
Package ‘Ruido’
February 6, 2026

Title Soundscape Background Noise, Power, and Saturation

Version 1.0.2

Description Accessible and flexible implementation of three ecoacoustic indices that are less com-
monly available in existing R frameworks: Background Noise, Soundscape Power and Sound-
scape Saturation. The functions were design to accommodate a variety of sampling de-
signs. Users can tailor calculations by specifying spectrogram time bin size, amplitude thresh-
olds and normality tests. By simplifying computation and standardizing reproducible meth-
ods, the package aims to support ecoacoustics studies. For more details about the in-
dices read Towsey (2017) <https://eprints.qut.edu.au/110634/> and Burival-
ova (2017) <doi:10.1111/cobi.12968>.

Depends R(>= 4.3.0)

Imports methods, tuneR, signal, nortest

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Suggests ggplot2, patchwork

Maintainer Arthur Igor da Fonseca-Freire <arthur.igorr@gmail.com>

BugReports https://github.com/Arthurigorr/Ruido/issues

Config/testthat/edition 3

URL https://github.com/Arthurigorr/Ruido

Language en-US

NeedsCompilation no

Author Arthur Igor da Fonseca-Freire [aut, cre, cph],
Weslley Geremias dos Santos [aut],
Lucas Rodriguez Forti [aut]

Repository CRAN

Date/Publication 2026-02-06 03:40:02 UTC

1

https://eprints.qut.edu.au/110634/
https://doi.org/10.1111/cobi.12968
https://github.com/Arthurigorr/Ruido/issues
https://github.com/Arthurigorr/Ruido

2 activity

Contents
activity . 2
bgNoise . 4
multActivity . 8
satBackup . 11
singleSat . 13
soundMat . 16
soundSat . 19

Index 23

activity Acoustic Activity Matrix

Description

Calculate the Acoustic Activity Matrix using the methodology proposed in Burivalova 2018

Usage

activity(
soundfile,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD",
powthr = 10,
bgnthr = 0.8,
beta = TRUE

)

Arguments

soundfile tuneR Wave object or path to a valid audio

channel channel where the saturation values will be extract from. Available channels
are: "stereo", "mono", "left" or "right". Defaults to "stereo".

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017

targetSampRate desired sample rate of the audios. This argument is only used to down sample
the audio. If NULL, then audio’s sample rate remains the same. Defaults to NULL

activity 3

wl window length of the spectrogram. Defaults to 512

window window used to smooth the spectrogram. Switch to signal::hanning(wl) to
use hanning instead. Defaults to signal::hammning(wl)

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" or any numeric value (foe example = 100). Defaults to "FD"

powthr single numeric value to calculate the activity matrix for soundscape power (in
dB). Detauls to 10

bgnthr single numeric value to calculate the activity matrix for background noise (in
%). Detauls to 0.8

beta how BGN thresholds are calculated. If TRUE, BGN thresholds are calculated
using all recordings combined. If FALSE, BGN thresholds are calculated sepa-
rately for each recording. Defaults to TRUE

Details

To calculate the activity matrix, we use the methodology proposed by Burivalova 2018. We begin
by applying the following formula to each time bin of the recording:

amf = 1 if(BGNmf > θ1) or (POWmf > θ2); otherwise, amf = 0,

Where θ1 equals the threshold of BGN values and θ2 equals the threshold of dB values. We set 1 to
active and 0 to inactive frequency windows.

Value

This function returns a 0 and 1 matrix containing the activity for all time bins of the inputted file.
The matrix’s number of rows will equal to half the set window lenght (wl) and number of columns
will equal the number of bins. Cells with the value of 1 represent the acoustically active frequency
of a bin.

References

Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., & Game, E. T. (2018).
Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New
Guinea. Conservation Biology, 32(1), 205-215. https://doi.org/10.1111/cobi.12968

Examples

if (require("ggplot2")) {
Generating an artificial audio for the example
For this example we'll generate a sweep in a noisy soundscape
library(tuneR)
library(ggplot2)

Define parameters for the artificial audio
samprate <- 12050

4 bgNoise

dur <- 60
n <- samprate * dur

White noise
set.seed(413)
noise <- rnorm(n)

Linear fade-out envelope
fade <- seq(1, 0, length.out = n)

Apply fade
signal <- noise * fade

Create Wave object
wave <- Wave(

left = signal,
samp.rate = samprate,
bit = 16

)

Running singleSat() on the artificial audio
time <- 10
sat <- activity(wave, timeBin = time)

