot_estimates(
  estimate = summary(out, type = "parameters", param = "reported_cases"),
  reported = out$observations,
  ylab = "Cases"
)

# plot Rt estimates
plot_estimates(
  estimate = summary(out, type = "parameters", param = "R"),
  ylab = "Effective Reproduction No.",
  hline = 1
)

#' # plot Rt estimates without forecasts
plot_estimates(
  estimate = summary(out, type = "parameters", param = "R"),
  ylab = "Effective Reproduction No.",
  hline = 1, estimate_type = "Estimate"
)

# plot with error bars instead of ribbons
plot_estimates(
  estimate = summary(out, type = "parameters", param = "R"),
  ylab = "Effective Reproduction No.",
  hline = 1, style = "linerange"
)

```

plot_summary

Plot a Summary of the Latest Results

Description

[Questioning] Used to return a summary plot across regions (using results generated by [summarise_results\(\)](#)). May be deprecated in later releases in favour of enhanced S3 methods.

Usage

```
plot_summary(summary_results, x_lab = "Region", log_cases = FALSE, max_cases)
```

Arguments

summary_results	A data.table as returned by <code>summarise_results()</code> (the data object).
x_lab	A character string giving the label for the x axis, defaults to region.
log_cases	Logical, should cases be shown on a logged scale. Defaults to FALSE.
max_cases	Numeric, no default. The maximum number of cases to plot.

Value

A {ggplot2} object

print.dist_spec	<i>Prints the parameters of one or more delay distributions</i>
-----------------	---

Description

[Experimental] This displays the parameters of the uncertain and probability mass functions of fixed delay distributions combined in the passed <dist_spec>.

Usage

```
## S3 method for class 'dist_spec'
print(x, ...)
```

Arguments

x	The <dist_spec> to use
...	Not used

Value

invisible

Examples

```
#' # A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 1.5, sd = 0.5, max = 20)
print(dist1)

# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
  shape = Normal(3, 0.5), rate = Normal(2, 0.5), max = 20
)
print(dist2)
```

print.epinowfit	<i>Print information about an object that has resulted from a model fit.</i>
-----------------	--

Description

Print information about an object that has resulted from a model fit.

Usage

```
## S3 method for class 'epinowfit'
print(x, ...)
```

Arguments

x	The object containing fit results.
...	Ignored

Value

Invisible

regional_epinow	<i>Real-time Rt Estimation, Forecasting and Reporting by Region</i>
-----------------	---

Description

[Maturing] Efficiently runs [epinow\(\)](#) across multiple regions in an efficient manner and conducts basic data checks and cleaning such as removing regions with fewer than `non_zero_points` as these are unlikely to produce reasonable results whilst consuming significant resources. See the documentation for [epinow\(\)](#) for further information.

By default all arguments supporting input from `_opts()` functions are shared across regions (including delays, truncation, Rt settings, stan settings, and gaussian process settings). Region specific settings are supported by passing a named list of `_opts()` calls (with an entry per region) to the relevant argument. A helper function ([opts_list\(\)](#)) is available to facilitate building this list.

Regions can be estimated in parallel using the `{future}` package (see [setup_future\(\)](#)). The progress of producing estimates across multiple regions can be tracked using the `{progressr}` package. Modify this behaviour using [progressr::handlers\(\)](#) and enable it in batch by setting `R_PROGRESSR_ENABLE=TRUE` as an environment variable.

Usage

```
regional_epinow(
  data,
  generation_time = gt_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  forecast = forecast_opts(),
  stan = stan_opts(),
  horizon,
  CrIs = c(0.2, 0.5, 0.9),
  target_folder = NULL,
  target_date,
  non_zero_points = 2,
  output = c("regions", "summary", "samples", "plots", "latest"),
  return_output = is.null(target_folder),
  summary_args = list(),
  verbose = FALSE,
  logs = tempdir(check = TRUE),
  ...
)
```

Arguments

data	A <code><data.frame></code> of disease reports (confirm) by date (date), and region (region).
generation_time	A call to <code>gt_opts()</code> (or its alias <code>generation_time_opts()</code>) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.
rt	A list of options as generated by <code>rt_opts()</code> defining Rt estimation. Defaults to <code>rt_opts()</code> . To generate new infections using the non-mechanistic model instead of the renewal equation model, use <code>rt = NULL</code> . The non-mechanistic model internally uses the setting <code>rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0")</code> .
backcalc	A list of options as generated by <code>backcalc_opts()</code> to define the back calculation. Defaults to <code>backcalc_opts()</code> .

gp	A list of options as generated by <code>gp_opts()</code> to define the Gaussian process. Defaults to <code>gp_opts()</code> . Set to NULL to disable the Gaussian process.
obs	A list of options as generated by <code>obs_opts()</code> defining the observation model. Defaults to <code>obs_opts()</code> .
forecast	A list of options as generated by <code>forecast_opts()</code> defining the forecast options. Defaults to <code>forecast_opts()</code> . If NULL then no forecasting will be done.
stan	A list of stan options as generated by <code>stan_opts()</code> . Defaults to <code>stan_opts()</code> . Can be used to override data, init, and verbose settings if desired.
horizon	Deprecated; use <code>forecast</code> instead to specify the predictive horizon
CrIs	Numeric vector of credible intervals to calculate.
target_folder	Character string specifying where to save results (will create if not present).
target_date	Date, defaults to maximum found in the data if not specified.
non_zero_points	Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 7.
output	A character vector of optional output to return. Supported options are the individual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if <code>target_folder</code> is not null, set using "latest"), the stan fit of the underlying model ("fit"), the full <code>estimate_infections()</code> return object ("estimate_infections"), and an overall summary across regions ("summary"). The default is to return samples and plots alongside summarised estimates and summary statistics. If <code>target_folder</code> is not NULL then the default is also to copy all results into a latest folder.
return_output	Logical, defaults to FALSE. Should output be returned, this automatically updates to TRUE if no directory for saving is specified.
summary_args	A list of arguments passed to <code>regional_summary()</code> . See the <code>regional_summary()</code> documentation for details.
verbose	Logical defaults to FALSE. Outputs verbose progress messages to the console from <code>epinow()</code> .
logs	Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if <code>logs</code> is set to NULL. If specifying a custom logging setup then the code for <code>setup_default_logging()</code> and the <code>setup_logging()</code> function are a sensible place to start.
...	Pass additional arguments to <code>epinow()</code> . See the documentation for <code>epinow()</code> for details.

Value

A list of output stratified at the top level into regional output and across region output summary output

See Also

`epinow()` `estimate_infections()` `setup_future()` `regional_summary()`

Examples

