Package ‘RcppSimdJson’

January 14, 2026

Type Package

Title 'Repp’ Bindings for the 'simdjson' Header-Only Library for
'JSON' Parsing

Version 0.1.15
Date 2026-01-14

Description The 'JSON' format is ubiquitous for data interchange, and the
'simdjson' library written by Daniel Lemire (and many contributors) provides a
high-performance parser for these files which by relying on parallel 'SIMD'
instruction manages to parse these files as faster than disk speed. See the
<doi:10.48550/arXiv.1902.08318> paper for more details about 'simdjson'. This
package parses 'JSON' from string, file, or remote URLs under a variety of
settings.

License GPL (>=2)
Imports Rcpp, utils
LinkingTo Rcpp
Suggests bit64, tinytest

URL https://github.com/eddelbuettel/rcppsimdjson/

BugReports https://github.com/eddelbuettel/rcppsimdjson/issues
RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Author Dirk Eddelbuettel [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6419-907X>),
Brendan Knapp [aut] (ORCID: <https://orcid.org/0000-0003-3284-4972>),
Daniel Lemire [aut] (ORCID: <https://orcid.org/0000-0003-3306-6922>)

Maintainer Dirk Eddelbuettel <edd@debian.org>
Repository CRAN
Date/Publication 2026-01-14 12:40:02 UTC

https://doi.org/10.48550/arXiv.1902.08318
https://github.com/eddelbuettel/rcppsimdjson/
https://github.com/eddelbuettel/rcppsimdjson/issues
https://orcid.org/0000-0001-6419-907X
https://orcid.org/0000-0003-3284-4972
https://orcid.org/0000-0003-3306-6922

2 RcppSimdJson-package

Contents
ReppSimdJson-package 2
fparse L L 3
is_valid_json e 8
parseExample L e e 11
validateJSON e 12
Index 13

RcppSimdJIson-package ’Rcpp’ Bindings for the ’simdjson’ Header-Only Library for 'JSON’
Parsing

Description

The *JSON’ format is ubiquitous for data interchange, and the ’simdjson’ library written by Daniel
Lemire (and many contributors) provides a high-performance parser for these files which by relying
on parallel *SIMD’ instruction manages to parse these files as faster than disk speed. See the
<d0i:10.48550/arXiv.1902.08318> paper for more details about ’simdjson’. This package parses
’JSON’ from string, file, or remote URLs under a variety of settings.

Package Content

Index of help topics:

RcppSimdJson-package '"Repp' Bindings for the 'simdjson' Header-Only
Library for 'JSON' Parsing
fparse Fast, Friendly, and Flexible JSON Parsing
is_valid_json simdjson Utilities
parseExample Simple JSON Parsing Example
validateJSON Validate a JSON file, fast
Maintainer

Dirk Eddelbuettel <edd @debian.org>

Author(s)

Dirk Eddelbuettel [aut, cre] (ORCID: <https://orcid.org/0000-0001-6419-907X>), Brendan Knapp
[aut] (ORCID: <https://orcid.org/0000-0003-3284-4972>), Daniel Lemire [aut] (ORCID: <https://orcid.org/0000-
0003-3306-6922>)

fparse

fparse Fast, Friendly, and Flexible JSON Parsing

Description

Parse JSON strings and files to R objects.

Usage

fparse(
json,
query = NULL,
empty_array = NULL,
empty_object = NULL,
single_null = NULL,
parse_error_ok = FALSE,
on_parse_error = NULL,
query_error_ok = FALSE,
on_query_error = NULL,
max_simplify_lvl = c("data_frame", "matrix"”, "vector”, "list"),
type_policy = c("anything_goes”, "numbers", "strict"),
int64_policy = c("double”, "string”, "integer64”, "always"),
always_list = FALSE
)

fload(
json,
query = NULL,
empty_array = NULL,
empty_object = NULL,
single_null = NULL,
parse_error_ok = FALSE,
on_parse_error = NULL,
query_error_ok = FALSE,
on_query_error = NULL,
max_simplify_lvl = c("data_frame", "matrix"”, "vector”, "list"),
type_policy = c("anything_goes”, "numbers"”, "strict"),
int64_policy = c("double”, "string”, "integer64”, "always"),
always_list = FALSE,
verbose = FALSE,
temp_dir = tempdir(),
keep_temp_files = FALSE,
compressed_download = FALSE,

4 fparse

Arguments

json JSON strings, file paths, or raw vectors.
e fparse()
— character: One or more JSON strings.
— raw: json is interpreted as the bytes of a single JSON string.

