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Abstract

We present a new package in R implementing Bayesian additive regression trees
(BART). The package introduces many new features for data analysis using BART such
as variable selection, interaction detection, model diagnostic plots, incorporation of miss-
ing data and the ability to save trees for future prediction. It is significantly faster than
the current R implementation, parallelized, and capable of handling both large sample
sizes and high-dimensional data.

Keywords: Bayesian, machine learning, statistical learning, non-parametric, R, Java.

1. Introduction

Ensemble-of-trees methods have become popular choices for forecasting in both regression and
classification problems. Algorithms such as random forests (Breiman 2001) and stochastic
gradient boosting (Friedman 2002) are two well-established and widely employed procedures.
Recent advances in ensemble methods include dynamic trees (Taddy, Gramacy, and Polson
2011) and Bayesian additive regression trees (BART; Chipman, George, and McCulloch 2010),
which depart from predecessors in that they rely on an underlying Bayesian probability model
rather than a pure algorithm. BART has demonstrated substantial promise in a wide variety
of simulations and real world applications such as predicting avalanches on mountain roads
(Blattenberger and Fowles 2014), predicting how transcription factors interact with DNA
(Zhou and Liu 2008) and predicting movie box office revenues (Eliashberg 2010). This paper
introduces bartMachine (Kapelner and Bleich 2016), a new R (R Core Team 2016) package
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.

org/package=bartMachine that significantly expands the capabilities of using BART for data
analysis.

Currently, there exists one other implementation of BART on CRAN: BayesTree (Chipman
and McCulloch 2016), the package developed by the algorithm’s original authors. One of the
major drawbacks of this implementation is its lack of a predict function. Test data must be
provided as an argument during the training phase of the model. Hence it is impossible to
generate forecasts on future data without re-fitting the entire model. Since the run time is
not trivial, forecasting becomes an arduous exercise. A significantly faster implementation of
BART that contains master-slave parallelization was introduced in Pratola, Chipman, Higdon,
McCulloch, and Rust (2013), but this is only available as standalone C++ source code and

https://CRAN.R-project.org/package=bartMachine
https://CRAN.R-project.org/package=bartMachine
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Feature bartMachine BayesTree

Implementation language Java C++

External predict function Yes No
Model persistence across sessions Yes No
Parallelization Yes No
Native missing data mechanism Yes No
Built-in cross-validation Yes No
Variable importance Statistical tests Exploratory
Tree proposal types 3 types 4 types
Partial dependence plots Yes Yes
Convergence plots Assess trees and σ2 Assess σ2

Model diagnostics Yes No
Incorporation into larger model No Through dbarts

Table 1: Comparison of features between bartMachine and BayesTree.

not integrated with R. Additionally, a recent package dbarts (Chipman, McCulloch, and Dorie
2014) allows updating of BART with new predictors and response values to incorporate BART
into a larger Bayesian model. dbarts relies on BayesTree as its BART engine.

The goal of bartMachine is to provide a fast, easy-to-use, visualization-rich machine learning
package for R users. Our implementation of BART is in Java and is integrated into R via
rJava (Urbanek 2013). From a run time perspective, our algorithm is significantly faster and
is parallelized, allowing computation on as many cores as desired. Not only is the model con-
struction itself parallelized, but the additional features such as prediction, variable selection,
and many others can be divided across cores as well.

Additionally, we include a variety of expanded and new features. We implement the ability
to save trees in memory and provide convenience functions for prediction on test data as well
as the ability to save models across R sessions. We also include plotting functions for both
posterior credible and predictive intervals and plots for visually inspecting the convergence
of BART’s MCMC chain. We expand variable importance exploration to include permuta-
tion tests and interaction detection. We implement recently developed features for BART
including a formal approach to variable selection and the ability to incorporate prior infor-
mation for covariates (Bleich, Kapelner, Jensen, and George 2014). We also implement the
strategy found in Kapelner and Bleich (2015) to incorporate missing data during training and
handle missingness during prediction. Table 1 emphasizes the differences in features between
bartMachine and BayesTree, the two existing R implementations of BART.

