R-Friendly Multi-Threading in C++

Thomas Nagler
LMU Munich

Abstract

Calling multi-threaded C++ code from R has its perils. Since the R interpreter is
single-threaded, one must not check for user interruptions or print to the R console from
multiple threads. One can, however, synchronize with R from the main thread. The
R package ReppThread (current version 0.5.3) contains a header only C++ library for
thread safe communication with R that exploits this fact. It includes C++ classes for
threads, a thread pool, and parallel loops that routinely synchronize with R. This article
explains the package’s functionality and gives examples of its usage. The synchronization
mechanism may also apply to other threading frameworks. Benchmarks suggest that,
although synchronization causes overhead, the parallel abstractions of ReppThread are
competitive with other popular libraries in typical scenarios encountered in statistical
computing.

Keywords: R, C++, parallel, thread, concurrency.

1. Introduction

1.1. From single to multi-cores machines

For a long time, computers had only a single CPU and computer programs were a set of
instructions that the CPU executed in sequential order. Accordingly, most programming
languages that are still popular today (including R and C++) were designed with a single-
processor model in mind. Computing power was growing at exponential rates for decades and
there was no reason to change anything about that.

A paradigm shift came shortly after the turn of the millennium. Sutter (2005) warned that
the “free lunch will soon be over”: although the number of transistors on CPUs is continuing
to grow exponentially, their clock speed is approaching physical limits. To keep increasing the
computing power, manufacturers made a move towards multi-core machines. Today, virtually
all desktop PCs, laptops, and even smart phones have multiple cores to deal with increasingly
demanding software applications.

As time progresses, statistical tools and methods are becoming increasingly complex and
demanding for the computer. For that reason, many R packages implement performance-
critical tasks in a lower level language like C and Fortran. Interfacing with C+4 has become
especially popular in recent years thanks to the excellent Repp package (Eddelbuettel and
Frangois 2011; Eddelbuettel 2013), which is used by almost 1500 (=~ 10% of total) packages
on CRAN and counting.

2 R-Friendly Multi-Threading in C++

1.2. Threads as programming abstraction for multi-core hardware

To get the most out of a modern computer, it is vital to utilize not only one, but many
cores concurrently. This can be achieved by allowing multiple threads to be executed at
the same time. A thread encapsulates a sequence of instructions that can be managed by a
task scheduler, typically the operating system. A simple program has only a single thread
of execution, that encapsulates all instructions in the program, the main thread. However, a
thread can also spawn new threads that may run concurrently until all work is done and the
threads are joined. If a program contains more than one thread, we speak of concurrency.

In general, a single CPU can execute a program that has concurrent threads. The CPU
may jump back and forth between the threads until all work is done (this is called context
switching). However, the most gain in performance usually comes from parallelism, i.e., when
multiple CPUs work on multiple threads at the same time.

There are several frameworks that provide abstractions for running multi-threaded code in
C++. The veteran among them is OpenMP (Dagum and Menon 1998), which provides
preprocessor directives to mark code sections that run concurrently. More modern frameworks
include Intel TBB (Pheatt 2008), Boost.Thread (Boost 2018), and Tinythread++ (Geelnard
2012). Since the advent of C++11, the standard library provides low-level tools for managing
concurrent and parallel code. This includes the class std::thread that wraps a handle to
operating system threads, and tools for synchronization between threads, like locks and atomic
variables.

1.3. Calling multi-threaded code from R

Calling multi-threaded C++ code from R can be problematic because the R interpreter is
single-threaded. To quote from the ‘Writing R Extensions’ manual (R Core Team 2018,
Section 1.2.1.1): “Calling any of the R API from threaded code is ‘for experts only”. Using
R’s API from concurrent threads may crash the R session or cause other unexpected behavior.
In particular, communication between C+4 code and R is problematic. We can neither check
for user interruptions during long computations nor should we print messages to the R console
from any other than the main thread. It is possible to resolve this, but not without effort.

1.4. RcppThread and related packages

The R package ReppThread aims to relieve package developers of that burden. It contains
C++ headers that provide:

e thread safe versions of Rcpp: :Rcout and Repp: : checkUserInterrupt (),

e parallel abstractions: thread, thread pool, and parallel for loops.

A word of caution: While RcppThread makes it possible to safely print from and interrupt
multi-threaded C++ code, all other parts of the R API remain unsafe and should be avoided.

RcppThread’s implementation only relies on built-in C++11 functionality for managing and
synchronizing threads. Hence, it only requires C4++11 compatible compiler and is otherwise
available for all operating systems. The package is open source (MIT License) and publicly
available on CRAN.

