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1 Introduction

CVXR is an R package that provides an object-oriented modeling language for convex optimization, including
the Second-Order Cone (SOCP) Optimization required to minimize Coherent Second Moment(CSM) problem,
which is not supported by other solvers in PortfolioAnalytics. Hence, CVXR is a significant extension of
PortfolioAnalytics.

The purpose of this vignette is to demonstrate examples of optimization problems that can be solved in
PortfolioAnalytics with CVXR and its many supported solvers. The problem types covered include not only
Linear Programming(LP), Quadratic Programming(QP) but also Second-Order Cone Programming(SOCP).
Multiple solvers supported by CVXR can be selected according to optimization types. For example, SCS
and ECOS can completely cover the types of problems that ROI can deal with, such as mean-variance
and ES problem. In order to better understand the functionality and use of PortfolioAnalytics, users are
recommended to read the Vignette Introduction to PortfolioAnalytics first.

The R code demo_cvxrPortfolioAnalytics.R in the PortfolioAnalytics demo folder, reproduces the results
in this Vignette.

2 Getting Started

2.1 Load Packages

Load the necessary packages.

library(PortfolioAnalytics)

library(CVXR)

library(data.table)

library(xts)

library(PCRA)

2.2 Solvers

The website https://cvxr.rbind.io/ shows that CVXR currently supports the use of 9 solvers, some of which
are commercial (CBC, CPLEX, GUROBI, MOSEK)1 and the others are open source(GLPK, GLPK_MI,
OSQP, SCS, ECOS).

The PortfolioAnalytics package provides the following two main wrapper functions for constrained optimization
of portfolios using a wide variety of methods:

optimize.portfolio(R =, portfolio =, optimize_method =)

optimize.portfolio.rebalancing(R =, portfolio =, optimize_method =, rebalance_on =,

training_period =, rolling_window =)

Different solvers support different types of portfolio optimization problems, which should be specified
by the argument optimize_method. The optimize_method=c("CVXR", {CVXRsolver}) argument of the
function optimize.portfolio and optimize.portfolio.rebalancing allows the user to specify the solver
to use with CVXR. If the argument is optimize_method="CVXR", the default solver for QP type portfolio
optimization problems, such as minimum variance portfolio optimization is OSQP, and the default solver for
LP and SOCP type portfolio optimizations, such as maximum mean return, “robust portfolio optimization”
to control for alpha uncertainty, and Coherent Second Moment (CSM) portfolio optimization, is SCS.

1MOSEK ,GUROBI, and CPLEX require licenses to use, but free academic licenses are available for all three.
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Solver LP QP SOCP

CBC ✓

GLPK ✓

GLPK_MI ✓

OSQP ✓ ✓

SCS ✓ ✓ ✓

ECOS ✓ ✓ ✓

CPLEX ✓ ✓ ✓

GUROBI ✓ ✓ ✓

MOSEK ✓ ✓ ✓

2.3 Data

The examples in this Vignette make use of the following three data sets in the Sections listed for each:

1. ret_edhec For the remainder of this Section 2, through Section 8.

2. retD_CRSP In Sections 9.1 and 9.2

3. retM_CRSP_5 In Sections 9.3 and 9.4

The ret_edhecc data set consists of the monthly returns of hedge fund style indexes from January 2011 to
December 2015, extracted from the the longer edhec returns data set in the PerformanceAnalytics package,
as described just below.

The retD_CRSP data set contains daily returns of 30 smallcap stocks from 1993 to 2015, extracted from the
stocksCRSP data set in the PCRA package, as described at the beginning of Section 9.

The retM_CRSP_5 data set contains monthly returns from January 2011 to December 2015, extracted from
the above retD_CRSP daily returns, as described at the beginning of Section 9.3.

The ret_edhec data set is created by the code chunk below.

data(edhec)

class(edhec)

#> [1] "xts" "zoo"

ret_edhec <- tail(edhec, 60) # Extract the last 5 years

range(index(edhec)) # Start and end dates of `edhec`

#> [1] "1997-01-31" "2021-05-31"

range(index(ret_edhec)) # Start and end dates of ret_edhec

#> [1] "2016-06-30" "2021-05-31"

# names(edhec) # Names of `edhec` long, so use shorter names

colnames(ret_edhec) <- c("CA", "CTAG", "DS", "EM", "EMN", "ED",

"FIA", "GM", "LSE", "MA", "RV", "SS", "FF")

print(head(ret_edhec, 5))

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS

#> 2016-06-30 0.0016 0.0352 0.0082 0.0149 -0.0037 -0.0012 -0.0021 0.0107 -0.0093 -0.0018 0.0027 0.0173

#> 2016-07-31 0.0154 0.0067 0.0192 0.0233 0.0080 0.0186 0.0114 0.0064 0.0203 0.0070 0.0125 -0.0592

#> 2016-08-31 0.0102 -0.0225 0.0209 0.0169 -0.0019 0.0149 0.0076 -0.0061 0.0062 0.0082 0.0064 -0.0398

#> 2016-09-30 0.0070 -0.0066 0.0097 0.0097 0.0040 0.0039 0.0062 -0.0028 0.0064 0.0041 0.0056 -0.0148

#> 2016-10-31 0.0027 -0.0257 0.0203 0.0064 0.0024 -0.0015 0.0063 0.0014 -0.0072 -0.0062 0.0052 0.0211

We see from class(edhec) that edhec is an xts type time series object, and we see from the two lines above
that use the range function that, whereas edhec starts in December 1997, ret_edhec1 does not start until
December 2014. But both edhec and ret_edhec end in November 2019. (The function index extracts the
dates of an xts object, and range extracts the first and last dates of a Dates object).
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tsPlotMP is a function in the R package PCRA that is convenient for plotting xts class time series objects.

tsPlotMP(ret_edhec, layout = c(2, 7))
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Fig 2.1 EDHEC hedge fund style indexes returns from November 2014 to November 2019.

2.4 Optimization Problems

In this Vignette, all mean vectors and covariance matrices in the optimization formula will use standard sample
based estimates. All optimization problems treated will use linear constraints unless stated otherwise. There
will be one equality constraint, i.e., the full-investment constraint, and one or more inequality constraints such
as the long-only and box constraints. More comprehensive constraint types can be found in Ross Bennett
(2018) Introduction to PortfolioAnalytics.

3 Maximizing Mean Return

The objective to maximize mean return is a linear problem of the form:

max
w

µ
′
w

s.t. Aw ≥ b

Bw = c

Where µ is the estimated asset returns mean vector and w is the vector of portfolio weights.

3.1 Portfolio Object

The first step in setting up a model is to create the portfolio object, which contains the form of the constraints,
and the objective specifications. In the following we create full-investment and box constraints specifications,
and a maximum return objective specification.
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# Create portfolio object

fund_edhec <- colnames(ret_edhec)

pspec_maxret <- portfolio.spec(assets = fund_edhec)

# Add constraints to the portfolio object

pspec_maxret <- add.constraint(pspec_maxret, type = "full_investment")

pspec_maxret <- add.constraint(portfolio = pspec_maxret, type = "box",

min = rep(0.02, 13),

max = c(rep(0.15, 8), rep(0.1, 5)))

# Add objective to the portfolio object

pspec_maxret <- add.objective(portfolio = pspec_maxret,

type = "return", name = "mean")

pspec_maxret

#> **************************************************

#> PortfolioAnalytics Portfolio Specification

#> **************************************************

#>

#> Call:

#> portfolio.spec(assets = fund_edhec)

#>

#> Number of assets: 13

#> Asset Names

#> [1] "CA" "CTAG" "DS" "EM" "EMN" "ED" "FIA" "GM" "LSE" "MA"

#> More than 10 assets, only printing the first 10

#>

#> Constraints

#> Enabled constraint types

#> - full_investment

#> - box

#>

#> Objectives:

#> Enabled objective names

#> - mean

3.2 Optimization

The next step is to run the optimization. Note that optimize_method = c("CVXR", {CVXRsolver})

should be specified in the function optimize.portfolio to use CVXR solvers for the optimization, or use
the default solver by giving optimize_method = "CVXR". For maximizing mean return, which is a linear
programming optimization solver, the default solver is OSQP.