In Section 2, we provide an overview of BART with a special emphasis on the features
that have been extended. In Section 3 we provide a general introduction to the package,
highlighting the novel features. Section 4 provides step-by-step examples of the regression
capabilities and Section 5 introduces additional step-by-step examples of features unique to
classification problems. We conclude in Section 6. Appendix A discusses the details of our
algorithm implementation and how it differs from BayesTree. Appendix B offers predictive
performance comparisons.
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2. Overview of BART

BART is a Bayesian approach to nonparametric function estimation using regression trees.
Regression trees rely on recursive binary partitioning of predictor space into a set of hyperrect-
angles in order to approximate some unknown function f . The predictor space has dimension
equal to the number of variables, which we denote p. Tree-based regression models have an
ability to flexibly fit interactions and nonlinearities. Models composed of sums of regression
trees have an even greater ability than single trees to capture interactions and non-linearities
as well as additive effects in f .

BART can be considered a sum-of-trees ensemble, with a novel estimation approach relying
on a fully Bayesian probability model. Specifically, the BART model can be expressed as:

Y = f(X) + E ≈ TM
1 (X) + TM

2 (X) + . . . + TM
m (X) + E, E ∼ Nn

(

0, σ2In

)

, (1)

where Y is the n×1 vector of responses, X is the n×p design matrix (the predictors column-
joined) and E is the n × 1 vector of noise. Here we have m distinct regression trees, each
composed of a tree structure, denoted by T, and the parameters at the terminal nodes (also
called leaves), denoted by M. The two together, denoted as TM represents an entire tree
with both its structure and set of leaf parameters.

The structure of a given tree Tt includes information on how any observation recurses down
the tree. For each nonterminal (internal) node of the tree, there is a “splitting rule” taking
the form xj < c, which consists of the “splitting variable” xj and the “splitting value” c. An
observation moves to the left child node if the condition set by the splitting rule is satisfied
(and it moves to the right child node otherwise). The process continues until a terminal node
is reached. Then, the observation receives the leaf value of the terminal node. We denote
the set of the tree’s leaf parameters as Mt = {µt,1, µt,2, . . . , µtbt

} where bt is the number of
terminal nodes for a given tree. The observation’s predicted value is then the sum of the m
leaf values arrived at by recursing down all m trees.

BART can be distinguished from other ensemble-of-trees models due to its underlying prob-
ability model. As a Bayesian model, BART consists of a set of priors for the structure and
the leaf parameters and a likelihood for data in the terminal nodes. The aim of the priors is
to provide regularization, preventing any single regression tree from dominating the total fit.

We provide an overview of the BART priors and likelihood and then discuss how draws from
the posterior distribution are made. A more complete exposition can be found in Chipman
et al. (2010).

2.1. Priors and likelihood

The prior for the BART model has three components: (1) the tree structure itself, (2) the
leaf parameters given the tree structure, and (3) the error variance σ2 which is independent
of the tree structure and leaf parameters

P

(

TM
1 , . . . , TM

m , σ2
)

=

[
∏

t

P

(

TM
t

)
]

P

(

σ2
)

=

[
∏

t

P (Mt | Tt)P (Tt)
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P

(

σ2
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]

P

(

σ2
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where the last equality follows from an additional assumption of conditional independence of
the leaf parameters given the tree’s structure.

We first describe P (Tt), the component of the prior which affects the locations of nodes within
the tree. Node depth is defined as distance from the root. Thus, the root itself has depth 0,
its first child node has depth 1, etc. Nodes at depth d are nonterminal with prior probability
α(1+d)−β where α ∈ (0, 1) and β ∈ [0,∞]. This component of the tree structure prior has the
ability to enforce shallow tree structures, thereby limiting complexity of any single tree and
resulting in more model regularization. Default values for these hyperparameters of α = 0.95
and β = 2 are recommended by Chipman et al. (2010).

For nonterminal nodes, splitting rules occur in two parts. First, the predictor is randomly
selected to serve as the splitting variable. In the original formulation, each available predic-
tor is equally likely to be chosen from a discrete uniform distribution with probability that
each variable is selected with probability 1/p. This is relaxed in our implementation to al-
low for a generalized Bernoulli distribution where the user specifies p1, p2, . . . , pp (such that
∑p

j=1 pj = 1), where each denotes the probability of the jth variable being selected a priori.
See Section 4.10 on the covariate prior feature for further details. Additionally, note that
“structural zeroes,” variables that do not have any valid split values, are assigned probability
zero in the implementation (see Appendix A.1 for details). Once the splitting variable is
chosen, the splitting value is chosen from the multiset (the non-unique set) of available values
at the node via the discrete uniform distribution.