```

# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))

# uses example case vector
cases <- example_confirmed[1:40]
cases <- data.table::rbindlist(list(
  data.table::copy(cases)[, region := "testland"],
  cases[, region := "realland"]
))

# run epinow across multiple regions and generate summaries
# samples and warmup have been reduced for this example
# for more examples, see the "estimate_infections examples" vignette
def <- regional_epinow(
  data = cases,
  generation_time = gt_opts(example_generation_time),
  delays = delay_opts(example_incubation_period + example_reporting_delay),
  rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.2)),
  stan = stan_opts(
    samples = 100, warmup = 200
  ),
  verbose = interactive()
)
options(old_opts)

```

regional_summary	<i>Regional Summary Output</i>
------------------	--------------------------------

Description

[Maturing] Used to produce summary output either internally in `regional_epinow` or externally.

Usage

```

regional_summary(
  regional_output = NULL,
  data,
  results_dir = NULL,
  summary_dir = NULL,
  target_date = NULL,
  region_scale = "Region",
  all_regions = TRUE,
  return_output = is.null(summary_dir),
  plot = TRUE,
  max_plot = 10,
  ...
)

```

Arguments

<code>regional_output</code>	A list of output as produced by regional_epinow() and stored in the <code>regional</code> list.
<code>data</code>	A <code><data.frame></code> of disease reports (confirm) by date (date), and region (region).
<code>results_dir</code>	An optional character string indicating the location of the results directory to extract results from.
<code>summary_dir</code>	A character string giving the directory in which to store summary of results.
<code>target_date</code>	A character string giving the target date for which to extract results (in the format "yyyy-mm-dd"). Defaults to latest available estimates.
<code>region_scale</code>	A character string indicating the name to give the regions being summarised.
<code>all_regions</code>	Logical, defaults to TRUE. Should summary plots for all regions be returned rather than just regions of interest.
<code>return_output</code>	Logical, defaults to FALSE. Should output be returned, this automatically updates to TRUE if no directory for saving is specified.
<code>plot</code>	Logical, defaults to TRUE. Should regional summary plots be produced.
<code>max_plot</code>	Numeric, defaults to 10. A multiplicative upper bound on the number of cases shown on the plot. Based on the maximum number of reported cases.
<code>...</code>	Additional arguments passed to <code>report_plots</code> .

Value

A list of summary measures and plots

See Also

[regional_epinow\(\)](#)

Examples

```
# get example output from regional_epinow model
regional_out <- readRDS(system.file(
  package = "EpiNow2", "extdata", "example_regional_epinow.rds"
))

summary <- regional_summary(
  regional_output = regional_out$regional,
  data = regional_out$summary$reported_cases
)
names(summary)
```

report_plots

Report plots

Description

[Questioning] Returns key summary plots for estimates. May be depreciated in later releases as current S3 methods are enhanced.

Usage

```
report_plots(summarised_estimates, reported, target_folder = NULL, ...)
```

Arguments

summarised_estimates	A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should also contain the following estimates: R, infections, reported_cases_rt, and r (rate of growth).
reported	A <data.table> of reported cases with the following variables: date, confirm.
target_folder	Character string specifying where to save results (will create if not present).
...	Additional arguments passed to plot_estimates().

Value

A named list of ggplot2 objects, list(infections, reports, R, growth_rate, summary), which correspond to a summary combination (last item) and for the leading items.

See Also

[plot_estimates\(\)](#)
summarised_estimates[variable == "infections"], summarised_estimates[variable == "reported_cases"], summarised_estimates[variable == "R"], and summarised_estimates[variable == "growth_rate"], respectively.

Examples

```
# get example output from estimate_infections
out <- readRDS(system.file(
  package = "EpiNow2", "extdata", "example_estimate_infections.rds"
))

# plot infections
plots <- report_plots(
  summarised_estimates = summary(out, type = "parameters"),
  reported = out$observations
)
plots
```

report_summary

*Provide Summary Statistics for Estimated Infections and Rt***Description**

[Questioning] Creates a snapshot summary of estimates. May be removed in later releases as S3 methods are enhanced.

Usage

```
report_summary(
  summarised_estimates,
  rt_samples,
  target_folder = NULL,
  return_numeric = FALSE
)
```

Arguments

summarised_estimates

A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R, infections, and r (rate of growth).

rt_samples A data.table containing Rt samples with the following variables: sample and value.

target_folder Character string specifying where to save results (will create if not present).

return_numeric Should numeric summary information be returned.

Value

A data.table containing formatted and numeric summary measures

rt_opts

*Time-Varying Reproduction Number Options***Description**

[Stable] Defines a list specifying the optional arguments for the time-varying reproduction number. Custom settings can be supplied which override the defaults.

Usage