# Run the optimization with default solver

opt_maxret <- optimize.portfolio(R = ret_edhec, portfolio = pspec_maxret, optimize_method = "CVXR")

opt_maxret

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_maxret, optimize_method = "CVXR")

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.1501 0.0201 0.1501 0.1501 0.0201 0.1501 0.0201 0.0201 0.1001 0.1001 0.0201 0.0201 0.0788
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#>

#> Objective Measures:

#> mean

#> 0.005805

opt_maxret$solver

#> [1] "SCS"

# Run the optimization with a different solver

opt_maxret_glpk <- optimize.portfolio(R = ret_edhec, portfolio = pspec_maxret,

optimize_method = c("CVXR", "GLPK"))

opt_maxret_glpk$solver

#> [1] "GLPK"

You can find the class of the object opt_maxret, and the names of its components as follows:

class(opt_maxret)

#> [1] "optimize.portfolio.CVXR" "optimize.portfolio"

names(opt_maxret)

#> [1] "weights" "objective_measures" "opt_values" "out" "call"

#> [11] "end_t"

If you just want to see the values of optimal weights, use:

opt_maxret$weights

#> CA CTAG DS EM EMN ED FIA GM LSE

#> 0.15009683 0.02009675 0.15009683 0.15009685 0.02009675 0.15009684 0.02009677 0.02009603 0.10009682 0.10009681

However, if in addition to finding out what the optimal weights are, you also want to know the optimal
portfolio’s mean return, standard deviation, and Sharpe ratio, use the convenience function opt.outputMvo,
whose second argument is the assets returns time series, in this case ret_edhec:

opt.outputMvo(opt_maxret, ret_edhec, digits =3)

#> $Wgts

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.150 0.020 0.150 0.150 0.020 0.150 0.020 0.020 0.100 0.100 0.020 0.020 0.079

#>

#> $Mean

#> [1] 0.07

#>

#> $StdDev

#> [1] 0.06

#>

#> $SR

#> [1] 1.157

3.3 Backtesting

Out of sample back-testing based that consists of computing portfolio cumulative gross returns (CGR), can be
done using the function optimize.portfolio.rebalancing. In this regard there are two distinctly different
ways of doing the computation with regard to use of the asset returns histories:

1. Growing data window method

2. Moving data window method.

For the growing data window method, the portfolio manager specifies an initial training_period numeric
value, and a rebalance_on character value. The training_period value is the number of periods from
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inception of the returns data to be used to compute an initial optimal portfolio. For example in the case
of a portfolio of assets with monthly returns: (1) use of training_period = 36 specifies that the first 36
months, i.e., the first three years, of returns are used for the initial portfolio optimization, and (2) use of
rebalance_on = "quarters specifies that the portfolio is rebalanced every quarter, i.e., every 3 months,
starting the month at the end of the training period.

For the moving data window method, the portfolio manager specifies a moving_window value and a
rebalance_on value. The first of these specifies the number of periods of asset returns to use for each
portfolio optimization, and second has the same meaning as for the above growing window method. So for a
portfolio of daily returns, moving_window = 500 means that approximately two years of daily returns are
used for each portfolio optimization, with the first window position starting at the inception of the data, and
rebalance_on = monthly specifies that the moving window will increase its position by one month for each
optimization.

The following ret_edhec data code example uses the growing window method, and Sections 9.1 and 9.2 use
the moving window method.

bt_maxret <- optimize.portfolio.rebalancing(R = ret_edhec, portfolio = pspec_maxret,

optimize_method = "CVXR",

rebalance_on = "quarters", training_period = 36)

The class of the bt_maxret object is optimize.portfolio.rebalance, which is essentially a list object with
the following components names:

names(bt_maxret)

#> [1] "portfolio" "R" "call" "elapsed_time" "opt_rebalancing"

The most important is opt_rebalancing, which itself is a list with

names(bt_maxret$opt_rebalancing)

#> [1] "2019-06-30" "2019-09-30" "2019-12-31" "2020-03-31" "2020-06-30" "2020-09-30" "2020-12-31" "2021-03-31"

We see that the names of opt_rebalancing are the dates on which the portfolio is rebalanced, and for each
date the contents of opt_rebalancing are the same as a single portfolio optimization in Section 3.2. Note
that the first rebalance date 2017-12-31 is month 60 after the initial ret_edhec date of 2014-12-31. Then
each subsequent rebalance date is 3 months later, except the last date 2019-11-30 is only 2 months later
because it is the final date.

4 Minimizing Variance

The objective to minimize variance is a quadratic problem of the form:

min
w

w
′Σw

subject to portfolio managers’ desired constraints, where Σ is the estimated covariance matrix of asset returns
and w is the vector of portfolio weights. This is a quadratic optimization problem.

4.1 Global Minimum Variance Portfolio

4.1.1 Portfolio Object

In this example, the only constraint specified is the full investment constraint, and we will compute the
weights of a global minimum variance (GMV) portfolio.

# Create portfolio object

pspec_gmv <- portfolio.spec(assets = fund_edhec)

# Add full-investment constraint

pspec_gmv <- add.constraint(pspec_gmv, type = "full_investment")
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# Add objective of minimizing variance

pspec_gmv <- add.objective(portfolio = pspec_gmv, type = "risk", name = "var")

4.1.2 Optimization

opt_gmv <- optimize.portfolio(ret_edhec, pspec_gmv, optimize_method = "CVXR")

opt.outputMvo(opt_gmv, ret_edhec, digits =3)

#> $Wgts

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> -0.146 -0.034 -0.052 -0.161 0.004 -0.640 0.358 0.099 0.322 0.242 1.121 0.032 -0.146

#>

#> $Mean

#> [1] 0.029

#>

#> $StdDev

#> [1] 0.013

#>

#> $SR

#> [1] 2.224

As this example illustrates, a global minimum variance portfolio with only a full-investment constraint can
have short positions.

4.2 Long-Only and Group Constrained Minimum Variance Portfolio

Various linear inequality constraint, such as box constraints, group constraints and a target mean return
constraint, can be used with GMV portfolio construction. Here we demonstrate the case of a linearly
constrained groups weights minimum variance portfolio, where the constraints are on the sum of the weights
in each group.

# portfolio object

pspec_gmv <- add.constraint(pspec_gmv, type = "long_only")

pspec_gmvGroup <- add.constraint(pspec_gmv, type = "group",

groups = list(groupA=1,

groupB=c(2:12),

groupC=13),

group_min = c(0, 0.05, 0.05),

group_max = c(0.4, 0.8, 0.5))

pspec_gmvGroup <- add.constraint(pspec_gmvGroup, type = "return", return_target = 0.003)

pspec_gmvGroup

#> **************************************************

#> PortfolioAnalytics Portfolio Specification

#> **************************************************

#>

#> Call:

#> portfolio.spec(assets = fund_edhec)

#>

#> Number of assets: 13

#> Asset Names

#> [1] "CA" "CTAG" "DS" "EM" "EMN" "ED" "FIA" "GM" "LSE" "MA"

#> More than 10 assets, only printing the first 10

#>

#> Constraints

#> Enabled constraint types

9



#> - full_investment

#> - long_only

#> - group

#> - return

#>

#> Objectives:

#> Enabled objective names

#> - var

# optimization

opt_gmvGroup <- optimize.portfolio(ret_edhec, pspec_gmvGroup, optimize_method = "CVXR")

opt.outputMvo(opt_gmvGroup, ret_edhec, digits =3)

#> $Wgts

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.150 0.039 0.000 0.000 0.327 0.000 0.368 0.000 0.000 0.000 0.000 0.066 0.050

#>

#> $Mean

#> [1] 0.036

#>

#> $StdDev

#> [1] 0.027

#>

#> $SR

#> [1] 1.333

The optimal weights show that the first group constraint is not binding, but the second one is binding with
FIA plus MA at the upper bound of 0.8, and the third group constraint is binding at the lower bound with
FF.