We now describe the prior component P (Mt | Tt) which controls the leaf parameters. Given
a tree with a set of terminal nodes, each terminal node (or leaf) has a continuous parameter
(the leaf parameter) representing the “best guess” of the response in this partition of predictor
space. This parameter is the fitted value assigned to any observation that lands in that node.

The prior on each of the leaf parameters is given as: µℓ
iid∼ N

(

µµ/m, σ2
µ

)

. The expectation,

µµ, is picked to be the range center, (ymin + ymax)/2. The range center can be affected by
outliers. If this is a concern, the user can log-transform or windsorize the response before
model construction.

The variance hyperparameter σ2
µ is empirically chosen so that the range center plus or minus

k = 2 variances cover 95% of the provided response values in the training set (where k = 2
corresponding to 95% coverage is only by default and can be customized). Thus, since there
are m trees, we then choose σµ such that mµµ − k

√
mσµ = ymin and mµµ + k

√
mσµ = ymax.

The aim of this prior is to provide model regularization by shrinking the leaf parameters
towards the center of the distribution of the response. The larger the value of k, the smaller
the value of σ2

µ, resulting in more model regularization.

The final prior is on the error variance and is chosen to be σ2 ∼ InvGamma (ν/2, νλ/2). λ
is determined from the data so that there is a q = 90% a priori chance (by default) that
the BART model will improve upon the RMSE from an ordinary least squares regression.
Therefore, the majority of the prior probability mass lies below the RMSE from least squares
regression. Additionally, this prior limits the probability mass placed on small values of σ2

to prevent overfitting. Thus, the higher the value of q, the larger the values of the sampled
σ2’s, resulting in more model regularization.

Note that the adjustable hyperparameters are α, β, k, ν and q. Additionally, m, the number of
trees, must be chosen. Default values generally provide good performance, but optimal tuning
can be achieved automatically via cross-validation, a feature implemented and described in
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Section 4.2.

Along with a set of priors, BART specifies the likelihood of responses in the terminal nodes.
They are assumed a priori normal with the mean being the “best guess” in the leaf at the
moment (i.e., in the current MCMC iteration) and variance being the best guess of the
variance at the moment, yℓ ∼ N

(
µℓ, σ2

)
.

2.2. Posterior distribution and prediction

A Metropolis-within-Gibbs sampler (Geman and Geman 1984; Hastings 1970) is employed to
generate draws from the posterior distribution of P(TM

1 , . . . , TM
m , σ2 | y). A key feature of

this sampler for BART is to employ a form of “Bayesian backfitting” (Hastie and Tibshirani
2000) where the jth tree is fit iteratively, holding all other m− 1 trees constant by exposing
only the residual response that remains unfitted:

R−j := y −
∑

t6=j

TM
t (X). (2)

The sampler,

1 : T1 | R−1, σ2 (3)

2 : M1 | T1, R−1, σ2

3 : T2 | R−2, σ2

4 : M2 | T2, R−2, σ2

...

2m− 1 : Tm | R−m, σ2

2m : Mm | Tm, R−m, σ2

2m + 1 : σ2 | T1,M1, . . . , Tm,Mm, E,

proceeds by first proposing a change to the first tree’s structure T which is accepted or rejected
via a Metropolis-Hastings step. Note that sampling from the posterior of the tree structure
does not depend on the leaf parameters, as they can be analytically integrated out of the
computation (see Appendix A.1). Given the tree structure, samples from the posterior of the
b leaf parameters M1 := {µ1, . . . , µb} are then drawn. This procedure progresses iteratively
for each tree, using the updated set of partial residuals R−j . Finally, conditional on the
updated set of tree structures and leaf parameters, a draw from the posterior of σ2 is made
based on the full model residuals E := y −∑m

t=1 TM
t (X).

Within a given terminal node, since both the prior and likelihood are normally distributed,
the posterior of each of the leaf parameters in M is conjugate normal with its mean being a
weighted combination of the likelihood and prior parameters (lines 2, 4, . . . , 2m in Equation
set 3). Due to the normal-inverse-gamma conjugacy, the posterior of σ2 is inverse gamma as
well (line 2m + 1 in Equation set 3). The complete expressions for these posteriors can be
found in Gelman, Carlin, Stern, and Rubin (2004).