Thomas Nagler

Besides the numerous packages for parallelism in R (see https://CRAN.R-project.org/
view=HighPerformanceComputing), there are two packages that inspired ReppThread and
provide similar functionality. RcppProgress (Forner 2018) allows to safely check for user in-
terruptions when code is parallelized with OpenMP (but only then). Further, RcppParallel
(Allaire, Francois, Ushey, Vandenbrouck, Geelnard, and Intel 2018) is an interface to many
high-level parallel abstractions provided by Intel TBB, but does not allow for thread safe
communication with R.

2. Thread safe communication with R

It is not safe to call R’s C API from multiple threads. It is safe, however, to call it from
the main thread. That’s the idea behind ReppThread’s checkUserInterrupt() and Rcout.
They behave almost like their Repp versions, but only communicate with R when called from
the main thread.

2.1. Interrupting computations

R handles interruptions by internal signals that may immediately terminate a computation.
Some IDEs (integrated development environments), most notably RStudio (RStudio Team
2016), wrap around this behavior by setting a flag on the R session. Whenever the R session
encounters this flag, it sends a termination signal and resets the flag. The R interpreter checks
for such flags often, such that pure R code can terminated instantly. However, C++ routines
do not benefit automatically from this mechanism; developers must explicitly request a check
for user interruptions. The Repp function checkUserInterrupt() is a convenient way to
request this check, but it must not be called from child threads.

It is fairly easy to make checkUserInterrupt() thread safe. We first check whether the
function is called from the main thread, and only then we ask R whether there was a user
interruption.

Consider the following example with std: :thread:

#include <RcppThread.h>
// [[Rcpp: :export]]
void check()

{
auto job = [] { RcppThread::checkUserInterrupt(); };
std: :thread t(job);
t.join();

}

The first line includes the RecppThread header, which automatically includes the standard
library headers required for std::thread and std::chrono. The second line triggers Rcpp
to export the function to R. We define a function check(). In the function body, we declare
a function job() that only checks for a user interruption. We then create an std::thread
with the new job and join it before the program exits.

If we call the above function from R, the program completes as expected. But would we have
used Rcpp: : checkUserInterrupt () instead, the program would terminate unexpectedly and

https://CRAN.R-project.org/view=HighPerformanceComputing
https://CRAN.R-project.org/view=HighPerformanceComputing

4 R-Friendly Multi-Threading in C++

crash the R session.

If ReppThread: : checkUserInterrupt () is called from the main thread and the user signaled
an interruption, a UserInterruptException will be thrown. This translates to an error in
R with the message

C++ call interrupted by the user.

A related function is isInterrupted() which does not throw an exception, but returns a
boolean signaling the interruption status. This can be useful, if some additional cleanup is
necessary or one wants to print diagnostics to the R console.

However, when the functions are called from a child thread, they do not actually check for an
interruption. This can be problematic if they are only called from child threads. That does
not happen with OpenMP or Intel TBB, but with lower level frameworks like std::thread,
TinyThread++ or Boost.Thread.

Both functions accept a bool that allows to check conditionally on the state of the program.
For example, in a loop over i, checkUserInterrupt(i % 20 == 0) will only check in every
20th iteration. Checking for interruptions is quite fast (usually microseconds), but there is a
small overhead that can accumulate to something significant in loops with many iterations.
Checking conditionally can mitigate this overhead.

There is a hidden detail worth mentioning. The two functions above are not completely
useless when called from a child thread. They check for a global variable indicating whether
the main thread has noticed an interruption. Hence, as soon the main thread witnesses an
interruption, all child threads become aware.

In Section 3.2, we will discuss how to make sure that isInterrupted() is called from the
main thread every now and then. For now, we are only able to write functions that are
interruptable from the main thread, and safe to call from child threads.

2.2. Printing to the R console

A similar issue arises when multiple threads try to print to the R console simultaneously.
Consider the following example:

#include <thread>
#include <Rcpp.h>
// [[Rcpp: :export]]
void greet()
{
auto job = [1 O {
for (size_t i = 0; i < 100; ++i)
Rcpp: :Rcout << "Hi!\n";
s
std: :thread t1(job);
std: :thread t2(job);
tl.join(Q);
t2.joinQ);

Thomas Nagler

We create a job function that prints the message "Hi!" to the R console 100 times. We
spawn two threads that execute the job, and join them before program exits. We expect the
function to print a stream of 200 messages saying "Hi!" in the R console. We can get lucky,
but normally the two threads will try to say "Hi!" at least once at the same time. Again,
the R session would terminate unexpectedly.

