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add_samples Continue sampling from an object of class JointAI

Description

This function continues the sampling from the MCMC chains of an existing object of class ’Join-
tAI’.
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Usage

add_samples(object, n.iter, add = TRUE, thin = NULL,
monitor_params = NULL, progress.bar = "text", mess = TRUE)

Arguments

object object inheriting from class ’JointAI’

n.iter the number of additional iterations of the MCMC chain

add logical; should the new MCMC samples be added to the existing samples (TRUE;
default) or replace them? If samples are added the arguments monitor_params
and thin are ignored.

thin thinning interval (see window.mcmc); ignored when add = TRUE.

monitor_params named list or vector specifying which parameters should be monitored. For
details, see *_imp and the vignette Parameter Selection. Ignored when add =
TRUE.

progress.bar character string specifying the type of progress bar. Possible values are "text"
(default), "gui", and "none" (see update). Note: when sampling is performed in
parallel it is not possible to display a progress bar.

mess logical; should messages be given? Default is TRUE.

See Also

*_imp

The vignette Parameter Selection contains some examples on how to specify the argument monitor_params.

Examples

# Example 1:
# Run an initial JointAI model:
mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100)

# Continue sampling:
mod_add <- add_samples(mod, n.iter = 200, add = TRUE)

# Example 2:
# Continue sampling, but additionally sample imputed values.
# Note: Setting different parameters to monitor than in the original model
# requires add = FALSE.
imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE),

add = FALSE)

https://nerler.github.io/JointAI/articles/SelectingParameters.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html
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auto_corr Autocorrelation of MCMC samples

Description

This function obtains the autocorrelation of the MCMC samples in an JointAI object via coda::autocorr.diag().
autocorr_plot() visualizes the results using ggplot2.

Usage

auto_corr(object, lags = 0:30, by_chain = TRUE, outcome = 1L,
start = NULL, end = NULL, thin = NULL)

auto_corr_plot(object, lags = 0:30, by_chain = TRUE, outcome = 1L,
start = NULL, end = NULL, thin = NULL)

Arguments

object an object of class JointAI

lags a numeric vector indicating the lags to consider

by_chain logical; should the autocorrelation be computed for each chain separately?

outcome integer; index of the outcome model for which the autocorrelation should be
plotted

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

Value

a matrix or a list of matrix objects if by_chain = TRUE, or a ggplot() object for autocorr_plot().

Examples

fit <- lm_imp(y ~ C1 + C2 + B2, data = wideDF, n.iter = 200)
auto_corr(fit)
auto_corr_plot(fit)
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clean_survname Convert a survival outcome to a model name

Description

A helper function that converts the "name of a survival model" (the "Surv(time, status)" speci-
fication) into a valid variable name so that it can be used in the JAGS model syntax.

Usage

clean_survname(x)

Arguments

x a character string or vector of character strings

cross_corr Cross-correlation of MCMC samples

Description

These functions compute the cross-correlations of the MCMC samples in an JointAI object via
coda::crosscorr() and plot them using either the corrplot package or coda::crosscorr.plot().

Usage

cross_corr(object, outcome = 1L, start = NULL, end = NULL, thin = NULL)

cross_corr_plot(object, outcome = 1L, start = NULL, end = NULL,
thin = NULL, type = "corrplot")

Arguments

object an object of class JointAI

outcome integer; index of the outcome model for which the correlations should be plotted

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

type character; type of plot to be produced. Either "corrplot" (default) or "coda".

Value

a matrix (or a plot)
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Examples

fit <- lm_imp(y ~ C1 + C2 + B2, data = wideDF, n.iter = 200)
cross_corr(fit)
cross_corr_plot(fit, type = "coda")

default_hyperpars Get the default values for hyper-parameters

Description

This function returns a list of default values for the hyper-parameters.

Usage

default_hyperpars()

Details

norm: hyper-parameters for normal and log-normal models

mu_reg_norm mean in the priors for regression coefficients
tau_reg_norm precision in the priors for regression coefficients
shape_tau_norm shape parameter in Gamma prior for the precision of the (log-)normal distribution
rate_tau_norm rate parameter in Gamma prior for the precision of the (log-)normal distribution

gamma: hyper-parameters for Gamma models

mu_reg_gamma mean in the priors for regression coefficients
tau_reg_gamma precision in the priors for regression coefficients
shape_tau_gamma shape parameter in Gamma prior for the precision of the Gamma distribution
rate_tau_gamma rate parameter in Gamma prior for the precision of the Gamma distribution

beta: hyper-parameters for beta models

mu_reg_beta mean in the priors for regression coefficients
tau_reg_beta precision in the priors for regression coefficients
shape_tau_beta shape parameter in Gamma prior for the precision of the beta distribution
rate_tau_beta rate parameter in Gamma prior for precision of the of the beta distribution

binom: hyper-parameters for binomial models

mu_reg_binom mean in the priors for regression coefficients
tau_reg_binom precision in the priors for regression coefficients

poisson: hyper-parameters for poisson models
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mu_reg_poisson mean in the priors for regression coefficients
tau_reg_poisson precision in the priors for regression coefficients

multinomial: hyper-parameters for multinomial models

mu_reg_multinomial mean in the priors for regression coefficients
tau_reg_multinomial precision in the priors for regression coefficients

ordinal: hyper-parameters for ordinal models

mu_reg_ordinal mean in the priors for regression coefficients
tau_reg_ordinal precision in the priors for regression coefficients
mu_delta_ordinal mean in the prior for the intercepts
tau_delta_ordinal precision in the priors for the intercepts

ranef: hyper-parameters for the random effects variance-covariance matrices (when there is only
one random effect a Gamma distribution is used instead of the Wishart distribution)

shape_diag_RinvD shape parameter in Gamma prior for the diagonal elements of RinvD
rate_diag_RinvD rate parameter in Gamma prior for the diagonal elements of RinvD
KinvD_expr a character string that can be evaluated to calculate the number of degrees of freedom in the Wishart distribution used for the inverse of the variance-covariance matrix for random effects, depending on the number of random effects nranef

surv: parameters for survival models (survreg, coxph and JM)

mu_reg_surv mean in the priors for regression coefficients
tau_reg_surv precision in the priors for regression coefficients

Note

From the JAGS user manual on the specification of the Wishart distribution:
For KinvD larger than the dimension of the variance-covariance matrix the prior on the correlation
between the random effects is concentrated around 0, so that larger values of KinvD indicate stronger
prior belief that the elements of the multivariate normal distribution are independent. For KinvD
equal to the number of random effects the Wishart prior puts most weight on the extreme values
(correlation 1 or -1).

Examples

default_hyperpars()

# To change the hyper-parameters:
hyp <- default_hyperpars()
hyp$norm['rate_tau_norm'] <- 1e-3
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, hyperpars = hyp, mess = FALSE)

https://sourceforge.net/projects/mcmc-jags/files/Manuals/
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densplot Plot the posterior density from object of class JointAI

Description

The function plots a set of densities (per chain and coefficient) from the MCMC sample of an object
of class "JointAI".

Usage

densplot(object, ...)

## S3 method for class 'JointAI'
densplot(object, start = NULL, end = NULL, thin = NULL,
subset = c(analysis_main = TRUE), outcome = NULL,
exclude_chains = NULL, vlines = NULL, nrow = NULL, ncol = NULL,
joined = FALSE, use_ggplot = FALSE, warn = TRUE, mess = TRUE, ...)

Arguments

object object inheriting from class ’JointAI’
... additional parameters passed to plot()

start the first iteration of interest (see window.mcmc)
end the last iteration of interest (see window.mcmc)
thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)

will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

outcome optional; vector identifying a subset of sub-models included in the output, either
by specifying their indices (using the order used in the list of model formulas),
or their names (LHS of the respective model formula as character string)

exclude_chains optional vector of the index numbers of chains that should be excluded
vlines list, where each element is a named list of parameters that can be passed to

graphics::abline() to create vertical lines. Each of the list elements needs to
contain at least v = <x location> where <x location> is a vector of the same
length as the number of plots (see examples).

nrow optional; number of rows in the plot layout; automatically chosen if unspecified
ncol optional; number of columns in the plot layout; automatically chosen if unspec-

ified
joined logical; should the chains be combined before plotting?
use_ggplot logical; Should ggplot be used instead of the base graphics?
warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.
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See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.

Examples

## Not run:
# fit a JointAI object:
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

# Example 1: basic densityplot
densplot(mod)
densplot(mod, exclude_chains = 2)

# Example 2: use vlines to mark zero
densplot(mod, col = c("darkred", "darkblue", "darkgreen"),

vlines = list(list(v = rep(0, nrow(summary(mod)$res$y$regcoef)),
col = grey(0.8))))

# Example 3: use vlines to visualize posterior mean and 2.5%/97.5% quantiles
res <- rbind(summary(mod)$res$y$regcoef[, c('Mean', '2.5%', '97.5%')],

summary(mod)$res$y$sigma[, c('Mean', '2.5%', '97.5%'),
drop = FALSE]
)

densplot(mod, vlines = list(list(v = res[, "Mean"], lty = 1, lwd = 2),
list(v = res[, "2.5%"], lty = 2),
list(v = res[, "97.5%"], lty = 2)))

# Example 4: ggplot version
densplot(mod, use_ggplot = TRUE)

# Example 5: change how the ggplot version looks
library(ggplot2)

densplot(mod, use_ggplot = TRUE) +
xlab("value") +
theme(legend.position = 'bottom') +
scale_color_brewer(palette = 'Dark2', name = 'chain')

## End(Not run)

extract_state Return the current state of a ’JointAI’ model

Description

Return the current state of a ’JointAI’ model

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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Usage

extract_state(object, pattern = paste0("^", c("RinvD", "invD", "tau", "b"),
"_"))

Arguments

object an object of class ’JointAI’
pattern vector of patterns to be matched with the names of the nodes

Value

A list with one element per chain of the MCMC sampler, containing the Returns the current state
of the MCMC sampler (values of the last iteration) for the subset of nodes identified based on the
pattern the user has specified.

get_MIdat Extract multiple imputed datasets from an object of class JointAI

Description

This function returns a dataset containing multiple imputed datasets stacked onto each other (i.e.,
long format; optionally including the original, incomplete data).
These data can be automatically exported to SPSS (as a .txt file containing the data and a .sps file
containing syntax to generate a .sav file). For the export function the foreign package needs to be
installed.