Lines 1, 3, . . . , 2m−1 in Equation set 3 rely on Metropolis-Hastings draws from the posterior
of the tree distributions. These involve introducing small perturbations to the tree structure:
growing a terminal node by adding two child nodes, pruning two child nodes (rendering their
parent node terminal), or changing a split rule. We denote the three possible tree alterations
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as: GROW, PRUNE, and CHANGE.1 The mathematics associated with the Metropolis-
Hastings step are tedious. Appendix A contains the explicit calculations. Once again, over
many MCMC iterations, trees evolve to capture the fit left currently unexplained.

Pratola et al. (2013) argue that a CHANGE step is unnecessary for sufficient mixing of the
Gibbs sampler. While we too observed this to be true for estimates of the posterior means,
we found that omitting CHANGE can negatively impact the variable inclusion proportions
(the feature introduced in Section 4.5). As a result, we implement a modified CHANGE
step where we only propose new splits for nodes that are singly internal. These are nodes
where both children nodes are terminal nodes (details are given in Appendix A.3). After a
singly internal node is selected we (1) select a new split attribute from the set of available
predictors and (2) select a new split value from the multiset of available values (these two
uniform splitting rules were explained in detail previously). We emphasize that the CHANGE
step does not alter the tree structure.

All 2m + 1 steps represent a single Gibbs iteration. We have observed that generally no
more than 1,000 iterations are needed as “burn-in” (the default package setting is 250). See
Section 4.3 for the use of convergence diagnostics. An additional 1,000 iterations are usually
sufficient to serve as draws from the posterior for f(x). A single predicted value f̂(x) can
be obtained by taking the average of the posterior values and a quantile estimate can be
obtained by computing the appropriate quantile of the posterior values. Additional features
of the posterior distribution will be discussed in Section 4.

2.3. BART for classification

BART can easily be modified to handle classification problems for categorical response vari-
ables. In Chipman et al. (2010), only binary outcomes were explored but recent work has
extended BART to the multiclass problem (Kindo, Wang, and Pe 2013). Our implementa-
tion handles binary classification and we plan to implement multiclass outcomes in a future
release.

For the binary classification problem (coded with outcomes “0” and “1”), we assume a probit
model,

P (Y = 1 | X) = Φ
(

TM
1 (X) + TM

2 (X) + . . . + TM
m (X)

)

,

where Φ denotes the cumulative density function of the standard normal distribution. In this
formulation, the sum-of-trees model serves as an estimate of the conditional probit at x which
can be easily transformed into a conditional probability estimate of Y = 1.

In the classification setting, the prior on σ2 is not needed as the model assumes σ2 = 1. The
prior on the tree structure remains the same as in the regression setting and a few minor
modifications are required for the prior on the leaf parameters.

Sampling from the posterior distribution is again obtained via Gibbs sampling in combination
with a Metropolis-Hastings step outlined in Section 2.2. Following the data augmentation
approach of Albert and Chib (1993), an additional vector of latent variables Z is introduced
into the Gibbs sampler. Then, a new step is created in the Gibbs sampler where draws of

1In the original formulation, Chipman et al. (2010) include an additional alteration called SWAP. Due to
the complexity of the bookkeeping associated with this alteration, we do not implement it.
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Z |y are obtained by conditioning on the sum-of-trees model:

Zi | yi = 1 ∼ max

{

N

(
∑

t

TM
t (X) , 1

)

, 0

}

and

Zi | yi = 0 ∼ min

{

N

(
∑

t

TM
t (X) , 1

)

, 0

}

.

Next, Z is used as the response vector instead of y in all steps of Equation 3.

Upon obtaining a sufficient number of samples from the posterior, inferences can be made us-
ing the posterior distribution of conditional probabilities and classification can be undertaken
by applying a threshold to the averages (or another summary) of these posterior probabilities.
The relevant classification features of bartMachine are discussed in Section 5.

3. The bartMachine package

The package bartMachine provides a novel implementation of Bayesian additive regression
trees in R. The algorithm is substantially faster than the current R package BayesTree and our
implementation is parallelized at the MCMC iteration level during prediction. Additionally,
the interface with rJava allows for the entire posterior distribution of tree ensembles to persist
throughout the R session, allowing for prediction and other calls to the trees without having
to re-run the Gibbs sampler (a limitation in the current BayesTree implementation). The
bartMachine object can be serialized, thereby persisting across R sessions as well (a feature
discussed in Section 4.12). Since our implementation is different from BayesTree, we provide
a predictive accuracy bakeoff on different datasets in Appendix B which illustrates that the
two exhibit similar performance.