Now consider the following variant:

#include <RcppThread.h>
// [[Rcpp::export]]
void greet()
{
auto job = [1 (O {
for (size_t i = 0; i < 100; ++i)
RcppThread: :Rcout << "Hi!\n";
3
std: :thread t1(job);
std: :thread t2(job);
tl.joinQ);
t2.join();
RcppThread: :Rcout << "";
}

This function will print 200 messages in the R console as expected. But RcppThread: :Rcout
never prints to the console from child threads, so how does this work?

RcppThread: :Rcout does not print to the R console directly. It stores the message in global
buffer that is protected by a lock. Then it checks whether it was called from the main thread.
If this is not the case, it does nothing further. If it was called from the main thread, it releases
all messages that are currently in the buffer. Notice that we print an empty message from
the main thread in the last line of the program. This ensures that all messages are released
from the buffer before the program exits.

3. An R-friendly thread class

As of C4++11, the standard template library provides the class std: :thread for executing
code sections concurrently. The implementation and syntax are very similar to Boost.Thread
and TinyThread++. RcppThread’s Thread class is an R-friendly wrapper to std: :thread.

Instances of class Thread behave almost like instances of std: : thread. There is one important
difference: Whenever child threads are running, the main thread periodically synchronizes
with R. In particular, it checks for user interruptions and releases all messages passed to
RcppThread: :Rcout. When the user interrupts a threaded computation, any thread will stop
as soon it encounters checkUserInterrupt ().

3.1. Functionality

Let us start with an example:

6 R-Friendly Multi-Threading in C++

#include <RcppThread.h>
// [[Rcpp: :export]]
void pyjamaParty ()

{
using namespace RcppThread;
auto job = [] (int id) {
std: :this_thread: :sleep_for(std: :chrono: :seconds(1));
Rcout << id << " slept for omne second" << std::endl;
checkUserInterrupt ();
std::this_thread: :sleep_for(std: :chrono: :seconds(1));
Rcout << id << " slept for another second" << std::endl;
};
Thread t1(job, 1);
Thread t2(job, 2);
t1l.join();
t2.join();
}

We create a function job that takes an integer id as argument and does the following: sleep for
one second, send a message, check for a user interruption, go back to sleep, and send another
message. We spawn two new Threads with this job and join the threads before the program
exits. Notice that the argument of the job function is passed to the Thread constructor.
More generally, if a job function takes arguments, they must be passed to the constructor as
a comma-separated list.

The example from the previous section used std::thread and was not interruptible. The
reason is that checkUserInterrupt() was only called from child threads. This example is
similar. However, the Thread objects synchronize with R and periodically check for user
interruptions. If we call the function from R and interrupt the computation, we get the
following.

> pyjamaParty()

1 slept for one second
2 slept for one second
Error in pyjamaParty() : C++ call interrupted by user

The execution is interrupted after the two threads were done with the first round of sleep.
Further, although there was no Rcout statement in the main thread, the messages got send
to the R console. The Thread instances took care of both checking for interruptions and
releasing messages to the R console.

The two .join() statements are important in this example. Threads should always be joined
before they are destructed. The . join() statements signal the main thread to wait until the
jobs have finished. But instead of just waiting, the main thread starts synchronizing with R.

Thomas Nagler 7

The class Thread also allows for all additional functionality (like swapping or detaching)
provided by std::thread. However, detaching threads that communicate with R should
generally be avoided.

3.2. Implementation

The synchronization mechanism bears some interest because it can be implemented similarly
for threading frameworks other than std: :thread. The foundation is a concept called future.
A future allows to start a side-task and continue with the program, until — at some later
point in time — we explicitly request the result.

Let us first have a look at a simplified version of the Thread class constructor.

template<class Function, class... Arguments>
Thread (Function&& f, Arguments&&... args)
{

auto £f0 = [=] { f(args...); };
auto task = std::packaged_task<void()>(£0);
future_ = task.get_future();
thread_ = std::thread(std::move(task));
}

The constructor is a variadic template that takes a function and an arbitrary number of
additional arguments. The function f should be a callable object and the additional arguments
such that f (args...) is avalid call. The constructor creates a new function £0 that evaluates
f, passing it all additional arguments (if there are any). The new function £0 is wrapped in
an std: :packaged_task that allows to access the result by a future. The future is stored in
a class member future_ and the task is run in an std: :thread.

