Package ‘autotab’

February 6, 2026

Title Variational Autoencoders for Heterogeneous Tabular Data
Version 0.1.2

Description Build and train a variational autoencoder (VAE) for mixed-type
tabular data (continuous, binary, categorical).
Models are implemented using "TensorFlow' and 'Keras' via the 'reticulate’'
interface, enabling reproducible VAE training for heterogeneous tabular
datasets.

License MIT + file LICENSE
URL https://github.com/SarahMilligan-hub/AutoTab

BugReports https://github.com/SarahMilligan-hub/AutoTab/issues
Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1)

Imports keras, magrittr, R6, reticulate, tensorflow

Suggests caret

SystemRequirements Python (>= 3.8); TensorFlow (>= 2.10); Keras;
TensorFlow Addons

NeedsCompilation no

Author Sarah Milligan [aut, cre]

Maintainer Sarah Milligan <s1m1999@bu.edu>
Repository CRAN

Date/Publication 2026-02-06 19:40:08 UTC

Contents

decoder_model e
Decoder_weights e
encoder_decoder_information
encoder_latento L L e e
Encoder_weights

https://github.com/SarahMilligan-hub/AutoTab
https://github.com/SarahMilligan-hub/AutoTab/issues

2 decoder_model

extracting_distribution L. L 9
feat_reorder e e e 11
get_feat_dist. L. 12
Latent_sample L 12
min_max_scale e 13
MOZ_PLiOT .« o v v v e e e e e e e e e 14
reset_SeedS e e e 19
set_feat dist L e e 20
VAE train s, 20

Index 23

decoder_model Builds the decoder graph for an AutoTab VAE
Description

Reconstructs the decoder computational graph used during training. This is used internally by
VAE_train() and externally when you want to load the trained decoder weights and generate new
samples by sampling the latent space.

Usage

decoder_model (
decoder_input,
decoder_info,
latent_dim,
feat_dist,
lip_dec,
pi_dec,
max_std = 10,
min_val = 0.001,
temperature = 0.5

Arguments

decoder_input Ignored; pass NULL. No input is needed when building the compitational graph.

decoder_info List defining the decoder architecture, e.g. 1ist(list("dense”, 80, "relu”),
list("dropout”, @.1), list("dense”, 100, "relu”)). Each dense entry
islist("dense”, units, activation). Each dropoutentryislist("dropout”,
rate). Optional elements: [[4]1] L2 flag (0/1), [[5]] L2 value, [[6]] BN flag
(FALSE/TRUE), [[7]1]1 BN momentum, [[8]] BN scale/center (TRUE/FALSE).

latent_dim Integer. Latent dimension used during training.

feat_dist Data frame with columns column_name, distribution, num_params (created
by extracting_distribution() and set via set_feat_dist()).

lip_dec 0/1 (logical). Use spectral normalization on dense hidden layers.

decoder_model 3

pi_dec Integer. Power-iteration count for spectral normalization.

max_std Numeric. Upper bound for Gaussian SD heads (default 10.).

min_val Numeric. Lower bound (epsilon) for Gaussian SD heads (default 1Te-3).

temperature Numeric. Gumbel-Softmax temperature for categorical heads (default . 5).
Details

The final output layer of an AutoTab decoder slices outputs by feature distribution in feat_dist:
Gaussian heads output mean/SD (with min_val/max_std constraints), Bernoulli heads output logits
passed through sigmoid to extract probabilities, and Categorical heads use Gumbel-Softmax with
the given temperature.

If lip_dec = 1, dense hidden layers are wrapped with # spectral normalization using pi_dec power
iterations.

Value

A compiled Keras model representing the decoder computational graph. You can load trained
decoder weights with Decoder_weights() + set_weights(), then call predict(decoder, Z)
where Zis ann x latent_dim matrix (typically a sample from your latent space).