```
rt_opts(
  prior = LogNormal(mean = 1, sd = 1),
  use_rt = TRUE,
  rw = 0,
  use_breakpoints = TRUE,
  future = "latest",
  gp_on = c("R_t-1", "R0"),
  pop = Fixed(0),
  pop_period = c("forecast", "all"),
  pop_floor = 1,
  growth_method = c("infections", "infectiousness")
)
```

Arguments

<code>prior</code>	A <code>dist_spec</code> giving the prior of the initial reproduction number. Ignored if <code>use_rt</code> is FALSE. Defaults to a <code>LogNormal</code> distribution with mean of 1 and standard deviation of 1: <code>LogNormal(mean = 1, sd = 1)</code> . A lower limit of 0 will be enforced automatically.
<code>use_rt</code>	Logical, defaults to TRUE. Should R_t be used to generate infections and hence reported cases.
<code>rw</code>	Numeric step size of the random walk, defaults to 0. To specify a weekly random walk set <code>rw = 7</code> . For more custom break point settings consider passing in a <code>breakpoints</code> variable as outlined in the next section.
<code>use_breakpoints</code>	Logical, defaults to TRUE. Should break points be used if present as a <code>breakpoint</code> variable in the input data. Break points should be defined as 1 if present and otherwise 0. By default breakpoints are fit jointly with a global non-parametric effect and so represent a conservative estimate of break point changes (alter this by setting <code>gp = NULL</code>).
<code>future</code>	A character string or integer. This argument indicates how to set future R_t values. Supported options are to project using the R_t model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the R_t estimate from this many days into the future (or past if negative) past will be used forwards in time.
<code>gp_on</code>	Character string, defaulting to "R_t-1". Indicates how the Gaussian process, if in use, should be applied to R_t . Currently supported options are applying the Gaussian process to the last estimated R_t (i.e $R_t = R_{t-1} * GP$), and applying the Gaussian process to a global mean (i.e $R_t = R_0 * GP$). Both should produce comparable results when data is not sparse but the method relying on a global mean will revert to this for real time estimates, which may not be desirable.
<code>pop</code>	A <code>dist_spec</code> giving the initial susceptible population size. Used to adjust R_t estimates based on the proportion of the population that is susceptible. Defaults to <code>Fixed(0)</code> which means no population adjustment is done. See also <code>pop_floor</code> for the numerical stability floor used when population adjustment

is enabled. When `pop` is specified, returned `Rt` estimates are adjusted for susceptible depletion (accounting for population immunity), and unadjusted `Rt` estimates are also provided in a separate output variable `R_unadjusted`. Adjusted `Rt` represents the effective reproduction number given the current susceptible population, whilst unadjusted `Rt` represents the reproduction number that would occur in a fully susceptible population.

<code>pop_period</code>	Character string, defaulting to "forecast". Controls when susceptible population adjustment is applied. "forecast" only applies the adjustment to forecasts whilst "all" applies it to both data and forecasts.
<code>pop_floor</code>	Numeric. Minimum susceptible population used as a floor when adjusting for population depletion. This prevents numerical instability (division by zero) when the susceptible population approaches zero. Defaults to 1.0. Can be interpreted as representing a minimal ongoing import level. Note that if <code>pop_floor</code> > 0, cumulative infections can exceed the population size, though this effect is negligible when <code>pop_floor</code> is very small compared to the population size.
<code>growth_method</code>	Method used to compute growth rates from <code>Rt</code> . Options are "infections" (default) and "infectiousness". The option "infections" uses the classical approach, i.e. computing the log derivative on the number of new infections. The option "infectiousness" uses an alternative approach by Parag et al., which computes the log derivative of the infectiousness (i.e. the convolution of past infections with the generation time) and shifts it by the mean generation time. This can provide better stability and temporal matching with <code>Rt</code> . Note that, due to the temporal shift the "infectiousness" method results in undefined (NaN) growth rates for the most recent time points (equal to the mean generation time).

Value

An `<rt_opts>` object with settings defining the time-varying reproduction number.

References

Parag, K. V., Thompson, R. N. & Donnelly, C. A. Are epidemic growth rates more informative than reproduction numbers? *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 185, S5–S15 (2022).

Examples

```
# default settings
rt_opts()

# add a custom length scale
rt_opts(prior = LogNormal(mean = 2, sd = 1))

# add a weekly random walk
rt_opts(rw = 7)
```

run_region	<i>Run epinow with Regional Processing Code</i>
------------	---

Description

[Maturing] Internal function that handles calling `epinow()`. Future work will extend this function to better handle stan logs and allow the user to modify settings between regions.

Usage

```
run_region(  
  target_region,  
  generation_time,  
  delays,  
  truncation,  
  rt,  
  backcalc,  
  gp,  
  obs,  
  stan,  
  horizon,  
  CrIs,  
  data,  
  target_folder,  
  target_date,  
  return_output,  
  output,  
  complete_logger,  
  verbose,  
  progress_fn = NULL,  
  ...  
)
```

Arguments

target_region	Character string indicating the region being evaluated
generation_time	A call to <code>gt_opts()</code> (or its alias <code>generation_time_opts()</code>) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.

rt	A list of options as generated by rt_opts() defining Rt estimation. Defaults to rt_opts() . To generate new infections using the non-mechanistic model instead of the renewal equation model, use <code>rt = NULL</code> . The non-mechanistic model internally uses the setting <code>rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0")</code> .
backcalc	A list of options as generated by backcalc_opts() to define the back calculation. Defaults to backcalc_opts() .
gp	A list of options as generated by gp_opts() to define the Gaussian process. Defaults to gp_opts() . Set to <code>NULL</code> to disable the Gaussian process.
obs	A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts() .
stan	A list of stan options as generated by stan_opts() . Defaults to stan_opts() . Can be used to override <code>data</code> , <code>init</code> , and <code>verbose</code> settings if desired.
horizon	Deprecated; use <code>forecast</code> instead to specify the predictive horizon
CrIs	Numeric vector of credible intervals to calculate.
data	A <code><data.frame></code> of disease reports (confirm) by date (date), and region (region).
target_folder	Character string specifying where to save results (will create if not present).
target_date	Date, defaults to maximum found in the data if not specified.
return_output	Logical, defaults to <code>FALSE</code> . Should output be returned, this automatically updates to <code>TRUE</code> if no directory for saving is specified.
output	A character vector of optional output to return. Supported options are the individual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if <code>target_folder</code> is not <code>NULL</code> , set using "latest"), the stan fit of the underlying model ("fit"), the full estimate_infections() return object ("estimate_infections"), and an overall summary across regions ("summary"). The default is to return samples and plots alongside summarised estimates and summary statistics. If <code>target_folder</code> is not <code>NULL</code> then the default is also to copy all results into a latest folder.
complete_logger	Character string indicating the logger to output the completion of estimation to.
verbose	Logical defaults to <code>FALSE</code> . Outputs verbose progress messages to the console from epinow() .
progress_fn	Function as returned by progressr::progressor() . Allows the use of a progress bar. If <code>NULL</code> (default), no progress bar is used.
...	Pass additional arguments to epinow() . See the documentation for epinow() for details.

Value

A list of processed output as produced by [process_region\(\)](#)

See Also

[regional_epinow\(\)](#)

R_to_growth*Convert Reproduction Numbers to Growth Rates*

Description

[Questioning] See [here](#) # nolint for justification. Now handled internally by stan so may be removed in future updates if no user demand.

Usage

```
R_to_growth(R, gamma_mean, gamma_sd)
```

Arguments

R	Numeric, Reproduction number estimates
gamma_mean	Numeric, mean of the gamma distribution
gamma_sd	Numeric, standard deviation of the gamma distribution .

Value

Numeric vector of reproduction number estimates

Examples