The synchronization mechanism is in join():

void join()

{
auto timeout = std::chrono::milliseconds(250);
while (future_.wait_for(timeout) != std::future_status::ready) {
Rcout << "";
if (isInterrupted())
break;
}
thread_.join();
Rcout << "";
checkUserInterrupt();
}

The function runs a while loop that relies on the future. The condition of the loop let’s the
main thread sleeps until one of two events occur. One event is that a timeout of 250ms has
been reached. After waking up, the thread releases all messages to the R console and checks
for an interruption. If there was an interruption, the call to isInterrupted() will set the
global flag for interruption (so child threads become aware) and exit the loop. Otherwise,

8 R-Friendly Multi-Threading in C++

the while loop continues and the main thread again waits for one of the two events. The
second event is that the result of f(args...) is available. The while loop exits and the
internal std::thread object is joined. We again release all messages in the buffer and call
checkUserInterrupt (). The latter ensures that an exception is thrown if there was a user
interruption.

The choice of 250ms for the timeout is somewhat arbitrary. It is short enough to avoid long
waiting times for an interrupting user. At the same time, it is long enough such that any
overhead from synchronization becomes negligible.

4. Parallel abstractions

When there are more than a few jobs to run, plain threads can be tedious. Every job re-
quires spawning and joining a thread. This has a small, but non-negligible overhead. Even
worse: if there are more threads than cores, the program may actually slow down. The
ReppThread package provides two common abstractions to make life easier. Both synchro-
nize with R using a similar mechanism as Thread.

4.1. An interruptible thread pool

A thread pool consists of a task queue and a fixed number of worker threads. Whenever the
task queue contains jobs, an idle worker fetches one task and does the work. Besides ease of
use, the thread pool pattern has two benefits. Tasks are assigned to workers dynamically, so
all workers are kept busy until there are no tasks left. This is especially useful when some
tasks take more time than others. The second benefit is that one can easily limit the number
of threads running concurrently.

Basic usage

The class ThreadPool implements the thread pool pattern in a way that plays nicely with
checkUserInterrupt() and Rcout. Its usage is fairly simple.

ThreadPool pool(3);

std: :vector<int> x(100);

auto task = [&x] (unsigned int i) { x[i] = i; };
for (unsigned int i = 0; i < x.size(); ++i)
pool.push(task, i);

pool.join();

The first line creates a ThreadPool object with three worker threads. If the argument is
omitted, the pool will use as many worker threads as there are cores on the machine. A
thread pool initialized with zero workers will do all work in the main thread. This makes it
easy to let the user decide whether computations run in parallel.

The second line instantiates a vector x to be filled in parallel. The task function takes an
index argument i and assigns it to the ith element of x. The thread pool knows about x
because the lambda function captures its address (expressed through [&x]). We push 100
tasks to the thread pool, each along with a different index. Then the thread pool is joined.
Again, the join() statement is important. First and foremost, it causes the main thread

Thomas Nagler

to halt until all tasks are done. But similar to Thread::join(), the thread pool starts to
periodically synchronize with R. Only after all work is done, the worker threads in the pool
are joined.

In the example, multiple threads write to the same object concurrently. Generally, this is
dangerous. In our example, however, we know that the threads are accessing different memory
locations, because each task comes with a unique index. Code that writes to an address that
is accessed from another thread concurrently needs extra synchronization (for example using
a mutex). Read operations are generally thread safe as long as nobody is writing at the same
time.

The thread pool is interruptible without any explicit call to checkUserInterrupt (). Before
a worker executes a task, it always checks for a user interruption.

Tasks returning a value

In some use cases, it is more convenient to let the tasks assigned to the pool return a value.
The function pushReturn() returns a std::future to the result of the computations. After
all jobs are pushed, we can call get () on the future object to retrieve the results:

ThreadPool pool;
auto task = [] (int i) {

double result;

// some work

return result;
+;
std::vector<std::future<double>> futures(10);
std: :vector<double> results(10);
for (unsigned int i = 0; i < 10; ++i)
futures[i] = pool.pushReturn(task, i);
for (unsigned int i = 0; i < 10; ++i)
results[i] = futures[i].get();
pool.join();

Using the same thread pool multiple times

It is also possible to wait for a set of tasks and re-use the thread pool by calling wait ()
instead of join(). The call to wait () synchronizes with R while waiting for the current jobs
to finish, but does not join the worker threads. When all tasks are done, we can start pushing
new jobs to the pool.