See Also

VAE_train(), Decoder_weights(), encoder_latent(),Latent_sample(), extracting_distribution()

Examples

if (reticulate::py_module_available("tensorflow”) &&
exists("training”) &&
exists("feat_dist")) {

Assume you already have feat_dist set via set_feat_dist(feat_dist)
decoder_info <- list(

list("dense”, 80, "relu"),

list("dense”, 100, "relu")
)

Rebuild and apply decoder
weights_decoder <- Decoder_weights(
encoder_layers = 2,

trained_model = training$trained_model,
lip_enc =0,

pi_enc =0,

prior_learn = "fixed",

BNenc_layers = 0,

learn_BN =0

)

decoder <- decoder_model(
decoder_input = NULL,
decoder_info = decoder_info,

4 Decoder_weights

latent_dim =5,
feat_dist = feat_dist,
lip_dec =0,
pi_dec =0

)

decoder %>% keras::set_weights(weights_decoder)

3
Decoder_weights Extract decoder-only weights from a trained Keras model
Description

Pulls just the decoder weights from keras: :get_weights(trained_model), skipping encoder
parameters and (if used) the final trainable tensors from a learnable mixture-of-Gaussians (MoG)
prior (means, log_vars, and weight logits).

Usage

Decoder_weights(
encoder_layers,
trained_model,
lip_enc,
pi_enc,
prior_learn,
BNenc_layers,
learn_BN

Arguments

encoder_layers Integer. Number of encoder layers (used to compute split index).

trained_model Keras model. Typically training$trained_model.

lip_enc Integer (0/1). Whether spectral normalization was used in the encoder.
pi_enc Integer. Power iterations used in encoder spectral normalization.
prior_learn Character. "fixed" for fixed prior; any other value implies learnable MoG.

BNenc_layers Integer. Number of encoder BN layers (affects split index).

learn_BN Integer (0/1). Whether BN layers learned scale and center.

encoder_decoder_information 5

Details

e Whenprior_learn !="fixed", the final three tensors are assumed to belong to the learnable
MoG prior (mog_means, mog_log_vars, mog_weights_logit) and are excluded.

 The split index math mirrors Encoder_weights() and assumes the standard AutoTab graph
wiring.
* All model weights can always be accessed directly using keras: :get_weights(trained_model).

This function is provided as a convenience tool within AutoTab to streamline decoder recon-
struction but is not the only method available.

Value

A list() of decoder weight tensors in order, suitable for set_weights().

See Also

decoder_model (), Encoder_weights(), VAE_train()

Examples

decoder_info <- list(
list("dense”, 80, "relu"),
list("dense”, 100, "relu")
)

if (reticulate::py_module_available("tensorflow”) &&
exists("training”)) {
weights_decoder <- Decoder_weights(

encoder_layers = 2,
trained_model = training$trained_model, #where training = VAE_train(...)
lip_enc =0,
pi_enc =0,
prior_learn = "fixed",
BNenc_layers = 0,
learn_BN =0
)
3

encoder_decoder_information
Specifying Encoder and Decoder Architectures for VAE_train()

Description

Specifying Encoder and Decoder Architectures for VAE_train()

6 encoder_latent

Encoder and Decoder configuration

The arguments encoder_info and decoder_info define the architecture of the encoder and de-
coder networks used in VAE_train(). Each is a list in which every element describes one layer in
sequence.

AutoTab currently supports two layer types: "dense” and "dropout”.
Dense layers

When input1 = "dense”, the layer specification takes the form:

e input2: Numeric. Number of units (nodes).

* input3: Character. Activation function (any TensorFlow/Keras activation name).
* inputé4: Integer (0/1). L2 regularization flag. Default: .

* input5: Numeric. L2 regularization strength (lambda). Default: 1e-4.

* input6: Logical. Apply batch normalization. Default: FALSE.

e input7: Numeric. Batch normalization momentum. Default: @.99.

* input8: Logical. Whether batch normalization scale and center parameters are trainable.
Default: TRUE.

Dropout layers

When inputi = "dropout”, the layer specification is:
e input2: Numeric. Dropout rate.

Together, these lists fully specify the encoder and decoder architectures used during VAE training.