Now we can plot the results
satDim <- dim(sat)
numericTime <- seq(0, dur, by = time)
labels <- paste0(numericTime[-length(numericTime)], "-", numericTime[-1], "s")

satDF <- data.frame(BIN = rep(paste0("BIN", seq(satDim[2])), each = satDim[1]),
WIN = rep(seq(satDim[1]), satDim[2]),
ACT = factor(c(sat), levels = c(0,1)))

ggplot(satDF, aes(x = BIN, y = WIN, fill = ACT)) +
geom_tile() +
theme_bw() +
scale_fill_manual(values = c("white", "black")) +
scale_y_continuous(expand = c(0,0)) +
scale_x_discrete(expand = c(0,0), labels = labels) +
labs(x = "Time Bin", y = "Spectral Window") +
guides(fill = guide_legend(title = "Activity"))

}

bgNoise Background Noise and Soundscape Power Index

Description

Calculate the Background Noise and Soundscape Power values of a single audio using the method-
ology proposed in Towsey 2017

bgNoise 5

Usage

bgNoise(
soundfile,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD"

)

Arguments

soundfile tuneR Wave object or path to a valid audio file
channel channel where the metric values will be extract from. Available channels are:

"stereo", "mono", "left" or "right". Defaults to "stereo"

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017

targetSampRate desired sample rate of the audios. This argument is only used to down sample
the audio. If NULL, then audio’s sample rate remains the same. Defaults to NULL

wl window length of the spectrogram. Defaults to 512

window window used to smooth the spectrogram. Switch to signal::hanning(wl) to
use hanning instead. Defaults to signal::hammning(wl)

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" or any numeric value (foe example = 100). Defaults to "FD"

Details

Background Noise (BGN) is an acoustic metric that measures the most common continuous baseline
level of acoustic energy in a frequency window and in a time bin. It was developed by Towsey
2017 using the Lamel et al 1981 algorithm. The metric is calculated by taking the modal value of
intensity values in temporal bin c in frequency window f of a reconding:

BGNf = mode(dBcf)

Soundscape Power represents a measure of signal-to-noise ratio. It measures the relation of BGN
to the loudest intensities in temporal bin c in frequency window f:

POWf = max(dBcf)−BGNcf

This mean we’ll have a value of BGN and POW to each frequency window of a recording.

6 bgNoise

Value

This function returns a list containing five objects. The first object (values) contain the values
of BGN and POW. The second object (timeBins) contains the durations of each time bin analysed.
The third object (sampRate) contains the audio’s sampling rate. The fourth and last object (channel)
contains the channels used for the calculation of the metric.

References

Towsey, M. W. (2017). The calculation of acoustic indices derived from long-duration recordings
of the natural environment. In eprints.qut.edu.au. https://eprints.qut.edu.au/110634/ Lamel, L.,
Rabiner, L., Rosenberg, A., & Wilpon, J. (1981). An improved endpoint detector for isolated
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(4), 777-785
https://doi.org/10.1109/TASSP.1981.1163642

Examples

For our main example we'll create an artificial audio with
white noise to test its Background Noise
We'll use the package tuneR
library(tuneR)

Define the audio sample rate, duration and number of samples
sampRate <- 12050
dur <- 59
sampN <- sampRate * dur

Then we Ggenerate the white noise for our audio and apply FFT
set.seed(413)
ruido <- rnorm(sampN)
spec <- fft(ruido)

Now we create a random spectral envelope for the audio and apply the spectral envelope
nPoints <- 50
env <- runif(nPoints)
env <- approx(env, n=nPoints)$y
specMod <- spec * env

Now we invert the FFT back to into a time waveform and normalize and convert to Wave
out <- Re(fft(specMod, inverse=TRUE)) / sampN
wave <- Wave(left = out, samp.rate = sampRate, bit = 16)
wave <- normalize(wave, unit = "16")

Here's our artificial audio
wave

Running the bgNoise function with all the default arguments
bgn <- bgNoise(wave)