The use of an alternative to the CVXR default OSQP solver will typically result in the same minimum variance
weights to many significant digits. For example, if we use optimize_method = c("CVXR", "ECOS"), we
result in the same optimal weights to 4 significant digits.

opt_gmvGroup_ecos <- optimize.portfolio(ret_edhec, pspec_gmvGroup, optimize_method = c("CVXR", "ECOS"))

opt.outputMvo(opt_gmvGroup_ecos, ret_edhec, digits =3)

#> $Wgts

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.150 0.039 0.000 0.000 0.327 0.000 0.368 0.000 0.000 0.000 0.000 0.066 0.050

#>

#> $Mean

#> [1] 0.036

#>

#> $StdDev

#> [1] 0.027

#>

#> $SR

#> [1] 1.333

opt_gmvGroup$solver

#> [1] "OSQP"

opt_gmvGroup_ecos$solver

#> [1] "ECOS"
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5 Maximizing Quadratic Utility

Here we will compute a maximum quadratic utility portfolio, which is of course a minimum variance portfolios.
The quadratic utility function is QU(w) = µp − λσ2

p = µ
′
w − λw

′Σw:

max
w

µ
′
w − λw

′Σw

s.t. Aw ≥ b

Here µ is the vector of estimated mean asset returns, 0 ≤ λ < inf is the risk aversion parameter, Σ is the
estimated covariance matrix of asset returns, and w is the vector of weights. Quadratic utility maximizes
return while penalizing variance risk. The risk aversion parameter λ controls how much portfolio variance is
penalized, and when λ = 0 it becomes a maximum mean return problem of Section 3, and as λ → inf, it
becomes the global minimum variance problem of Section 4.

5.1 Portfolio Object

The logic of PortfolioAnalytics is such that when objectives of both return and risk are specified, the portfolio
will be a maximum quadratic utility portfolio, and this is reflected in the quadratic utility specification object
pspec_qu below, where we use a risk aversion parameter value λ = 20 by setting risk_aversion = 0.

pspec_qu <- portfolio.spec(assets = fund_edhec)

pspec_qu <- add.constraint(pspec_qu, type = "full_investment")

pspec_qu <- add.constraint(pspec_qu, type = "long_only")

# Add objectives

pspec_qu <- add.objective(portfolio = pspec_qu, type = "return", name = "mean")

pspec_qu <- add.objective(portfolio = pspec_qu, type = "risk", name = "var",

risk_aversion = 20)

5.2 Optimization

Use of optimize.portfolio with optimize_method = "CVXR" and the above pspec_qu gives the following
result.

opt_qu <- optimize.portfolio(ret_edhec, pspec_qu, optimize_method = "CVXR")

opt.outputMvo(opt_qu, ret_edhec, digits =3)

#> $Wgts

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.195 0.000 0.000 0.000 0.000 0.000 0.639 0.166 0.000 0.000 0.000 0.000 0.000

#>

#> $Mean

#> [1] 0.054

#>

#> $StdDev

#> [1] 0.031

#>

#> $SR

#> [1] 1.756

6 Minimizing Expected Shortfall

The Expected Shortfall (ES) of a portfolio P with return rP is the expected value of the portfolio return
conditioned on the return being larger than the value-at-risk (VaR) of the portfolio. Taking loss as a positive
quantity by using −rP , the ES of a portfolio is

ESγ(rP ) = ESγ(w) = −E(rP |rP ≤ qγ(w))

= −E(w′
r|w′

r ≤ qγ(w))
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where qγ is γ-quantile, with γ an upper tail probability of the distribution of −rP . The negative of qγ is the
VaR of −rP . Often the γ values 0.01 or 0.05 are used, in which cases ES is referred to as a “tail risk” measure.
But one could also choose γ = 0.25 or γ = 0.5, in which case ES is just a “downside risk” measure. If a user
specifies a value γ > 0.5, then they are specifying the “confidence level” of the VaR, which is typically 0.95 or
0.99, and in such cases PortfolioAnalytics will take 1 − γ as the tail probability.

It was shown by Rockafellar, Uryasev, et al. (2000), who used the term conditional value-at-risk (CVaR) for
what is now called ES, that a minimum ES (MES) portfolio is the result of the minimization:

min
w

ESγ(w) = min
w,t

Fγ(w, t)

where

Fγ(w, t) = −t +
1

γ

∫

[t − w
′
r]+ · f(r)dr

.

Since the above optimization does not specify a portfolio mean return constraint, it is often referred to as a
global minimum expected shortfall (GMES) portfolio.

Assuming that nγ is an integer, the empirical data-based version of the above formula is

F̂γ(w, t) = −t +
1

nγ

n
∑

i=1

[t − w
′
ri]

+

and when nγ, it is replaced by the smallest integer greater than nγ otherwise. The positive part function,
[t − w

′
ri]

+, can easily be converted to a collection of linear constraints, hence, the minimization of ES is
equivalent to solving a linear programming problem.

NOTE: PortfolioAnalytics uses p in place of γ, as the the example below.

6.1 GMES Portfolio Specification Object

The PortfolioAnalytics default tail probability for MES portfolios is 0.05, but the user may specify alternative
probabilities, as in the pspec_es_1 code line below.

pspec_es <- portfolio.spec(assets = fund_edhec)

pspec_es <- add.constraint(pspec_es, type = "full_investment")

pspec_es <- add.constraint(pspec_es, type = "long_only")

# Add objective of minimizing ES by using the default gamma, which means tail probability 0.05

pspec_gmes <- add.objective(portfolio = pspec_es, type = "risk", name = "ES")

# Add objective of minimizing ES by using the specific gamma=0.1

pspec_gmes_1 <- add.objective(portfolio = pspec_es, type = "risk", name = "ES",

arguments = list(p=0.1))

6.2 GMES Optimization

We show below the computation of long-only GMES portfolios for tail probabilities 0.05 and 0.10.

# GMES with default gamma=0.05

opt_gmes <- optimize.portfolio(ret_edhec, pspec_gmes, optimize_method = "CVXR")

opt_gmes

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_gmes, optimize_method = "CVXR")

#>
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#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0444 0.0000 0.0000 0.5111 0.0000 0.0680 0.1689 0.0000 0.0000 0.0000 0.2076 0.0000

#>

#> Objective Measures:

#> ES

#> 0.01281

# GMES with specific gamma=0.1

opt_gmes_1 <- optimize.portfolio(ret_edhec, pspec_gmes_1, optimize_method = "CVXR")

opt_gmes_1

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_gmes_1, optimize_method = "CVXR")

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0000 0.0000 0.0000 0.3202 0.0000 0.5524 0.0556 0.0000 0.0000 0.0000 0.0718 0.0000

#>

#> Objective Measures:

#> ES

#> 0.009039

It is interesting to see that both of the above two GMES portfolios have the same non-zero weights, but the
those non-zero weights are somewhat different for the two portfolios.

NOTE: Since PortfolioAnalytics does not yet have an MES type replacement for opt.outputMvo, we just
printed the objects opt_gmes and opt_gmes_1.

7 Minimizing Portfolio Coherent Second Moment

Here we describe the PortfolioAnalytics capability to compute portfolios that have a minimum coherent

second moment (MCSM) risk. The coherent second moment (CSM) risk measure is a special case of higher
moment coherent risk measures introduced by Krokhmal (2007).