See Also
VAE_train()

encoder_latent Rebuild the encoder graph to export z_mean and z_log_var

Description

Constructs the encoder computation graph (matching your original encoder_info) so that weights
extracted by Encoder_weights() can be applied and the encoder to produce z_mean and z_log_var.

Usage

encoder_latent(
encoder_input,
encoder_info,
latent_dim,
Lip_en,
power_iterations

encoder_latent

Arguments

encoder_input Data frame or matrix of the preprocessed variables (used for shape only).
encoder_info List defining encoder architecture.
latent_dim Integer. Latent dimension.

Lip_en Integer (0/1). Whether spectral normalization was used in the encoder.
power_iterations
Integer. Power iterations for spectral normalization (if used).

Details

 Spectral normalization is sourced from TensorFlow Addons via get_tfa().
* encoder_input provides shape; the data are not consumed at build time.

* Apply weights with set_weights() using the output of Encoder_weights().

Value

A Keras model whose outputs are 1list(z_mean, z_log_var).

See Also

Encoder_weights(), Latent_sample(), Decoder_weights()

Examples

encoder_info <- list(
list("dense”, 100, "relu"),
list("dense”, 80, "relu")
)

if (reticulate::py_module_available("tensorflow"”) &&
exists("training”)) {
weights_encoder <- Encoder_weights(

encoder_layers = 2,
trained_model = training$trained_model, #where training = VAE_train(...)
lip_enc =0,
pi_enc =0,
BNenc_layers = 0,
learn_BN =0

)

latent_encoder <- encoder_latent(
encoder_input = data,
encoder_info = encoder_info,
latent_dim =5,
Lip_en =0,
power_iterations = @

)

latent_encoder %>% keras::set_weights(weights_encoder)

}

8 Encoder_weights

Encoder_weights Extract encoder-only weights from a trained Keras model

Description

Pulls just the encoder weights from keras::get_weights(trained_model), skipping any pa-
rameters introduced by batch normalization (BN) or spectral normalization (SN). The split index is
computed from the number of encoder layers and whether BN/SN were used.

Usage

Encoder_weights(
encoder_layers,
trained_model,
lip_enc,
pi_enc,
BNenc_layers,
learn_BN

Arguments

encoder_layers Integer. Number of encoder layers (used to compute split index).
trained_model Keras model. Typically training$trained_model from VAE_train().
lip_enc Integer (0/1). Whether spectral normalization was used in the encoder.
pi_enc Integer. Power iteration count if spectral normalization was used.
BNenc_layers Integer. Number of encoder layers that had batch normalization.

learn_BN Integer (0/1). Whether BN layers learned scale and center.

Details

* The index arithmetic assumes AutoTab’s standard Dense/BN/SN layout. If you substantially
change layer ordering or introduce new per-layer parameters, re-check the split index.

* All model weights can always be accessed directly using keras: :get_weights(trained_model).
This function is provided as a convenience tool within AutoTab to streamline encoder recon-
struction but is not the only method available.

Value

A list () of encoder weight tensors in order, suitable for set_weights().

See Also

encoder_latent(), Decoder_weights(), VAE_train(), Latent_sample()

extracting_distribution

Examples

encoder_info <- list(
list("dense”, 100, "relu"),
list("dense”", 80, "relu")
)

if (reticulate::py_module_available("tensorflow"”) &&
exists("training”)) {
weights_encoder <- Encoder_weights(

encoder_layers = 2,
trained_model = training$trained_model, #where training = VAE_train(...)
lip_enc =0,
pi_enc =0,
BNenc_layers = 0,
learn_BN =0
)
3

extracting_distribution
Build the feat_dist data frame for AutoTab

Description
Creates one row per original variable with columns:

e column_name: variable name
e distribution: one of "gaussian”, "bernoulli”, or "categorical”

* num_params: number of decoder outputs the VAE should produce for that variable

Usage

extracting_distribution(data)

Arguments

data Data frame of the original (preprocessed) variables.