Usage

get_MIdat(object, m = 10, include = TRUE, start = NULL, minspace = 50,
seed = NULL, export_to_SPSS = FALSE, resdir = NULL, filename = NULL)

Arguments

object object inheriting from class ’JointAI’
m number of imputed datasets
include should the original, incomplete data be included? Default is TRUE.
start the first iteration of interest (see window.mcmc)
minspace minimum number of iterations between iterations to be chosen as imputed val-

ues (to prevent strong correlation between imputed datasets in the case of high
autocorrelation of the MCMC chains).

seed optional seed value
export_to_SPSS logical; should the completed data be exported to SPSS?
resdir optional; directory for results. If unspecified and export_to_SPSS = TRUE the

current working directory is used.
filename optional; file name (without ending). If unspecified and export_to_SPSS =

TRUE a name is generated automatically.

https://CRAN.R-project.org/package=foreign
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Value

A data.frame in which the original data (if include = TRUE) and the imputed datasets are stacked
onto each other.
The variable Imputation_ indexes the imputation, while .rownr links the rows to the rows of the
original data. In cross-sectional datasets the variable .id is added as subject identifier.

Note

In order to be able to extract (multiple) imputed datasets the imputed values must have been moni-
tored, i.e., imps = TRUE had to be specified in the argument monitor_params in *_imp.

See Also

plot_imp_distr

Examples

## Not run:
# fit a model and monitor the imputed values with
# monitor_params = c(imps = TRUE)

mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF,
monitor_params = c(imps = TRUE), n.iter = 100)

# Example 1: without export to SPSS
MIs <- get_MIdat(mod, m = 3, seed = 123)

# Example 2: with export for SPSS
# (here: to the temporary directory "temp_dir")

temp_dir <- tempdir()
MIs <- get_MIdat(mod, m = 3, seed = 123, resdir = temp_dir,

filename = "example_imputation",
export_to_SPSS = TRUE)

## End(Not run)

get_missinfo Obtain a summary of the missing values involved in an object of class
JointAI

Description

This function returns a data.frame or a list of data.frames per grouping level. Each of the
data.frames has columns variable, #NA (number of missing values) and %NA (proportion of miss-
ing values in percent).
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Usage

get_missinfo(object)

Arguments

object object inheriting from class JointAI

Examples

mod <- lm_imp(y ~ C1 + B2 + C2, data = wideDF, n.iter = 100)
get_missinfo(mod)

GR_crit Gelman-Rubin criterion for convergence

Description

Calculates the Gelman-Rubin criterion for convergence (uses gelman.diag from package coda).

Usage

GR_crit(object, confidence = 0.95, transform = FALSE, autoburnin = TRUE,
multivariate = TRUE, subset = NULL, exclude_chains = NULL,
start = NULL, end = NULL, thin = NULL, warn = TRUE, mess = TRUE,
...)

Arguments

object object inheriting from class ’JointAI’

confidence the coverage probability of the confidence interval for the potential scale reduc-
tion factor

transform a logical flag indicating whether variables in x should be transformed to im-
prove the normality of the distribution. If set to TRUE, a log transform or logit
transform, as appropriate, will be applied.

autoburnin a logical flag indicating whether only the second half of the series should be
used in the computation. If set to TRUE (default) and start(x) is less than
end(x)/2 then start of series will be adjusted so that only second half of series
is used.

multivariate a logical flag indicating whether the multivariate potential scale reduction factor
should be calculated for multivariate chains

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded
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start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

... currently not used

References

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences,
Statistical Science, 7, 457-511.

Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simu-
lations. Journal of Computational and Graphical Statistics, 7, 434-455.

See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.

Examples

mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
GR_crit(mod1)

internal_clean_survname

Convert a survival outcome to a model name

Description

A helper function that converts the "name of a survival model" (the "Surv(time, status)" speci-
fication) into a valid variable name so that it can be used in the JAGS model syntax.

Usage

internal_clean_survname(x)

Arguments

x a character string or vector of character strings

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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JointAI JointAI: Joint Analysis and Imputation of Incomplete Data

Description

The JointAI package performs simultaneous imputation and inference for incomplete or complete
data under the Bayesian framework. Models for incomplete covariates, conditional on other covari-
ates, are specified automatically and modelled jointly with the analysis model. MCMC sampling is
performed in ’JAGS’ via the R package rjags.

Main functions

JointAI provides the following main functions that facilitate analysis with different models:

• lm_imp for linear regression

• glm_imp for generalized linear regression

• betareg_imp for regression using a beta distribution

• lognorm_imp for regression using a log-normal distribution

• clm_imp for (ordinal) cumulative logit models

• mlogit_imp for multinomial models

• lme_imp or lmer_imp for linear mixed models

• glme_imp or glmer_imp for generalized linear mixed models

• betamm_imp for mixed models using a beta distribution

• lognormmm_imp for mixed models using a log-normal distribution

• clmm_imp for (ordinal) cumulative logit mixed models

• survreg_imp for parametric (Weibull) survival models

• coxph_imp for (Cox) proportional hazard models

• JM_imp for joint models of longitudinal and survival data

As far as possible, the specification of these functions is analogous to the specification of widely
used functions for the analysis of complete data, such as lm, glm, lme (from the package nlme),
survreg (from the package survival) and coxph (from the package survival).

Computations can be performed in parallel to reduce computational time, using the package future,
the argument shrinkage allows the user to impose a penalty on the regression coefficients of some
or all models involved, and hyper-parameters can be changed via the argument hyperpars.

To obtain summaries of the results, the functions summary(), coef() and confint() are available,
and results can be visualized with the help of traceplot() or densplot().

The function predict() allows prediction (including credible intervals) from JointAI models.

https://mcmc-jags.sourceforge.io/
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
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Evaluation and export

Two criteria for evaluation of convergence and precision of the posterior estimate are available:

• GR_crit implements the Gelman-Rubin criterion (’potential scale reduction factor’) for con-
vergence

• MC_error calculates the Monte Carlo error to evaluate the precision of the MCMC sample

Imputed data can be extracted (and exported to SPSS) using get_MIdat(). The function plot_imp_distr()
allows visual comparison of the distribution of observed and imputed values.

Other useful functions

• parameters and list_models to gain insight in the specified model

• plot_all and md_pattern to visualize the distribution of the data and the missing data pattern

Vignettes

The following vignettes are available

• Minimal Example:
A minimal example demonstrating the use of lm_imp, summary.JointAI, traceplot and
densplot.

• Visualizing Incomplete Data:
Demonstrations of the options in plot_all (plotting histograms and bar plots for all variables
in the data) and md_pattern (plotting or printing the missing data pattern).

• Model Specification:
Explanation and demonstration of all parameters that are required or optional to specify the
model structure in lm_imp, glm_imp and lme_imp. Among others, the functions parameters,
list_models and set_refcat are used.

• Parameter Selection:
Examples on how to select the parameters/variables/nodes to follow using the argument monitor_params
and the parameters/variables/nodes displayed in the summary, traceplot, densplot or when
using GR_crit or MC_error.

• MCMC Settings:
Examples demonstrating how to set the arguments controlling settings of the MCMC sam-
pling, i.e., n.adapt, n.iter, n.chains, thin, inits.

• After Fitting:
Examples on the use of functions to be applied after the model has been fitted, including
traceplot, densplot, summary, GR_crit, MC_error, predict, predDF and get_MIdat.

• Theoretical Background:
Explanation of the statistical method implemented in JointAI.

Author(s)

Maintainer: Nicole S. Erler <n.s.erler@umcutrecht.nl> (ORCID)

https://nerler.github.io/JointAI/articles/MinimalExample.html
https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html
https://nerler.github.io/JointAI/articles/ModelSpecification.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html
https://nerler.github.io/JointAI/articles/MCMCsettings.html
https://nerler.github.io/JointAI/articles/AfterFitting.html
https://nerler.github.io/JointAI/articles/TheoreticalBackground.html
https://orcid.org/0000-0002-9370-6832
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References

Erler NS, Rizopoulos D, Lesaffre EMEH (2021). "JointAI: Joint Analysis and Imputation of In-
complete Data in R." Journal of Statistical Software, 100(20), 1-56. doi:10.18637/jss.v100.i20.
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(2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple
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Erler, N.S., Rizopoulos D., Jaddoe, V.W.V., Franco, O.H. & Lesaffre, E.M.E.H. (2019). Bayesian
imputation of time-varying covariates in linear mixed models. Statistical Methods in Medical Re-
search, 28(2), 555–568. doi:10.1177/0962280217730851

See Also

Useful links:

• https://nerler.github.io/JointAI/

• Report bugs at https://github.com/nerler/JointAI/issues/

JointAIObject Fitted object of class ’JointAI’

Description

An object returned by one of the main functions *_imp.