```
R_to_growth(2.18, 4, 1)
```

secondary_opts*Secondary Reports Options*

Description

[Stable] Returns a list of options defining the secondary model used in [estimate_secondary\(\)](#). This model is a combination of a convolution of previously observed primary reports combined with current primary reports (either additive or subtractive). It can optionally be cumulative. See the documentation of `type` for sensible options to cover most use cases and the returned values of [secondary_opts\(\)](#) for all currently supported options.

Usage

```
secondary_opts(type = c("incidence", "prevalence"), ...)
```

Arguments

type	A character string indicating the type of observation the secondary reports are. Options include: <ul style="list-style-type: none"> • "incidence": Assumes that secondary reports equal a convolution of previously observed primary reported cases. An example application is deaths from an infectious disease predicted by reported cases of that disease (or estimated infections). • "prevalence": Assumes that secondary reports are cumulative and are defined by currently observed primary reports minus a convolution of secondary reports. An example application is hospital bed usage predicted by hospital admissions.
...	Overwrite options defined by type. See the returned values for all options that can be passed.

Value

A <secondary_opts> object of binary options summarising secondary model used in [estimate_secondary\(\)](#). Options returned are cumulative (should the secondary report be cumulative), historic (should a convolution of primary reported cases be used to predict secondary reported cases), primary_hist_additive (should the historic convolution of primary reported cases be additive or subtractive), current (should currently observed primary reported cases contribute to current secondary reported cases), primary_current_additive (should current primary reported cases be additive or subtractive).

See Also

[estimate_secondary\(\)](#)

Examples

```
# incidence model
secondary_opts("incidence")

# prevalence model
secondary_opts("prevalence")
```

setup_default_logging *Setup Default Logging*

Description

[Questioning] Sets up default logging. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

Usage

```
setup_default_logging(  
  logs = tempdir(check = TRUE),  
  mirror_epinow = FALSE,  
  target_date = NULL  
)
```

Arguments

logs	Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging() and the setup_logging() function are a sensible place to start.
mirror_epinow	Logical, defaults to FALSE. Should internal logging be returned from epinow() to the console.
target_date	Date, defaults to maximum found in the data if not specified.

Value

No return value, called for side effects

Examples

```
setup_default_logging()
```

setup_future	<i>Set up Future Backend</i>
--------------	------------------------------

Description

[Stable] A utility function that aims to streamline the set up of the required future backend with sensible defaults for most users of [regional_epinow\(\)](#). More advanced users are recommended to setup their own {future} backend based on their available resources. Running this requires the {future} package to be installed.

Usage

```
setup_future(  
  data,  
  strategies = c("multisession", "multisession"),  
  min_cores_per_worker = 4  
)
```

Arguments

data	A <data.frame> of disease reports (confirm) by date (date), and region (region).
strategies	A vector length 1 to 2 of strategies to pass to <code>future::plan()</code> . Nesting of parallelisation is from the top level down. The default is to set up nesting parallelisation with both using <code>future::multisession()</code> (<code>future::multicore()</code> will likely be a faster option on supported platforms). For single level parallelisation use a single strategy or <code>future::plan()</code> directly. See <code>future::plan()</code> for options.
min_cores_per_worker	Numeric, the minimum number of cores per worker. Defaults to 4 which assumes 4 MCMC chains are in use per region.

Value

Numeric number of cores to use per worker. If greater than 1 pass to `stan_args = list(cores = "output from setup future")` or use `future = TRUE`. If only a single strategy is used then nothing is returned.

setup_logging	<i>Setup Logging</i>
---------------	----------------------

Description

[Questioning] Sets up `{futile.logger}` logging, which is integrated into `{EpiNow2}`. See the documentation for `{futile.logger}` for full details. By default `{EpiNow2}` prints all logs at the "INFO" level and returns them to the console. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

Usage

```
setup_logging(
  threshold = "INFO",
  file = NULL,
  mirror_to_console = FALSE,
  name = "EpiNow2"
)
```

Arguments

threshold	Character string indicating the logging level see (?futile.logger for details of the available options). Defaults to "INFO".
file	Character string indicating the path to save logs to. By default logs will be written to the console.
mirror_to_console	Logical, defaults to FALSE. If saving logs to a file should they also be duplicated in the console.

name	Character string defaulting to EpiNow2. This indicates the name of the logger to setup. The default logger for EpiNow2 is called EpiNow2. Nested options include: Epinow2.epinow which controls all logging for <code>epinow()</code> and nested functions, Epinow2.epinow.estimate_infections (logging in <code>estimate_infections()</code>), and Epinow2.epinow.estimate_infections.fit (logging in fitting functions).
------	---

Value

Nothing

`simulate_infections` *Simulate infections using the renewal equation*

Description

Simulations are done from given initial infections and, potentially time-varying, reproduction numbers. Delays and parameters of the observation model can be specified using the same options as in `estimate_infections()`.

Usage