4.2. Parallel for loops

Index-based parallel for loops

The previous example used the thread pool to implement a very common parallel pattern: a
parallel for loop. The single-threaded version is much simpler.

std: :vector<int> x(100);

10 R-Friendly Multi-Threading in C++

for (unsigned int i = 0; i < x.size(); ++i)
x[i] = 1i;

Since this pattern is so common, ReppThread provides a wrapper parallelFor that encapsu-
lates the boiler plate from the thread pool example. A parallel version of the above example
can be expressed similarly.

std: :vector<int> x(100);
parallelFor(0, x.size(), [&x] (unsigned int i) {
x[i] = i;

)

There are differences between the single- and multi-threaded version. The single-threaded ver-
sion instantiates the loop counter in the for declaration. The multi-threaded version, passes
the start and end indices and a lambda function that captures &x and takes the loop counter
as an argument. The parallel version is a bit less flexible regarding the loop’s break condi-
tion and increment operation. Additionally, the multi-threaded version may need additional
synchronization if the same memory address is accessed in multiple iterations.

Parallel for-each loops

Another common pattern is the for-each loop. It loops over all elements in a container and
applies the same operation to each element. A single-threaded example of such a loop is the
following.

std: :vector<int> x(100, 1);
for (auto& xx : x)
XX *= 2;

The auto loop runs over all elements of x and multiplies them by two. The parallel version
is similar:

std: :vector<int> x(100, 1);
parallelForEach(x, [] (double& xx) {
XX *= 2;

B

Both parallelFor and parallelForEach use a ThreadPool object under the hood and,
hence, periodically synchronize with R.

Fine tuning the scheduling system

The two functions parallelFor and parallelForEach essentially create a thread pool, push
the tasks, join the pool, and exit. By default, there are as many worker threads in the
pool as there are cores on the machine. The number of workers can be specified manually,
however. The following example runs the loop from the previous example with only two
workers (indicated by the 2 in the last line).

parallelForEach(x, [] (double& xx) {
XX *= 2;

}, 2);

Thomas Nagler

The syntax for parallelFor is similar.

There is more: the parallelFor and parallelForEach functions bundle a set of tasks into
batches. This can speed up code significantly when the loop consists of many short-running
iterations; see, e.g., Figure 3 in Section 6. Synchronization between worker threads in the pool
causes overhead that is reduced by packaging tasks into batches. At the same time, we benefit
from dynamic scheduling whenever there are more batches than tasks. RecppThread relies on
heuristics to determine an appropriate batch size. Sometimes, the performance of loops can
be improved by a more careful control over the batch size. The two functions take a fourth
argument that allows to set the number of batches. The following code runs the loop with
two workers in 20 batches.

parallelForEach(x, [] (double& xx) {
XX *= 2;
}, 2, 20);

Calling for loops from a thread pool

The functions create and join a thread pool every time they are called. To reduce overhead,
the functions can also be called as methods of a thread pool instance.

ThreadPool pool;

pool.parallelForEach(x, [] (double& xx) {
XX = 2 * XX;

3

pool.wait();

pool.parallelFor(0, x.size(), [&x] (int i) {
x[1i] *= 2;

3

pool.join();

Nested for loops

Nested loops appear naturally when operating on multi-dimensional arrays. One can also
nest the parallel for loops mentioned above. Although not necessary, it is more efficient to
use the same thread pool for both loops.

ThreadPool pool;

std: :vector<std: :vector<double>> x(100);

for (auto &xx : x)

xx = std::vector<double>(100, 1.0);

pool.parallelFor(0, x.size(), [&] (int i) {
pool.parallelFor (0, x[i].size(), [&, il (int j) {

x[i1[j] *= 2;

s

3

pool.join();

11

12 R-Friendly Multi-Threading in C++

The syntax for nested parallelForEach is similar.

A few warnings: It is usually more efficient to run only the outer loop in parallel. To minimize
overhead, one should parallelize at the highest level possible. Furthermore, if both inner and
outer loops run in parallel, we do not know the execution order of tasks. We must not
parallelize nested loops in which order matters. Captures of lambda functions (or other
callable objects replacing the loop body) require extra care: since the outer loop index i is
temporary, it must be copied.

5. Using the RcppThread package in other projects

The ReppThread package contains a header-only C++ library that only requires a C++11
compatible compiler. This is only a mild restriction, because the standard has long been imple-
mented by most common compilers. The package has no dependencies, although using Rcpp
is strongly encouraged (the Repp layer automatically converts UserInterruptException into
an R error messages). To use the package in other R projects, users only need to include the
RcppThread headers and enable C++11 functionality. In the following, we briefly explain
how this can be achieved.

