Package ‘PaRe’

February 4, 2026

Type Package

Title A Way to Perform Code Review or QA on Other Packages
Version 0.1.16

Language en-US

Description Reviews other packages during code review by looking at their
dependencies, code style, code complexity, and how internally defined
functions interact with one another.

URL https://github.com/darwin-eu-dev/PaRe

BugReports https://github.com/darwin-eu-dev/PaRe/issues
License Apache License (>= 2)

Encoding UTF-8

RoxygenNote 7.3.1

Imports cli (>=3.6.0), cyclocomp (>=1.1.0), desc (>= 1.4.2),
DiagrammeR (>= 1.0.9), DiagrammeRsvg (>= 0.1), dplyr (>=
1.1.0), glue (>= 1.6.2), lintr (>= 3.0.2), magrittr (>= 2.0.3),
pak (>= 0.2.0), rmarkdown (>= 2.20), rsvg (>= 2.4.0), stringr
(>=1.5.0), igraph (>= 1.3.5), utils, R6 (>=2.5.1), git2r (>=
0.31.0), checkmate (>= 2.1.0), parallel

Suggests ggplot2, plotly, ggraph, DT, magick, withr, cowplot, knitr,
curl, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no

Author Maarten van Kessel [aut, cre] (ORCID:
<https://orcid.org/0009-0006-8832-6030>)

Maintainer Maarten van Kessel <m.1.vankessel@erasmusmc.nl>
Repository CRAN
Date/Publication 2026-02-04 14:20:08 UTC

https://github.com/darwin-eu-dev/PaRe
https://github.com/darwin-eu-dev/PaRe/issues
https://orcid.org/0009-0006-8832-6030

2 addPareArticle

Contents
addPareArticle 2
checkDependencies 4
checklnstalled L 5
Code e 5
countPackagelines 7
exportDiagram 8
File . . . 9
Function e 11
functionUseGraph L 13
funsUsedInFile e 14
funsUsedInLine e 14
getApplyCall o 15
getApplyFromLineso 15
getDefaultPermittedPackages oL o 16
getDefinedFunctions 17
getDIplyCall o e 18
getDIplyCallFromLines e 19
getDoCall e e 19
getDoCallFromLines e 20
getExportedFunctions 20
getFunCall o e 21
getFunctionDiagram 21
getFunctionUse 22
getFunsPerDefFun oL 24
getGraphData e 24
getMultiLineFun oo 26
graphToDot 26
LintRepo e 27
lintScore e 28
makeGraph 29
makeReport 30
pkgDiagram e e e e e 31
Repository e 32
whiteList L 35

Index 37

addPareArticle addPareArticle
Description

Writes an Rmd-file to . /vignettes/articles/PaReReport.Rmd. The relative path is dictated by
the specified path in the Repository object.

addPareAtrticle

Usage

addPareArticle(repo)
Arguments

repo (Repository) Repository object.
Value

NULL Writes Rmd-file to ./vignettes/articles/PaReReport.Rmd

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/darwin-eu/IncidencePrevalence.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

b

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run makeReport on the Repository object.
addPaReArticle(repo)

3

4 checkDependencies

checkDependencies checkDependencies

Description

Check package dependencies

Usage

checkDependencies(repo, dependencyType = c("Imports”, "Depends”), nThreads = 1)

Arguments

repo (Repository)
Repository object.

dependencyType (character())
Types of dependencies to be included

nThreads (numeric(1): 1) Number of threads to use to fetch permitted packages

Value

(data.frame())
Data frame with all the packages that are now permitted.

column data type
package character()
version character()

Examples

Set cahce, usually not required.

withr::local_envvar(
R_USER_CACHE_DIR = tempfile()

)

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo

)

checklnstalled

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

1

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Use checkDependencies on the Repository object.
checkDependencies(repo)
checkDependencies(repo, dependencyType = c("Imports”, "Suggests"”))

}

checkInstalled checkInstalled

Description

Checks if suggested packages are installed.

Usage

checkInstalled()

Value

logical
Logical depending if suggested packages are installed.

Code R6 Code class

Description

Class representing a piece of code.