— list Every element must be of type "raw” and each is individually
interpreted as the bytes of a single JSON string.
e fload()
— character: One or more paths to files (local or remote) containing
JSON.

query If not NULL, JSON Pointer(s) used to identify and extract specific elements
within json. See Details and Examples. NULL, character(), or list() of
character (). default: NULL

empty_array Any R object to return for empty JSON arrays. default: NULL

empty_object Any R object to return for empty JSON objects. default: NULL.

single_null Any R object to return for single JSON nulls. default: NULL.

parse_error_ok Whether to allow parsing errors. default: FALSE.

on_parse_error If parse_error_ok is TRUE, on_parse_error is any R object to return when
query errors occur. default: NULL.

query_error_ok Whether to allow parsing errors. default: FALSE.
on_query_error If query_error_ok is TRUE, on_query_error is any R object to return when
query errors occur. default: NULL.
max_simplify_1lvl
Maximum simplification level. character (1L) or integer (1L), default: "data_frame”
e "data_frame” or 0L
* "matrix” or 1L
* "vector” or 2L
e "list"” or 3L (no simplification)
type_policy Level of type strictness. character (1L) or integer(1L), default: "anything_goes".
e "anything_goes” or OL: non-recursive arrays always become atomic vec-
tors

* "numbers” or 1L: non-recursive arrays containing only numbers always be-
come atomic vectors

e "strict” or 2L: non-recursive arrays containing mixed types never become
atomic vectors
int64_policy How to return big integers to R. character (1L) or integer (1L), default: "double”.
e "double” or OL: big integers become doubles
* "string” or 1L: big integers become characters
* "integer64” or 2L: big integers become bit64::integer64s
e "always" or 3L: all integers become bit64::integer64s

always_list Whether a 1ist should always be returned, even when length(json) == 1L.
default: FALSE.

fparse 5

verbose Whether to display status messages. TRUE or FALSE, default: FALSE
temp_dir Directory path to use for any temporary files. character(1L), default: tempdir ()
keep_temp_files
Whether to remove any temporary files created by fload() from temp_dir.
TRUE or FALSE, default: TRUE
compressed_download
Whether to request server-side compression on the downloaded document, de-
fault: FALSE

Optional arguments which can be use e.g. to pass additional header settings

Details

* Instead of using lapply () to parse multiple values, just use fparse() and fload() directly.
— They are vectorized in order to leverage the underlying simdjson: :dom: : parser’s abil-
ity to reuse its internal buffers between parses.

— Since the overwhelming majority of JSON parsed will not result in scalars, a 1ist() is
always returned if json contains more than one value.

— If json contains multiple values and has names (), the returned object will have the same
names.

— If json contains multiple values and is unnamed, fload() names each returned element
using the file’s basename().

* query’s goal is to minimize te amount of data that must be materialized as R objects (the main
performance bottleneck) as well as facilitate any post-parse processing.

— To maximize flexibility, there are two approaches to consider when designing query ar-
guments.

* character vectors are interpreted as containing queries that meant to be applied to
all elements of json=.

- If json= contains 3 strings and query= contains 3 strings, the returned object will
be a list of 3 elements (1 for each element of json=), which themselves each
contain 3 lists (1 for each element of query=).

* lists of character vectors are interpreted as containing queries meant to be applied
to json in a zip-like fashion.

Author(s)

Brendan Knapp

Examples

simple parsing
json_string <- '{"a":[[1,null,3.0]1,["a","b",truel, [10000000000,2,31]}"
fparse(json_string)

raw_json <- as.raw(
c(0x22, 0x72, Ox61, Ox77, 0x20, 0x62, Ox79, Ox74, Ox65, Ox73, Ox20, Ox63,
0x61, Ox6e, 0x20, 0x62, 0x65, 0x63, Ox6f, Ox6d, 0x65, Ox20, Ox4a, 0Ox53,
0x4f, Ox4de, 0x20, Ox74, Ox6f, Ox6f, 0x21, 0Ox22)

)

fparse(raw_json)

ensuring a list is always returned

fparse(json_string, always_list = TRUE)
fparse(c(named_single_element_character = json_string), always_list =

controlling type-strictness

TRUE)

fparse(json_string, type_policy = "numbers™)
fparse(json_string, type_policy = "strict")
fparse(json_string, type_policy = "numbers”, int64_policy = "string")

if (requireNamespace("bit64"”, quietly = TRUE)) {

fparse(json_string, type_policy = "numbers"”, int64_policy = "integer64")