```
simulate_infections(
  R,
  initial_infections,
  day_of_week_effect = NULL,
  generation_time = generation_time_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  obs = obs_opts(),
  CrIs = c(0.2, 0.5, 0.9),
  backend = "rstan",
  seeding_time = NULL,
  pop = Fixed(0),
  pop_period = c("forecast", "all"),
  pop_floor = 1,
  growth_method = c("infections", "infectiousness")
)
```

Arguments

R	a data frame of reproduction numbers (column R) by date (column date). Column R must be numeric and date must be in date format. If not all days between the first and last day in the date are present, it will be assumed that R stays the same until the next given date.
initial_infections	numeric; the initial number of infections (i.e. before R applies). Note that results returned start the day after, i.e. the initial number of infections is not reported again. See also <code>seeding_time</code>

day_of_week_effect	either NULL (no day of the week effect) or a numerical vector of length specified in <code>obs_opts()</code> as week_length (default: 7) if week_effect is set to TRUE. Each element of the vector gives the weight given to reporting on this day (normalised to 1). The default is NULL.
generation_time	A call to <code>gt_opts()</code> (or its alias <code>generation_time_opts()</code>) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the dist list element returned by <code>estimate_truncation()</code> is used as the truncation argument here, thereby propagating the uncertainty in the estimate.
obs	A list of options as generated by <code>obs_opts()</code> defining the observation model. Defaults to <code>obs_opts()</code> .
CrIs	Deprecated; specify credible intervals when using <code>summary()</code> or <code>plot()</code>
backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
seeding_time	Integer; the number of days before the first time point of R; default is NULL, in which case it is set to the maximum of the generation time. The minimum is 1, i.e. the first reproduction number given applies on the day after the index cases given by <code>initial_infections</code> . If the generation time is longer than 1 day on average, a seeding time of 1 will always lead to an initial decline (as there are no infections before the initial ones). Instead, if this is greater than 1, an initial part of the epidemic (before the first value of R given) of <code>seeding_time</code> days is assumed to have followed exponential growth roughly in line with the growth rate implied by the first value of R.
pop	A <code><dist_spec></code> giving the initial susceptible population size. Used to adjust Rt estimates based on the proportion of the population that is susceptible. Defaults to <code>Fixed(0)</code> which means no population adjustment is done. See also <code>pop_floor</code> for the numerical stability floor used when population adjustment is enabled. When <code>pop</code> is specified, returned Rt estimates are adjusted for susceptible depletion (accounting for population immunity), and unadjusted Rt estimates are also provided in a separate output variable <code>R_unadjusted</code> . Adjusted Rt represents the effective reproduction number given the current susceptible population, whilst unadjusted Rt represents the reproduction number that would occur in a fully susceptible population.
pop_period	Character string, defaulting to "forecast". Controls when susceptible population adjustment is applied. "forecast" only applies the adjustment to forecasts whilst "all" applies it to both data and forecasts.
pop_floor	Numeric. Minimum susceptible population used as a floor when adjusting for population depletion. This prevents numerical instability (division by zero)

when the susceptible population approaches zero. Defaults to 1.0. Can be interpreted as representing a minimal ongoing import level. Note that if `pop_floor > 0`, cumulative infections can exceed the population size, though this effect is negligible when `pop_floor` is very small compared to the population size.

`growth_method` Method used to compute growth rates from R_t . Options are "infections" (default) and "infectiousness". The option "infections" uses the classical approach, i.e. computing the log derivative on the number of new infections. The option "infectiousness" uses an alternative approach by Parag et al., which computes the log derivative of the infectiousness (i.e. the convolution of past infections with the generation time) and shifts it by the mean generation time. This can provide better stability and temporal matching with R_t . Note that, due to the temporal shift the "infectiousness" method results in undefined (NaN) growth rates for the most recent time points (equal to the mean generation time).

Details

In order to simulate, all parameters that are specified such as the mean and standard deviation of delays or observation scaling, must be fixed. Uncertain parameters are not allowed.

Value

A data.table of simulated infections (variable `infections`) and reported cases (variable `reported_cases`) by date.

Examples

```
R <- data.frame(
  date = seq.Date(as.Date("2023-01-01"), length.out = 14, by = "day"),
  R = c(rep(1.2, 7), rep(0.8, 7))
)
sim <- simulate_infections(
  R = R,
  initial_infections = 100,
  generation_time = generation_time_opts(
    fix_parameters(example_generation_time)
  ),
  delays = delay_opts(fix_parameters(example_reporting_delay)),
  obs = obs_opts(family = "poisson")
)
```

`simulate_secondary` *Simulate secondary observations from primary observations*

Description

Simulations are done from a given trajectory of primary observations by applying any given delays and observation parameters.

Usage

```
simulate_secondary(
  primary,
  day_of_week_effect = NULL,
  secondary = secondary_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  obs = obs_opts(),
  CrIs = c(0.2, 0.5, 0.9),
  backend = "rstan"
)
```

Arguments

primary	a data frame of primary reports (column <code>primary</code>) by date (column <code>date</code>). Column <code>primary</code> must be numeric and <code>date</code> must be in date format.
day_of_week_effect	either <code>NULL</code> (no day of the week effect) or a numerical vector of length specified in <code>obs_opts()</code> as <code>week_length</code> (default: 7) if <code>week_effect</code> is set to <code>TRUE</code> . Each element of the vector gives the weight given to reporting on this day (normalised to 1). The default is <code>NULL</code> .
secondary	A call to <code>secondary_opts()</code> or a list containing the following binary variables: cumulative, historic, primary_hist_additive, current, primary_current_additive. These parameters control the structure of the secondary model, see <code>secondary_opts()</code> for details.
delays	A call to <code>delay_opts()</code> defining delay distributions and options. See the documentation of <code>delay_opts()</code> and the examples below for details.
truncation	A call to <code>trunc_opts()</code> defining the truncation of the observed data. Defaults to <code>trunc_opts()</code> , i.e. no truncation. See the <code>estimate_truncation()</code> help file for an approach to estimating this from data where the <code>dist</code> list element returned by <code>estimate_truncation()</code> is used as the <code>truncation</code> argument here, thereby propagating the uncertainty in the estimate.
obs	A list of options as generated by <code>obs_opts()</code> defining the observation model. Defaults to <code>obs_opts()</code> .
CrIs	Deprecated; specify credible intervals when using <code>summary()</code> or <code>plot()</code>
backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".

Details

In order to simulate, all parameters that are specified such as the mean and standard deviation of delays or observation scaling, must be fixed. Uncertain parameters are not allowed.

A function of the same name that was previously based on a reimplementation of that model in R with potentially time-varying scalings and delays is available as `'convolve_and_scale()'`

Value

A data.table of simulated secondary observations (column secondary) by date.

Examples

```
## load data.table to manipulate `example_confirmed` below
library(data.table)
cases <- as.data.table(example_confirmed)[, primary := confirm]
sim <- simulate_secondary(
  cases,
  delays = delay_opts(fix_parameters(example_reporting_delay)),
  obs = obs_opts(family = "poisson")
)
```

stan_laplace_opts *Stan Laplace algorithm Options*

Description

[Experimental] Defines a list specifying the arguments passed to [cmdstanr::laplace\(\)](#).

Usage

```
stan_laplace_opts(backend = "cmdstanr", trials = 10, ...)
```

Arguments

backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
trials	Numeric, defaults to 10. Number of attempts to use rstan::vb() before failing.
...	Additional parameters to pass to cmdstanr::laplace() .

Value

A list of arguments to pass to [cmdstanr::laplace\(\)](#).

Examples

```
stan_laplace_opts()
```

stan_opts*Stan Options*

Description

[Stable] Defines a list specifying the arguments passed to underlying stan backend functions via [stan_sampling_opts\(\)](#) and [stan_vb_opts\(\)](#). Custom settings can be supplied which override the defaults.

Usage