A MCSM tail probability γ portfolio is a solution to the data-based version of the optimization problem

min
w,t

−t + γ−1||(t − w
′
r)+||2

where ||X+||2 is the square root of the expected value of the square of the random variable X+. The
data-based version is obtained by replacing the expected value with the sample average across portfolio
returns w

′
ri.

The MCSM optimization problem is a convex problem with a second-order cone constraint, which is referred
to as a second-order cone programming (SOCP) problem. PortfolioAnalytics solves this problem as follows,
by using CVXR with with the SCS solver tailored to this particular SOCP problem.

7.1 Portfolio Specification Object

An MCSM portfolio for the ret_edhec data, without a mean return constraint is based on the following mcsm
specification object:
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pspec_csm <- portfolio.spec(assets = fund_edhec)

pspec_csm <- add.constraint(pspec_csm, type = "full_investment")

pspec_csm <- add.constraint(pspec_csm, type = "long_only")

# Add objective of minimizing CSM

pspec_mcsm <- add.objective(portfolio = pspec_csm, type = "risk", name = "CSM",

arguments = list(p=0.05))

7.2 Optimization

opt_mcsm <- optimize.portfolio(ret_edhec, pspec_mcsm, optimize_method = "CVXR")

opt_mcsm

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_mcsm, optimize_method = "CVXR")

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0250 0.0000 0.0000 0.4609 0.0000 0.0246 0.2798 0.0000 0.0000 0.0000 0.2097 0.0000

#>

#> Objective Measures:

#> CSM

#> 0.01298

It is interesting to see that the above tail probability 5% MCSM portfolio has the same non-zero weights
as the tail probability 5% MES portfolio, but the non-zero weights are noticeably different: to 3 digits the
5% MES weights for (EMN, FIA, MA, SS) are (0.089, 0.418, 0.435, 0.058) while those for the 5% MCSM
are (0.197, 0.514, 0.226, 0.063), e.g., the EMN weight has more than doubled, and the MA weight has been
reduced by almost one-half.

NOTE: Since PortfolioAnalytics does not yet have an MCSM type replacement for opt.outputMvo, we just
printed the objects opt_mcsm.

8 Maximizing Mean Return Per Unit Risk

There are three basic types of risk measures: variance or standard deviation, ES and CSM. The problem of
maximizing mean return per unit risk can be solved in a clever way by minimizing risk with a target return
constraint, as is described below. For all three of these types of problems, both return and risk objectives
should be used in PortfolioAnalytics. Then for each of these three optimization problems an appropriate
argument needs to be given to the optimize.portfolio to specify the type of problem, as we describe below.

8.1 Maximum Sharpe Ratio Portfolios

The Sharpe Ratio of a random return rP of a portfolio P is defined as:

E(rP ) − rf
√

V ar(rP )
.

where V ar(rP ) is a quadratic form in the portfolio weights and the asset returns covariance matrix. As in the
general case of minimizing portfolio variance subject to linear equality and inequality constraints, a portfolio
manager needs to maximize the Sharpe ratio subject to such constraint.
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While maximization of the Sharpe ratio subject to such constraints, there is a well-know method of converting
it to a quadratic programming, which is for example described in Section 6.4 of Cornuejols, Pena, and
Tutuncu (2018) for the case of general linear equality and inequality constraints. For the case of fully-invested
long-only portfolios, their method is to solve the optimization problem

minimize
w

w′Σw

s.t. (µ̂ − rf 1)T w = 1

1T w = κ

κ > 0

thereby obtaining a solution(w∗, κ∗) with k∗ > 0, and computing the maximized Sharpe ratio as w̃∗ = w∗/κ∗.

When creating the portfolio, the argument maxSR = TRUE should be specified in the function
optimize.portfolio to distinguish the quadratic utility maximization problem. NOTE: When
both mean and var/StdDev objectives are included in the portfolio specification object, optimize.portfolio

maximizes quadratic utility.

# Create portfolio object

pspec_sr <- portfolio.spec(assets = fund_edhec)

## Add constraints of maximizing Sharpe Ratio

pspec_sr <- add.constraint(pspec_sr, type = "full_investment")

pspec_sr <- add.constraint(pspec_sr, type = "long_only")

## Add objectives of maximizing Sharpe Ratio

pspec_sr <- add.objective(pspec_sr, type = "return", name = "mean")

pspec_sr <- add.objective(pspec_sr, type = "risk", name = "var")

# Optimization

optimize.portfolio(ret_edhec, pspec_sr, optimize_method = "CVXR", maxSR = TRUE)

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_sr, optimize_method = "CVXR",

#> maxSR = TRUE)

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8046 0.1954 0.0000 0.0000 0.0000 0.0000 0.0000

#>

#> Objective Measures:

#> mean

#> 0.004139

#>

#>

#> StdDev

#> 0.007957

#>

#>

#> Sharpe Ratio

#> 0.5202
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8.2 Maximum ES ratio Portfolios

The ES ratio(ESratio), which is also called STARR in PortfolioAnalytics, is defined as:

E(rP ) − rf

ESγ(rP )

Similar to constructing a maximum Sharpe Ratio, the problem of maximizing the ES ratio can be formulated
as a constrained ES minimization problem, which has been implemented in optimize.portfolio.

When creating the portfolio specification object for maximizing the ES ratio, both the return and ES objectives
must be specified, and ESratio = TRUE is the default. If ESratio = FALSE is used, the action will be to
minimize ES, ignoring the return objective. We note that the argument ESratio = TRUE is equivalent to
maxSTARR = TRUE, which is used in other vignettes.

# Create portfolio object

pspec_ESratio <- portfolio.spec(assets = fund_edhec)

## Add constraints of maximizing return per unit ES

pspec_ESratio <- add.constraint(pspec_ESratio, type = "full_investment")

pspec_ESratio <- add.constraint(pspec_ESratio, type = "long_only")

## Add objectives of maximizing return per unit ES

pspec_ESratio <- add.objective(pspec_ESratio, type = "return", name = "mean")

pspec_ESratio <- add.objective(pspec_ESratio, type = "risk", name = "ES", arguments = list(p=0.05))

# Optimization

optimize.portfolio(ret_edhec, pspec_ESratio, optimize_method = "CVXR", ESratio = TRUE)

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_ESratio,

#> optimize_method = "CVXR", ESratio = TRUE)

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6713 0.3287 0.0000 0.0000 0.0000 0.0000 0.0000

#>

#> Objective Measures:

#> mean

#> 0.004152

#>

#>

#> ES

#> 0.01604

#>

#>

#> ES ratio

#> 0.2588

8.3 Maximum CSM ratio Portfolios

The CSM ratio of a random return rP of a portfolio P is defined as:

E(rP ) − rf

CSMγ(rP )
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Similar to maximizing Sharpe Ratio, the problem of maximizing a portfolio’s CSM ratio can be formulated
as a CSM minimization problem.

When creating the portfolio, both return and CSM objectives must be provided. The argument CSMratio

= is used to specify this optimization problem, and the default value is CSMratio = TRUE. If CSMratio =

FALSE, the action will be to minimize CSM, ignoring the return objective.