6 Code

Methods

Public methods:
* Code$new()
e Code$print()
e Code$getlLines()
* Code$getNLines()
e Code$getName()
e Code$clone()

Method new(): Initializer method
Usage:
Code$new(name, lines)
Arguments:

name (character(1))
Name of Code object.

lines (character(n))
Vector of lines Code object.

Returns: invisible(self)

Method print(): Overload generic print, to print Code object.
Usage:
Code$print(...)

Arguments:
. further arguments passed to or from other methods. See print.

Returns: (character(n))

Method getlLines(): Get method for lines.
Usage:
Code$getLines()
Returns: (character(n)) Vector of lines in the Code object.

Method getNLines(): Get method for number of lines.
Usage:
Code$getNLines()
Returns: (numeric(1)) Number of lines in the Code object.

Method getName(): Get method for Name.

Usage:
Code$getName ()
Returns: (character (1)) Name of the Code object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Code$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

countPackageLines

See Also

Other Representations: File, Function, Repository

countPackagelines countPackageLines

Description

Counts the package lines of a Repository object.

Usage

countPackagel ines(repo)

Arguments
repo (Repository)
Repository object.
Value
(tibble

) Tibble containing the amount of lines per file in the Repository object.

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git"”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE
h
error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE
b

warning = function(w) {

8 exportDiagram

Set fetchedRepo to FALSE if a warning is encountered.
FALSE
}
)

if (fetchedRepo) {
Run countPackagelLines on the Repository object.
countPackagelines(repo = repo)

}

exportDiagram exportDiagram

Description

Exports the diagram from pkgDiagram to a PDF-file.

Usage

exportDiagram(diagram, fileName)

Arguments
diagram (grViz)
Graph object from pkgDiagram.
fileName (character)
Path to save the diagram to, as PDF.
Value
(NULL)
Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

File

Set fetchedRepo to TRUE if all goes well.
TRUE

1

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run pkgDiagram on the Repository object.
pkgDiagram(repo = repo) %>%
Export the diagram to a temp file.
exportDiagram(fileName = tempfile())

File R6 File class

Description

Class representing a file containing code.

Super class

PaRe: :Code ->File

Methods

Public methods:

e File$new()

e File$getFunctions()

* File$getFunctionTable()
* File$getType()

* File$getFilePath()

* File$getBlameTable()

e File$clone()

Method new(): Initializer method

Usage:
File$new(repoPath, filePath)

Arguments:

10 File

repoPath (character)
Path to repository.

filePath (character)
Relative path to file

Returns: invisible(self)

Method getFunctions(): Get method to get a list of Function objects
Usage:
File$getFunctions()

Returns: (list)
List of Function objects.
Method getFunctionTable(): Get method to retrieve the function table.

Usage:
File$getFunctionTable()

Returns: (data.frame)

column data type
name character
lineStart integer
lineEnd numeric
nArgs integer

cycloComp integer

Method getType(): Gets type of file
Usage:
File$getType()

Returns: (character)

Method getFilePath(): Gets relative file path

Usage:
File$getFilePath()

Returns: (character)

Method getBlameTable(): Gets table of git blame
Usage:
File$getBlameTable()

Returns: (tibble)

Method clone(): The objects of this class are cloneable with this method.
Usage:
File$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Function

See Also

Other Representations: Code, Function, Repository

Examples

fetchedRepo <- tryCatch(

{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")
Clone repo
git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo
)
Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)
Set fetchedRepo to TRUE if all goes well.
TRUE
}Y

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
files <- repo$getRFiles()
files[[1]]

3

11

Function R6 Function class.

Description

Class representing a function.

Super class

PaRe: :Code -> Function

12 Function

Methods

Public methods:

e Function$new()
* Function$getFunction()
* Function$clone()

Method new(): Initializer for Function object.

Usage:
Function$new(name, lineStart, lineEnd, lines)

Arguments:

name (character)
Name of Function.

lineStart (numeric)
Line number where function starts in File.

lineEnd (numeric)
Line number where function ends in File.

lines (c¢)
Vector of type character Lines of just the function in File.

Returns: invisible(self)

Method getFunction(): Get method to get defined functions in a File object.

Usage:
Function$getFunction()

Returns: (data.frame)

column data type
name (character)
lineStart (integer)
lineEnd (numeric)
nArgs (integer)

cycloComp (integer)

Method clone(): The objects of this class are cloneable with this method.