Print the results
head(bgn$values$mono$BGN)
head(bgn$values$mono$POW)

bgNoise 7

Plotting background noise and soundscape profile for the first minute of the recording
par(mfrow = c(2,2))
plot(x = bgn$values$monoBGNBGN1, y = seq(1,bgn$sampRate, length.out = 256),

xlab = "Background Noise (dB)", ylab = "Frequency (hz)",
main = "BGN by Frequency",
type = "l")

plot(x = bgn$values$monoPOWPOW1, y = seq(1,bgn$sampRate, length.out = 256),
xlab = "Soundscape Power (dB)", ylab = "Frequency (hz)",
main = "POW by Frequency",
type = "l")

plot(bgn$values$monoBGNBGN1~bgn$values$monoPOWPOW1, pch = 16,
xlab = "Soundscape Power (dB)", ylab = "Background Noise (dB)",
main = "BGN~POW")

hist(bgn$values$monoBGNBGN1, main = "Histogram of BGN distribution",
xlab = "Background Noise (BGN)")

oldpar <- par(no.readonly = TRUE)
This is a secondary example using audio from a real soundscape
These audios are originated from the Escutadô Project
Getting audiofile from the online Zenodo library
dir <- paste(tempdir(), "forExample", sep = "/")
dir.create(dir)
rec <- paste0("GAL24576_20250401_", sprintf("%06d", 0), ".wav")
recDir <- paste(dir, rec , sep = "/")
url <- paste0("https://zenodo.org/records/17575795/files/",

rec,
"?download=1")

Downloading the file, might take some time denpending on your internet
download.file(url, destfile = recDir, mode = "wb")

Running the bgNoise function with all the default arguments
bgn <- bgNoise(recDir)

Print the results
head(bgn$values$left$BGN)
head(bgn$values$left$POW)

Plotting background noise and soundscape profile for the first minute of the recording
par(mfrow = c(2, 2))
plot(

x = bgn$values$leftBGNBGN1,
y = seq(1, bgn$sampRate, length.out = 256),
xlab = "Background Noise (dB)",
ylab = "Frequency (hz)",
main = "BGN by Frequency",
type = "l"

)
plot(

x = bgn$values$leftPOWPOW1,
y = seq(1, bgn$sampRate, length.out = 256),

8 multActivity

xlab = "Soundscape Power (dB)",
ylab = "Frequency (hz)",
main = "POW by Frequency",
type = "l"

)
plot(

bgn$values$leftBGNBGN1 ~ bgn$values$leftPOWPOW1,
pch = 16,
xlab = "Soundscape Power (dB)",
ylab = "Background Noise (dB)",
main = "BGN~POW in left ear"

)
plot(

bgn$values$rightBGNBGN1 ~ bgn$values$rightPOWPOW1,
pch = 16,
xlab = "Soundscape Power (dB)",
ylab = "Background Noise (dB)",
main = "BGN~POW in right ear"

)

unlink(dir, recursive = TRUE)
par(oldpar)

multActivity Multiple Acoustic Activity Matrix

Description

Calculate the Acoustic Activity Matrix used in the the calculation of Soundscape Saturation using
Burivalova 2018 methodology for a set of recordings

Usage

multActivity(
soundpath,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD",
powthr = 10,
bgnthr = 0.8,
beta = TRUE,
backup = NULL

)

multActivity 9

Arguments

soundpath single or multiple directories to your audio files

channel channel where the saturation values will be extract from. Available channels
are: "stereo", "mono", "left" or "right". Defaults to "stereo".

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017

targetSampRate desired sample rate of the audios. This argument is only used to down sample
the audio. If NULL, then audio’s sample rate remains the same. Defaults to NULL

wl window length of the spectrogram. Defaults to 512

window window used to smooth the spectrogram. Switch to signal::hanning(wl) to
use hanning instead. Defaults to signal::hammning(wl)

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" or any numeric value (foe example = 100). Defaults to "FD"

powthr single numeric value to calculate the activity matrix for soundscape power (in
dB). Detauls to 10

bgnthr single numeric value to calculate the activity matrix for background noise (in
%). Detauls to 0.8

beta how BGN thresholds are calculated. If TRUE, BGN thresholds are calculated
using all recordings combined. If FALSE, BGN thresholds are calculated sepa-
rately for each recording. Defaults to TRUE

backup directory to save the backup. Defaults to NULL

Details

We generate an activity matrix using Burivalova 2018 methodology. For each time bin of the record-
ing we apply the following formula:

amf = 1 if(BGNmf > θ1) or (POWmf > θ2); otherwise, amf = 0,

Where θ1 is the threshold of BGN values and θ2 is a threshold of dB values. 1 = active and 0 =
inactive.

If backup is set to a valid directory, a file named "SATBACKUP.RData" is saved after every batch of
five processed files. If the function execution is interrupted (e.g., manual termination, an R session
crash, or a system shutdown), this backup file can be passed to satBackup() (e.g., ~path/SATBACKUP.RData)
to resume the original process. Once a backup is created, all arguments and file paths must remain
unchanged, unless they are manually modified within the .RData object.