# Create portfolio object

pspec_CSMratio <- portfolio.spec(assets = fund_edhec)

## Add constraints of maximizing return per unit CSM

pspec_CSMratio <- add.constraint(pspec_CSMratio, type = "full_investment")

pspec_CSMratio <- add.constraint(pspec_CSMratio, type = "long_only")

## Add objectives of maximizing return per unit CSM

pspec_CSMratio <- add.objective(pspec_CSMratio, type = "return", name = "mean")

pspec_CSMratio <- add.objective(pspec_CSMratio, type = "risk", name = "CSM",

arguments = list(p=0.05))

# Optimization

optimize.portfolio(ret_edhec, pspec_CSMratio, optimize_method = "CVXR", CSMratio = TRUE)

#> ***********************************

#> PortfolioAnalytics Optimization

#> ***********************************

#>

#> Call:

#> optimize.portfolio(R = ret_edhec, portfolio = pspec_CSMratio,

#> optimize_method = "CVXR", CSMratio = TRUE)

#>

#> Optimal Weights:

#> CA CTAG DS EM EMN ED FIA GM LSE MA RV SS FF

#> 0.0000 0.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.9277 0.0000 0.0000 0.0000 0.0000 0.0000

#>

#> Objective Measures:

#> mean

#> 0.004088

#>

#>

#> CSM

#> 0.02559

#>

#>

#> CSM ratio

#> 0.1598

9 Backtest Performance of MCSM, MES and MV Portfolios

CVXR solvers provide the second-order cone problem (SOCP) optimization capability required to compute
MCSM portfolios. In this Section we use this capability first to compute MCSM portfolios, and compare their
performance with that of MES and MV portfolios, which we do by computing and plotting out-of-sample
cumulative gross returns (CGR). Then we do likewise for maximum CSMratio, MESratio and Sharpe ratio
portfolios.

For these performance comparisons, we use CRSP® daily returns data from the PCRA package stocksCRSPdaily

data set.2 Specifically, the data set consists of daily returns of the 30 smallcap stocks with the largest market

2CRSP® stands for the Center for Research in Security Prices, LLC.
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capitalizations among the 106 smallcap stocks in stocksCRSPdaily, from inception in 1993 until 2015. This
the name of this data set is retD_CRSP.

# Get daily returns of the 30 smallcap stocks

library(PCRA)

library(PortfolioAnalytics)

library(xts)

stocksCRSPdaily <- getPCRAData(dataset = "stocksCRSPdaily")

smallcapTS <- selectCRSPandSPGMI(

periodicity = "daily",

stockItems = c("Date", "TickerLast", "CapGroupLast", "Return"),

factorItems = NULL,

subsetType = "CapGroupLast",

subsetValues = "SmallCap",

outputType = "xts")

# find top 30 small cap stocks based on the market capitalization

smallcapDT <- factorsSPGMI[CapGroupLast == "SmallCap"]

scSize <- smallcapDT[, mean(LogMktCap), by = "TickerLast"]

names(scSize)[2] <- "Size"

scSize <- scSize[order(scSize$Size, decreasing = TRUE),]

sc30largest <- scSize[,TickerLast][1:30]

# daily return of top 30 stocks

retD_CRSP <- smallcapTS[ , sc30largest]

The tickers of the stocks in retD_CRSP are”

names(retD_CRSP)

#> [1] "AVP" "PBI" "ITT" "MUR" "GHC" "THC" "AMD" "FMC" "BMS" "DDS" "R" "J" "RDC" "DBD"

# monthly return of top 30 stocks needed for monthly rebalancing

ep <- endpoints(retD_CRSP, on= "months", k=1)

prod1 <- function(x){apply(x+1, 2, prod)}

retM_CRSP <- period.apply(retD_CRSP, INDEX = ep, FUN = prod1) - 1

The back-testing here is relatively slow, and takes most of the time in this Vignette. To give a sense of typical
times, we provide the computing times for ad MacBook Air with M2, 8-Core CPU, 8-Core GPU and 16-core
Neural Engine. The back-testing in Sections 9.1 and Section 9.2 takes about 3 minutes each to run, and the
average running time for generating efficient frontiers in Section 9.3 is about 30 seconds.

9.1 Backtesting of GMV, GMES, GMCSM Portfolios

Here we use the daily returns data set retD_CRSP to generate comparative back-tests of Global Minimum
Variance (GMV), Global Minimum ES (GMES) and Global Minimum CSM (GMCSM) portfolios. The strategy
is to re-balance the portfolio at the end of each month with a rolling window of 500 days (approximately
two years). We compare the performances of the portfolios with plots of their cumulative gross returns and
maximum drawdowns.

The results are shown in Figure 9.1.

# Generate GMV, GMES and GMCSM portfolios

pspec_sc <- portfolio.spec(assets = sc30largest)

pspec_sc <- add.constraint(pspec_sc, type = "full_investment")

pspec_sc <- add.constraint(pspec_sc, type = "long_only")
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pspec_GMV <- add.objective(pspec_sc, type = "risk", name = "var")

pspec_GMES <- add.objective(pspec_sc, type = "risk", name = "ES")

pspec_GMCSM <- add.objective(pspec_sc, type = "risk", name = "CSM")

# Optimize with 500-Day Rolling Window and Monthly Rebalancing

bt.GMV <- optimize.portfolio.rebalancing(retD_CRSP, pspec_GMV,

optimize_method = "CVXR",

rebalance_on = "months",

rolling_window = 500)

bt.ES <- optimize.portfolio.rebalancing(retD_CRSP, pspec_GMES,

optimize_method = "CVXR",

rebalance_on = "months",

rolling_window = 500)

bt.CSM <- optimize.portfolio.rebalancing(retD_CRSP, pspec_GMCSM,

optimize_method = "CVXR",

rebalance_on = "months",

rolling_window = 500)

# Extract time series of portfolio weights

wts.GMV <- extractWeights(bt.GMV)

wts.GMV <- wts.GMV[complete.cases(wts.GMV),]

wts.ES <- extractWeights(bt.ES)

wts.ES <- wts.ES[complete.cases(wts.ES),]

wts.CSM <- extractWeights(bt.CSM)

wts.CSM <- wts.CSM[complete.cases(wts.CSM),]

# Compute cumulative returns of three portfolios

GMV <- Return.rebalancing(retM_CRSP, wts.GMV)

ES <- Return.rebalancing(retM_CRSP, wts.ES)

CSM <- Return.rebalancing(retM_CRSP, wts.CSM)

# Combine GMV, ES and CSM portfolio cumulative returns

ret.comb <- na.omit(merge(GMV, ES, CSM, all=F))

names(ret.comb) <- c("GMV", "GMES", "GMCSM")

backtest.plot(ret.comb, colorSet = c("black", "darkblue", "darkgreen"), ltySet = c(3, 2, 1))
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Fig 9.1 Cumulative Gross Returns and Maximum Drawdowns of GMES, GMCSM, and GMV Portfolios

9.2 Backtesting Maximum SR, ESratio, and CSMratio Portfolios

Here we follow the same methodology as in the previous subsection, except now our optimal portfolios are
the maximum return-to-risk ratio portfolios maxSR, maxESration, and maxCSMratio. The results are shown
in Figure 9.2.

# Generate Sr, ESr and CSMr portfolios

pspec_sc_ratio <- add.objective(pspec_sc, type = "return", name = "mean")

pspec_Sr <- add.objective(pspec_sc_ratio, type = "risk", name = "var")

pspec_ESr <- add.objective(pspec_sc_ratio, type = "risk", name = "ES")

pspec_CSMr <- add.objective(pspec_sc_ratio, type = "risk", name = "CSM")

# Optimize with 500-Day Rolling Window and Monthly Rebalancing

bt.Sr <- optimize.portfolio.rebalancing(retD_CRSP, pspec_Sr, maxSR = TRUE,

optimize_method = "CVXR",

rebalance_on = "months",

rolling_window = 500)

bt.ESr <- optimize.portfolio.rebalancing(retD_CRSP, pspec_ESr,

optimize_method = "CVXR",

rebalance_on = "months",

rolling_window = 500)

bt.CSMr <- optimize.portfolio.rebalancing(retD_CRSP, pspec_CSMr,

optimize_method = "CVXR",
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rebalance_on = "months",

rolling_window = 500)

# Extract time series of portfolio weights

wts.Sr <- extractWeights(bt.Sr)

wts.Sr <- wts.Sr[complete.cases(wts.Sr),]

wts.ESr <- extractWeights(bt.ESr)

wts.ESr <- wts.ESr[complete.cases(wts.ESr),]

wts.CSMr <- extractWeights(bt.CSMr)

wts.CSMr <- wts.CSMr[complete.cases(wts.CSMr),]