5.1. Using ReppThread in inline C++ snippets

The cppFunction() and sourceCpp() functions of the Repp package provide a convenient
way to quickly implement a C++ function inline from R. The following is a minimal example
of ReppThread used with cppFunction():

func <- Rcpp::cppFunction('void func() { /* actual code here */ }',
depends = "RcppThread", plugins = "cppll")

The first argument of cppFunction() is a C++ snippet defining a function. The depends
= "RcppThread" argument takes care that the relevant RcppThread headers are included;
plugins = "cppll" tells the compiler to enable C++11 functionality. After running this line
in the R console, func() can be called as a regular R function.

The same can be achieved using sourceCpp():

Rcpp: :sourceCpp(code =

'// [[Rcpp: :plugins(cppl1)]]

// [[Rcpp: :depends(RcppThread)]]
#include "RcppThread.h"

// [[Rcpp: :export]]

void func() { /* actual code here */}'

)

Inside the code block, the first line enables C++11, the second tells the compiler where to
look for ReppThread headers, which are included in the third line. The fourth and fifth
lines define the function and request it to be exported to R . The sourceCpp() version more
verbose, but offers additional flexibility, since other functions or classes can be defined in the
same code block.

Thomas Nagler 13

5.2. Using RcppThread in another R package

Using ReppThread in other R packages is similarly easy:

1. Add CXX_STD = CXX11 to the src/Makevars(.win) files of your package.
2. Add ReppThread to the LinkingTo field in the DESCRIPTION.

3. Include the headers with #include "RcppThread.h".

5.3. Using RcppThread to port existing C++4 code

For packages porting existing C++ libraries to R, RcppThread provides two preprocessor
macros for convenience. The respective #define statements need to be placed before the
RcppThread headers.

e #define RCPPTHREAD_OVERRIDE_COUT 1: replaces all instances of std: :cout with
RcppThread: :Rcout.

e #define RCPPTHREAD_OVERRIDE_THREAD 1: replaces all instances of std: :thread with
RcppThread: : Thread.

6. Benchmarks

Parallel computation is primarily about speed, so it’s a good idea to measure. In a first step,
we want to quantify the overhead by ReppThread ’s synchronization with R. The second
part compares the performance of the ThreadPool and parallelFor abstractions against
implementations based on RcppParallel and OpenMP.

Results of computing benchmarks depend strongly on the hardware, especially for parallel
programs. The results in this section were recorded on an i5-6600K CPU with four cores
at 3.5 GHz, 6MB cache size, and 16GB 3GHz DDR4 RAM. The code for the benchmarks
is available as an R markdown document in the supplementary material, so readers can test
them on their own machine. Additional results on a 20 core machine are available in the
supplementary material and lead to conclusions similar to the ones below.

6.1. Synchronization overhead

Create, join, and destruct threads

As explained in Section 3.2, RcppThread: : Thread encapsulates a std::thread object, but
exploits a std::future for additional synchronization. To quantify the overhead, our first
example simply creates a number of thread objects, and then joins and destroys them.

The speed using ReppThread: : Thread (dashed) is compared against std: :thread (solid) in
Figure 1. We observe that RcppThread: : Thread is roughly two times slower than std: : thread.
Both lines show a kink at four threads. This corresponds to the four physical cores on the

14 R-Friendly Multi-Threading in C++

benchmark machine. If there are more threads than cores, we pay an additional fee for
‘context switching’ (jumping between threads).

The marginal cost of a single RecppThread: : Thread is around 10us when there are less than
four threads, and roughly 30us otherwise. Although even 30us sounds cheap, running more
threads than cores will also slow all other computations down. Thread pools or parallel loops
use a fixed number of threads and should be preferred over naked threads when possible.

Checking for user interruptions

Figure 2 shows the time it takes to call checkUserInterrupt() either from the main or a
child thread. Checking for user interruptions is rather cheap: one check costs around 100ns
from the main thread, and 5ns from a child thread. The latter is cheaper because there is
no direct synchronization with R. If called from a child thread, checkUserInterrupt () only
queries a global flag. Hence, we can generously sprinkle parallelized code sections with such
checks without paying much in performance.

6.2. Comparison to other parallel libraries

Empty jobs

To start, we measure the performance for running empty jobs. The solid line in Figure 3 indi-
cates the time required to run a single threaded loop with jobs iterations doing nothing. The
other lines show the performance of various parallel abstractions: ReppThread’s ThreadPool
and parallelFor, and parallel for loops based on OpenMP and RcppParallel.

The abstractions provided by ReppThread are much slower than their competitors (note the
log scale on the y axis). This has two reasons. The ReppThread functions are weighted
with infrastructure for synchronization with R. Further, the competitor libraries are highly
optimized for high-throughput scenarios by avoiding memory locks as much as possible.