```
stan_opts(
  object = NULL,
  samples = 2000,
  method = c("sampling", "vb", "laplace", "pathfinder"),
  backend = c("rstan", "cmdstanr"),
  return_fit = TRUE,
  ...
)
```

Arguments

object	Stan model object. By default uses the compiled package default if using the "rstan" backend, and the default model obtained using epinow2_cmdstanr_model() if using the "cmdstanr" backend.
samples	Numeric, defaults to 2000. Number of posterior samples.
method	A character string, defaulting to sampling. Currently supports MCMC sampling ("sampling") or approximate posterior sampling via variational inference ("vb") and, as experimental features if the "cmdstanr" backend is used, approximate posterior sampling with the laplace algorithm ("laplace") or pathfinder ("pathfinder").
backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
return_fit	Logical, defaults to TRUE. Should the fit stan model be returned.
...	Additional parameters to pass to underlying option functions, stan_sampling_opts() or stan_vb_opts() , depending on the method

Value

A <stan_opts> object of arguments to pass to the appropriate rstan functions.

See Also

[stan_sampling_opts\(\)](#) [stan_vb_opts\(\)](#)

Examples

```
# using default of [rstan::sampling()]
stan_opts(samples = 1000)

# using vb
stan_opts(method = "vb")
```

stan_pathfinder_opts *Stan pathfinder algorithm Options*

Description

[Experimental] Defines a list specifying the arguments passed to [cmdstanr::laplace\(\)](#).

Usage

```
stan_pathfinder_opts(backend = "cmdstanr", samples = 2000, trials = 10, ...)
```

Arguments

backend	Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
samples	Numeric, defaults to 2000. Number of posterior samples.
trials	Numeric, defaults to 10. Number of attempts to use rstan::vb() before failing.
...	Additional parameters to pass to cmdstanr::laplace() .

Value

A list of arguments to pass to [cmdstanr::laplace\(\)](#).

Examples

```
stan_laplace_opts()
```

 stan_sampling_opts *Stan Sampling Options*

Description

[Stable] Defines a list specifying the arguments passed to either `rstan::sampling()` or `cmdstanr::sample()`. Custom settings can be supplied which override the defaults.

Usage

```
stan_sampling_opts(
  cores = getOption("mc.cores", 1L),
  warmup = 250,
  samples = 2000,
  chains = 4,
  control = list(),
  save_warmup = FALSE,
  seed = as.integer(runif(1, 1, 1e+08)),
  future = FALSE,
  max_execution_time = Inf,
  backend = c("rstan", "cmdstanr"),
  ...
)
```

Arguments

<code>cores</code>	Number of cores to use when executing the chains in parallel, which defaults to 1 but it is recommended to set the <code>mc.cores</code> option to be as many processors as the hardware and RAM allow (up to the number of chains).
<code>warmup</code>	Numeric, defaults to 250. Number of warmup samples per chain.
<code>samples</code>	Numeric, default 2000. Overall number of posterior samples. When using multiple chains iterations per chain is <code>samples / chains</code> .
<code>chains</code>	Numeric, defaults to 4. Number of MCMC chains to use.
<code>control</code>	List, defaults to empty. control parameters to pass to underlying <code>rstan</code> function. By default <code>adapt_delta = 0.9</code> and <code>max_treedepth = 12</code> though these settings can be overwritten.
<code>save_warmup</code>	Logical, defaults to FALSE. Should warmup progress be saved.
<code>seed</code>	Numeric, defaults uniform random number between 1 and 1e8. Seed of sampling process.
<code>future</code>	Logical, defaults to FALSE. Should stan chains be run in parallel using <code>future</code> . This allows users to have chains fail gracefully (i.e when combined with <code>max_execution_time</code>). Should be combined with a call to <code>future::plan()</code> .

max_execution_time

Numeric, defaults to Inf (seconds). If set wil kill off processing of each chain if not finished within the specified timeout. When more than 2 chains finish successfully estimates will still be returned. If less than 2 chains return within the allowed time then estimation will fail with an informative error.

backend

Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".

...

Additional parameters to pass to [rstan::sampling\(\)](#) or [cmdstanr::sample\(\)](#).

Value

A list of arguments to pass to [rstan::sampling\(\)](#) or [cmdstanr::sample\(\)](#).

Examples

```
stan_sampling_opts(samples = 2000)
```

stan_vb_opts*Stan Variational Bayes Options***Description**

[Stable] Defines a list specifying the arguments passed to [rstan::vb\(\)](#) or [cmdstanr::variational\(\)](#). Custom settings can be supplied which override the defaults.

Usage

```
stan_vb_opts(samples = 2000, trials = 10, iter = 10000, ...)
```

Arguments

samples	Numeric, default 2000. Overall number of approximate posterior samples.
trials	Numeric, defaults to 10. Number of attempts to use rstan::vb() before failing.
iter	Numeric, defaulting to 10000. Number of iterations to use in rstan::vb() .
...	Additional parameters to pass to rstan::vb() or cmdstanr::variational() , depending on the chosen backend.

Value

A list of arguments to pass to [rstan::vb\(\)](#) or [cmdstanr::variational\(\)](#), depending on the chosen backend.

Examples

```
stan_vb_opts(samples = 1000)
```

summary.epinow	<i>Summary output from epinow</i>
----------------	-----------------------------------

Description

[Stable] summary method for class "epinow". This method inherits from [summary.estimate_infections\(\)](#) and supports the same arguments.

Usage

```
## S3 method for class 'epinow'
summary(
  object,
  output = NULL,
  type = c("snapshot", "parameters"),
  target_date = NULL,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  ...
)
```

Arguments

object	An <epinow> object as produced by epinow() .
output	[Deprecated] Use the type argument instead. Previously supported "estimates", "forecast", and "estimated_reported_cases".
type	A character vector of data types to return. Defaults to "snapshot" but also supports "parameters". "snapshot" returns a summary at a given date (by default the latest date informed by data). "parameters" returns summarised parameter estimates that can be further filtered using params to show just the parameters of interest and date. Note: type = "samples" is deprecated. Use get_samples() instead.
target_date	Date, defaults to maximum found in the data if not specified.
params	A character vector of parameters to filter for.
CrIs	Numeric vector of credible intervals to calculate.
...	Pass additional summary arguments to summary.estimate_infections()

Value

Returns a <data.frame> of summary output

See Also

[summary.estimate_infections\(\)](#) [epinow\(\)](#)

```
summary.estimate_infections
  Summary output from estimate_infections
```

Description

[Stable] summary method for class "estimate_infections".

Usage