3.1. Speed improvements and parallelization

We make a number of significant speed improvements over the original implementation.

First, bartMachine is fully parallelized (with the number of cores customizable) during model
creation, prediction, and many of the other features. During model creation, we chose to
parallelize by creating one independent Gibbs chain per core. Thus, if we employ the default
250 burn-in samples and 1,000 post-burn-in samples and four cores, each core would sample
500 samples: 250 for a burn-in and 250 post-burn-in samples. The final model will aggregate
the four post burn-in chains for the four cores yielding the desired 1,000 total post-burn-in
samples. This has the drawback of effectively running the burn-in serially (which suffers
from Amdahl’s Law), but has the added benefit of reducing auto-correlation of the sum-of-
trees samples in the posterior samples since the chains are independent which may provide
greater predictive performance. Parallelization at the level of likelihood calculations is left
for a future release as we were unable to address the costs of thread overhead. Parallelization
for prediction and other features scale linearly in the number of cores without Amdahl’s
diminishing returns.

Additionally, we take advantage of a number of additional computational shortcuts:

1. Computing the unfitted responses for each tree (Equation 2) can be accomplished by
keeping a running vector and making entry-wise updates as the Gibbs sampler (Equation 3)
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Figure 1: Model creation times as a function of sample size for a number of settings of
bartMachine, BayesTree and randomForest. Simulations were run on a quad-core 3.4GHz
Intel i5 desktop with 24GB of RAM running the Windows 7 64bit operating system.

progresses from step 1 to 2m. Additionally, during the σ2 sampling (step 2m + 1), the
residuals do not have to be computed by dropping the data down all the trees.

2. Each node caches its acceptable variables for split rules and the acceptable unique split
values so they do not need to be calculated at each tree sampling step. Recall from the
discussion concerning uniform splitting rules in Section 2.1 that acceptable predictors and
values change based on the data available at an arbitrary location in the tree structure.
This speed enhancement, which we call memcache comes at the expense of memory and
may cause issues for large data sets. We include a toggle in our implementation defaulted
to “on.”

3. Careful calculations in Appendix A eliminate many unnecessary computations. For in-
stance, the likelihood ratios are only functions of the squared sum of responses and no
longer require computing the sum of the responses squared.

Figure 1 displays model creation speeds for different values of n on a linear regression model

with p = 20, normally distributed covariates, β1, . . . , β20
iid∼ U (−1, 1), and standard normal

noise. Note that we do not vary p as it was already shown in Chipman et al. (2010) that
BART’s computation time is largely unaffected by the dimensionality of the problem. We
include results for BART using BayesTree, bartMachine with one and four cores, the mem-

cache option on and off, as well as four cores, memcache off and computation of in-sample
statistics off (all with m = 50 trees). In-sample statistics by default are computed consisting
of in-sample predictions (ŷ), residuals (e := y− ŷ), L1 error which is defined as

∑ntrain

i=1 |ei|, L2
error which is defined as

∑ntrain

i=1 e2
i , pseudo-R2 which is defined as 1 − L2/(

∑ntrain

i=1 (yi − ȳ)2)
and root mean squared error which is defined as

√

L2/ntrain. We also include random forests
model creation times via the package randomForest (Liaw and Wiener 2002) with its default
settings.
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1: If xij is missing, send it ←−; if it is present and xij ≤ x∗
ij , send it ←−, otherwise −→.

2: If xij is missing, send it −→; if it is present and xij ≤ x∗
ij , send it ←−, otherwise −→.

3: If xij is missing, send it ←−; if it is present, send it −→.

Table 2: The MIA choices for all attributes j ∈ {1, . . . , p} and all split points x∗
ij where

i ∈ {1, . . . , n} during a GROW or CHANGE step in bartMachine.

We first note that Figure 1a demonstrates that the bartMachine model creation run time
is approximately linear in n (without in-sample statistics computed). There is about a 30%
speed-up when using four cores instead of one. The memcache enhancement should only be
turned off when regressing “large” sample sizes. (We cannot give general advice here; the
user should experiment on their specific dataset and specific hardware to find when the RAM
requirement of this feature exceeds capacity). Noteworthy is the 50% reduction in time of
constructing the model when not computing in-sample statistics. In-sample statistics are
computed by default because the user generally wishes to see them. Also, for the purposes
of this comparison, BayesTree models compute the in-sample statistics by necessity since the
trees are not saved. The randomForest implementation becomes slower just after n = 1, 000
due to its reliance on greedy exhaustive search at each node.