10 multActivity

Value

A list containing five objects. The first and second objects (powthresh and bgnthresh) are the thresh-
old values inputted as arguments into the function. The third (info) contains the following variables
from every audio file: PATH, AUDIO, CHANNEL, DURATION, BIN, SAMPRATE.. The fourth
object (values) contains a matrix with the the values of activity for each bin of each recording and
the size of the bin in seconds. The fifth contains a list with errors that occurred with specific files
during the function.

References

Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., & Game, E. T. (2018).
Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New
Guinea. Conservation Biology, 32(1), 205-215. https://doi.org/10.1111/cobi.12968

Examples

if (require("ggplot2") & require("patchwork")) {
Generating an artificial audio for the example
For this example we'll generate a sweep in a noisy soundscape
library(ggplot2)
library(patchwork)

Downloading audiofiles from public Zenodo library
dir <- paste0(tempdir(), "/forExamples")
dir.create(dir)
recName <- paste0("GAL24576_20250401_", sprintf("%06d", seq(0, 200000, by = 50000)), ".wav")
recDir <- paste(dir, recName, sep = "/")

for (rec in recName) {
print(rec)
url <- paste0("https://zenodo.org/records/17575795/files/",

rec,
"?download=1")

download.file(url,
destfile = paste(dir, rec, sep = "/"),
mode = "wb")

}

time <- sapply(strsplit(recName, "_"), function(x)
paste(substr(x[3], 1, 2), substr(x[3], 3, 4), substr(x[3], 5, 6), sep = ":"))

date <- sapply(strsplit(recName, "_"), function(x)
paste(substr(x[2], 1, 4), substr(x[2], 5, 6), substr(x[2], 7, 8), sep = "-"))

dateTime <- as.POSIXct(paste(date, time))

timeLabels <- time[c(1, 7, 13, 19, 24)]
timeBreaks <- as.character(dateTime[c(1, 7, 13, 19, 24)])

breaks <- round(c(1, cumsum(rep(256 / 6, 6))))

Running the function

satBackup 11

act <- multActivity(dir)

plotN <- 1

sDim <- dim(act$values)

sampRate <- act$info$SAMPRATE[1]
kHz <- cumsum(c(0, rep(sampRate / 6, 6))) / 1000

plotList <- list()

for (cha in c("left", "right")) {
actCurrent <- act$values[, act$info$CHANNEL == cha]
actCurrentDF <- data.frame(

TIME = as.character(rep(dateTime, each = sDim[1])),
SPEC = rep(seq(sDim[1]), sDim[2]),
VAL = factor(c(unlist(actCurrent)), levels = c(0, 1))

)

plotList[[plotN]] <- ggplot(actCurrentDF, aes(x = TIME, y = SPEC, fill = VAL)) +
geom_tile() +
theme_classic() +
scale_y_continuous(expand = c(NA, NA),

labels = kHz,
breaks = breaks) +

scale_x_discrete(expand = c(0, 0),
labels = time) +

scale_fill_manual(values = c("white", "black"),
labels = c("Inactive", "Active")) +

guides(fill = guide_legend(title = "Acoustic Activity")) +
labs(

x = "Time of Day",
y = "Frequency (kHz)",
title = paste("Acoustic Activity in the", cha, "channel")

)

plotN <- plotN + 1

}

plotList[[1]] + plotList[[2]] + plot_layout(guide = "collect")

unlink(recDir)
unlink(dir)

}

satBackup Backup for Ruido’s functions

12 satBackup

Description

This function is a way to continue an unfinished process of the soundSat(), soundMat() or
multActivity() functions through a backup file. Arguments can’t be inputted nor changed since
the function will automatically load them from the .RData files. However you may manually change
them (not recomended)

Usage

satBackup(backup)

Arguments

backup path to the .RData file create by the backup of soundSat or soundMat

Value

This functions returns the same output of soundSat(), soundMat() or multActivity()

Examples

Not run:
It's impossible to create a functioning example since you would have to manually stop the process
However, here is how this function is used:
This example will load an entire day of audios to your computer, so beware.