Usage:
Function$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Representations: Code, File, Repository

functionUseGraph 13

Examples

fetchedRepo <- tryCatch(

)

{

Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git"”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

1

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

3

if (fetchedRepo) {

}

files <- repo$getRFiles()
file <- files[[1]]

funs <- file$getFunctions()
funs[[1]]

functionUseGraph SfunctionUseGraph

Description

functionUseGraph

Usage

functionUseGraph(repo)

Arguments

repo (Repository)

14 funsUsedInLine

Value

(graph)

funsUsedInFile funsUsedInFile

Description

Support function

Usage

funsUsedInFile(files, verbose = FALSE)

Arguments
files (list) of (File)

verbose (logical)

Value

(list)

funsUsedInLine funsUsedInLine

Description

Support function for funsUsedInFile.

Usage

funsUsedInLine(lines, name, i, verbose = FALSE)

Arguments
lines (c) of (character)
name (character)
i (numeric)

verbose (logical: FALSE)

getApplyCall

Value

(data.frame)

15

column data type

pkg character

fun character

line numeric
getApplyCall getApplyCall

Description

getApplyCall

Usage
getApplyCall(fun, defFuns)

Arguments
fun (Function)
Function object.
defFuns (data.frame)
See getDefinedFunctions
Value

(data.frame)

getApplyFromLines getApplyFromLines

Description

getApplyFromLines

Usage
getApplyFromLines(lines)

Arguments

lines (c)

Vector of (character). See getDefinedFunctions

16 getDefaultPermittedPackages

Value

(character)

getDefaultPermittedPackages
getDefaultPermittedPackages

Description

Gets permitted packages. An internet connection is required.

Usage

getDefaultPermittedPackages(nThreads = 1)

Arguments
nThreads (numeric(1): 1) Number of threads to use to fetch permitted packages
Value
(tibble)
column data type
package character
version character
Examples
Set cache

withr::local_envvar(
R_USER_CACHE_DIR = tempfile()
)

if (interactive()) {
getDefaultPermittedPackages()
3

getDefinedFunctions

17

getDefinedFunctions getDefinedFunctions

Description

Gets all the defined functions from a Repository object.

Usage

getDefinedFunctions(repo)

Arguments
repo (Repository)
Repository object.
Value

(data.frame)

column
name
lineStart
lineEnd
nArgs
cycloComp
fileName

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()

pathToRepo <- file.path(tempDir, "glue")

Clone repo
git2r::clone(

data type
character
integer
numeric
integer
integer
character

url = "https://github.com/tidyverse/glue.git”,

local_path = pathToRepo
)

Create instance of Repository object.

repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.

TRUE
}?

18

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {

Set fetchedRepo to FALSE if a warning is encountered.

FALSE
3
)

if (fetchedRepo) {
repo <- PaRe::Repository$new(pathToRepo)

getDefinedFunctions(repo)

}

getDIplyCall

getDlplyCall getDIplyCall

Description

getDIplyCall

Usage

getDlplyCall(fun, defFuns)

Arguments

fun (Function)
Function object.

defFuns (data.frame)
See getDefinedFunctions

Value

(data.frame)

getDIplyCallFromLines

getDlplyCallFromLines getDIplyCallFromLines

Description

getDIplyCallFromLines

Usage

getDlplyCallFromLines(lines)

Arguments
lines ©
Vector of (character).
Value
(character)
getDoCall getDoCall
Description
getDoCall
Usage
getDoCall(fun, defFuns)
Arguments
fun (Function)
Function object.
defFuns (data.frame)
See getDefinedFunctions
Value

(data.frame)

20

getExportedFunctions

getDoCallFromLines getDoCallFromLines

Description

getDoCallFromLines

Usage

getDoCallFromLines(lines)

Arguments
lines (c)
Vector of (character). See getDefinedFunctions
Value
(character)

getExportedFunctions getExportedFunctions

Description

Gets all the exported functions of a package, from NAMESPACE.