# Compute cumulative returns of three portfolios

Sr <- Return.rebalancing(retM_CRSP, wts.Sr, rebalance_on = "months")

ESr <- Return.rebalancing(retM_CRSP, wts.ESr, rebalance_on = "months")

CSMr <- Return.rebalancing(retM_CRSP, wts.CSMr, rebalance_on = "months")

# Combine Sr, ESr and CSMr portfolio cumulative returns

ret.comb.ratios <- na.omit(merge(Sr, ESr, CSMr, all=F))

names(ret.comb.ratios) <- c("Sharpe ratio", "ES ratio", "CSM ratio")

backtest.plot(ret.comb.ratios, colorSet = c("black", "darkblue", "darkgreen"), ltySet = c(3, 2, 1))
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Fig 9.2 Cumulative Gross Returns and Maximum Drawdowns of maxSR, maxESratio, and maxCSMratio
Portfolios.
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10 Multiple Efficient Frontiers of Equal Risk Type Portfolios

In this Section we illustrate computation of efficient frontiers for mean-StdDev, mean-ES and mean-CSM
portfolios for the cases: (1) Single portfolios, and (2) Multiple portfolios of the same risk type.

For this purpose, we use the data set retM_CRSP_5 that contains monthly returns of 30 stocks from 2011-01
to 2015-12. These monthly returns are obtained from the Section 9 daily returns retD_CRSP for 1993 to 2015,
using the following code.

# monthly return of top 30 stocks in last 5 years

ep <- endpoints(retD_CRSP, on= "months", k=1)

prod1 <- function(x){apply(x+1, 2, prod)}

retM_CRSP <- period.apply(retD_CRSP, INDEX = ep, FUN = prod1) - 1

retM_CRSP_5 <- tail(retM_CRSP, 60)

The following code line plots the retD_CRSP returns time series in Figure 10.1.

tsPlotMP(retM_CRSP_5, layout = c(2,15), yname = "RETURNS",

stripText.cex = 0.7, axis.cex = 0.7)
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Fig 10.1 Monthly Returns of 30 Smallcap Stocks for 2011-2015.

The functions create.EfficientFrontier and chart.EfficientFrontier are the main functions for this
Section. The first of these two functions computes portfolios efficient frontier mean return and risk values,
where the portfolio is specified to have any one of a variety of weights constraints, and risk types. Then
the chart.EfficientFrontier uses the mean return and risk values to plot the efficient frontier, or a small
set of efficient frontiers corresponding to different portfolio specification. The following subsection provide
illustrative examples.
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10.1 Mean-Variance Efficient Frontiers

The code chunk below illustrated use the above two functions to create, and plot in Figure 10.2, the efficient
frontier of a long-only minimum variance (MV) portfolios for the retM_CRSP_5 monthly returns of 30 stocks
for 2011 to 2015. The straight line tangent to the efficient frontier has a slope equal to the maximum
achievable Sharpe ratio (SR) value of 0.416. The smallest mean-StdDev combination, indicated by a sold dot,
is that of a global minimum variance (GMV) portfolio.

# mean-var efficient frontier

pspec_sc <- portfolio.spec(names(retM_CRSP_5))

pspec_sc <- add.constraint(pspec_sc, type = "full_investment")

pspec_sc <- add.constraint(pspec_sc, type = "long_only")

meanvar.ef <- create.EfficientFrontier(R = retM_CRSP_5,

portfolio = pspec_sc, type = "mean-StdDev")

chart.EfficientFrontier(meanvar.ef, match.col = "StdDev", type = "l",

chart.assets = FALSE, main = NULL,

RAR.text = "Max Sharpe ratio", pch = 1)
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Fig 10.2 MV Efficient Frontier of Long-Only Portfolio for Monthly CRSP Returns 2011-2015.

The maximum Sharpe ratio in Figure 10.2 is computed automatically by the chart.EfficientFrontier

function. One can check this value by computing the maximum Sharpe ratio on the efficient frontier, using a
fairly large set of efficient frontier mean and standard deviation values, with the following code.

meanvar.ef$frontier[, 1:2]

#> mean StdDev

#> result.1 0.01141173 0.03344369

#> result.2 0.01215050 0.03355371

#> result.3 0.01288927 0.03399953

#> result.4 0.01362804 0.03482453
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#> result.5 0.01436681 0.03591935

#> result.6 0.01510558 0.03717268

#> result.7 0.01584435 0.03856204

#> result.8 0.01658312 0.04007328

#> result.9 0.01732189 0.04169314

#> result.10 0.01806066 0.04340948

#> result.11 0.01879943 0.04521131

#> result.12 0.01953820 0.04709002

#> result.13 0.02027697 0.04913130

#> result.14 0.02101574 0.05153252

#> result.15 0.02175451 0.05463076

#> result.16 0.02249328 0.05854817

#> result.17 0.02323205 0.06313372

#> result.18 0.02397082 0.06825285

#> result.19 0.02470959 0.07379462

#> result.20 0.02544836 0.07967088

#> result.21 0.02618713 0.08581858

#> result.22 0.02692591 0.09219807

#> result.23 0.02766468 0.09876525

#> result.24 0.02840345 0.10549834

#> result.25 0.02914222 0.11240968

sr <- meanvar.ef$frontier[, 1]/meanvar.ef$frontier[, 2]

maximumSR <- max(sr)

meanMaxSR <- meanvar.ef$frontier[, 1][sr == max(sr)]

stdevMaxSR <- meanvar.ef$frontier[, 2][sr == max(sr)]

dat <- (round(c(maximumSR, meanMaxSR, stdevMaxSR), 3))

dat <- data.frame(dat)

names(dat) <- NULL

row.names(dat) <- c("maximum SR", "maxSRport Mean", "maxSRport Stdev")

dat

#>

#> maximum SR 0.416

#> maxSRport Mean 0.018

#> maxSRport Stdev 0.043

On the other hand, recall that in Section 8.1 we discussed a direct method of computing the maximum
Sharpe ratio portfolio in Section 8.1, and it is of interest to check how accurate the above search method is
for computing the maximum Sharpe ratio. The following code shows that the above computation of the
maximum Sharpe ratio agrees with the direct method two 3 significant digits.

# Mean-StdDev Efficient Frontier

pspec_MV <- add.objective(pspec_sc, type = "risk", name = "var")

pspec_MV <- add.objective(portfolio = pspec_MV, type = "return", name = "mean")

opt_MV <- optimize.portfolio(retM_CRSP_5, pspec_MV, optimize_method = "CVXR", maxSR = TRUE)

opt.outputMvo(opt_MV, retM_CRSP_5, annualize = FALSE, digits = 3)

#> $Wgts

#> AVP PBI ITT MUR GHC THC AMD FMC BMS DDS R J RDC DBD BC EAT DLX

#> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.075 0.020 0.000 0.000 0.000 0.000 0.000 0.317 0.072

#>
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#> $Mean

#> [1] 0.018

#>

#> $StdDev

#> [1] 0.044

#>

#> $SR

#> [1] 0.416

One can easily create and plot multiple overlaid mean-StdDev efficient frontiers for a set of two or more
constraints. The following code does so for a set of constraints consisting of a long-only constraint, a long
box constraint, and a long-short box constraint, and the results are shown in Figure 10.3.

pspec_sc_init <- portfolio.spec(assets = sc30largest)

pspec_sc_init <- add.constraint(pspec_sc_init, type = "full_investment")

# Portfolio with long-only constraints

pspec_sc_lo <- add.constraint(portfolio = pspec_sc_init, type = "long_only")

# Portfolio with long-only box constraints

pspec_sc_lobox <- add.constraint(portfolio = pspec_sc_init, type = "box",

min = 0.02, max = 0.1)

# Portfolio with long-short box constraints

pspec_sc_lsbox <- add.constraint(portfolio = pspec_sc_init, type = "box",

min = -0.1, max = 0.1)

# Combine the portfolios into a list

portf_list <- combine.portfolios(list(pspec_sc_lo, pspec_sc_lobox, pspec_sc_lsbox))

# Plot the efficient frontier overlay of the portfolios with varying constraints

legend_labels <- c("Long Only", "Long Only Box (0.02,0.1)", "Long Short Box (-0.01,0.1)")

chart.EfficientFrontierOverlay(R = retM_CRSP_5, portfolio_list = portf_list,

type = "mean-StdDev", match.col = "StdDev",

legend.loc = "bottomright", chart.assets = FALSE,

legend.labels = legend_labels, cex.legend = 1,

labels.assets = FALSE, lwd = c(3,3,3),

col = c("black", "dark red", "dark green"),

main = NULL,

xlim = c(0.03, 0.11), ylim = c(0.005, 0.035))
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Fig 10.3 MV Efficient Frontiers with Long-Only, Long Box and Long-Short Box Constraints for Monthly
CRSP Returns 2011-2015.