```
## S3 method for class 'estimate_infections'
summary(
  object,
  type = c("snapshot", "parameters"),
  target_date = NULL,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  ...
)
```

Arguments

object	A list of output as produced by "estimate_infections".
type	A character vector of data types to return. Defaults to "snapshot" but also supports "parameters". "snapshot" returns a summary at a given date (by default the latest date informed by data). "parameters" returns summarised parameter estimates that can be further filtered using params to show just the parameters of interest and date. Note: type = "samples" is deprecated. Use get_samples() instead.
target_date	Date, defaults to maximum found in the data if not specified.
params	A character vector of parameters to filter for.
CrIs	Numeric vector of credible intervals to calculate.
...	Pass additional arguments to report_summary when type = "snapshot".

Value

Returns a <data.frame> of summary output

See Also

[summary.epinow\(\)](#) [estimate_infections\(\)](#) [report_summary\(\)](#)

```
summary.estimate_secondary
```

Summarise results from estimate_secondary

Description

[Stable] Returns a summary of the fitted secondary model including posterior parameter estimates with credible intervals.

Usage

```
## S3 method for class 'estimate_secondary'
summary(
  object,
  type = c("compact", "parameters"),
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  ...
)
```

Arguments

object	A fitted model object from estimate_secondary()
type	Character string indicating the type of summary to return. Options are "compact" (default) which returns delay distribution parameters and scaling factors, or "parameters" for all parameters or a filtered set.
params	Character vector of parameter names to include. Only used when type = "parameters". If NULL (default), returns all parameters.
CrIs	Numeric vector of credible intervals to calculate.
...	Additional arguments (currently unused)

Value

A `<data.table>` with summary statistics (mean, sd, median, credible intervals) for model parameters. When `type = "compact"`, returns only key parameters (delay distribution parameters and scaling factors). When `type = "parameters"`, returns all or filtered parameters.

```
summary.estimate_truncation
  Summarise results from estimate_truncation
```

Description

[Stable] Returns parameter summary statistics for the fitted truncation model.

Usage

```
## S3 method for class 'estimate_truncation'
summary(object, CrIs = c(0.2, 0.5, 0.9), ...)
```

Arguments

object	A fitted model object from estimate_truncation()
CrIs	Numeric vector of credible intervals to calculate.
...	Additional arguments (currently unused)

Value

A `<data.table>` with summary statistics for the truncation distribution parameters.

```
summary.forecast_infections
  Summary output from forecast_infections
```

Description

[Stable] summary method for class "forecast_infections".

Usage

```
## S3 method for class 'forecast_infections'
summary(
  object,
  type = c("snapshot", "parameters"),
  target_date = NULL,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  ...
)
```

Arguments

object	A list of output as produced by "forecast_infections".
type	A character vector of data types to return. Defaults to "snapshot" but also supports "parameters". "snapshot" returns a summary at a given date (by default the latest date informed by data). "parameters" returns summarised parameter estimates that can be further filtered using <code>params</code> to show just the parameters of interest and date.
target_date	Date, defaults to maximum found in the data if not specified.
params	A character vector of parameters to filter for.
CrIs	Numeric vector of credible intervals to calculate.
...	Pass additional arguments to <code>report_summary</code> when <code>type = "snapshot"</code> .

Value

Returns a `<data.frame>` of summary output

See Also

[summary.estimate_infections\(\)](#) [forecast_infections\(\)](#) [report_summary\(\)](#)

trunc_opts

Truncation Distribution Options

Description

[Stable] Returns a truncation distribution formatted for usage by downstream functions. See [estimate_truncation\(\)](#) for an approach to estimate these distributions.

Usage

```
trunc_opts(dist = Fixed(0), default_cdf_cutoff = 0.001, weight_prior = FALSE)
```

Arguments

dist	A delay distribution or series of delay distributions reflecting the truncation. It can be specified using the probability distributions interface in EpiNow2 (See <code>?EpiNow2::Distributions</code>) or estimated using estimate_truncation() , which returns a <code>dist</code> object, suited for use here out-of-box. Default is a fixed distribution with maximum 0, i.e. no truncation.
default_cdf_cutoff	Numeric; default CDF cutoff to be used if an unconstrained distribution is passed as <code>dist</code> . If <code>dist</code> is already constrained by having a maximum or CDF cutoff this is ignored. Note that this can only be done for <code><dist_spec></code> objects with fixed parameters.

`weight_prior` Logical; if TRUE, the truncation prior will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE (default), no weight will be applied, i.e. the truncation distribution will be treated as a single parameter.

Value

A <trunc_opts> object summarising the input truncation distribution.

See Also

[convert_to_logmean\(\)](#) [convert_to_logs\(\)](#) [bootstrapped_dist_fit\(\)](#) [Distributions](#)

Examples

```
# no truncation
trunc_opts()

# truncation dist
trunc_opts(dist = LogNormal(mean = 3, sd = 2, max = 10))
```

`update_secondary_args` *Update estimate_secondary default priors*

Description

[Stable] This functions allows the user to more easily specify data driven or model based priors for [estimate_secondary\(\)](#) from example from previous model fits using a <data.frame> to overwrite other default settings. Note that default settings are still required.

Usage

```
update_secondary_args(data, priors, verbose = TRUE)
```

Arguments

<code>data</code>	A list of data and arguments as returned by create_stan_data() .
<code>priors</code>	A <data.frame> of named priors to be used in model fitting rather than the defaults supplied from other arguments. This is typically useful if wanting to inform a estimate from the posterior of another model fit. Priors that are currently use to update the defaults are the scaling fraction ("fraction_observed"), and delay parameters ("delay_params"). The <data.frame> should have the following variables: variable, mean, and sd.
<code>verbose</code>	Logical, defaults to FALSE. Should verbose progress messages be returned.

Value

A list as produced by [create_stan_data\(\)](#).

Examples