Downloading audiofiles from public Zenodo library
dir <- paste(tempdir(), "forExample", sep = "/")
dir.create(dir)
recName <- paste0("GAL24576_20250401_", sprintf("%06d", seq(0, 230000, by = 10000)),".wav")
recDir <- paste(dir, recName, sep = "/")

for(rec in recName) {
print(rec)
url <- paste0("https://zenodo.org/records/17575795/files/", rec, "?download=1")
download.file(url, destfile = paste(dir, rec, sep = "/"), mode = "wb")

}

sat <- soundSat(dir, backup = dir)

Now pretend the process was interrupted (manually/your R crashed/your computer turned off)
We get the backup file

list.files(dir)
backupDir <- paste(dir, "SATBACKUP.RData", sep = "/")

To recall the backup you simply:

satB <- satBackup(backupDir)

head(satB$values)

singleSat 13

unlink(dir, recursive = TRUE)

End(Not run)

singleSat Single Soundscape Saturation Index

Description

Single Soundscape Saturation Index

Usage

singleSat(
soundfile,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD",
powthr = 10,
bgnthr = 0.8,
beta = TRUE

)

Arguments

soundfile tuneR Wave object or path to a valid audio

channel channel where the background noise values will be extract from. Available chan-
nels are: "stereo", "mono", "left" or "right". Defaults to "stereo".

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017.

targetSampRate sample rate of the audios. Defaults to NULL to not change the sample rate. This
argument is only used to down sample the audio.

wl window length of the spectrogram. Defaults to 512.

window window used to smooth the spectrogram. Defaults to signal::hammning(wl).
Switch to signal::hanning(wl) if to use hanning instead.

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

14 singleSat

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" and 100. Defaults to "FD". Can also be set to any number to limit or
increase the amount of breaks.

powthr a single value to evaluate the activity matrix for Soundscape Power (in %dB).
Defaults to 10.

bgnthr a single value to evaluate the activity matrix for Background Noise (in %). De-
faults to 0.8

beta how BGN thresholds are calculated. If TRUE, BGN thresholds are computed
using all recordings combined.

Details

Soundscape Saturation (SAT) is a measure of the proportion of frequency bins that are acoustically
active in a determined window of time. It was developed by Burivalova et al. 2018 as an index to
test the acoustic niche hypothesis. To calculate this function, first we need to generate an activity
matrix for each time bin of your recording with the following formula:

amf = 1 if(BGNmf > θ1) or (POWmf > θ2); otherwise, amf = 0,

Where θ1 is the threshold of BGN values and θ2 is a threshold of dB values. Since we define a single
threshold for both in this function, we don’t have to worry about generating a saturation value for
many different combinations. For the selected threshold a soundscape saturation measure will be
taken with the following formula:

Sm =

∑N
f=1 amf

N

Since this is analyzing the soundscape saturaion of a single file, no normality tests will be done.

Value

A vector containing the saturation values for all time bins of the inputted file

References

Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., & Game, E. T. (2018).
Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New
Guinea. Conservation Biology, 32(1), 205-215. https://doi.org/10.1111/cobi.12968

Examples

oldpar <- par(no.readonly = TRUE)

Generating an artificial audio for the example
For this example we'll generate a sweep in a noisy soundscape
library(tuneR)

Define parameters for the artificial audio
samprate <- 12050

singleSat 15

dur <- 59
n <- samprate * dur

White noise
set.seed(413)
noise <- rnorm(n)

Linear fade-out envelope
fade <- seq(1, 0, length.out = n)

Apply fade
signal <- noise * fade

Create Wave object
wave <- Wave(

left = signal,
samp.rate = samprate,
bit = 16

)

Running singleSat() on the artificial audio
sat <- singleSat(wave, timeBin = 10)

Now we can plot the results
In the left we have a periodogram and in the right saturaion values
along one minute
par(mfrow = c(1,2))
image(periodogram(wave, width = 8192, normalize = FALSE), xlab = "Time (s)",
ylab = "Frequency (hz)", axes = FALSE)
axis(1, labels = seq(0,60, 10), at = seq(0,7e5,length.out = 7))
axis(2)
plot(sat, xlab = "Time (s)", ylab = "Soundscape Saturation (%)",
type = "b", pch = 16, axes = FALSE)
axis(1, labels = paste0(c("0-10","10-20","20-30","30-40","40-50","50-59"),
"s"), at = 1:6)
axis(2)

par(oldpar)

Getting audiofile from the online Zenodo library
dir <- paste(tempdir(), "forExample", sep = "/")
dir.create(dir)
rec <- paste0("GAL24576_20250401_", sprintf("%06d", 0),".wav")
recDir <- paste(dir,rec , sep = "/")
url <- paste0("https://zenodo.org/records/17575795/files/", rec, "?download=1")

Downloading the file, might take some time denpending on your internet
download.file(url, destfile = recDir, mode = "wb")