Value

analysis_type lm, glm, clm, lme, glme, clmm, survreg or coxph (with attributes family and
link for GLM-type models

formula The formula used in the (analysis) model.

data original (incomplete, but pre-processed) data

models named vector specifying the the types of all sub-models

fixed a list of the fixed effects formulas of the sub-model(s) for which the use had
specified a formula

random a list of the random effects formulas of the sub-model(s) for which the use had
specified a formula

Mlist a list (for internal use) containing the data and information extracted from the
data and model formulas, split up into

• a named vector identifying the levels (in the hierarchy) of all variables
(Mlvls)

• a vector of the id variables that were extracted from the random effects
formulas (idvar)

• a list of grouping information for each grouping level of the data (groups)

https://doi.org/10.18637/jss.v100.i20
https://doi.org/10.1002/sim.6944
https://doi.org/10.1002/sim.6944
https://doi.org/10.1177/0962280217730851
https://nerler.github.io/JointAI/
https://github.com/nerler/JointAI/issues/
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• a named vector identifying the hierarchy of the grouping levels (group_lvls)
• a named vector giving the number of observations on each level of the hi-

erarchy (N)
• the name of the time variable (only for survival models with time-varying

covariates) (timevar)
• a formula of auxiliary variables (auxvars)
• a list specifying the reference categories and dummy variables for all factors

involved in the models (refs)
• a list of linear predictor information (column numbers per design matrix)

for all sub-models (lp_cols)
• a list identifying information for interaction terms found in the model for-

mulas (interactions)
• a data.frame containing information on transformations of incomplete

variables (trafos)
• a data.frame containing information on transformations of all variables

(fcts_all)
• a logical indicator if parameter for posterior predictive checks should be

monitored (ppc; not yet used)
• a vector specifying if shrinkage of regression coefficients should be per-

formed, and if so for which models and what type of shrinkage (shrinkage)
• the number of degrees of freedom to be used in the spline specification of

the baseline hazard in proportional hazards survival models (df_basehaz)
• a list of matrices, one per level of the data, specifying centring and scaling

parameters for the data (scale_pars)
• a list containing information on the outcomes (mostly relevant for survival

outcomes; outcomes)
• a list of terms objects, needed to be able to build correct design matrices

for the Gauss-Kronrod quadrature when, for example, splines are used to
model time in a joint model (terms_list)

par_index_main a list of matrices specifying the indices of the regression coefficients for each of
the main models per design matrix

par_index_other

a list of matrices specifying the indices of regression coefficients for each co-
variate model per design matrix

jagsmodel The JAGS model as character string.

mcmc_settings a list containing MCMC sampling related information with elements

modelfile: path and name of the JAGS model file
n.chains: number of MCMC chains
n.adapt: number of iterations in the adaptive phase
n.iter: number of iterations in the MCMC sample
variable.names: monitored nodes
thin: thinning interval of the MCMC sample
inits: a list containing the initial values that were passed to rjags

monitor_params the named list of parameter groups to be monitored
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data_list list with data that was passed to rjags
hyperpars a list containing the values of the hyper-parameters used

info_list a list with information used to write the imputation model syntax

coef_list a list relating the regression coefficient vectors used in the JAGS model to the
names of the corresponding covariates

model the JAGS model (an object of class ’jags’, created by rjags)

sample MCMC sample on the sampling scale (included only if keep_scaled_sample =
TRUE)

MCMC MCMC sample, scaled back to the scale of the data

comp_info a list with information on the computational setting (start_time: date and
time the calculation was started, duration: computational time of the model
adaptive and sampling phase, JointAI_version: package version, R_version:
the R.version.string, parallel: whether parallel computation was used,
workers: if parallel computation was used, the number of workers)

fitted.values fitted/predicted values (if available)

residuals residuals (if available)

call the original call

list_models List model details

Description

This function prints information on all models, those explicitly specified by the user and those
specified automatically by JointAI for (incomplete) covariates in a JointAI object.

Usage

list_models(object, predvars = TRUE, regcoef = TRUE, otherpars = TRUE,
priors = TRUE, refcat = TRUE)

Arguments

object object inheriting from class ’JointAI’

predvars logical; should information on the predictor variables be printed? (default is
TRUE)

regcoef logical; should information on the regression coefficients be printed? (default is
TRUE)

otherpars logical; should information on other parameters be printed? (default is TRUE)

priors logical; should information on the priors (and hyper-parameters) be printed?
(default is TRUE)

refcat logical; should information on the reference category be printed? (default is
TRUE)
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Note

The models listed by this function are not the actual imputation models, but the conditional models
that are part of the specification of the joint distribution. Briefly, the joint distribution is specified
as a sequence of conditional models

p(y|x1, x2, x3, ..., θ)p(x1|x2, x3, ..., θ)p(x2|x3, ..., θ)...

The actual imputation models are the full conditional distributions p(x1|·) derived from this joint
distribution. Even though the conditional distributions do not contain the outcome and all other
covariates in their linear predictor, outcome and other covariates are taken into account implicitly,
since imputations are sampled from the full conditional distributions. For more details, see Erler et
al. (2016) and Erler et al. (2019).

The function list_models prints information on the conditional distributions of the covariates
(since they are what is specified; the full-conditionals are automatically derived within JAGS). The
outcome is, thus, not part of the printed linear predictor, but is still included during imputation.

References

Erler, N.S., Rizopoulos, D., Rosmalen, J.V., Jaddoe, V.W., Franco, O.H., & Lesaffre, E.M.E.H.
(2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple
imputation and a full Bayesian approach. Statistics in Medicine, 35(17), 2955-2974.

Erler NS, Rizopoulos D, Lesaffre EMEH (2021). "JointAI: Joint Analysis and Imputation of In-
complete Data in R." Journal of Statistical Software, 100(20), 1-56. doi:10.18637/jss.v100.i20.

Examples

# (set n.adapt = 0 and n.iter = 0 to prevent MCMC sampling to save time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,

n.iter = 0, mess = FALSE)

list_models(mod1)

longDF Longitudinal example dataset

Description

A simulated longitudinal dataset.

Usage

data(longDF)

https://doi.org/10.18637/jss.v100.i20
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Format

A simulated data frame with 329 rows and 21 variables with data from 100 subjects:

C1 continuous, complete baseline variable

C2 continuous, incomplete baseline variable

B1 binary, complete baseline variable

B2 binary, incomplete baseline variable

M1 unordered factor; complete baseline variable

M2 unordered factor; incomplete baseline variable

O1 ordered factor; complete baseline variable

O2 ordered factor; incomplete baseline variable

P1 count variable; complete baseline variable

P2 count variable; incomplete baseline variable

c1 continuous, complete longitudinal variable

c2 continuous incomplete longitudinal variable

b1 binary, complete longitudinal variable

b2 binary incomplete longitudinal variable

o1 ordered factor; complete longitudinal variable

o2 ordered factor; incomplete longitudinal variable

p1 count variable; complete longitudinal variable

p2 count variable; incomplete longitudinal variable

id id (grouping) variable

time continuous complete longitudinal variable

y continuous, longitudinal (outcome) variable

MC_error Calculate and plot the Monte Carlo error

Description

Calculate, print and plot the Monte Carlo error of the samples from a ’JointAI’ model, combining
the samples from all MCMC chains.

Usage

MC_error(x, subset = NULL, exclude_chains = NULL, start = NULL,
end = NULL, thin = NULL, digits = 2, warn = TRUE, mess = TRUE, ...)

## S3 method for class 'MCElist'
plot(x, data_scale = TRUE, plotpars = NULL,
ablinepars = list(v = 0.05), minlength = 20, ...)
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Arguments

x object inheriting from class ’JointAI’

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

digits number of digits for the printed output

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

... Arguments passed on to mcmcse::mcse.mat

size represents the batch size in “bm” and the truncation point in “bartlett”
and “tukey”. Default is NULL which implies that an optimal batch size
is calculated using the batchSize function. Can take character values
of “sqroot” and “cuberoot” or any numeric value between 1 and n/2.
“sqroot” means size is ⌊n1/2⌋ and “cuberoot” means size is ⌊n1/3⌋.

g a function such that E(g(x)) is the quantity of interest. The default is NULL,
which causes the identity function to be used.

method any of “bm”,“obm”,“bartlett”, “tukey”. “bm” represents batch means
estimator, “obm” represents overlapping batch means estimator with, “bartlett”
and “tukey” represents the modified-Bartlett window and the Tukey-Hanning
windows for spectral variance estimators.

r The lugsail parameters (r) that converts a lag window into its lugsail equiva-
lent. Larger values of r will typically imply less underestimation of “cov”,
but higher variability of the estimator. Default is r = 3 and r = 1,2 are also
good choices although may lead to underestimates of the variance. r > 5 is
not recommended.

data_scale logical; show the Monte Carlo error of the sample transformed back to the
scale of the data (TRUE) or on the sampling scale (this requires the argument
keep_scaled_mcmc = TRUE to be set when fitting the model)

plotpars optional; list of parameters passed to plot()

ablinepars optional; list of parameters passed to abline()

minlength number of characters the variable names are abbreviated to

Value

An object of class MCElist with elements unscaled, scaled and digits. The first two are matrices
with columns est (posterior mean), MCSE (Monte Carlo error), SD (posterior standard deviation) and
MCSE/SD (Monte Carlo error divided by post. standard deviation.)



22 md_pattern

Functions

• plot(MCElist): plot Monte Carlo error

Note

Lesaffre & Lawson (2012; p. 195) suggest the Monte Carlo error of a parameter should not be more
than 5% of the posterior standard deviation of this parameter (i.e., MCSE/SD ≤ 0.05).

Long variable names:
The default plot margins may not be wide enough when variable names are longer than a few
characters. The plot margin can be adjusted (globally) using the argument "mar" in par.

References

Lesaffre, E., & Lawson, A. B. (2012). Bayesian Biostatistics. John Wiley & Sons.

See Also

The vignette Parameter Selection provides some examples how to specify the argument subset.

Examples

## Not run:

mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

MC_error(mod)

plot(MC_error(mod), ablinepars = list(lty = 2),
plotpars = list(pch = 19, col = 'blue'))

## End(Not run)

md_pattern Missing data pattern

Description

Obtain a plot of the pattern of missing data and/or return the pattern as a matrix.

Usage

md_pattern(data, color = c(grDevices::grey(0.1), grDevices::grey(0.7)),
border = grDevices::grey(0.5), plot = TRUE, pattern = FALSE,
print_xaxis = TRUE, ylab = "Number of observations per pattern",
print_yaxis = TRUE, legend.position = "bottom", sort_columns = TRUE,
...)

