Package ‘MCSimMod’

January 23, 2026
Title Working with 'MCSim' Models
Version 1.2

Description Tools that facilitate ordinary differential equation (ODE) modeling in 'R'. This pack-
age allows one to perform simulations for ODE models that are encoded in the GNU 'MC-
Sim' model specification language (Bois, 2009) <doi:10.1093/bioinformatics/btp162> us-
ing ODE solvers from the 'R' package 'deS-
olve' (Soetaert et al., 2010) <doi:10.18637/jss.v033.109>.

Imports deSolve, methods, tools

URL https://CRAN.R-project.org/package=MCSimMod,
https://github.com/USEPA/MCSimMod

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/Needs/dev devtools, styler (== 1.11.0), testthat, covr

Config/Needs/website r-lib/pkgdown

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Dustin F. Kapraun [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5570-6383>),

Todd J. Zurlinden [aut] (ORCID:
<https://orcid.org/0000-0003-1372-3913>),

Andrew J. Shapiro [aut] (ORCID:
<https://orcid.org/0000-0002-5233-8092>),

Ryan D. Friese [aut] (ORCID: <https://orcid.org/0000-0002-4121-2195>),

Frederic Y. Bois [ctb] (ORCID: <https://orcid.org/0000-0002-4154-0391>),

Free Software Foundation, Inc. [cph]

Maintainer Dustin F. Kapraun <kapraun.dustin@epa.gov>
Repository CRAN
Date/Publication 2026-01-23 13:40:13 UTC

https://doi.org/10.1093/bioinformatics/btp162
https://doi.org/10.18637/jss.v033.i09
https://CRAN.R-project.org/package=MCSimMod
https://github.com/USEPA/MCSimMod
https://orcid.org/0000-0001-5570-6383
https://orcid.org/0000-0003-1372-3913
https://orcid.org/0000-0002-5233-8092
https://orcid.org/0000-0002-4121-2195
https://orcid.org/0000-0002-4154-0391

2 compileModel

Contents
compileModel 2
createModel L e 3
Model-class e e e e e e e 4
Index 6
compileModel Function to translate and compile MCSim model specification text
Description

This function translates MCSim model specification text to C and then compiles the resulting C file
to create a dynamic link library (DLL) file (on Windows) or a shared object (SO) file (on Unix).

Usage

compileModel(
model_file,
c_file,
dl1l_name,
dll_file,
source_file = model_file,
hash_file = NULL,
verbose_output = FALSE

)
Arguments

model_file Name of an MCSim model specification file.

c_file Name of a C source code file to be created by compiling the MCSim model
specification file.

dl1l_name Name of a DLL or SO file without the extension (".dll" or ".so").

dll_file Name of the same DLL or SO file with the appropriate extension (".dll" or ".s0").

source_file Name of the original source file to use for hash calculation. Defaults to model_file
for backward compatibility. When writeTemp=TRUE in createModel(), this
should be set to the original source file path to ensure hash tracking works cor-
rectly when the source file is separate from the compiled model file.

hash_file Name of a file containing a hash key for determining if source_file has changed

since the previous translation and compilation.
verbose_output Boolean specifying whether to write translator messages to standard output. If

value is TRUE, messages will be written to standard output; if value is FALSE,
messages will be written to files in a temporary directory.

Value

No return value. Creates files and saves them in locations specified by function arguments.

createModel

createModel

Function to create an MCSimMod Model object

Description

This function creates a Model object using an MCSim model specification file or an MCSim model
specification string.

Usage

createModel (

mName = character(0),
mString = character(0),
writeTemp = TRUE,
verboseOQutput = FALSE

Arguments

mName

mString

writeTemp

verboseOutput

Value

Model object.

Examples

Not run:
Simple model

Name of an MCSim model specification file, excluding the file name extension
.model.

A character string containing MCSim model specification text.

Boolean specifying whether to write model files to a temporary directory. If
value is TRUE (the default), model files will be Written to a temporary directory;
if value is FALSE, model files will be Written to the same directory that contains
the model specification file.

Boolean specifying whether to write translator messages to standard output. If
value is TRUE, messages will be written to standard output; if value is FALSE,
messages will be written to files in a temporary directory.

mod <- createModel("path/to/model")

Load/compile the model

mod$loadModel ()

Update parameters (P1 and P2)
mod$updateParms(c(P1 = 3, P2 = 1))

Define times for ODE simulation

4 Model-class

times <- seq(from = @, to = 24, by = 0.1)

Run the simulation
out <- mod$runModel (times)

End(Not run)

Model-class MCSimMod Model class

Description

A class for managing MCSimMod models.

Arguments
mName Name of an MCSim model specification file, excluding the file name extension
.model.
mString A character string containing MCSim model specification text.
Details

Instances of this class represent ordinary differential equation (ODE) models. A Model object has
both attributes (i.e., things the object “knows” about itself) and methods (i.e., things the object can
“do”). Model attributes include: the name of the model (mName); a vector of parameter names and
values (parms); and a vector of initial conditions (Y@). Model methods include functions for: trans-
lating, compiling, and loading the model (1oadModel); updating parameter values (updateParms);
updating initial conditions (updateY®); and running model simulations (runModel). So, for exam-
ple, if mod is a Model object, it will have an attribute called parms that can be accessed using the R
expression mod$parms. Similarly, mod will have a method called updateParms that can be accessed
using the R expression mod$updateParms(). Use the createModel() function to create Model
objects.

Fields

mName Name of an MCSim model specification file, excluding the file name extension .model.
mString Character string containing MCSim model specification text.
initParms Function that initializes values of parameters defined for the associated MCSim model.

initStates Function that initializes values of state variables defined for teh associated MCSim
model..

Outputs Names of output variables defined for the associated MCSim model.
parms Named vector of parameter values for the associated MCSim model.
Y0 Named vector of initial conditions for the state variables of the associated MCSim model.

paths List of character strings that are names of files associated with the model.

Model-class 5

writeTemp Boolean specifying whether to write model files to a temporary directory. If value is
TRUE, model files will be written to a temporary directory; if value is FALSE, model files
will be written to the same directory that contains the model specification file.

verboseOutput Boolean specifying whether to write translator messages to standard output. If
value is TRUE, messages will be written to standard output; if value is FALSE, messages will
be written to files in a temporary directory.

recompiled Boolean specifying if the model has been recompiled due to change in source file

Methods

cleanup(deleteModel = FALSE) Delete files created during the translation and compilation steps
performed by loadModel. If deleteModel = TRUE, delete the MCSim model specification file,
as well.

initialize(...) Initialize the Model object using an MCSim model specification file (mName)
or an MCSim model specification string (mString).

loadModel (force = FALSE) Translate (if necessary) the model specification text to C, compile (if
necessary) the resulting C file to create a dynamic link library (DLL) file (on Windows) or
a shared object (SO) file (on Unix), and then load all essential information about the Model
object into memory (for use in the current R session).

runModel(times, ...) Perform a simulation for the Model object using the deSolve function
ode for the specified times.

updateParms(new_parms = NULL) Reset the values of the parameters for the Model object to
their default values and then update the values of any parameters named in the argument
‘new_parms‘ using values provided in that argument.

updateY@(new_states = NULL) Reset the values of the initial conditions of state variables for the
Model object to their default values and then update the values of the initial conditions of any
state variables named in the argument ‘new_states‘ using values provided in that argument.

Index

compileModel, 2
createModel, 3

Model (Model-class), 4
Model-class, 4

	compileModel
	createModel
	Model-class
	Index