}

vectorized parsing

json_strings <- c(

jsonl = '"[{"b":true,
"c":null},
{"pb":[[1,2,3],
[4,5,61],
"c":"Q 31",
json2 = '[{"b":[[7, 8, 91,
[10,11,1211,
"c”:"Q"},
{"b":[[13,14,15],
[16,17,1811,
"c¢":null}]!
)
fparse(json_strings)
fparse(
list(
raw_jsonl = as.raw(c(@x74, 0x72, 0x75, 0x65)),
raw_json2 = as.raw(c(@x66, 0x61, Ox6c, 0x73, 0x65))
)
)
controlling simplification
fparse(json_strings, max_simplify_lvl = "matrix")
fparse(json_strings, max_simplify_lvl = "vector")
fparse(json_strings, max_simplify_lvl = "list")
customizing what “[]°, “{}7, and single “null”s return
empties <- "[[],{},null]”
fparse(empties)
fparse(empties,

empty_array = logical(),
empty_object = “names<-~(list(), character()),
single_null = NA_real_)

handling invalid JSON and parsing errors

fparse

fparse

fparse(”junk JSON", parse_error_ok = TRUE)
fparse(”junk JSON", parse_error_ok = TRUE,

on_parse_error = "can't parse invalid JSON")
fparse(
c(junk_JSON_1 = "junk JSON 1",
valid_JSON_1 = '"this is valid JSON"',

junk_JSON_2 = "junk JSON 2",

valid_JSON_2 '"this is also valid JSON"'),
parse_error_ok = TRUE,
on_parse_error = NA

querying JSON w/ a JSON Pointer

json_to_query <- c(

jsonl = '[
nan
{
"b": {
"c": [[1,2,3],
[4,5,6]]
}
}
1,
json2 = '[
nan
{
"b": {
"c": [[7,8,9],
[10,11,121],
"d": [1,2,3,4]
}
}
1

fparse(json_to_query, query = "/1")
fparse(json_to_query, query = "/1/b")
fparse(json_to_query, query = "/1/b/c")
fparse(json_to_query, query = "/1/b/c/1")
fparse(json_to_query, query = "/1/b/c/1/0")

handling invalid queries

fparse(json_to_query, query = "/1/b/d",
query_error_ok = TRUE,
on_query_error = "d isn't a key here!"”)

multiple queries applied to EVERY element

fparse(json_to_query, query = c(queryl = "/1/b/c/1/0",
query2 = "/1/b/c/1/1",
query3 = "/1/b/c/1/2"))

multiple queries applied to EACH element

fparse(json_to_query,
query = list(queries_for_jsonl = c(c1
c2

"/1/b/c/1/0",
"/1/b/c/1/1"),

8 is_valid_json

queries_for_json2 = c(d1 = "/1/b/d/1",
d2 = "/1/b/d/2")))

load JSON files
single_file <- system.file("jsonexamples/small/demo.json"”, package = "RcppSimdJson”)
fload(single_file)

multiple_files <- c(

single_file,

system.file("jsonexamples/small/smalldemo. json"”, package = "RcppSimdJson”)
)
fload(multiple_files)

Not run:

load remote JSON
a_url <- "https://api.github.com/users/lemire”
fload(a_url)

multiple_urls <- c(
a_url,
"https://api.github.com/users/eddelbuettel”,
"https://api.github.com/users/knapply”,
"https://api.github.com/users/dcooley”

)

fload(multiple_urls, query = "name”, verbose = TRUE)

download compressed (faster) JSON
fload(multiple_urls, query = "name”, verbose = TRUE,
compressed_download = TRUE)

End(Not run)

is_valid_json simdjson Utilities

Description

simdjson Utilities
Usage

is_valid_json(json)

is_valid_utf8(x)

fminify(json)

is_valid_json

Arguments
json JSON string(s), or raw vectors representing JSON string(s)
X String(s), or raw vectors representing string(s).