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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Arguments

data data frame

color vector of length two, that specifies the colour used to indicate observed and
missing values (in that order)

border colour of the grid

plot logical; should the missing data pattern be plotted? (default is TRUE)

pattern logical; should the missing data pattern be returned as matrix? (default is FALSE)

print_xaxis, print_yaxis
logical; should the x-axis (below the plot) and y-axis (on the right) be printed?

ylab y-axis label

legend.position

the default position of legends ("none", "left", "right", "bottom", "top", "inside")

sort_columns logical; should the columns be sorted by number of missing values? (default is
TRUE)

... optional additional parameters, currently not used

Note

This function requires the ggplot2 package to be installed.

See Also

See the vignette Visualizing Incomplete Data for more examples.

Examples

op <- par(mar = c(3, 1, 1.5, 1.5), mgp = c(2, 0.6, 0))
md_pattern(wideDF)
par(op)

model_imp Joint Analysis and Imputation of incomplete data

Description

Main analysis functions to estimate different types of models using MCMC sampling, while imput-
ing missing values.

https://CRAN.R-project.org/package=ggplot2
https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html
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Usage

lm_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

glm_imp(formula, family, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

clm_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, nonprop = NULL, rev = NULL, models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

lognorm_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

betareg_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

mlogit_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

lme_imp(fixed, data, random, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

lmer_imp(fixed, data, random, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)
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glme_imp(fixed, data, random, family, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

glmer_imp(fixed, data, random, family, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

betamm_imp(fixed, random, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

lognormmm_imp(fixed, random, data, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

clmm_imp(fixed, data, random, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, nonprop = NULL, rev = NULL, rd_vcov = "blockdiag",
models = NULL, no_model = NULL, shrinkage = FALSE, ppc = TRUE,
seed = NULL, inits = NULL, warn = TRUE, mess = TRUE, ...)

mlogitmm_imp(fixed, data, random, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, refcats = NULL, rd_vcov = "blockdiag", models = NULL,
no_model = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

survreg_imp(formula, data, n.chains = 3, n.adapt = 100, n.iter = 0,
thin = 1, monitor_params = c(analysis_main = TRUE), auxvars = NULL,
refcats = NULL, models = NULL, no_model = NULL, shrinkage = FALSE,
ppc = TRUE, seed = NULL, inits = NULL, warn = TRUE, mess = TRUE,
...)

coxph_imp(formula, data, df_basehaz = 6, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, refcats = NULL, models = NULL, no_model = NULL,
shrinkage = FALSE, ppc = TRUE, seed = NULL, inits = NULL,
warn = TRUE, mess = TRUE, ...)
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JM_imp(formula, data, df_basehaz = 6, n.chains = 3, n.adapt = 100,
n.iter = 0, thin = 1, monitor_params = c(analysis_main = TRUE),
auxvars = NULL, timevar = NULL, refcats = NULL,
rd_vcov = "blockdiag", models = NULL, no_model = NULL,
assoc_type = NULL, shrinkage = FALSE, ppc = TRUE, seed = NULL,
inits = NULL, warn = TRUE, mess = TRUE, ...)

Arguments

formula a two sided model formula (see formula) or a list of such formulas; (more
details below).

data a data.frame containing the original data (more details below)

n.chains number of MCMC chains

n.adapt number of iterations for adaptation of the MCMC samplers (see adapt)

n.iter number of iterations of the MCMC chain (after adaptation; see coda.samples)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

monitor_params named list or vector specifying which parameters should be monitored (more
details below)

auxvars optional; one-sided formula of variables that should be used as predictors in
the imputation procedure (and will be imputed if necessary) but are not part
of the analysis model(s). For more details with regards to the behaviour with
non-linear effects see the vignette on Model Specification

refcats optional; either one of "first", "last", "largest" (which sets the category
for all categorical variables) or a named list specifying which category should
be used as reference category per categorical variable. Options are the cate-
gory label, the category number, or one of "first" (the first category), "last" (the
last category) or "largest" (chooses the category with the most observations).
Default is "first". If reference categories are specified for a subset of the cate-
gorical variables the default will be used for the remaining variables. (See also
set_refcat)

models optional; named vector specifying the types of models for (incomplete) covari-
ates. This arguments replaces the argument meth used in earlier versions. If
NULL (default) models will be determined automatically based on the class of
the respective columns of data.

no_model optional; vector of names of variables for which no model should be specified.
Note that this is only possible for completely observed variables and implies the
assumptions of independence between the excluded variable and the incomplete
variables.

shrinkage optional; either a character string naming the shrinkage method to be used for
regression coefficients in all models or a named vector specifying the type of
shrinkage to be used in the models given as names.

ppc logical: should monitors for posterior predictive checks be set? (not yet used)

https://nerler.github.io/JointAI/articles/ModelSpecification.html#auxvars
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seed optional; seed value (for reproducibility)
inits optional; specification of initial values in the form of a list or a function (see

jags.model). If omitted, starting values for the random number generator are
created by JointAI, initial values are then generated by JAGS. It is an error to
supply an initial value for an observed node.

warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.
... additional, optional arguments

trunc named list specifying limits of truncation for the distribution of the named
incomplete variables (see the vignette ModelSpecification)

hyperpars list of hyper-parameters, as obtained by default_hyperpars()

scale_vars named vector of (continuous) variables that will be centred and
scaled (such that mean = 0 and sd = 1) when they enter a linear predictor to
improve convergence of the MCMC sampling. Default is that all numeric
variables and integer variables with >20 different values will be scaled. If
set to FALSE no scaling will be done.

custom named list of JAGS model chunks (character strings) that replace the
model for the given variable.

append_data_list list that will be appended to the list containing the data that
is passed to rjags (data_list). This may be necessary if additional data
/ variables are needed for custom (covariate) models. Note: since version
1.0.7 elements of append_data_list will overwrite existing elements of
the data_list with the same name.

progress.bar character string specifying the type of progress bar. Possible
values are "text" (default), "gui", and "none" (see update). Note: when
sampling is performed in parallel it is not possible to display a progress bar.

quiet logical; if TRUE then messages generated by rjags during compilation
as well as the progress bar for the adaptive phase will be suppressed, (see
jags.model)

keep_scaled_mcmc should the "original" MCMC sample (i.e., the scaled ver-
sion returned by coda.samples()) be kept? (The MCMC sample that is
re-scaled to the scale of the data is always kept.)

modelname character string specifying the name of the model file (including the
ending, either .R or .txt). If unspecified a random name will be generated.

modeldir directory containing the model file or directory in which the model
file should be written. If unspecified a temporary directory will be created.

overwrite logical; whether an existing model file with the specified <modeldir>/<modelname>
should be overwritten. If set to FALSE and a model already exists, that
model will be used. If unspecified (NULL) and a file exists, the user is asked
for input on how to proceed.

keep_model logical; whether the created JAGS model file should be saved or
removed from (FALSE; default) when the sampling has finished.

family only for glm_imp and glmm_imp/glmer_imp: a description of the distribution
and link function to be used in the model. This can be a character string naming
a family function, a family function or the result of a call to a family function.
(For more details see below and family.)

https://nerler.github.io/JointAI/articles/ModelSpecification.html#functions-with-restricted-support


28 model_imp

nonprop optional named list of one-sided formulas specifying covariates that have non-
proportional effects in cumulative logit models. These covariates should also be
part of the regular model formula, and the names of the list should be the names
of the ordinal response variables.

rev optional character vector; vector of ordinal outcome variable names for which
the odds should be reversed, i.e., logit(y ≤ k) instead of logit(y > k).

fixed a two sided formula describing the fixed-effects part of the model (see formula)

random only for multi-level models: a one-sided formula of the form ~x1 + ... + xn
| g, where x1 + ... + xn specifies the model for the random effects and g the
grouping variable

rd_vcov character string or list specifying the structure of the random effects variance
covariance matrix, see details below.

df_basehaz degrees of freedom for the B-spline used to model the baseline hazard in pro-
portional hazards models (coxph_imp and JM_imp)

timevar name of the variable indicating the time of the measurement of a time-varying
covariate in a proportional hazards survival model (also in a joint model). The
variable specified in "timevar" will automatically be added to "no_model".

assoc_type named vector specifying the type of the association used for a time-varying co-
variate in the linear predictor of the survival model when using a "JM" model.
Implemented options are "underl.value" (linear predictor; default for covariates
modelled using a Gaussian, Gamma, beta or log-normal distribution) covariates)
and "obs.value" (the observed/imputed value; default for covariates modelled
using other distributions).

Value

An object of class JointAI.

Model formulas

Random effects:
It is possible to specify multi-level models as it is done in the package nlme, using fixed and
random, or as it is done in the package lme4, using formula and specifying the random effects in
brackets:

formula = y ~ x1 + x2 + x3 + (1 | id)

is equivalent to

fixed = y ~ x1 + x2 + x3, random = ~ 1|id

Multiple levels of grouping:
For multiple levels of grouping the specification using formula should be used. There is no
distinction between nested and crossed random effects, i.e., ... + (1 | id) + (1 | center) is
treated the same as ... + (1 | center/id).

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=lme4
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Nested vs crossed random effects:
The distinction between nested and crossed random effects should come from the levels of the
grouping variables, i.e., if id is nested in center, then there cannot be observations with the same
id but different values for center.

Modelling multiple models simultaneously & joint models:
To fit multiple main models at the same time, a list of formula objects can be passed to the
argument formula. Outcomes of one model may be contained as covariates in another model and
it is possible to combine models for variables on different levels, for example:

formula = list(y ~ x1 + x2 + x3 + x4 + time + (time | id),
x2 ~ x3 + x4 + x5)

This principle is also used for the specification of a joint model for longitudinal and survival data.
Note that it is not possible to specify multiple models for the same outcome variable.