```
priors <- data.frame(variable = "fraction_observed", mean = 3, sd = 1)
data <- list(obs_scale_mean = 4, obs_scale_sd = 3)
update_secondary_args(data, priors)
```

Index

`!=.dist_spec (==.dist_spec), 5`
* **datasets**
 `example_confirmed, 38`
 `example_generation_time, 38`
 `example_incubation_period, 39`
 `example_reporting_delay, 39`
 `example_truncated, 40`
+.dist_spec, 5
==.dist_spec, 5

`add_breakpoints, 6`
`apply_zero_threshold, 7`

`backcalc_opts, 8`
`backcalc_opts(), 25, 30, 77, 86`
`bootstrapped_dist_fit, 9`
`bootstrapped_dist_fit(), 20, 28, 29, 60, 105`
`bound_dist, 10`
`bound_dist(), 22`

`c.dist_spec, 11`
`calc_CrI, 12`
`calc_CrIs, 12`
`calc_summary_measures, 13`
`calc_summary_stats, 14`
`clean_nowcasts, 14`
`clean_regions, 15`
`cmdstanr::cmdstan_model(), 28`
`cmdstanr::laplace(), 95, 97`
`cmdstanr::sample(), 98, 99`
`cmdstanr::variational(), 99`
`collapse, 15`
`convert_to_logmean, 16`
`convert_to_logmean(), 20, 60, 105`
`convert_to_logsd, 17`
`convert_to_logsd(), 20, 60, 105`
`convolve_and_scale, 17`
`create_initial_conditions(), 42`

`delay_opts, 19`

`delay_opts(), 25, 30, 33, 48, 77, 85, 92, 94`
`discretise, 20`
`discretize(discretise), 20`
`dist_fit, 23`
`Distributions, 20, 21, 105`

`epinow, 24`
`epinow(), 11, 16, 17, 31, 35, 41, 48, 76, 78, 85, 86, 89, 91, 100`
`epinow2_cmdstan_model, 28`
`epinow2_cmdstan_model(), 96`
`estimate_delay, 28`
`estimate_infections, 29`
`estimate_infections(), 11, 16, 17, 24, 26, 27, 35, 41, 44, 45, 48, 50, 73, 78, 86, 91, 101`
`estimate_secondary, 32`
`estimate_secondary(), 17, 18, 44, 50, 51, 70, 87, 88, 105`
`estimate_truncation, 35`
`estimate_truncation(), 25, 30, 31, 33, 36, 71, 77, 85, 92, 94, 104`
`example_confirmed, 38`
`example_generation_time, 38`
`example_incubation_period, 39`
`example_reporting_delay, 39`
`example_truncated, 40`
`expose_stan_fns, 40`
`extract_CrIs, 41`
`extract_CrIs(), 72`
`extract_inits, 41`
`extract_samples, 42`
`extract_stan_param, 43`

`fill_missing, 43`
`fill_missing(), 6, 7, 25, 30, 33, 45, 50, 66`
`filter_leading_zeros, 45`
`filter_opts, 46`
`fit_model(), 42`
`fix_parameters, 47`

Fixed(Distributions), 21
 Fixed(), 60
 forecast_infections, 47
 forecast_infections(), 27, 31, 71, 104
 forecast_opts, 49
 forecast_opts(), 26, 30, 78
 forecast_secondary, 50
 future::multicore(), 90
 future::multisession(), 90
 future::plan(), 47, 90, 98

 Gamma(Distributions), 21
 Gamma(), 60
 generation_time_opts(gt_opts), 60
 generation_time_opts(), 25, 30, 48, 77, 85, 92
 get_distribution, 51
 get_parameters, 52
 get_parameters(), 27, 31, 34, 37
 get_pmf, 53
 get_predictions, 53
 get_predictions(), 27, 31, 34, 37
 getRegionalResults, 55
 get_samples, 56
 get_samples(), 27, 31, 34, 37, 100, 101
 gp_opts, 57
 gp_opts(), 25, 30, 48, 78, 86
 growth_to_R, 59
 gt_opts, 60
 gt_opts(), 25, 30, 77, 85, 92

 interactive(), 34, 48
 is_constrained, 61

 LogNormal(Distributions), 21
 LogNormal(), 60

 make_conf, 62
 map_prob_change, 62
 max.dist_spec, 63
 mean.dist_spec, 64

 new_dist_spec, 65
 NonParametric(Distributions), 21
 Normal(Distributions), 21

 obs_opts, 65
 obs_opts(), 26, 30, 33, 48, 78, 86, 92, 94
 opts_list, 67
 opts_list(), 67, 76

plot(), 30, 33, 51, 70, 92, 94
 plot.dist_spec, 68
 plot.estimate_infections, 69
 plot.estimate_infections(), 26
 plot.estimate_secondary, 70
 plot.estimate_truncation, 70
 plot.forecast_infections, 71
 plot.forecast_secondary, 72
 plot_CrIs, 72
 plot_estimates, 73
 plot_estimates(), 81
 plot_summary, 74
 print.dist_spec, 75
 print.epinowfit, 76
 process_region(), 86
 progressr::handlers(), 76
 progressr::progressor(), 86

 R_to_growth, 87
 regional_epinow, 76
 regional_epinow(), 15–17, 26, 27, 31, 35, 41, 56, 67, 80, 86, 89
 regional_summary, 79
 regional_summary(), 78
 report_plots, 81
 report_plots(), 69, 71
 report_summary, 82
 report_summary(), 101, 104
 rstan::expose_stan_functions(), 40
 rstan::extract(), 42
 rstan::sampling(), 37, 98, 99
 rstan::stan_model(), 48, 50
 rstan::vb(), 99
 rt_opts, 82
 rt_opts(), 25, 30, 48, 67, 77, 86
 run_region, 85

 scoringutils::as_forecast_quantile(), 54
 scoringutils::as_forecast_sample(), 54
 secondary_opts, 87
 secondary_opts(), 32, 33, 87, 94
 setup_default_logging, 88
 setup_default_logging(), 26, 78, 89
 setup_future, 89
 setup_future(), 76, 78
 setup_logging, 90
 setup_logging(), 26, 78, 89
 simulate_infections, 91

simulate_secondary, 93
simulate_secondary(), 17, 18
stan_laplace_opts, 95
stan_opts, 96
stan_opts(), 26, 30, 33, 36, 48, 78, 86
stan_pathfinder_opts, 97
stan_sampling_opts, 98
stan_sampling_opts(), 49, 96
stan_vb_opts, 99
stan_vb_opts(), 49, 96
summarise_results(), 74, 75
summary (summary.epinow), 100
summary(), 30, 33, 51, 92, 94
summary.epinow, 100
summary.epinow(), 101
summary.estimate_infections, 101
summary.estimate_infections(), 100, 104
summary.estimate_secondary, 102
summary.estimate_truncation, 103
summary.forecast_infections, 103

trunc_opts, 104
trunc_opts(), 25, 30, 33, 36, 48, 77, 85, 92,
94

update_secondary_args, 105