Usage

getExportedFunctions(path)

Arguments
path (character)
Path to package
Value

(c) Vector of character exported functions.

getFunCall 21

getFunCall getFunCall

Description

getFunCall

Usage
getFunCall(fun, defFuns)

Arguments
fun (Function)
Function object.
defFuns (data.frame)
See getDefinedFunctions.
Value

(data.frame)

getFunctionDiagram subsetGraph

Description

Create a subset of the package diagram containing all in comming and out going paths from a
specified function.

Usage

getFunctionDiagram(repo, functionName)

Arguments
repo (Repository) Repository object.

functionName (character) Name of the function to get all paths from.

Value

(htmlwidgets)
Subsetted diagram. See grViz

22 getFunctionUse

Examples

fetchedRepo <- tryCatch(

{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")
Clone repo
git2r::clone(
url = "https://github.com/tidyverse/glue.git"”,
local_path = pathToRepo
)
Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)
Set fetchedRepo to TRUE if all goes well.
TRUE
})

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run getFunctionDiagram on the Repository object.

getFunctionDiagram(repo = repo, functionName = "glue")
3
getFunctionUse summariseFunctionUse
Description

Summarise functions used in R package.

Usage

getFunctionUse(repo, verbose = FALSE)

Arguments

repo (Repository)
Repository object.

getFunctionUse

verbose (logical: FALSE)
Prints message to console which file is currently being worked on.

Value
(tibble)

column data type
file character
line numeric
pkg character
fun character

Examples

fetchedRepo <- tryCatch(

{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")
Clone repo
git2r::clone(
url = "https://github.com/tidyverse/glue.git",
local_path = pathToRepo
)
Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)
Set fetchedRepo to TRUE if all goes well.
TRUE
}7

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run getFunctionUse on the Repository object.
getFunctionUse(repo = repo, verbose = TRUE)

}

23

24

getGraphData

getFunsPerDefFun getFunsPerDefFun

Description

getFunsPerDefFun

Usage

getFunsPerDefFun(files, defFuns)

Arguments
files (list)
List of File objects.
defFuns (data.frame)
See getDefinedFunctions.
Value
data.frame
column data type
from character
to character
getGraphData getGraphData
Description

Get the dependency interactions as a graph representation.

Usage

getGraphData(repo, packageTypes = c("Imports”), nThreads

D

getGraphData 25

Arguments

repo (Repository)
Repository object.

packageTypes (c: c("Imports")) of (character) Any of the following options may be included
in a vector:

* "imports"
* "depends"”
* "suggests"
* "enhances"
* "linkingto"

nThreads (numeric(1): 1) Number of threads to use to fetch permitted packages

Value

(as_tbl_graph)

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

3,

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

b

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run getGraphData on the Repository object.
if (interactive()) {
getGraphData(repo = repo, packageTypes = c("Imports"))

26

graphToDot

getMultilLineFun getMultiLineFun

Description

getMultiLineFun

Usage

getMultilLineFun(line, lines)

Arguments

line (numeric)
Current line number.

lines ©

Vector of (character) lines.

Value

(character)

graphToDot graphToDot

Description

graphToDot

Usage
graphToDot (graph)

Arguments
graph (graph)

Value

htmlwidgets
See grViz.

lintRepo

27

lintRepo

lintRepo

Description

Get all the lintr messages of the Repository object.

Usage
lintRepo(repo)

Arguments

repo (Repository)

Value

(data.frame)

column
filename
line_number
column_number
type
message
line
linter

Examples

fetchedRepo <- tryCatch(

{

data type
character
double

double

character
character
character
character

description

Name of the file

Line in which the message was found
Column in which the message was found
Type of message

Style, warning, or error message

Line of code in which the message was found
Linter used

Set dir to clone repository to.

tempDir <- tempdir()

pathToRepo <- file.path(tempDir, "glue")

Clone repo
git2r::clone(

url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.

TRUE
}!

28 lintScore

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run lintRepo on the Repository object.
messages <- lintRepo(repo = repo)

}

lintScore lintScore

Description

Function that scores the lintr output as a percentage per message type (style, warning, error). Lintr
messages / lines assessed * 100

Usage

lintScore(repo, messages)

Arguments
repo (Repository)
Repository object.
messages (data.frame)
Data frame containing lintr messages. See lintRepo.
Value
(tibble)

type (character) Type of message.
pct (double) Score.