Random effects variance-covariance structure:
(Note: This feature is new and has not been fully tested yet.)
By default, a block-diagonal structure is assumed for the variance-covariance matrices of the
random effects in models with random effects. This means that per outcome and level random
effects are assumed to be correlated, but random effects of different outcomes are modelled
as independent. The argument rd_vcov allows the user specify different assumptions about
these variance-covariance matrices. Implemented structures are full, blockdiag and indep
(all off-diagonal elements are zero).
If rd_vcov is set to one of these options, the structure is assumed for all random effects variance-
covariance matrices. Alternatively, it is possible to specify a named list of vectors, where the
names are the structures and the vectors contain the names of the response variables which are
included in this structure.
For example, for a multivariate mixed model with five outcomes y1, ..., y5, the specification
could be:
rd_vcov = list(blockdiag = c("y1", "y2"),

full = c("y3", "y4"),
indep = "y5")

This would entail that the random effects for y3 and y4 are assumed to be correlated (within
and across outcomes), random effects for y1 and y2 are assumed to be correlated within each
outcome, and the random effects for y5 are assumed to be independent.
It is possible to have multiple sets of response variables for which separate full variance-covariance
matrices are used, for example:
rd_vcov = list(full = c("y1", "y2", "y5"),

full = c("y3", "y4"))

In models with multiple levels of nesting, separate structures can be specified per level:
rd_vcov = list(id = list(blockdiag = c("y1", "y2"),

full = c("y3", "y4"),
indep = "y5"),

center = "indep")

Survival models with frailties or time-varying covariates:
Random effects specified in brackets can also be used to indicate a multi-level structure in sur-
vival models, as would, for instance be needed in a multi-centre setting, where patients are from
multiple hospitals.
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It also allows to model time-dependent covariates in a proportional hazards survival model (using
coxph_imp), also in combination with additional grouping levels.
In time-dependent proportional hazards models, last-observation-carried-forward is used to fill in
missing values in the time-varying covariates, and to determine the value of the covariate at the
event time. Preferably, all time-varying covariates should be measured at baseline (timevar = 0).
If a value for a time-varying covariate needs to be filled in and there is no previous observation,
the next observation will be carried backward.

Differences to basic regression models:
It is not possible to specify transformations of outcome variables, i.e., it is not possible to use a
model formula like

log(y) ~ x1 + x2 + ...

In the specific case of a transformation with the natural logarithm, a log-normal model can be
used instead of a normal model.
Moreover, it is not possible to use . to indicate that all variables in a data.frame other than the
outcome variable should be used as covariates. I.e., a formula y ~ . is not valid in JointAI.

Data structure

For multi-level settings, the data must be in long format, so that repeated measurements are recorded
in separate rows.

For survival data with time-varying covariates (coxph_imp and JM_imp) the data should also be in
long format. The survival/censoring times and event indicator variables must be stored in separate
variables in the same data and should be constant across all rows referring to the same subject.

During the pre-processing of the data the survival/censoring times will automatically be merged
with the observation times of the time-varying covariates (which must be supplied via the argument
timevar).

It is possible to have multiple time-varying covariates, which do not have to be measured at the
same time points, but there can only be one timevar.

Distribution families and link functions

gaussian with links: identity, log
binomial with links: logit, probit, log, cloglog
Gamma with links: inverse, identity, log
poisson with links: log, identity

Imputation methods / model types

Implemented model types that can be chosen in the argument models for baseline covariates (not
repeatedly measured) are:

lm linear (normal) model with identity link (alternatively: glm_gaussian_identity); default for continuous variables
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glm_gaussian_log linear (normal) model with log link
glm_gaussian_inverse linear (normal) model with inverse link
glm_logit logistic model for binary data (alternatively: glm_binomial_logit); default for binary variables
glm_probit probit model for binary data (alternatively: glm_binomial_probit)
glm_binomial_log binomial model with log link
glm_binomial_cloglog binomial model with complementary log-log link
glm_gamma_inverse gamma model with inverse link for skewed continuous data
glm_gamma_identity gamma model with identity link for skewed continuous data
glm_gamma_log gamma model with log link for skewed continuous data
glm_poisson_log Poisson model with log link for count data
glm_poisson_identity Poisson model with identity link for count data
lognorm log-normal model for skewed continuous data
beta beta model (with logit link) for skewed continuous data in (0, 1)
mlogit multinomial logit model for unordered categorical variables; default for unordered factors with >2 levels
clm cumulative logit model for ordered categorical variables; default for ordered factors

For repeatedly measured variables the following model types are available:

lmm linear (normal) mixed model with identity link (alternatively: glmm_gaussian_identity); default for continuous variables
glmm_gaussian_log linear (normal) mixed model with log link
glmm_gaussian_inverse linear (normal) mixed model with inverse link
glmm_logit logistic mixed model for binary data (alternatively: glmm_binomial_logit); default for binary variables
glmm_probit probit model for binary data (alternatively: glmm_binomial_probit)
glmm_binomial_log binomial mixed model with log link
glmm_binomial_cloglog binomial mixed model with complementary log-log link
glmm_gamma_inverse gamma mixed model with inverse link for skewed continuous data
glmm_gamma_identity gamma mixed model with identity link for skewed continuous data
glmm_gamma_log gamma mixed model with log link for skewed continuous data
glmm_poisson_log Poisson mixed model with log link for count data
glmm_poisson_identity Poisson mixed model with identity link for count data
glmm_lognorm log-normal mixed model for skewed covariates
glmm_beta beta mixed model for continuous data in (0, 1)
mlogitmm multinomial logit mixed model for unordered categorical variables; default for unordered factors with >2 levels
clmm cumulative logit mixed model for ordered factors; default for ordered factors

When models are specified for only a subset of the variables for which a model is needed, the default
model choices (as indicated in the tables) are used for the unspecified variables.

Parameters to follow (monitor_params)

See also the vignette: Parameter Selection

Named vector specifying which parameters should be monitored. This can be done either directly
by specifying the name of the parameter or indirectly by one of the key words selecting a set of
parameters. Except for other, in which parameter names are specified directly, parameter (groups)
are just set as TRUE or FALSE.

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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Models are divided into two groups, the main models, which are the models for which the user has
explicitly specified a formula (via formula or fixed), and all other models, for which models were
specified automatically.

If left unspecified, monitor_params = c("analysis_main" = TRUE) will be used.

name/key word what is monitored
analysis_main betas and sigma_main, tau_main (for beta regression) or shape_main (for parametric survival models), gamma_main (for cumulative logit models), D_main (for multi-level models) and basehaz in proportional hazards models)
analysis_random ranef_main, D_main, invD_main, RinvD_main
other_models alphas, tau_other, gamma_other, delta_other
imps imputed values
betas regression coefficients of the main analysis model
tau_main precision of the residuals from the main analysis model(s)
sigma_main standard deviation of the residuals from the main analysis model(s)
gamma_main intercepts in ordinal main model(s)
delta_main increments of ordinal main model(s)
ranef_main random effects from the main analysis model(s) b
D_main covariance matrix of the random effects from the main model(s)
invD_main inverse(s) of D_main
RinvD_main matrices in the priors for invD_main
alphas regression coefficients in the covariate models
tau_other precision parameters of the residuals from covariate models
gamma_other intercepts in ordinal covariate models
delta_other increments of ordinal intercepts
ranef_other random effects from the other models b
D_other covariance matrix of the random effects from the other models
invD_other inverses of D_other
RinvD_other matrices in the priors for invD_other
other additional parameters

For example:
monitor_params = c(analysis_main = TRUE, tau_main = TRUE,sigma_main = FALSE) would mon-
itor the regression parameters betas and the residual precision tau_main instead of the residual
standard deviation sigma_main.

For a linear model, monitor_params = c(imps = TRUE) would monitor betas, and sigma_main
(because analysis_main = TRUE by default) as well as the imputed values.

Cumulative logit (mixed) models

In the default setting for cumulative logit models, i.e, rev = NULL, the odds for a variable y with K
ordered categories are defined as

log

(
P (yi > k)

P (yi ≤ k)

)
= γk + ηi, k = 1, . . . ,K − 1,

where γk is a category specific intercept and ηi the subject specific linear predictor.

To reverse the odds to

log

(
P (yi ≤ k)

P (yi > k)

)
= γk + ηi, k = 1, . . . ,K − 1,
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the name of the response variable has to be specified in the argument rev, e.g., rev = c("y").

By default, proportional odds are assumed and only the intercepts differ per category of the ordinal
response. To allow for non-proportional odds, i.e.,

log

(
P (yi > k)

P (yi ≤ k)

)
= γk + ηi + ηki, k = 1, . . . ,K − 1,

the argument nonprop can be specified. It takes a one-sided formula or a list of one-sided formulas.
When a single formula is supplied, or a unnamed list with just one element, it is assumed that the
formula corresponds to the main model. To specify non-proportional effects for linear predictors
in models for ordinal covariates, the list has to be named with the names of the ordinal response
variables.

For example, the following three specifications are equivalent and assume a non-proportional effect
of C1 on O1, but C1 is assumed to have a proportional effect on the incomplete ordinal covariate O2:

clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = ~ C1)
clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = list(~ C1))
clm_imp(O1 ~ C1 + C2 + B2 + O2, data = wideDF, nonprop = list(O1 = ~ C1))

To specify non-proportional effects on O2, a named list has to be provided:

clm_imp(O1 ~ C1 + C2 + B2 + O2 + B1, data = wideDF,
nonprop = list(O1 = ~ C1,

O2 = ~ C1 + B1))

The variables for which a non-proportional effect is assumed also have to be part of the regular
model formula.

Custom model parts

(Note: This feature is experimental and has not been fully tested yet.)

Via the argument custom it is possible to provide custom sub-models that replace the sub-models
that are automatically generated by JointAI.