Now we calculate soundscape saturation for both sides of the recording
sat <- singleSat(recDir)

16 soundMat

Printing the results
print(sat)

barplot(sat, col = c("darkgreen", "red"),
names.arg = c("Left", "Right"), ylab = "Soundscape Saturation (%)")

unlink(dir, recursive = TRUE)

soundMat Soundscape Saturation Matrix

Description

Get the Soundscape Saturation matrix with all threshold combinations instead of the combination
with the most normal distribution

Usage

soundMat(
soundpath,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD",
powthr = c(5, 20, 1),
bgnthr = c(0.5, 0.9, 0.05),
beta = TRUE,
backup = NULL

)

Arguments

soundpath single or multiple directories to your audio files

channel channel where the saturation values will be extract from. Available channels
are: "stereo", "mono", "left" or "right". Defaults to "stereo".

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017

targetSampRate desired sample rate of the audios. This argument is only used to down sample
the audio. If NULL, then audio’s sample rate remains the same. Defaults to NULL

soundMat 17

wl window length of the spectrogram. Defaults to 512

window window used to smooth the spectrogram. Switch to signal::hanning(wl) to
use hanning instead. Defaults to signal::hammning(wl)

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" or any numeric value (foe example = 100). Defaults to "FD"

powthr numeric vector of length three containing the the range of thresholds used to
evaluate the Soundscape Power of the Activity Matrix (in dB). The values cor-
respond to the minimum threshold, maximum threshold and step size respec-
tively. Defaults to c(5, 20, 1), which evaluates thresholds from 5 dB to 20 dB
in increments of 1 dB

bgnthr numeric vector of length three containing the the range of thresholds used to
evaluate the Background Noise of the Activity Matrix (in %). The values corre-
spond to the minimum threshold, maximum threshold and step size respectively.
Defaults to c(0.5, 0.9, 0.05), which evaluates thresholds from 50% to 90%
in increments of 5%

beta how BGN thresholds are calculated. If TRUE, BGN thresholds are calculated
using all recordings combined. If FALSE, BGN thresholds are calculated sepa-
rately for each recording. Defaults to TRUE

backup path to save the backup. Defaults to NULL

Details

Soundscape Saturation (SAT) is a measure of the proportion of frequency bins that are acoustically
active in a determined window of time. It was developed by Burivalova et al. 2018 as an index to
test the acoustic niche hypothesis. To calculate this function, first we need to generate an activity
matrix for each time bin of your recording with the following formula:

amf = 1 if(BGNmf > θ1) or (POWmf > θ2); otherwise, amf = 0,

Where θ1 is the threshold of BGN values and θ2 is a threshold of dB values. Since we define a
interval for both the threshold, this means that an activity matrix will be generated for each bin of
each recording. For each combination of threshold a SAT measure will be taken with the following
formula:

Sm =

∑N
f=1 amf

N

After these equations are done, we check every threshold combination for normality and pick the
combination that yields the most normal distribution of saturation values.

If backup is set to a valid directory, a file named "SATBACKUP.RData" is saved after every batch of
five processed files. If the function execution is interrupted (e.g., manual termination, an R session
crash, or a system shutdown), this backup file can be passed to satBackup() (e.g., ~path/SATBACKUP.RData)
to resume the original process. Once a backup is created, all arguments and file paths must remain
unchanged, unless they are manually modified within the .RData object.

18 soundMat

Value

A list containing three objects. The first (info) contains the following variables from every audio
file: PATH, AUDIO, CHANNEL, DURATION, BIN, SAMPRATE. The second (values) contains
saturation values from all possible threshold combinations. The third (errors) contains the error
messages and the paths to the files that returned an error during processing.

References

Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., & Game, E. T. (2018).
Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New
Guinea. Conservation Biology, 32(1), 205-215. https://doi.org/10.1111/cobi.12968

Examples

oldpar <- par(no.readonly = TRUE)
Downloading audiofiles from public Zenodo library
dir <- paste(tempdir(), "forExample", sep = "/")
dir.create(dir)
recName <- paste0("GAL24576_20250401_", sprintf("%06d", seq(0, 200000, by = 50000)), ".wav")
recDir <- paste(dir, recName, sep = "/")

for (rec in recName) {
print(rec)
url <- paste0("https://zenodo.org/records/17575795/files/",

rec,
"?download=1")

download.file(url, destfile = paste(dir, rec, sep = "/"), mode = "wb")
}

Running the function
sat <- soundMat(dir)