Details
A variable is classified as:
* bernoulli if it has exactly 2 unique values (any type)

* categorical if it is a character/factor with more than 2 unique values

* gaussian otherwise (e.g., numeric with >2 distinct values)

10 extracting_distribution

AutoTab is not built to handle missing data. A message will prompt the user if the data has NA
values.

In AutoTab, the decoder outputs distribution-specific parameters for each variable, not recon-
structed values directly. Therefore:
* Continuous (Gaussian) variables output two parameters per feature: the mean (u) and the
standard deviation (o).
* Binary (Bernoulli) variables output one parameter: the probability (p) of observing a 1.
» Categorical variables output one parameter per category level: the probabilities corre-
sponding to each possible class.
As aresult, the decoder output matrix will typically have more columns than the original training
data.

For example, if your original dataset has:

1 continuous variable = 2 decoder parameters
1 binary variable -+ 1 decoder parameter
1 categorical variable with 3 levels = 3 decoder parameters

The total number of decoder outputs will be 2 + 1 + 3 = 6, even though the input data has only 3
original variables.

AutoTab keeps track of this mapping internally through the feat_dist object, ensuring that the
reconstruction loss and sampling functions correctly handle each distributional head.
Value

A data frame with columns column_name, distribution, and num_params. Note: refer to feat_reorder().

See Also

feat_reorder(), set_feat_dist()

Examples

data_example <- data.frame(

cont = rnorm(5),

bin = c(0,1,0,1,1),

cat factor(c("A","B","C","A","C"))
)

feat_dist <- extracting_distribution(data_example)
print(feat_dist)
column_name distribution num_params

1 cont gaussian 2
2 bin bernoulli 1
3 cat categorical 3

The decoder will therefore output 6 total columns (2+1+3)

feat_reorder 11

feat_reorder Reorder feat_dist rows to match preprocessed data

Description

Ensures row order in feat_dist matches the column prefix order in the preprocessed (dummy-
coded) training data. This assumes dummy columns are named as <original_name>_<level>and
therefore start with the original variable name.

Usage

feat_reorder(feat_dist, data)

Arguments

feat_dist Data frame from extracting_distribution().

data Data frame of the original (not preprocessed) variables.
Value

The input feat_dist, reordered to align with data.

See Also

extracting_distribution(), set_feat_dist()

Examples

Small toy dataset
data_example <- data.frame(

cont = rnorm(5),

bin = c(o, 1, 0, 1, 1),

cat = factor(c("A", "B", "C", "A", "C"))
)

Extract feature distributions in original column order
feat_dist <- extracting_distribution(data_example)

Suppose preprocessing (e.g., dummy coding) reordered the columns
data_reordered <- data_example[, c("cat”, "cont”, "bin")]

Reorder feat_dist rows to match the preprocessed data columns
feat_dist_reordered <- feat_reorder(feat_dist, data_reordered)
feat_dist_reordered

12 Latent_sample

get_feat_dist Get the stored feature distribution

Description

Retrieves the feat_dist object previously stored by set_feat_dist(). Throws an error if it has
not been set.

Usage
get_feat_dist()

Value

A data.frame containing feature distribution metadata.

Latent_sample Sample from the latent space

Description

Draws a stochastic sample from the latent space of a trained VAE given the mean (z_mean) and log-
variance (z_log_var) outputs of the encoder. This operation implements the reparameterization
trick:

Z=pu+o@e

where € ~ N(0, I).

Usage

Latent_sample(z_mean, z_log_var)

Arguments

Z_mean TensorFlow tensor or R matrix. The mean values of the latent space.

z_log_var TensorFlow tensor or R matrix. The log-variances of the latent space.

Details

The function is used internally within VAE_train() but can also be called directly to sample
latent points and decode synthetic output. Typically, z_mean and z_log_var are obtained via
encoder_latent() and the corresponding weights extracted using Encoder_weights().

* The log-variance (z_log_var) is clamped between -10 and 10 to prevent numerical overflow
or vanishing variance during training.