We also observe that the parallel for loops are are much faster than the thread pool. Since
the thread pool accepts new jobs at any time, it must handle any job as a separate instance.
Parallel for loops know up front how much work there is and bundle jobs into a smaller
number of batches. This technique reduces the necessary amount of synchronization between
threads.

The single threaded version was the fastest, by far. Of course, we cannot expect any gain
from parallelism when there is nothing to do. When jobs are that light, the overhead vastly
outweighs the benefits of concurrent computation.

Computing kernel density estimates

Let us consider a scenario that is more realistic for statistical applications. Suppose we observe
data from several variables and want to compute a kernel density estimate for each variable.
This is a common task in exploratory data analysis or nonparametric statistical learning (e.g.,
the naive Bayes classifier) and is easy to parallelize. For simplicity, the estimator is evaluated
on 500 grid points.

Figure 4 shows the performance for d = 10 (left panel), d = 100 variables (right panel), and
increasing sample size. For d = 10 and moderate sample size the two ReppThread functions

Thomas Nagler 15

1.5

1.0
2]
£

0.5

0.0

0 10 20 30 40 50
threads
— std::thread RcppThread:Thread

Figure 1: Time required for creating, joining, and destroying thread objects of class
std: :thread and RcppThread: : Thread.

1.UU
0.75
%]
g 0.50
0.25
0.00
0 2500 5000 7500 10000
interruptions
called from =— main thread child thread

Figure 2: Time required to check for user interruptions from either the main or a child thread.

10.00
100 0 e e —m——— -——
Pid r==-
1)
€ //
0.10 7
FR e L RN L L R It AT At L Lt ket A
0.01 == = T === =
-
L. =
. T — I
PRI
0 2500 5000 7500 10000
jobs
— single threaded ThreadPool = = parallelFor = OpenMP - - RcppParallel

Figure 3: Time required for submitting empty jobs to different parallelism frameworks.

16 R-Friendly Multi-Threading in C++

d =100
100

75
50

25

0 250 500 750 1000 0 250 500 750 1000
sample size

= single threaded ThreadPool = - parallelFor = OpenMP - - RcppParallel

Figure 4: Time required for computing the kernel density estimate in parallel for d variables.

d=10 d =100
1000

7.5

750

5.0
g 500
2.5 250
0.0 0

0 250 500 750 1000 0 250 500 750 1000
sample size
= single threaded ThreadPool - - parallelFor — - OpenMP - - RcppParallelFor

Figure 5: Time required for computing Kendall’s correlation matrix in parallel for d variables.

are about 10% slower than their competitors, but catches up slowly for large samples. The
shift is essentially the overhead we measured in the previous benchmark. For d = 100, the
overhead of RcppThread is negligible and all methods are on par. Generally, all parallel
methods are approximately 4x faster than the single threaded version.

Computing Kendall’s correlation matrix

Now suppose we want to compute a matrix of pair-wise Kendall’s correlation coefficients.
Kendall’s 7 is a popular rank-based measure of association. In contrast to Pearson’s cor-
relation, it measures monotonic (not just linear) dependence, but is computationally more
complex; R’s implementation in cor() scales quadratically in the sample size n. Knight
(1966) proposed an efficient algorithm based on a merge sort that scales nlogn (as imple-
mented by Nagler 2018). As a downside, the correlation matrix can no longer be computed
with matrix algebra; each coefficient 7; ; must be considered separately. There are (g) unique
pairs of variables (i,7), 1 <i < j < d. The coefficients are computed in a nested loop over i
and j, where we only parallelize the outer loop over 3.

Thomas Nagler

This problem is quite different from the KDE benchmark. First, the problem scales quadrat-
ically in the dimension d. And more importantly, the jobs are unbalanced: for each i, there
are only d — ¢ iterations in the inner loop. Hence, iterations with small i take longer than
iterations with large ¢. The larger the dimension d, the larger the imbalance.

Figure 5 shows the benchmark results. For d = 10, we observe that none of the parallel
methods achieve a 4x speed-up. The reason is that the tasks are still rather small. Even
for n = 1000, each iteration of the inner loop takes only a fraction of a millisecond. For
such jobs, the parallelization overhead becomes visible. parallelFor is slowest among all
methods. For sample sizes smaller than 500, it is hardly faster than the single threaded loop.
Also OpenMP achieves less than a 2x improvement. Only ThreadPool and RcppParallel
achieve an approximate 3x speed up. Their scheduling appears to better compensate the
imbalance of the problem.