Using this feature it is, for instance, possible to use the value of a repeatedly measured variable at
a specific time point as covariate in another model. An example would be the use of "baseline"
cholesterol (chol at day = 0) as covariate in a survival model.

First, the variable chol0 is added to the PBC data. For most patients the value of cholesterol at
baseline is observed, but not for all. It is important that the data has a row with day = 0 for each
patient.

PBC <- merge(PBC,
subset(PBC, day == 0, select = c("id", "chol")),
by = "id", suffixes = c("", "0"))

Next, the custom piece of JAGS model syntax needs to be specified. We loop here only over the
patients for which the baseline cholesterol is missing.
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calc_chol0 <- "
for (ii in 1:28) {
M_id[row_chol0_id[ii], 3] <- M_lvlone[row_chol0_lvlone[ii], 1]
}"

To be able to run the model with the custom imputation "model" for baseline cholesterol we need
to provide the numbers of the rows in the data matrices that contain the missing values of baseline
cholesterol and the rows that contain the imputed cholesterol at day = 0:

row_chol0_lvlone <- which(PBC$day == 0 & is.na(PBC$chol0))
row_chol0_id <- match(PBC$id, unique(PBC$id))[row_chol0_lvlone]

Then we pass both the custom sub-model and the additional data to the analysis function coxph_imp().
Note that we explicitly need to specify the model for chol.

coxph_imp(list(Surv(futime, status != "censored") ~ age + sex + chol0,
chol ~ age + sex + day + (day | id)),

no_model = "day", data = PBC,
append_data_list = list(row_chol0_lvlone = row_chol0_lvlone,

row_chol0_id = row_chol0_id),
custom = list(chol0 = calc_chol0))

Note

Coding of variables::
The default covariate (imputation) models are chosen based on the class of each of the variables,
distinguishing between numeric, factor with two levels, unordered factor with >2 levels and
ordered factor with >2 levels.

When a continuous variable has only two different values it is assumed to be binary and its coding
and default (imputation) model will be changed accordingly. This behaviour can be overwritten
specifying a model type via the argument models.

Variables of type logical are automatically converted to unordered factors.

Contrasts:
JointAI version ≥ 1.0.0 uses the globally (via options("contrasts")) specified contrasts.
However, for incomplete categorical variables, for which the contrasts need to be re-calculated
within the JAGS model, currently only contr.treatment and contr.sum are possible. There-
fore, when an in complete ordinal covariate is used and the default contrasts (contr.poly()) are
set to be used for ordered factors, a warning message is printed and dummy coding (contr.treatment())
is used for that variable instead.

Non-linear effects and transformation of variables::
JointAI handles non-linear effects, transformation of covariates and interactions the following
way:
When, for instance, a model formula contains the function log(x) and x has missing values, x
will be imputed and used in the linear predictor of models for which no formula was specified, i.e.,
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it is assumed that the other variables have a linear association with x. The log() of the observed
and imputed values of x is calculated and used in the linear predictor of the main analysis model.

If, instead of using log(x) in the model formula, a pre-calculated variable logx is used, this vari-
able is imputed directly and used in the linear predictors of all models, implying that variables
that have logx in their linear predictors have a linear association with logx but not with x.

When different transformations of the same incomplete variable are used in one model it is
strongly discouraged to calculate these transformations beforehand and supply them as differ-
ent variables. If, for example, a model formula contains both x and x2 (where x2 = x^2), they are
treated as separate variables and imputed with separate models. Imputed values of x2 are thus not
equal to the square of imputed values of x. Instead, x and I(x^2) should be used in the model
formula. Then only x is imputed and x^2 is calculated from the imputed values of x internally.
The same applies to interactions involving incomplete variables.

Sequence of models::
Models generated automatically (i.e., not mentioned in formula or fixed are specified in a se-
quence based on the level of the outcome of the respective model in the multi-level hierarchy and
within each level according to the number of missing values. This means that level-1 variables
have all level-2, level-3, ... variables in their linear predictor, and variables on the highest level
only have variables from the same level in their linear predictor. Within each level, the variable
with the most missing values has the most variables in its linear predictor.

Not (yet) possible::

• prediction (using predict) conditional on random effects
• the use of splines for incomplete variables
• the use of (or equivalents for) pspline, or strata in survival models
• left censored or interval censored data

See Also

set_refcat, traceplot, densplot, summary.JointAI, MC_error, GR_crit, predict.JointAI,
add_samples, JointAIObject, add_samples, parameters, list_models

Vignettes

• Minimal Example

• Model Specification

• Parameter Selection

• MCMC Settings

• After Fitting

• Theoretical Background

Examples

# Example 1: Linear regression with incomplete covariates
mod1 <- lm_imp(y ~ C1 + C2 + M1 + B1, data = wideDF, n.iter = 100)

https://nerler.github.io/JointAI/articles/MinimalExample.html
https://nerler.github.io/JointAI/articles/ModelSpecification.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html
https://nerler.github.io/JointAI/articles/MCMCsettings.html
https://nerler.github.io/JointAI/articles/AfterFitting.html
https://nerler.github.io/JointAI/articles/TheoreticalBackground.html
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# Example 2: Logistic regression with incomplete covariates
mod2 <- glm_imp(B1 ~ C1 + C2 + M1, data = wideDF,

family = binomial(link = "logit"), n.iter = 100)

## Not run:

# Example 3: Linear mixed model with incomplete covariates
mod3 <- lme_imp(y ~ C1 + B2 + c1 + time, random = ~ time|id,

data = longDF, n.iter = 300)

# Example 4: Parametric Weibull survival model
mod4 <- survreg_imp(Surv(time, status) ~ age + sex + meal.cal + wt.loss,

data = survival::lung, n.iter = 100)

# Example 5: Proportional hazards survival model
mod5 <- coxph_imp(Surv(time, status) ~ age + sex + meal.cal + wt.loss,

data = survival::lung, n.iter = 200)

# Example 6: Joint model for longitudinal and survival data
mod6 <- JM_imp(list(Surv(futime, status != 'censored') ~ age + sex +

albumin + copper + trig + (1 | id),
albumin ~ day + age + sex + (day | id)),
timevar = 'day', data = PBC, n.iter = 100)

# Example 7: Proportional hazards model with a time-dependent covariate
mod7 <- coxph_imp(Surv(futime, status != 'censored') ~ age + sex + copper +

trig + stage + (1 | id),
timevar = 'day', data = PBC, n.iter = 100)

# Example 8: Parallel computation
# If no strategy how the "future" should be handled is specified, the
# MCMC chains are run sequentially.
# To run MCMC chains in parallel, a strategy can be specified using the
# package \pkg{future} (see ?future::plan), for example:
future::plan(future::multisession, workers = 4)
mod8 <- lm_imp(y ~ C1 + C2 + B2, data = wideDF, n.iter = 500, n.chains = 8)
mod8$comp_info$future
# To re-set the strategy to sequential computation, the sequential strategy
# can be specified:
future::plan(future::sequential)

## End(Not run)

NHANES National Health and Nutrition Examination Survey (NHANES) Data
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Description

This data is a small subset of the data collected within the 2011-2012 wave of the NHANES study, a
study designed to assess the health and nutritional status of adults and children in the United States,
conduced by the National Center for Health Statistics.

Usage

data(NHANES)

Format

A data frame with 186 rows and 13 variables:

SBP systolic blood pressure

gender male or female

age in years

race race / Hispanic origin (5 categories)

WC waist circumference in cm

alc alcohol consumption (binary: <1 drink per week vs. >= 1 drink per week)

educ educational level (binary: low vs. high)

creat creatinine concentration in mg/dL

albu albumin concentration in g/dL

uricacid uric acid concentration in mg/dL

bili bilirubin concentration in mg/dL

occup occupational status (3 categories)

smoke smoking status (3 ordered categories)

Note

The subset provided here was selected and re-coded to facilitate demonstration of the functionality
of the JointAI package, and no clinical conclusions should be derived from it.

Source

National Center for Health Statistics (NCHS) (2011 - 2012). National Health and Nutrition Exami-
nation Survey Data. URL https://www.cdc.gov/nchs/nhanes/.

Examples

summary(NHANES)

https://www.cdc.gov/nchs/
https://www.cdc.gov/nchs/nhanes/
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parameters Parameter names of an JointAI object

Description

Returns the names of the parameters/nodes of an object of class ’JointAI’ for which a monitor is
set.

Usage

parameters(object, expand_ranef = FALSE, mess = TRUE, warn = TRUE, ...)

Arguments

object object inheriting from class ’JointAI’

expand_ranef logical; should all elements of the random effects vectors/matrices be shown
separately?

mess logical; should messages be given? Default is TRUE.

warn logical; should warnings be given? Default is TRUE.

... currently not used

Examples

# (This function does not need MCMC samples to work, so we will set
# n.adapt = 0 and n.iter = 0 to reduce computational time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,

n.iter = 0, mess = FALSE)

parameters(mod1)

PBC PBC data

Description

Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver. This dataset was
obtained from the survival package: the variables copper and trig from survival::pbc were
merged into survival::pbcseq and several categorical variables were re-coded.

Format

PBC: A data frame of 312 individuals in long format with 1945 rows and 21 variables.
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Survival outcome and id

id case number

futime number of days between registration and the earlier of death, transplantation, or end of
follow-up

status status at endpoint ("censored", "transplant" or "dead")

Baseline covariates

trt D-pen (D-penicillamine) vs placebo

age in years

sex male or female

copper urine copper (µg/day)

trig triglycerides (mg/dl)

Time-varying covariates

day number of days between enrolment and this visit date; all measurements below refer to this
date

albumin serum albumin (mg/dl)

alk.phos alkaline phosphatase (U/liter)

ascites presence of ascites

ast aspartate aminotransferase (U/ml)

bili serum bilirubin (mg/dl)

chol serum cholesterol (mg/dl)

edema "no": no oedema, "(un)treated": untreated or successfully treated 1 oedema, "edema":
oedema despite diuretic therapy

hepato presence of hepatomegaly (enlarged liver)

platelet platelet count

protime standardised blood clotting time

spiders blood vessel malformations in the skin

stage histologic stage of disease (4 levels)

Examples

summary(PBC)
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plot.JointAI Plot an object object inheriting from class ’JointAI’

Description

Plot an object object inheriting from class ’JointAI’

Usage

## S3 method for class 'JointAI'
plot(x, ...)

Arguments

x object inheriting from class ’JointAI’

... currently not used

Note

Currently, plot() can only be used with (generalized) linear (mixed) models.