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

makeGraph 29

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

}

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
messages <- lintRepo(repo = repo)

Run lintScore on the Repository object.
lintScore(repo = repo, messages = messages)

}

makeGraph makeGraph

Description

Makes the graph

Usage

makeGraph (funsPerDefFun, pkgName, expFuns, ...)

Arguments

funsPerDefFun (data.frame)
Functions per defined function data.frame.

pkgName (character)
Name of package.
expFuns (data.frame)

Exported functinos data.frame.

Optional other parameters for grViz.

30

Value

(htmlwidget)

makeReport

Diagram of the package. See grViz.

makeReport

makeReport

Description

Uses rmarkdown’s render function to render a html-report of the given package.

Usage

makeReport(repo, outputFile, showCode = FALSE, nThreads = 1)

Arguments

repo

outputFile

showCode

nThreads

Value

(NULL)

Examples

(Repository)
Repository object.

(character)
Path to html-file.

(logical: FALSE)
Logical to show code or not in the report.

(numeric(1): 1) Number of threads to use to fetch permitted packages

fetchedRepo <- tryCatch(

{

Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

Clone repo
git2r::clone(

url = "https://github.com/darwin-eu/IncidencePrevalence.git”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.

pkgDiagram 31

TRUE

}

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

i

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run makeReport on the Repository object.
makeReport(repo = repo, outputFile = tempfile())
}

pkgDiagram pkgDiagram

Description

Creates a diagram of all defined functions in a package.

Usage
pkgDiagram(repo, verbose = FALSE, ...)
Arguments
repo (Repository)
Repository object.
verbose (logical)
Turn verbose messages on or off.
Optional other parameters for grViz.
Value
(htmlwidget)

Diagram htmlwidget object. See createWidget

Examples

fetchedRepo <- tryCatch(
{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")

32 Repository

Clone repo

git2r::clone(
url = "https://github.com/tidyverse/glue.git"”,
local_path = pathToRepo

)

Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)

Set fetchedRepo to TRUE if all goes well.
TRUE

1

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

1

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
Run pkgDiagram on the Repository object.
pkgDiagram(repo = repo)

3

Repository R6 Repository class.

Description

Class representing the Repository

Methods

Public methods:
* Repository$new()
* Repository$getName()
e Repository$getPath()
* Repository$getFiles()
* Repository$getRFiles()
* Repository$getDescription()
* Repository$getFunctionUse()
* Repository$gitCheckout()
* Repository$gitPull()

Repository 33

* Repository$gitBlame()
* Repository$clone()
Method new(): Initializer for Repository class

Usage:
Repository$new(path)

Arguments:

path (character)
Path to R package project

Returns: invisible(self)

Method getName(): Get method for name.

Usage:
Repository$getName()

Returns: (character)
Repository name
Method getPath(): Get method fro path

Usage:
Repository$getPath()

Returns: (character)
Path to Repository folder
Method getFiles(): Get method to get a list of File objects.

Usage:
Repository$getFiles()

Returns: (list)
List of File objects.
Method getRFiles(): Get method to get only R-files.

Usage:
Repository$getRFiles()

Returns: (list)
List of File objects.
Method getDescription(): Get method to get the description of the package. See: description.

Usage:

Repository$getDescription()

Returns: (description)

Description object.
Method getFunctionUse(): Get method for functionUse, will check if functionUse has already
been fetched or not.

Usage:

34

Repository$getFunctionUse()
Returns: (data.frame)
See getFunctionUse.
Method gitCheckout(): Method to run ’git checkout <branch/commit hash>’

Usage:
Repository$gitCheckout(branch, ...)

Arguments:

branch (character)
Name of branch or a hash referencing a specific commit.

. Further parameters for checkout.

Returns: invisible(self)

Method gitPull(): Method to run ’git pull’

Usage:
Repository$gitPull(...)

Arguments:

. Further parameters for pull.

Returns: invisible(self)

Method gitBlame(): Method to fetch data generated by ’git blame’.