Examples

prettified_json <-

1

'L
{
"b": true,
"c": null
3,
{
"b": [
L
1,
2,
3
1,
L
4,
5,
6
1
1,
nens oY
3

example_text <- list(

)

UTF-8 validation

valid_json = c(json1 = prettified_json,
json2 = "{\n\t"good_json":true\n}"'),
invalid_json = c(bad_json1 = "BAD JSON",

bad_json2 = “Encoding<-~('"fa\xE7ile"', "latinl1")),
mixed_json = c(na = NA_character_, good_json = '{"good_json":true}"',
bad_json = “Encoding<-~('"fa\xE7ile"', "latin1")),

good_raw_json = charToRaw('{\n\t"good_json":true\n}"'),
bad_raw_json = charToRaw("JUNK"),
list_of_raw_json = lapply(

c(na = NA_character_, good_json = '{"good_json":true}"',
bad_json = “Encoding<-~('"fa\xE7ile"', "latin1")),
charToRaw
),
not_utf8 = “Encoding<-~('"fa\xE7ile"', "latin1")

example_text$valid_json
is_valid_utf8(example_text$valid_json)

example_text$invalid_json
is_valid_utf8(example_text$invalid_json)

10

example_text$mixed_json
is_valid_utf8(example_text$mixed_json)

example_text$good_raw_json
is_valid_utf8(example_text$good_raw_json)

example_text$bad_raw_json
is_valid_utf8(example_text$bad_raw_json)

example_text$list_of_raw_json
is_valid_utf8(example_text$list_of_raw_json)

example_text$not_utf8
is_valid_utf8(example_text$not_utf8)
is_valid_utf8(iconv(example_text$not_utf8, from = "latin1”, to = "UTF-8"))

is_valid_json

JSON validation

cat(example_text$valid_json[[1L]1])
cat(example_text$valid_json[[2L]])
is_valid_json(example_text$valid_json)

example_text$invalid_json
is_valid_json(example_text$invalid_json)

example_text$mixed_json
is_valid_json(example_text$mixed_json)

example_text$good_raw_json
cat(rawToChar (example_text$good_raw_json))
is_valid_json(example_text$good_raw_json)

example_text$bad_raw_json
rawToChar (example_text$bad_raw_json)
is_valid_json(example_text$bad_raw_json)

example_text$list_of_raw_json
lapply(example_text$list_of_raw_json, rawToChar)
is_valid_json(example_text$list_of_raw_json)

example_text$not_utf8

Encoding(example_text$not_utf8)

is_valid_json(example_text$not_utf8)
is_valid_json(iconv(example_text$not_utf8, from = "latin1”, to = "UTF-8"))

JSON minification

cat(example_text$valid_json[[1L]])
cat(example_text$valid_json[[2L]])
fminify(example_text$valid_json)

example_text$invalid_json
fminify(example_text$invalid_json)

parseExample 11

example_text$mixed_json
fminify(example_text$mixed_json)

example_text$good_raw_json
cat(rawToChar (example_text$good_raw_json))
fminify(example_text$good_raw_json)

example_text$bad_raw_json
rawToChar (example_text$bad_raw_json)
fminify(example_text$bad_raw_json)

example_text$list_of_raw_json
lapply(example_text$list_of_raw_json, rawToChar)
fminify(example_text$list_of_raw_json)

example_text$not_utf8

Encoding(example_text$not_utf8)

fminify(example_text$not_utf8)

fminify(iconv(example_text$not_utf8, from = "latin1”, to = "UTF-8"))

parseExample Simple JSON Parsing Example

Description

This example is adapted from a blogpost announcing an earlier ‘simdjson’ release. It is of interest
mostly for the elegance and conciseness of its C++ code rather than for any functionality exported
to R.

Usage

parseExample()

Details

The function takes no argument and returns nothing.

Examples

parseExample ()

12 validateJSON

validateJSON Validate a JSON file, fast

Description

By relying on simd-parallel ’simdjson’ header-only library JSON files can be parsed very quickly.

Usage
validateJSON(jsonfile)

Arguments

jsonfile A character variable with a path and filename

Value

A boolean value indicating whether the JSON content was parsed successfully

Examples

if (!RcppSimdJson:::.unsupportedArchitecture()) {
jsonfile <- system.file("”jsonexamples”, "twitter.json”, package="RcppSimdJson")
validateJSON(jsonfile)

Index

* package
RcppSimdJson-package, 2

fload (fparse), 3
fminify (is_valid_json), 8
fparse, 3

is_valid_json, 8
is_valid_utf8 (is_valid_json), 8

parseExample, 11

RcppSimdJson (RcppSimdJson-package), 2
RcppSimdJson-package, 2

simdjson-utilities (is_valid_json), 8

validateJSON, 12

13

	RcppSimdJson-package
	fparse
	is_valid_json
	parseExample
	validateJSON
	Index