Examples

mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, n.iter = 100)
plot(mod)

plot_all Visualize the distribution of all variables in the dataset

Description

This function plots a grid of histograms (for continuous variables) and bar plots (for categorical
variables) and labels it with the proportion of missing values in each variable.

Usage

plot_all(data, nrow = NULL, ncol = NULL, fill = grDevices::grey(0.8),
border = "black", allNA = FALSE, idvars = NULL, xlab = "",
ylab = "frequency", ...)
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Arguments

data a data.frame (or a matrix)

nrow optional; number of rows in the plot layout; automatically chosen if unspecified

ncol optional; number of columns in the plot layout; automatically chosen if unspec-
ified

fill colour the histograms and bars are filled with

border colour of the borders of the histograms and bars

allNA logical; if FALSE (default) the proportion of missing values is only given for
variables that have missing values, if TRUE it is given for all variables

idvars name of the column that specifies the multi-level grouping structure

xlab, ylab labels for the x- and y-axis

... additional parameters passed to barplot and hist

See Also

Vignette: Visualizing Incomplete Data

Examples

op <- par(mar = c(2,2,3,1), mgp = c(2, 0.6, 0))
plot_all(wideDF)
par(op)

plot_imp_distr Plot the distribution of observed and imputed values

Description

Plots densities and bar plots of the observed and imputed values in a long-format dataset (multiple
imputed datasets stacked onto each other).

Usage

plot_imp_distr(data, imp = "Imputation_", id = ".id", rownr = ".rownr",
ncol = NULL, nrow = NULL, labeller = NULL)

Arguments

data a data.frame containing multiple imputations and the original incomplete data
stacked onto each other

imp the name of the variable specifying the imputation indicator

id the name of the variable specifying the subject indicator

https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html
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rownr the name of a variable identifying which rows correspond to the same observa-
tion in the original (un-imputed) data

ncol optional; number of columns in the plot layout; automatically chosen if unspec-
ified

nrow optional; number of rows in the plot layout; automatically chosen if unspecified
labeller optional labeller to be passed to ggplot2::facet_wrap() to change the facet

labels

Examples

## Not run:
mod <- lme_imp(y ~ C1 + c2 + B2 + C2, random = ~ 1 | id, data = longDF,

n.iter = 200, monitor_params = c(imps = TRUE), mess = FALSE)
impDF <- get_MIdat(mod, m = 5)
plot_imp_distr(impDF, id = "id", ncol = 3)

## End(Not run)

predict.JointAI Predict values from an object of class JointAI

Description

Obtains predictions and corresponding credible intervals from an object of class ’JointAI’.

Usage

## S3 method for class 'JointAI'
predict(object, outcome = 1L, newdata,
quantiles = c(0.025, 0.975), type = "lp", start = NULL, end = NULL,
thin = NULL, exclude_chains = NULL, mess = TRUE, warn = TRUE,
return_sample = FALSE, ...)

Arguments

object object inheriting from class ’JointAI’
outcome vector of variable names or integers identifying for which outcome(s) the pre-

diction should be performed.
newdata optional new dataset for prediction. If left empty, the original data is used.
quantiles quantiles of the predicted distribution of the outcome
type the type of prediction. The default is on the scale of the linear predictor ("link"

or "lp"). Additionally, for generalized linear (mixed) models (incl. beta and
log-normal) type = "response" transforms the predicted values to the scale of
the response, and for ordinal and multinomial (mixed) models type may be
"prob" (to obtain probabilities per class), "class" to obtain the class with the
highest posterior probability, or "lp". For parametric survival models type can
be "lp" or "response", and for proportional hazards survival models the options
are "lp", "risk" (= exp(lp)), "survival" or "expected" (= -log(survival)).
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start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

exclude_chains optional vector of the index numbers of chains that should be excluded

mess logical; should messages be given? Default is TRUE.

warn logical; should warnings be given? Default is TRUE.

return_sample logical; should the full sample on which the summary (mean and quantiles) is
calculated be returned?#’

... currently not used

Details

A model.matrix X is created from the model formula (currently fixed effects only) and newdata.
Xβ is then calculated for each iteration of the MCMC sample in object, i.e., Xβ has n.iter rows
and nrow(newdata) columns. A subset of the MCMC sample can be selected using start, end
and thin.

Value

A list with entries dat, fit and quantiles, where fit contains the predicted values (mean over
the values calculated from the iterations of the MCMC sample), quantiles contain the specified
quantiles (by default 2.5% and 97.5%), and dat is newdata, extended with fit and quantiles
(unless prediction for an ordinal outcome is done with type = "prob", in which case the quantiles
are an array with three dimensions and are therefore not included in dat).

Note

• So far, predict cannot calculate predicted values for cases with missing values in covariates.
Predicted values for such cases are NA.

• For repeated measures models prediction currently only uses fixed effects.

Functionality will be extended in the future.

See Also

predDF.JointAI, *_imp

Examples

# fit model
mod <- lm_imp(y ~ C1 + C2 + I(C2^2), data = wideDF, n.iter = 100)

# calculate the fitted values
fit <- predict(mod)

# create dataset for prediction
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newDF <- predDF(mod, vars = ~ C2)

# obtain predicted values
pred <- predict(mod, newdata = newDF)

# plot predicted values and 95% confidence band
matplot(newDF$C2, pred$fitted, lty = c(1, 2, 2), type = "l", col = 1,
xlab = 'C2', ylab = 'predicted values')

print.Dmat Summarize the results from an object of class JointAI

Description

Obtain and print the summary, (fixed effects) coefficients (coef) and credible interval (confint) for
an object of class ’JointAI’.

Usage

## S3 method for class 'Dmat'
print(x, digits = getOption("digits"),
scientific = getOption("scipen"), ...)

## S3 method for class 'JointAI'
summary(object, start = NULL, end = NULL, thin = NULL,
quantiles = c(0.025, 0.975), subset = NULL, exclude_chains = NULL,
outcome = NULL, missinfo = FALSE, warn = TRUE, mess = TRUE, ...)

## S3 method for class 'summary.JointAI'
print(x, digits = max(3, .Options$digits - 4), ...)

## S3 method for class 'JointAI'
coef(object, start = NULL, end = NULL, thin = NULL,
subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

## S3 method for class 'JointAI'
confint(object, parm = NULL, level = 0.95,
quantiles = NULL, start = NULL, end = NULL, thin = NULL,
subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

## S3 method for class 'JointAI'
print(x, digits = max(4, getOption("digits") - 4), ...)

Arguments

x an object of class summary.JointAI or JointAI

digits the minimum number of significant digits to be printed in values.



print.Dmat 45

scientific A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation, by default the value obtained from getOption("scipen")

... currently not used

object object inheriting from class ’JointAI’

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

quantiles posterior quantiles

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

outcome optional; vector identifying for which outcomes the summary should be given,
either by specifying their indices, or their names (LHS of the respective model
formulas as character string).

missinfo logical; should information on the number and proportion of missing values be
included in the summary?

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

parm same as subset (for consistency with confint method for other types of ob-
jects)

level confidence level (default is 0.95)

See Also

The model fitting functions lm_imp, glm_imp, clm_imp, lme_imp, glme_imp, survreg_imp and
coxph_imp, and the vignette Parameter Selection for examples how to specify the parameter subset.

Examples

## Not run:
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

summary(mod1, missinfo = TRUE)
coef(mod1)
confint(mod1)

## End(Not run)

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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rd_vcov Extract the random effects variance covariance matrix

Description

Returns the posterior mean of the variance-covariance matrix/matrices of the random effects in a
fitted JointAI object.

Usage

rd_vcov(object, outcome = NULL, start = NULL, end = NULL, thin = NULL,
exclude_chains = NULL, mess = TRUE, warn = TRUE)

Arguments

object object inheriting from class ’JointAI’

outcome optional; vector of integers giving the indices of the outcomes for which the
random effects variance-covariance matrix/matrices should be returned.

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

exclude_chains optional vector of the index numbers of chains that should be excluded

mess logical; should messages be given? Default is TRUE.

warn logical; should warnings be given? Default is TRUE.

residuals.JointAI Extract residuals from an object of class JointAI

Description

Extract residuals from an object of class JointAI

Usage

## S3 method for class 'JointAI'
residuals(object, type = c("working", "pearson",
"response"), warn = TRUE, ...)



set_refcat 47

Arguments

object object inheriting from class ’JointAI’

type type of residuals: "deviance", "response", "working"

warn logical; should warnings be given? Default is TRUE.

... currently not used

Note

• For mixed models residuals are currently calculated using the fixed effects only.

• For ordinal (mixed) models and parametric survival models only type = "response" is avail-
able.

• For Cox proportional hazards models residuals are not yet implemented.

Examples

mod <- glm_imp(B1 ~ C1 + C2 + O1, data = wideDF, n.iter = 100,
family = binomial(), mess = FALSE)

summary(residuals(mod, type = 'response')[[1]])
summary(residuals(mod, type = 'working')[[1]])

set_refcat Specify reference categories for all categorical covariates in the model

Description

The function is a helper function that asks questions and, depending on the answers given by the
user, returns the input for the argument refcats in the main analysis functions *_imp.