The plot clearly shows that the long-short box constrained portfolio has the best performance, though it also
requires shorting which may not be possible for many real-world portfolios.

10.2 Mean-ES Efficient Frontiers

Figure 10.4 displays the minimum ES (MES) efficient frontier for a long-only portfolio of the monthly CRSP
returns from 2011 to 2015. The straight line tangent to the efficient frontier has a slope equal to the maximum
achievable mean return-to-MES ratio of 0.264. The smallest mean-ES combination, indicated by a sold dot,
is that of a global minimum ES (GMES) portfolio.

# Mean-ES Efficient Frontier

meanes.ef <- create.EfficientFrontier(R = retM_CRSP_5, portfolio = pspec_sc, type = "mean-ES")

chart.EfficientFrontier(meanes.ef, match.col = "ES", type = "l",

chart.assets = FALSE, main = NULL,

RAR.text = "Max ES ratio", pch = 1)

26



ES

M
ea

n
Max ES ratio = 0.264
rf = 0

0.00 0.05 0.10 0.15

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Fig 10.4 MES Efficient Frontier of Long-Only Portfolio for Monthly CRSP Returns 2011-2015.

Figure 10.5 shows the results of using the following code to generate overlaid MES efficient frontiers for the
Long-Only, Long Box, and Long-Short Box constraints used for Figure 10.3.

legend_labels <- c("Long Only ES (p=0.05)",

"Long Only Box ES (p=0.05)", "Long Short Box ES (p=0.05)")

chart.EfficientFrontierOverlay(R = retM_CRSP_5, portfolio_list = portf_list,

type = "mean-ES", match.col = "ES",

legend.loc = "bottomright", chart.assets = FALSE,

legend.labels = legend_labels, cex.legend = 1,

labels.assets = FALSE, lwd = c(3,3,3),

col = c("black", "dark red", "dark green"),

main = NULL,

xlim = c(0.03, 0.17), ylim = c(0.005, 0.035))
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Fig 10.5 MES Efficient Frontiers for the Long-0nly, Long Box and Long-Short Box Constraints for Monthly
CRSP Returns 2011-2015.

For each mean-ES efficient frontier, the left endpoint is the global minimum ES and its corresponding mean
return, and the right endpoint is the maximum mean return and and its corresponding ES.

Note that the ordering of the three constrained portfolio efficient frontiers in Figure 10.5 is the same as for
the mean-StdDev efficient frontiers in Figure 10.3 based the same constraints.

Relative to the Long-Only efficient frontier: (a) The Long Box constraint is quite severe, and results in
a very limited range pf return and risk possibilities, and (b) The Long-Short Box Constraint results in a
substantially better range of return possibilities. However, short positions entail costs and risks that many
investors will avoid.

Finally, one can also create plots of overlaid MES efficient frontiers for different tail probability values γ, as is
illustrated by following code and Figure 10.6:

# Create long-only ES portfolios with different tail probabilities

ES_05 <- add.objective(portfolio = pspec_sc_lo, type = "risk", name = "ES",

arguments = list(p=0.05))

ES_10 <- add.objective(portfolio = pspec_sc_lo, type = "risk", name = "ES",

arguments = list(p=0.1))

ES_15 <- add.objective(portfolio = pspec_sc_lo, type = "risk", name = "ES",

arguments = list(p=0.15))

# Combine the portfolios into a list

portf_ES_list <- combine.portfolios(list(ES_05, ES_10, ES_15))

# Plot the efficient frontier overlay of the portfolios with varying tail probabilities

legend_ES_labels <- c("ES (p=0.05)", "ES (p=0.1)", "ES (p=0.15)")

chart.EfficientFrontierOverlay(R = retM_CRSP_5, portfolio_list = portf_ES_list,
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type = "mean-ES", match.col = "ES",

legend.loc = "bottomright", chart.assets = FALSE,

legend.labels = legend_ES_labels, cex.legend = 1,

labels.assets = FALSE, lwd = c(3,3,3),

col = c("black", "dark red", "dark green"),

main = NULL,

xlim = c(0.035, 0.165), ylim = c(0.005, 0.03))
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Fig 10.6 MES Efficient Frontiers Based on Tail Probabilities 0.05, 0.10, 0.15, for Monthly CRSP Returns
2011-2015.

For MES portfolios with equal mean returns, the one with a larger tail probability will have better risk
performance, i.e., a smaller risk, than an ES portfolio with a smaller tail probability. Alternatively, for
portfolios with equal MES values, ones for larger tail probabilities will have better mean returns performance,
i.e., higher mean returns, than ones with smaller tail probabilities. These natural behaviors are reflected in
the three mean-ES efficient frontiers in Figure 10.7.

10.3 Mean-CSM Efficient Frontier

The code below generates the default tail probability 0.05 mean-CSM (MCSM) efficient frontier displayed
in Figure 10.7, where the straight line tangent to the efficient frontier has a slope equal to the maximum
achievable meanCSMratio value of 0.261. The smallest mean return-MCSM combination, indicated by a sold
dot, is that of a global minimum CSM (GMCSM) portfolio.

# Mean-CSM Efficient Frontier

meancsm.ef <- create.EfficientFrontier(R = retM_CRSP_5, portfolio = pspec_sc,

type = "mean-CSM")

chart.EfficientFrontier(meancsm.ef, match.col = "CSM", type = "l",

chart.assets = FALSE, main = NULL,

RAR.text = "Max CSM ratio", pch = 1)
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Fig 10.7 Minimum CSM Efficient Frontiers for for Monthly CRSP Returns 2011-2015.

Using code similar to that used to create Figures 10.5 and 10.6, you can created CSM efficient frontiers for
several types of weight constraints, and several tail probabilities.

11 Multiple Efficient Frontiers With Different Risk Types

The method of comparing two or more efficient frontiers in Section 10 only works for portfolios that are all
based on the same risk type, e.g., all Variance/StdDev, or all ES, or all CSM portfolios. But it is highly
desirable to be able to compare efficient frontiers of two or more portfolios that are based on different risk
types, e.g., a StdDev risk portfolio and an ES risk portfolio, using either one of those risk types as the basis
of comparison.

11.1 An Efficient Frontiers Comparison Function

The function chart.EfficientFrontierCompare allows you to make the above type of comparisons. The
arguments of this function are

args(chart.EfficientFrontierCompare)

#> function (R, portfolio, risk_type, n.portfolios = 25, match.col = c("StdDev",

#> "ES"), guideline = NULL, main = "Efficient Frontiers", plot_type = "l",

#> cex.axis = 0.5, element.color = "darkgray", legend.loc = NULL,

#> legend.labels = NULL, cex.legend = 0.8, xlim = NULL, ylim = NULL,

#> ..., chart.assets = TRUE, labels.assets = TRUE, pch.assets = 21,

#> cex.assets = 0.8, col = NULL, lty = NULL, lwd = NULL)

#> NULL

where risk_type is the risk to be compared, and match.col is the vector of the risk types of the portfolios
whose efficient frontiers are to be compared. If there are only two frontiers in the comparison, the default of
the argument guideline is TRUE, which results horizontal and vertical dotted lines, whose lengths measure
the decrease in risk of the minimum risk portfolios, and a particular increase in mean return that will be
clear from the efficient frontiers plot.
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Figure 10.8 compares StdDev and ES frontiers, when plotted versus StdDev risk. Since a StdDev frontier is
an efficient frontier when plotted versus StdDev risk, it is not surprising to see the StdDev frontier dominate
the ES frontier.