Plotting results
sides <- sat$info$CHANNEL

thresholds <- colnames(sat$values)
split <- strsplit(thresholds, "/")

shapNorm <- apply(sat$values, 2, function(x)

if (var(x) == 0) {
0

} else {
shapiro.test(x)$statistic

})

shapPos <- which.max(shapNorm)

par(mfrow = c(3, 2))

plot(

soundSat 19

sat$values[sides == "left", 1],
main = paste0("POW = ", split[[1]][1], "dB | BGN = ", split[[1]][2], "%"),
type = "b",
ylim = c(0,1),
xlab = "Time Index", ylab = "Soundsacpe Saturation (%)", col = "goldenrod"

)
points(sat$values[sides == "right", 1], col = "maroon", type = "b")

hist(sat$values[,1], main = paste("Histogram of POW = ", split[[1]][1],
"dB | BGN = ", split[[1]][2], "%"), xlab = "Soundscape Saturation (%)")

plot(
sat$values[sides == "left", 144],
main = paste0("POW = ", split[[144]][1], "dB | BGN = ", split[[144]][2], "%"),
type = "b",
ylim = c(0,1),
xlab = "Time Index", ylab = "Soundsacpe Saturation (%)", col = "goldenrod"
)
points(sat$values[sides == "right", 144], col = "maroon", type = "b")

hist(sat$values[,144], main = paste("Histogram of POW = ", split[[144]][1],
"dB | BGN = ", split[[144]][2], "%"), xlab = "Soundscape Saturation (%)")

plot(
sat$values[sides == "left", shapPos],
main = paste0(

"POW = ",
split[[shapPos]][1],
"dB | BGN = ",
split[[shapPos]][2],
"%",
"\nshapiro.test. statistic (W): ",
which.max(shapNorm)

),
type = "b",
ylim = c(0,1),
xlab = "Time Index", ylab = "Soundsacpe Saturation (%)", col = "goldenrod"

)
points(sat$values[sides == "right", shapPos], col = "maroon", type = "b")
hist(sat$values[,shapPos], main = paste("Histogram of POW = ",
split[[shapPos]][1], "dB | BGN = ", split[[shapPos]][2], "%"),
xlab = "Soundscape Saturation (%)")

unlink(dir, recursive = TRUE)
par(oldpar)

soundSat Soundscape Saturation Index

20 soundSat

Description

Calculate Soundscape Saturation for a combination of recordings using the methodology proposed
in Burivalova 2018

Usage

soundSat(
soundpath,
channel = "stereo",
timeBin = 60,
dbThreshold = -90,
targetSampRate = NULL,
wl = 512,
window = signal::hamming(wl),
overlap = ceiling(length(window)/2),
histbreaks = "FD",
powthr = c(5, 20, 1),
bgnthr = c(0.5, 0.9, 0.05),
normality = "ad.test",
beta = TRUE,
backup = NULL

)

Arguments

soundpath single or multiple directories to your audio files

channel channel where the saturation values will be extract from. Available channels
are: "stereo", "mono", "left" or "right". Defaults to "stereo".

timeBin size (in seconds) of the time bin. Set to NULL to use the entire audio as a single
bin. Defaults to 60

dbThreshold minimum allowed value of dB for the spectrograms. Defaults to -90, as set by
Towsey 2017

targetSampRate desired sample rate of the audios. This argument is only used to down sample
the audio. If NULL, then audio’s sample rate remains the same. Defaults to NULL

wl window length of the spectrogram. Defaults to 512

window window used to smooth the spectrogram. Switch to signal::hanning(wl) to
use hanning instead. Defaults to signal::hammning(wl)

overlap overlap between the spectrogram windows. Defaults to wl/2 (half the window
length)

histbreaks breaks used to calculate Background Noise. Available breaks are: "FD", "Sturges",
"scott" or any numeric value (foe example = 100). Defaults to "FD"

powthr numeric vector of length three containing the the range of thresholds used to
evaluate the Soundscape Power of the Activity Matrix (in dB). The values cor-
respond to the minimum threshold, maximum threshold and step size respec-
tively. Defaults to c(5, 20, 1), which evaluates thresholds from 5 dB to 20 dB
in increments of 1 dB

soundSat 21

bgnthr numeric vector of length three containing the the range of thresholds used to
evaluate the Background Noise of the Activity Matrix (in %). The values corre-
spond to the minimum threshold, maximum threshold and step size respectively.
Defaults to c(0.5, 0.9, 0.05), which evaluates thresholds from 50% to 90%
in increments of 5%