Usage:
Repository$gitBlame()

Returns: (tibble)

column data type
repository character
author character
file character
date character
lines integer

Method clone(): The objects of this class are cloneable with this method.
Usage:
Repository$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Representations: Code, File, Function

Repository

whiteList

Examples

fetchedRepo <- tryCatch(

{
Set dir to clone repository to.
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")
Clone repo
git2r::clone(
url = "https://github.com/tidyverse/glue.git”,
local_path = pathToRepo
)
Create instance of Repository object.
repo <- PaRe::Repository$new(path = pathToRepo)
Set fetchedRepo to TRUE if all goes well.
TRUE
}?

error = function(e) {
Set fetchedRepo to FALSE if an error is encountered.
FALSE

b

warning = function(w) {
Set fetchedRepo to FALSE if a warning is encountered.
FALSE

}

)

if (fetchedRepo) {
repo

}

35

whitelist whiteList

Description

data.frame containing links to csv-files which should be used to fetch white-listed dependencies.

Usage

whitelist

Format

An object of class tb1_df (inherits from tbl, data. frame) with 3 rows and 4 columns.

36 whiteList

Details
By default three csv’s are listed:

1. darwin
2. hades
3. tidyverse

The data.frame is locally fetched under: system.file(package = "PaRe”, "whitelList.csv")
Manual insertions into this data.frame can be made, or the data.frame can be overwritten entirely.

The data.frame itself has the following structure:

column datatype description

source character name of the source

link character link or path to the csv-file

package character columnname of the package name column in the csv-file being linked to
version character columnname of the version column in the csv-file being linked to

The csv-files that are being pointed to should have the following structure:

Examples

if (interactive()) {
Dropping tidyverse
whiteList <- whitelList %>%
dplyr::filter(source != "tidyverse")

getDefaultPermittedPackages will now only use darwin and hades
getDefaul tPermittedPackages()

}

Index

* Representations
Code, 5
File, 9
Function, 11
Repository, 32
+ datasets
whitelist, 35

addPareArticle, 2
as_tbl_graph, 25

c, 12,14, 15,19, 20, 25, 26

character, 8, 10, 12, 14-17, 19-21, 23-30,
33, 34, 36

checkDependencies, 4

checkInstalled, 5

checkout, 34

Code, 5,11, 12, 34

countPackagelines, 7

createWidget, 3/

data.frame, 10, 12, 15, 17-19, 21, 24, 27-29,
34

description, 33

double, 27, 28

exportDiagram, 8

File, 7,9, 12, 14, 24, 33, 34

Function, 7, 10, 11,11, 15,18, 19, 21, 34
functionUseGraph, 13
funsUsedInFile, 14
funsUsedInLine, 14

getApplyCall, 15
getApplyFromLines, 15
getDefaultPermittedPackages, 16
getDefinedFunctions, 15,17, 18-21, 24
getDlplyCall, 18
getDlplyCallFromLines, 19
getDoCall, 19

37

getDoCallFromLines, 20
getExportedFunctions, 20
getFunCall, 21
getFunctionDiagram, 21
getFunctionUse, 22, 34
getFunsPerDefFun, 24
getGraphData, 24
getMultilineFun, 26
graph, 14, 26
graphToDot, 26
grViz, 8, 21, 26, 29-31

integer, 10, 12, 17, 34

lintRepo, 27, 28
lintScore, 28
list, 10, 14, 24, 33
logical, 5, 14, 23, 30, 31

makeGraph, 29
makeReport, 30

numeric, 10, 12, 14, 15, 17, 23, 26
PaRe: :Code, 9, 11
pkgDiagram, 8, 31

print, 6

pull, 34

Repository, 2, 3,7, 11-13,17, 21, 22, 25, 27,
28,30, 31,32

tibble, 7, 10, 16, 23, 28, 34

whitelList, 35

	addPareArticle
	checkDependencies
	checkInstalled
	Code
	countPackageLines
	exportDiagram
	File
	Function
	functionUseGraph
	funsUsedInFile
	funsUsedInLine
	getApplyCall
	getApplyFromLines
	getDefaultPermittedPackages
	getDefinedFunctions
	getDlplyCall
	getDlplyCallFromLines
	getDoCall
	getDoCallFromLines
	getExportedFunctions
	getFunCall
	getFunctionDiagram
	getFunctionUse
	getFunsPerDefFun
	getGraphData
	getMultiLineFun
	graphToDot
	lintRepo
	lintScore
	makeGraph
	makeReport
	pkgDiagram
	Repository
	whiteList
	Index