* The standard deviation is lower-bounded by 1e-3 for stability.

min_max_scale 13

This function returns a TensorFlow tensor representing the sampled latent points. Use as.matrix()
or as.data.frame() to convert to an R matrix or data frame before passing to decoder_model ()
or other R functions.

Value

A TensorFlow tensor of latent samples with the same shape as z_mean.

See Also

VAE_train(), encoder_latent(), Encoder_weights(), decoder_model ()

Examples

Suppose encoder_latent() returns z_mean and z_log_var
Z_mean <- matrix(rnorm(1@), ncol = 5)
z_log_var <- matrix(rnorm(10), ncol 5)

if (reticulate::py_module_available("tensorflow”)) {
Sample from latent space
z_sample <- Latent_sample(z_mean, z_log_var)

Convert to R matrix for decoder prediction
z_mat <- as.matrix(z_sample)

Suppose the computational graph was rebuilt using ~decoder_model()"
and assigned to an object named ~decoder’:
decoder_output <- predict(decoder, z_mat)

min_max_scale Min—-max scale continuous variables

Description

Scales numeric vectors to the [0, 1] range using the formula:

(z — min(z))/(max(x) — min(x))

Usage

min_max_scale(x)

Arguments

X Numeric vector. Continuous variable(s) to scale.

14 mog_prior

Details

This is the recommended preprocessing step for continuous variables prior to VAE training with
AutoTab, ensuring all inputs are on comparable scales to binary and categorical features.

* The transformation is performed column-wise when applied to data frames.

Value

Numeric vector of the same length as x, scaled to [0, 1].

See Also

extracting_distribution(), set_feat_dist(), VAE_train()

Examples

x <- c(10, 20, 30)
min_max_scale(x)

Apply to multiple columns
data <- data.frame(age = c(20, 40, 60), income = c(3000, 5000, 7000))
Continuous_MinMaxScaled = as.data.frame(lapply(data, min_max_scale))

mog_prior Mixture-of-Gaussians (MoG) prior in AutoTab

Description

AutoTab allows the encoder prior to be either a single Gaussian (prior = "single_gaussian”)
or a mixture of Gaussians (prior = "mixture_gaussian”). When using a MoG prior, the user
may optionally specify the component means, variances, and mixture weights. The user may also
indicate if the means, variances, and mixture weights can be learned or not using learnable_mog
with a logical TRUE/FALSE.

Details

If prior = "single_gaussian”, the prior is a standard Normal in the latent space and the MoG-
related arguments (K, mog_means, mog_log_vars, mog_weights, learnable_mog) are ignored.

When prior = "mixture_gaussian”:
* If learnable_mog = FALSE, then mog_means, mog_log_vars, and mog_weights must be sup-
plied and are treated as fixed.

* If learnable_mog = TRUE, any of mog_means, mog_log_vars, or mog_weights that are pro-
vided are used as initial values and are updated during training. If they are omitted, AutoTab
initializes them internally (e.g., Normal or zero-centered initializations).

mog_prior 15

Prior options in VAE_train()

prior: character, one of "single_gaussian” or "mixture_gaussian”.
K: integer, number of mixture components when prior = "mixture_gaussian”.

learnable_mog: logical; if TRUE, the MoG parameters (means, log-variances, and mixture
weights) are learned during training.

mog_means: optional numeric matrix of size K x latent_dim, giving the initial means for each
mixture component in the latent space.

mog_log_vars: optional numeric matrix of size K x latent_dim, giving initial log-variances
for each component.

mog_weights: optional numeric vector of length K, giving initial mixture weights that should
sum to 1.

Shape of mog_means

For a latent dimension latent_dim and K mixture components, mog_means must be a numeric
matrix with:

nrow(mog_means) ==

ncol (mog_means) == latent_dim

Each row corresponds to the mean vector of one mixture component in the latent space.