# Compare StdDev of minStd and minES portfolios with guideline

chart.EfficientFrontierCompare(R = retM_CRSP_5, portfolio = pspec_sc, risk_type = "StdDev",

match.col = c("StdDev", "ES"), lwd = c(2, 2),

xlim = c(0.0,0.14), ylim = c(0.005,0.032))
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Fig 10.8 StdDev and ES Portfolio Frontiers Versus StdDev Risk.

Now we interchange StdDev and ES in the above Example, and get the result in Figure 10.9, where the ES
efficient frontier dominates the StdDev frontier as expected.

# Compare ES of minStd and minES portfolios with guideline

chart.EfficientFrontierCompare(R = retM_CRSP_5, portfolio = pspec_sc, risk_type = "ES",

match.col = c("ES", "StdDev"), lwd = c(2, 2),

xlim = c(0.0,0.14), ylim = c(0.005,0.032))
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Fig 10.9 StdDev and ES Portfolio Frontiers Versus ES Risk.

This next example compares ES, CSM and StdDev portfolio frontiers versus ES risk. Not surprisingly the ES
frontier dominates since it is an efficient frontier. The CSM frontier is only a tiny bit worse than the ES
efficient frontier, which is also not surprising since the ES and CSM portfolio both penalize downside risk
beyond threshold determined by same tail probability. Finally, the StdDev portfolio frontier performance is
not surprisingly the worst.

# Compare ES of minStd, minES and minCSM portfolios without guideline

chart.EfficientFrontierCompare(R = retM_CRSP_5, portfolio = pspec_sc, risk_type = "ES",

match.col = c("StdDev", "ES", "CSM"), guideline = FALSE,

col = c("darkred","darkgreen","blue"), lwd = c(1, 1.5, 1.5),

lty = c("dotted", "solid", "dashed"))
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Fig 10.9 ES, CMS and StdDev Frontiers Versus ES Risk

11.2 A Risk Extraction Function

The chart.EfficientFrontierCompare function makes use of the convenience function extract_risk,
which extracts the values of the StdDev, ES, and CMS risks of a given portfolio. This what allows
chart.EfficientFrontierCompare to plot efficient frontiers of different risk types versus a particular risk
measure value of a user’s choice.

The following line shows the arguments of extract_risk:

extract_risk(R, w, ES_alpha = 0.05, CSM_alpha = 0.05, moment_setting = NULL)

The asset returns R is an xts object, which must be specified, and the portfolio weights vector w of an optimized
portfolio must be specified. But ES_alpha and CSM_alpha are optional arguments, with default values 0.05.
The moment_setting argument allows a portfolio manager to specify an alternative covariance matrix in
place of a sample covariance matrix used to compute an MV portfolio. For example, the manager might want
to use a shrinkage covariance matrix, or a robust covariance matrix that, unlike the sample covariance matrix,
is not much influenced by outliers. For information about specifying alternative robust covariance matrices,
see the Vignette robustCovMatForPA.pdf and the demo code demo_robustCovMatForPA.R.

Here we create minimum standard deviation and minimum ES portfolios of the 30 CRSP monthly returns
from 2011 to 2015 in the data set retM_CRSP_5, and use their portfolio weight vectors to extract the values
of the mean, and the values of the StdDev, ES and CMS risk measures for each of these two portfolios.

minStdDev_port <- add.objective(pspec_sc, type = "risk", name = "StdDev")

minStdDev_opt <- optimize.portfolio(retM_CRSP_5, minStdDev_port,

optimize_method = "CVXR")

minStdDev_w <- minStdDev_opt$weight
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minES_port <- add.objective(pspec_sc, type = "risk", name = "ES")

minES_opt <- optimize.portfolio(retM_CRSP_5, minES_port,

optimize_method = "CVXR")

minES_w <- minES_opt$weight

# Extract risk StdDev portfolio

extract_risk(retM_CRSP_5, minStdDev_w)

#> $mean

#> [1] 0.01141173

#>

#> $StdDev

#> [,1]

#> [1,] 0.03344369

#>

#> $ES

#> [1] 0.05088981

#>

#> $CSM

#> [1] 0.05615236

# Extract risk ES portfolio

extract_risk(retM_CRSP_5, minES_w)

#> $mean

#> [1] 0.009032428

#>

#> $StdDev

#> [,1]

#> [1,] 0.04359565

#>

#> $ES

#> [1] 0.04574218

#>

#> $CSM

#> [1] 0.04578213

It is not surprising to see that the StdDev of the first portfolio above is smaller than that of the second
portfolio, and it is not surprising to see that the ES of the second portfolio is smaller than that of the first.

Now we create a minimum StdDev portfolio using a robust covariance matrix estimate instead of the sample
covariance matrix, and use its weight vector along with the retM_CRSP_5 data set to extract the portfolio
mean return and the values of the risk measures StdDev, ES and CMS.

minStdDev_opt_covRob <-optimize.portfolio(retM_CRSP_5, minStdDev_port,optimize_method = "CVXR",

momentFUN = 'custom.covRob.Mcd')

extract_risk(retM_CRSP_5, minStdDev_w, moment_setting = minStdDev_opt_covRob$moment_values)

#> $mean

#> [,1]

#> [1,] 0.01471509

#>

#> $StdDev

#> [,1]

#> [1,] 0.03227816

#>
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#> $ES

#> [1] 0.05088981

#>

#> $CSM

#> [1] 0.05615236

Here we see that while the mean return and standard deviation of the robust covariance matrix minimum
StdDev portfolio are different than those for the sample covariance based minStdDev_opt portfolio above,
the ES and CSM values are unchanged.

12 General Multiple Efficient Frontiers

Section 11 showed how to create plots of multiple efficient frontiers that have not only different constraint
types as in earlier Sections, but also how to create plots that also have different objectives. However, there are
other types of portfolio efficient frontier comparisons that one may want to make, that are not characterized
by only by different constraint types and/or different objectives. A leading example is the case where one
wants to compare efficient frontiers of MV portfolios that use different covariance matrix estimators besides
the standard sample covariance matrix. For example, one may wish to compare MV portfolios based on
different covariance matrices, e.g., the sample covariance matrix, and one or more robust covariance matrix
estimates, or one or more shrinkage covariance matrix estimates.

PortfolioAnalytics now has the function plotFrontiers that supports such comparisons. Here we use this
function to compare the frontiers of MV portfolios based on the sample covariance matrix, and on a robust
covariance matrix estimate called the covRobRocke estimator.

Considering that PortfolioAnalytics already provides functions to generate efficient frontiers, which are
meanvar.efficient.frontier, meanes.efficient.frontier and meancsm.efficient.frontier, we
create a new function plotFrontiers to visualize all the frontier values for broader comparison.

# Compare mean-var frontiers with classic and robust

# covariance matrix estimators.

sampleCov = meanvar.efficient.frontier(pspec_sc, retM_CRSP_5, optimize_method = 'CVXR')

robustCov = meanvar.efficient.frontier(pspec_sc, retM_CRSP_5, optimize_method = 'CVXR',

momentFUN = 'custom.covRob.TSGS')

plotFrontiers(retM_CRSP_5, frontiers=list(sampleCov, robustCov), risk='StdDev')
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