normality character string containing the normality test used to determine which threshold
combination has the most normal distribution of values. We recommend to pick
any test from the nortest package. Defaults to "ad.test". "ks.test" is not
available. "shapiro.test" can be used, however we recommend using only
when analyzing very few recordings

beta how BGN thresholds are calculated. If TRUE, BGN thresholds are calculated
using all recordings combined. If FALSE, BGN thresholds are calculated sepa-
rately for each recording. Defaults to TRUE

backup path to save the backup. Defaults to NULL

Details

Soundscape Saturation (SAT) is a measure of the proportion of frequency bins that are acoustically
active in a determined window of time. It was developed by Burivalova et al. 2018 as an index to
test the acoustic niche hypothesis. To calculate this function, first we need to generate an activity
matrix for each time bin of your recording with the following formula:

amf = 1 if(BGNmf > θ1) or (POWmf > θ2); otherwise, amf = 0,

Where θ1 is the threshold of BGN values and θ2 is a threshold of dB values. Since we define a
interval for both the threshold, this means that an activity matrix will be generated for each bin of
each recording. For each combination of threshold a SAT measure will be taken with the following
formula:

Sm =

∑N
f=1 amf

N

After these equations are done, we check every threshold combination for normality and pick the
combination that yields the most normal distribution of saturation values.

If backup is set to a valid directory, a file named "SATBACKUP.RData" is saved after every batch of
five processed files. If the function execution is interrupted (e.g., manual termination, an R session
crash, or a system shutdown), this backup file can be passed to satBackup() (e.g., ~path/SATBACKUP.RData)
to resume the original process. Once a backup is created, all arguments and file paths must remain
unchanged, unless they are manually modified within the .RData object.

Value

A list containing five objects. The first and second objects (powthresh and bgnthresh) are the thresh-
old values that yielded the most normal distribution of saturation values using the normality test set
by the user. The third (normality) contains the statitics values of the normality test that yielded the
most normal distribution. The fourth object (values) contains a data.frame with the the values of
saturation for each bin of each recording and the size of the bin in seconds. The fifth contains a
data.frame with errors that occurred with specific files during the function.

22 soundSat

References

Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., & Game, E. T. (2018).
Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New
Guinea. Conservation Biology, 32(1), 205-215. https://doi.org/10.1111/cobi.12968

Examples

Downloading audiofiles from public Zenodo library
dir <- paste(tempdir(), "forExample", sep = "/")
dir.create(dir)
recName <- paste0("GAL24576_20250401_", sprintf("%06d", seq(0, 200000, by = 50000)),".wav")
recDir <- paste(dir, recName, sep = "/")

for(rec in recDir) {
print(rec)
url <- paste0("https://zenodo.org/records/17575795/files/", basename(rec), "?download=1")
download.file(url, destfile = rec, mode = "wb")

}

Running the function
sat <- soundSat(dir)

Preparing the plot
timeSplit <- strsplit(sat$values$AUDIO, "_")
sides <- sat$values$CHANNEL
date <- sapply(timeSplit, function(x)

x[2])
time <- sapply(timeSplit, function(x)

substr(x[3],1,6))
datePos <- paste(substr(date,1,4), substr(date,5,6), substr(date,7,8), sep = "-")
timePos <- paste(substr(time,1,2), substr(time,3,4), substr(time,5,6), sep = ":")
dateTime <- as.POSIXct(paste(datePos, timePos), format = "%Y-%m-%d %H:%M:%OS")
leftEar <- data.frame(SAT = sat$values$SAT[sides == "left"], HOUR = dateTime[sides == "left"])
rightEar <- data.frame(SAT = sat$values$SAT[sides == "right"], HOUR = dateTime[sides == "right"])

Plotting results

plot(SAT~HOUR, data = leftEar, ylim = c(range(sat$values$SAT)),
col = "darkgreen", pch = 16,

ylab = "Soundscape Saturation (%)", xlab = "Time of Day", type = "b")
points(SAT~HOUR, data = rightEar, ylim = c(range(sat$values$SAT)),
col = "red", pch = 16, type = "b")
legend("bottomright", legend = c("Left Ear", "Right Ear"),

col = c("darkgreen", "red"), lty = 1)

unlink(dir, recursive = TRUE)

Index

activity, 2

bgNoise, 4

multActivity, 8

satBackup, 11
singleSat, 13
soundMat, 16
soundSat, 19

23

	activity
	bgNoise
	multActivity
	satBackup
	singleSat
	soundMat
	soundSat
	Index