See Also

VAE_train()

Examples

Examples of a Mixture-of-Gaussians (MoG) prior in AutoTab

»
2)
3

o o R

% o

These examples illustrate:

learnable_mog = FALSE with fixed MoG parameters
learnable_mog = TRUE with preset means/variances/weights
learnable_mog = TRUE with all MoG parameters learned

Required packages for the full example:
- AutoTab (this package)

- keras

- caret (for dummyVars)

if (requireNamespace("caret”, quietly = TRUE) &&

reticulate::py_module_available("tensorflow”)) {

set.seed(123)

age

<- rnorm(100, mean = 45, sd = 12)

16

mog_prior

income <- rnorm(100, mean = 60000, sd = 15000)
bmi <- rnorm(100, mean = 25, sd = 4)
smoker <- rbinom(100, 1, 0.25)
exercise <- rbinom(100, 1, 0.6)
diabetic <- rbinom(100, 1, 0.15)
education <- sample(
c("HighSchool”, "College", "Graduate"),
100, replace = TRUE,
prob = c(0.4, 0.4, 0.2)

)
marital <- sample(
c("Single"”, "Married"”, "Divorced"),
100, replace = TRUE
)
occupation <- sample(
c("Clerical”, "Technical”, "Professional”, "Other"),
100, replace = TRUE
)

data_final <- data.frame(
age, income, bmi,
smoker, exercise, diabetic,
education, marital, occupation

)

One-hot encode categorical variables
encoded_data <- caret::dummyVars(~ education + marital + occupation,
data = data_final)
one_hot_coded <- as.data.frame(predict(encoded_data, newdata = data_final))

data_cont <- subset(data_final, select = c(age, income, bmi))
Continuous_MinMaxScaled <- as.data.frame(
lapply(data_cont, min_max_scale) # min_max_scale is an AutoTab function

)

data_bin <- subset(data_final, select = c(smoker, exercise, diabetic))

Bind all data together
data <- cbind(Continuous_MinMaxScaled, data_bin, one_hot_coded)

Step 1: Extract and set feature distributions

feat_dist <- feat_reorder(extracting_distribution(data_final), data)
rownames (feat_dist) <- NULL

set_feat_dist(feat_dist)

Step 2: Define encoder / decoder architectures and MoG parameters
encoder_info <- list(

list("dense”, 25, "relu"),

list("dense”, 50, "relu"”)
)

decoder_info <- list(
list("dense”, 50, "relu"),
list("dense”, 25, "relu”)

mog_prior

)

mog_means <- matrix(
c(rep(-5, 5), rep(@, 5), rep(5, 5)),
nrow = 3, byrow = TRUE
)
mog_log_vars <- matrix(log(@.5), nrow = 3, ncol = 5)
mog_weights <- c(0.3, 0.4, 0.3)

reset_seeds(1234)

training <- VAE_train(
data = data,
encoder_info = encoder_info,

decoder_info = decoder_info,

Lip_en =0,

pi_enc =0,

lip_dec =0,

pi_dec =0,

latent_dim =5,

epoch = 200,

beta =0.01,

k1_warm = TRUE,

beta_epoch = 20,

temperature = 0.5,

batchsize = 16,

wait = 20,

1r = 0.001,

K = 3,

mog_means = mog_means,

mog_log_vars = mog_log_vars,

mog_weights = mog_weights,

prior = "mixture_gaussian”,

learnable_mog = FALSE
)

Example 2: learnable_mog = TRUE with preset MoG params

reset_seeds(1234)

training <- VAE_train(
data = data,
encoder_info = encoder_info,

decoder_info = decoder_info,

Lip_en =0,
pi_enc =0,
lip_dec =0,
pi_dec =0,

18

latent_dim =5,
epoch = 200,
beta = 0.01,
k1l_warm = TRUE,
beta_epoch = 20,
temperature = 0.5,
batchsize = 16,
wait = 20,
1r = 0.001,
K = 3,
mog_means = mog_means,
mog_log_vars = mog_log_vars,
mog_weights = mog_weights,
prior = "mixture_gaussian”,
learnable_mog = TRUE
)

Example 3: learnable_mog = TRUE with all MoG params learned
(mog_means, mog_log_vars, mog_weights = NULL)

reset_seeds(1234)

training <- VAE_train(
data = data,
encoder_info = encoder_info,
decoder_info = decoder_info,