Usage

set_refcat(data, formula, covars, auxvars = NULL)

Arguments

data a data.frame

formula optional; model formula or a list of formulas (used to select subset of relevant
columns of data)

covars optional; vector containing the names of relevant columns of data

auxvars optional; formula containing the names of relevant columns of data that should
be considered additionally to the columns occurring in the formula
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Details

The arguments formula, covars and auxvars can be used to specify a subset of the data to be
considered. If non of these arguments is specified, all variables in data will be considered.

Examples

## Not run:
# Example 1: set reference categories for the whole dataset and choose
# answer option 3:
set_refcat(data = NHANES)
3

# insert the returned string as argument refcats
mod1 <- lm_imp(SBP ~ age + race + creat + educ, data = NHANES,

refcats = 'largest')

# Example 2:
# specify a model formula
fmla <- SBP ~ age + gender + race + bili + smoke + alc

# write the output of set_refcat to an object
ref_mod2 <- set_refcat(data = NHANES, formula = fmla)
4
2
5
1
1

# enter the output in the model specification
mod2 <- lm_imp(formula = fmla, data = NHANES, refcats = ref_mod2,

n.adapt = 0)

## End(Not run)

sharedParams Parameters used by several functions in JointAI

Description

Parameters used by several functions in JointAI

Arguments

object object inheriting from class ’JointAI’

no_model optional; vector of names of variables for which no model should be specified.
Note that this is only possible for completely observed variables and implies the
assumptions of independence between the excluded variable and the incomplete
variables.
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timevar name of the variable indicating the time of the measurement of a time-varying
covariate in a proportional hazards survival model (also in a joint model). The
variable specified in "timevar" will automatically be added to "no_model".

assoc_type named vector specifying the type of the association used for a time-varying co-
variate in the linear predictor of the survival model when using a "JM" model.
Implemented options are "underl.value" (linear predictor; default for covariates
modelled using a Gaussian, Gamma, beta or log-normal distribution) covariates)
and "obs.value" (the observed/imputed value; default for covariates modelled
using other distributions).

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded
start the first iteration of interest (see window.mcmc)
end the last iteration of interest (see window.mcmc)
n.adapt number of iterations for adaptation of the MCMC samplers (see adapt)
n.iter number of iterations of the MCMC chain (after adaptation; see coda.samples)
n.chains number of MCMC chains
quiet logical; if TRUE then messages generated by rjags during compilation as well as

the progress bar for the adaptive phase will be suppressed, (see jags.model)
progress.bar character string specifying the type of progress bar. Possible values are "text"

(default), "gui", and "none" (see update). Note: when sampling is performed in
parallel it is not possible to display a progress bar.

thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

nrow optional; number of rows in the plot layout; automatically chosen if unspecified
ncol optional; number of columns in the plot layout; automatically chosen if unspec-

ified
use_ggplot logical; Should ggplot be used instead of the base graphics?
warn logical; should warnings be given? Default is TRUE.
mess logical; should messages be given? Default is TRUE.
xlab, ylab labels for the x- and y-axis
idvars name of the column that specifies the multi-level grouping structure
seed optional; seed value (for reproducibility)
ppc logical: should monitors for posterior predictive checks be set? (not yet used)
rd_vcov optional character string or list (of lists or character strings) specifying the struc-

ture of the variance covariance matrix/matrices of the random effects for multi-
variate mixed models. Options are "full, "blockdiag" (default) and "indep".
Different structures can be specified per grouping level (in multi-level models
with more than two levels) by specifying a list with elements per grouping level.
To specify different structures for different outcomes, a list (maybe nested in the
list per grouping level) can be specified. This list should have the type of struc-
ture as names and contain vectors of variable names that belong to the respective
structure.
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simLong Simulated Longitudinal Data in Long and Wide Format

Description

This data was simulated to mimic data from a longitudinal cohort study following mothers and
their child from birth until approximately 4 years of age. It contains 2400 observations of 200
mother-child pairs. Children’s BMI and head circumference was measured repeatedly and their
age in months was recorded at each measurement. Furthermore, the data contain several baseline
variables with information on the mothers’ demographics and socio-economic status.

Usage

simLong

simWide

Format

simLong: A data frame in long format with 2400 rows and 16 variables

simWide: A data frame in wide format with 200 rows and 81 variables

An object of class data.frame with 2400 rows and 16 columns.

An object of class data.frame with 200 rows and 81 columns.

Baseline covariates

(in simLong and simWide)

GESTBIR gestational age at birth (in weeks)

ETHN ethnicity (binary: European vs. other)

AGE_M age of the mother at intake

HEIGHT_M height of the mother (in cm)

PARITY number of times the mother has given birth (binary: 0 vs. >=1)

SMOKE smoking status of the mother during pregnancy (3 ordered categories: never smoked
during pregnancy, smoked until pregnancy was known, continued smoking in pregnancy)

EDUC educational level of the mother (3 ordered categories: low, mid, high)

MARITAL marital status (3 categories)

ID subject identifier
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Long-format variables

(only in simLong)

time measurement occasion/visit (by design, children should be measured at/around 1, 2, 3, 4, 7,
11, 15, 20, 26, 32, 40 and 50 months of age)

age child age at measurement time in months

bmi child BMI

hc child head circumference in cm

hgt child height in cm

wgt child weight in gram

sleep sleeping behaviour of the child (3 ordered categories)

Wide-format variables

(only in simWide)

age1, age2, age3, age4, age7, age11, age15, age20, age26, age32, age40, age50 child age at the re-
peated measurements in months

bmi1, bmi2, bmi3, bmi4, bmi7, bmi11, bmi15, bmi20, bmi26, bmi32, bmi40, bmi50 repeated mea-
surements of child BMI

hc1, hc2, hc3, hc4, hc7, hc11, hc15, hc20, hc26, hc32, hc40, hc50 repeated measurements of child
head circumference in cm

hgt1, hgt2, hgt3, hgt4, hgt7, hgt11, hgt15, hgt20, hgt26, hgt32, hgt40, hgt50 repeated measure-
ments of child height in cm

wgt1, wgt2, wgt3, wgt4, wgt7, wgt11, wgt15, wgt20, wgt26, wgt32, wgt40, wgt50 repeated mea-
surements of child weight in gram

sleep1, sleep2, sleep3, sleep4, sleep7, sleep11, sleep15, sleep20, sleep26, sleep32, sleep40, sleep50
repeated measurements of child sleep behaviour (3 ordered categories)

Examples

summary(simLong)
summary(simWide)

sum_duration Calculate the sum of the computational duration of a JointAI object

Description

Calculate the sum of the computational duration of a JointAI object

Usage

sum_duration(object, by = NULL)
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Arguments

object object of class JointAI

by optional grouping information; options are NULL (default) to calculate the sum
over all chains and runs and both the adaptive and sampling phase, "run" to get
the duration per run, "phase" to get the sum over all chains and runs per phase,
"chain" to get the sum per chain over both phases and all runs, "phase and
run" to get the sum over all chains, separately per phase and run.

traceplot Create traceplots for a MCMC sample

Description

Creates a set of traceplots from the MCMC sample of an object of class ’JointAI’.

Usage

traceplot(object, ...)

## S3 method for class 'JointAI'
traceplot(object, start = NULL, end = NULL,
thin = NULL, subset = c(analysis_main = TRUE), outcome = NULL,
exclude_chains = NULL, nrow = NULL, ncol = NULL, use_ggplot = FALSE,
warn = TRUE, mess = TRUE, ...)

Arguments

object object inheriting from class ’JointAI’

... Arguments passed on to graphics::matplot

lty,lwd,lend vector of line types, widths, and end styles. The first element is
for the first column, the second element for the second column, etc., even
if lines are not plotted for all columns. Line types will be used cyclically
until all plots are drawn.

col vector of colors. Colors are used cyclically.
cex vector of character expansion sizes, used cyclically. This works as a multi-

ple of par("cex"). NULL is equivalent to 1.0.
bg vector of background (fill) colors for the open plot symbols given by pch =

21:25 as in points. The default NA corresponds to the one of the underlying
function plot.xy.

add logical. If TRUE, plots are added to current one, using points and lines.
verbose logical. If TRUE, write one line of what is done.

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)
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thin thinning interval (integer; see window.mcmc). For example, thin = 1 (default)
will keep the MCMC samples from all iterations; thin = 5 would only keep
every 5th iteration.

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows
the same principle as the argument monitor_params in *_imp.

outcome optional; vector identifying a subset of sub-models included in the output, either
by specifying their indices (using the order used in the list of model formulas),
or their names (LHS of the respective model formula as character string)

exclude_chains optional vector of the index numbers of chains that should be excluded

nrow optional; number of rows in the plot layout; automatically chosen if unspecified

ncol optional; number of columns in the plot layout; automatically chosen if unspec-
ified

use_ggplot logical; Should ggplot be used instead of the base graphics?

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

See Also

summary.JointAI, *_imp, densplot
The vignette Parameter Selection contains some examples how to specify the parameter subset.

Examples

# fit a JointAI model
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

# Example 1: simple traceplot
traceplot(mod)

# Example 2: ggplot version of traceplot
traceplot(mod, use_ggplot = TRUE)

# Example 5: changing how the ggplot version looks (using ggplot syntax)
library(ggplot2)

traceplot(mod, use_ggplot = TRUE) +
theme(legend.position = 'bottom') +
xlab('iteration') +
ylab('value') +
scale_color_discrete(name = 'chain')

https://nerler.github.io/JointAI/articles/SelectingParameters.html
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wideDF Cross-sectional example dataset

Description

A simulated cross-sectional dataset.

Usage

data(wideDF)

Format

A simulated data frame with 100 rows and 13 variables:

C1 continuous, complete variable

C2 continuous, incomplete variable

B1 binary, complete variable

B2 binary, incomplete variable

M1 unordered factor; complete variable

M2 unordered factor; incomplete variable

O1 ordered factor; complete variable

O2 ordered factor; incomplete variable

L1 continuous, complete variable

L2 continuous incomplete variable

id id (grouping) variable

time continuous complete variable

y continuous, complete variable
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