Figure 1b displays results for smaller sample sizes (n ≤ 2, 000) that are often encountered in
practice. We observe the memcache enhancement provides about a 10% speed improvement.
Thus, if memory is an issue, it can be turned off with little performance degradation.

3.2. Missing data in bartMachine

bartMachine implements a native method for incorporating missing data into both model
creation and future prediction with test data. The details are given in Kapelner and Bleich
(2015) but we provide a brief summary here.

There are a number of ways to incorporate missingness into tree-based methods (see Ding and
Simonoff 2010 for a review). The method implemented here is known as “Missing Incorporated
in Attributes” (MIA; Twala, Jones, and Hand 2008, Section 2) which natively incorporates
missingness by augmenting the nodes’ splitting rules to (a) also handle sorting the missing
data to the left or right and (b) use missingness itself as a variable to be considered in a
splitting rule. Table 2 summarizes these new splitting rules as they are implemented within
the package.

Implementing MIA into the BART procedure is straightforward. These new splitting rules are
sampled uniformly during the GROW or CHANGE steps. For example, a splitting rule might
be “xj < c or xj is missing.” To account for splitting on missingness itself, we create dummy
vectors of length n for each of the p attributes, denoted M1, . . . , Mp, which assume the value
1 when the entry is missing and 0 when the entry is present. The original training matrix is
then augmented with these dummies, giving the opportunity to select missingness itself when
choosing a new splitting rule during the grow or change steps. Note that this can increase
the number of predictors by up to a factor of 2. We illustrate building a bartMachine model
with missing data in Section 4.8. As described in Chipman et al. (2010, Section 6), BART’s
run time increases negligibly in the number of covariates and this has been our experience
using the augmented training matrix.
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3.3. Variable selection

Our package also implements the variable selection procedures developed in Bleich et al.

(2014), which are best applied to data problems where the number of covariates influencing
the response is small relative to the total number of covariates. We give a brief summary of
the procedures here.

In order to select variables, we make use of the “variable inclusion proportions:” the pro-
portion of times each predictor is chosen as a splitting rule divided by the total number of
splitting rules appearing in the model (see Section 4.5 for more details). The variable selection
procedure can be outlined as follows:

1. Compute the model’s variable inclusion proportions.

2. Permute the response vector, thereby breaking the relationship between the covariates and
the response. Rebuild the model and compute the “null” variable inclusion proportions.
Repeat this a number of times to create a null permutation distribution.

3. Three selection rules can be used depending on the desired stringency of selection:

(a) Local Threshold: Include a predictor xk if its variable inclusion proportion exceeds
the 1− α quantile of its own null distribution.

(b) Global Max Threshold: Include a predictor xk if its variable inclusion proportion
exceeds the 1 − α quantile of the distribution of the maximum of the null variable
inclusion proportions from each permutation of the response.

(c) Global SE Threshold: Select xk if its variable inclusion proportion exceeds a threshold
based from its own null distribution mean and SD with a global multiplier shared by
all predictors.

The Local procedure is the least stringent in terms of selection and the Global Max procedure
the most. The Global SE procedure is a compromise, but behaves more similarly to the Global
Max. Bleich et al. (2014) demonstrate that the best procedure depends on the underlying
sparsity of the problem, which is often unknown. Therefore, the authors include an additional
procedure that chooses the best of these thresholds via cross-validation and this method is also
implemented in bartMachine. As highlighted in Bleich et al. (2014), this method performs
favorably compared to variable selection using random forests’ “importance scores”, which
rely on the reduction in out-of-bag forecasting accuracy that occurs from shuffling the values
for a particular predictor and dropping the out-of-bag observations down each tree. Examples
of these procedures for variable selection are provided in Section 4.9.

4. bartMachine package features for regression

We illustrate the package features by using both real and simulated data, focusing first on
regression problems.

4.1. Computing parameters
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We first set some computing parameters. In this exploration, we allow up to 5GB of RAM
for the Java heap2 and we set the number of computing cores available for use to 4.

R> options(java.parameters = c("-Xmx20g", "--add-modules=jdk.incubator.vector", "-XX:+UseZGC"))

R> library("bartMachine")

R> set_bart_machine_num_cores(4)

bartMachine now using 4 cores.