For d = 100, the picture is quite different. The ReppThread functions are faster than their
competitors: roughly twice as fast as OpenMP and 10% faster than RcppParallel. Further-
more, it gives an approximate 4x speed up, indicating an optimal use of resources.

6.3. Conclusions

We conclude that the parallel abstractions provided by ReppThread cause notable overhead
when concurrent tasks are small. For many applications in statistical computing, however,
this overhead becomes negligible. In the future, the implementation RcppThread may benefit
from additional optimizations. In particular, a lock free implementation of the task queue may
allow to reduce the overhead on small tasks. In any case, the main advantage is automatic
and safe synchronization with R, i.e., usability and not speed.

References

Allaire J, Francois R, Ushey K, Vandenbrouck G, Geelnard M, Intel (2018). RecppParallel:
Parallel Programming Tools for 'Repp’. R package version 4.4.1, URL https://CRAN.
R-project.org/package=RcppParallel.

Boost (2018). “Boost C++ Libraries.” https://www.boost.org/.

Dagum L, Menon R (1998). “OpenMP: An Industry Standard API for Shared-Memory Pro-
gramming.” IEEE computational science and engineering, 5(1), 46-55.

Eddelbuettel D (2013). Seamless R and C++ Integration with Repp. Springer-Verlag, New
York. doi:10.1007/978-1-4614-6868-4. ISBN 978-1-4614-6867-7.

Eddelbuettel D, Francois R (2011). “Repp: Seamless R and C++ Integration.” Journal
of Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.108. URL https://www.
jstatsoft.org/v40/108/.

Forner K (2018). ReppProgress: An Interruptible Progress Bar with OpenMP Support
for C++ in R Packages. R package version 0.4.1, URL https://CRAN.R-project.org/
package=RcppProgress.

17

https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=RcppParallel
https://www.boost.org/
http://dx.doi.org/10.1007/978-1-4614-6868-4
http://dx.doi.org/10.18637/jss.v040.i08
https://www.jstatsoft.org/v40/i08/
https://www.jstatsoft.org/v40/i08/
https://CRAN.R-project.org/package=RcppProgress
https://CRAN.R-project.org/package=RcppProgress

18 R-Friendly Multi-Threading in C++

Geelnard M (2012). TinyThread. C++ library version 1.1, URL https://tinythreadpp.
bitsnbites.eu/.

Knight WR (1966). “A Computer Method for Calculating Kendall’s Tau With Ungrouped
Data.” Journal of the American Statistical Association, 61(314), 436-439.

Nagler T (2018). wdm: Weighted Dependence Measures. C++ library version 0.1.1, URL
https://github.com/tnagler/wdm.

Pheatt C (2008). “Intel@®) Threading Building Blocks.” Journal of Computing Sciences in
Colleges, 23(4), 298-298.

R Core Team (2018). Writing R Extensions. R Foundation for Statistical Computing. R ver-
sion 3.5.2, URL https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html.

RStudio Team (2016). RStudio: Integrated Development Environment for R. RStudio, Inc.,
Boston, MA. URL https://posit.co/.

Sutter H (2005). “The Concurrency Revolution.” C/C++ Users Journal, 23(3).

Affiliation:

Thomas Nagler

Department of Statistics, LMU Munich
Ludwigstrafle 33

80539 Munich, Germany

E-mail: mail@tnagler.com

URL: https://tnagler.github.io/

https://tinythreadpp.bitsnbites.eu/
https://tinythreadpp.bitsnbites.eu/
https://github.com/tnagler/wdm
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://posit.co/
mailto:mail@tnagler.com
https://tnagler.github.io/

	Introduction
	From single to multi-cores machines
	Threads as programming abstraction for multi-core hardware
	Calling multi-threaded code from R
	RcppThread and related packages

	Thread safe communication with R
	Interrupting computations
	Printing to the R console

	An R-friendly thread class
	Functionality
	Implementation

	Parallel abstractions
	An interruptible thread pool
	Basic usage
	Tasks returning a value
	Using the same thread pool multiple times

	Parallel for loops
	Index-based parallel for loops
	Parallel for-each loops
	Fine tuning the scheduling system
	Calling for loops from a thread pool
	Nested for loops

	Using the RcppThread package in other projects
	Using RcppThread in inline C++ snippets
	Using RcppThread in another R package
	Using RcppThread to port existing C++ code

	Benchmarks
	Synchronization overhead
	Create, join, and destruct threads
	Checking for user interruptions

	Comparison to other parallel libraries
	Empty jobs
	Computing kernel density estimates
	Computing Kendall's correlation matrix

	Conclusions