Lip_en =0,
pi_enc =0,
lip_dec =0,
pi_dec =0,
latent_dim =5,
epoch = 200,
beta = 0.01,
k1_warm = TRUE,
beta_epoch = 20,
temperature = 0.5,
batchsize = 16,
wait = 20,
1r = 0.001,
K = 3,
mog_means = NULL,

mog_log_vars = NULL,
mog_weights = NULL,
prior = "mixture_gaussian”,
learnable_mog = TRUE

mog_prior

reset_seeds 19

reset_seeds Reset all random seeds across R, TensorFlow, and Python

Description
Ensures reproducibility by synchronizing random seeds across:
* R’s random number generator (set.seed()),

¢ TensorFlow’s random state (tf$random$set_seed()),

 Python’s built-in random module.

Usage

reset_seeds(spec_seed)

Arguments

spec_seed Integer. The seed value to apply across R, TensorFlow, and Python.

Details

This also clears the current Keras/TensorFlow graph and session before reseeding, preventing resid-
ual state from prior model builds.

e This function is not called automatically within AutoTab. Use it before training runs for
reproducibility.

» Equivalent results still require identical environments (same TensorFlow, CUDA/cuDNN, and
library versions).
Value

No return value but will print a confirmation message.

See Also

VAE_train(), set_feat_dist()

Examples

if (reticulate::py_module_available("tensorflow”)) {
reset_seeds(1234)
3

20 VAE_train

set_feat_dist Set the feature distribution for AutoTab

Description

This function stores the output of extracting_distribution() / feat_reorder() inside the
package, so subsequent functions (e.g., VAE_train()) can access it safely without relying on the
global environment.

Usage

set_feat_dist(feat_dist)

Arguments
feat_dist A data.frame returned by extracting_distribution() or feat_reorder().
VAE_train Train an AutoTab VAE on mixed-type tabular data
Description

Runs the full AutoTab training loop (encoder + decoder + latent space), with optional Beta-annealing
(linear or cyclical), optional Gumbel-softmax temperature warming for categorical outputs, and op-
tions for the prior.

Usage

VAE_train(
data,
encoder_info,
decoder_info,
Lip_en,
pi_enc = 1,
lip_dec,
pi_dec = 1,
latent_dim,
epoch,
beta,
kl_warm = FALSE,
kl_cyclical = FALSE,
n_cycles,
ratio,
beta_epoch = 15,
temperature,

VAE_train 21

temp_warm = FALSE,
temp_epoch,

batchsize,

wait,

min_delta = 0.001,

1r,

max_std = 10,

min_val = 0.001,
weighted = 0,
recon_weights,
seperate = 0,

prior = "single_gaussian”,
K =3,

learnable_mog = FALSE,
mog_means = NULL,
mog_log_vars = NULL,
mog_weights = NULL

Arguments

data Matrix/data.frame. Preprocessed training data (columns match the order in
feat_dist).

encoder_info, decoder_info
Lists describing layer stacks. Each element is e.g. list("dense”, units,
"activation”, L2_flag, L2_lambda, BN_flag, BN_momentum, BN_learn) or
list("dropout”, rate).

Lip_en, lip_dec Integer (0/1). Use spectral normalization (Lipschitz) in encoder/decoder.

pi_enc, pi_dec Integer. Power-iteration counts for spectral normalization.

latent_dim Integer. Latent dimensionality.

epoch Integer. Max training epochs.

beta Numeric. Beta-VAE weight on the KL term in the ELBO.
k1_warm Logical. Enable Beta-annealing.

kl_cyclical

Logical. Enable cyclical Beta-annealing (requires k1_warm = TRUE).

n_cycles Integer. Number of cycles when k1_cyclical = TRUE.

ratio Numeric from range O to 1. Fraction of each cycle used for warm-up (rise from
0—Beta).

beta_epoch Integer. Warm-up length (epochs) for linear Beta-annealing; when k1_cyclical
= TRUE, the cycle length is (beta_epoch / n_cycles).

temperature Numeric. Gumbel-softmax temperature (used for categorical heads).

temp_warm Logical. Enable temperature warm-up.

temp_epoch Integer. Warm-up length (epochs) for temperature when temp_warm = TRUE.

batchsize Integer. Mini-batch size.

wait Integer. Early-stopping patience (epochs) on validation reconstruction loss.

22 VAE_train

min_delta Numeric. Minimum improvement to reset patience (early stopping).
1r Numeric. Learning rate (Adam).
max_std, min_val
Numerics. Decoder constraints for Gaussian heads (max SD; minimum variance

surrogate).

weighted Integer (0/1). If 1, weight reconstruction terms by type.

recon_weights Numeric length-3. Weights for (continuous, binary, categorical); required when
weighted=1.

seperate Integer (0/1). If 1, logs per-group reconstruction losses as metrics (cont_loss,
bin_loss, cat_loss) in addition to total recon_loss.

prior Character. "single_gaussian” or "mixture_gaussian”.

K Integer. Number of mixture components when prior = "mixture_gaussian”.

learnable_mog Logical. If TRUE, MoG prior parameters are trainable.

mog_means, mog_log_vars, mog_weights
Optional initial values for the MoG prior (ignored unless prior = "mixture_gaussian”;
when learnable_mog = FALSE they must be provided).

Details

Prerequisite: call set_feat_dist() once before training to register the per-feature distributions
and parameter counts (see extracting_distribution() and feat_reorder()).

Metrics exposed during training: loss, recon_loss, kl_loss, and, when seperate = 1, cont_loss,
bin_loss, cat_loss, and, beta, temperature when annealed.

Early stopping: monitored on val_recon_loss with patience = wait.
Reproducibility: set seeds via your own workflow or the helper reset_seeds().

Expected Warning: When running AutoTab the user will receive the following warning from
tensorflow: "WARNING:tensorflow:The following Variables were used in a Lambda layer’s call

(tf. math.multiply_3), but are not present in its tracked objects: <tf.Variable "beta:0’ shape=() dtype=float32>.
This is a strong indication that the Lambda layer should be rewritten as a subclassed Layer."

This is merely a warning and should not effect the computation of AutoTab. This occurs because
tensorflow does not see beta, (the weight on the regularization part of the ELBO) until after the first
iteration of training and the first computation of the loss is initiated. Therefore it is not an internally
tracked object. However, it is being tracked and updated outside of the model graph which can be
seen in the KL loss plots and in the training printout in the R console.

Value
A list with:
* trained_model — the compiled Keras model (encoder—decoder) with KL and recon losses
added.
* loss_history — numeric vector of per-epoch total loss (as tracked during training).
See Also

set_feat_dist(),extracting_distribution(), feat_reorder(), Encoder_weights(), encoder_latent(),
Decoder_weights(), Latent_sample()

Index

decoder_model, 2
decoder_model(), 5, I3
Decoder_weights, 4
Decoder_weights(), 3,7, 8, 22

encoder_decoder_information, 5
encoder_latent, 6
encoder_latent(), 3,8, 12, 13,22
Encoder_weights, 8
Encoder_weights(), 5-7, 12, 13, 22
extracting_distribution, 9
extracting_distribution(), 3, 11, 14, 22

feat_reorder, 11
feat_reorder(), 10, 22

get_feat_dist, 12
get_tfa(),”7

Latent_sample, 12
Latent_sample(), 3,7, 8, 22

min_max_scale, 13
mog_prior, 14

reset_seeds, 19

set_feat_dist, 20
set_feat_dist(), 10, 11, 14, 19, 22

VAE_train, 20
VAE_train(), 3,5, 6, 8, 13-15, 19

23

	decoder_model
	Decoder_weights
	encoder_decoder_information
	encoder_latent
	Encoder_weights
	extracting_distribution
	feat_reorder
	get_feat_dist
	Latent_sample
	min_max_scale
	mog_prior
	reset_seeds
	set_feat_dist
	VAE_train
	Index