The following Sections 4.2–4.9 use a dataset obtained from the UCI Machine Learning Repos-
itory (Bache and Lichman 2013). The n = 201 observations are automobiles and the goal
is to predict each automobile’s price from 25 features (15 continuous and 10 nominal), first
explored by Kibler, Aha, and Albert (1989).3 This dataset also contains missing data. We
omit missing data for now (41 observations that will later be retained in Section 4.8) and we
create a variable for the design matrix X and the response y. The following code loads the
data.

R> data("automobile", package = "bartMachine")

R> automobile <- na.omit(automobile)

R> y <- automobile$log_price

R> X <- automobile; X$log_price <- NULL

4.2. Model building

We are now ready to construct a bartMachine model. The default hyperparameters generally
follow the recommendations of Chipman et al. (2010) and provide a ready-to-use algorithm
for many data problems. Our hyperparameter settings are m = 50,4 α = 0.95, β = 2, k = 2,
q = 0.9, ν = 3, and probabilities of the GROW / PRUNE / CHANGE steps is 28% / 28%
/44%. We retain the default number of burn-in Gibbs samples (250) as well as the default
number of post-burn-in samples (1,000). We default the covariates to be equally important
a priori. Other parameters and their defaults can be found in the package’s online manual.
Below is a default bartMachine model. Here, X denotes automobile attributes and y denotes
the log price of the automobile.

R> bart_machine <- bartMachine(X, y)

Building bartMachine for regression ... evaluating in sample data...done

2Note that the maximum amount of memory can be set only once at the beginning of the R session (a
limitation of rJava since only one Java Virtual Machine can be initiated per R session), but the number of
cores can be respecified at any time.

3We first preprocess the data. We first drop one of the nominal predictors (car company) due to too many
categories (22). We then coerce two of the of the nominal predictors to be continuous. Further, the response
variable, price, was logged to reduce right skew in its distribution.

4In contrast to Chipman et al. (2010), we recommend this default as a good starting point rather than
m = 200 due to our experience experimenting with the “RMSE by number of trees” feature found later in
this section. Performance is often similar and computational time and memory requirements are dramatically
reduced.
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If one wishes to see more information about the individual iterations of the Gibbs sampler
of Equation 3, the flag verbose can be set to TRUE. One can see more debug information
from the Java program by setting the flag debug_log to TRUE and the program will print to
unnamed.log in the current working directory.

Below we inspect the model object to query its in-sample performance and to be reminded of
the input data and model hyperparameters.

R> bart_machine

bartMachine v1.2.1 for regression

training data n = 160 and p = 41

built in 0.5 secs on 4 cores, 50 trees, 250 burn-in and 1000 post. samples

sigsq est for y beforehand: 0.014

avg sigsq estimate after burn-in: 0.00751

in-sample statistics:

L1 = 7.86

L2 = 0.62

rmse = 0.06

Pseudo-Rsq = 0.9798

p-val for shapiro-wilk test of normality of residuals: 0.06781

p-val for zero-mean noise: 0.95335

Since the response was continuous, bartMachine for regression was employed automatically
(line 1). Line 3 prints the dimensions of the design matrix. Line 4 records the creation time
along with other model parameters. Line 6 records the MSE for the OLS model and Line
7 displays the bartMachine model’s estimate of σ2

e . We are then given in-sample statistics
on error in lines 10–13. The pseudo-R2 is calculated via 1 − SSE/SST . Also provided
are outputs from tests of the error distribution being normal (line 14) and mean centered
(line 15). Note that the “p-val for shapiro-wilk test of normality of residuals” is marginally
less than 5%. Thus we conclude that the noise of Equation 1 is not normally distributed.
Just as when interpreting the results from a linear model, non-normality implies we should
be circumspect concerning bartMachine output that relies on this distributional assumption
such as the credible and prediction intervals of Section 4.4.

We can also obtain out-of-sample statistics to assess level of overfitting by using k-fold cross-
validation. Using 10 randomized folds we find:

R> k_fold_cv(X, y, k_folds = 10)

..........

$L1_err

[1] 15.96878

$L2_err
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Figure 2: Out-of-sample predictive performance by number of trees.

[1] 2.682349

$rmse

[1] 0.1294785

$PseudoRsq

[1] 0.9133438

The code provides the out-of-sample statistics for the model built above. This function also
returns the ŷ predictions as well as the vector of the fold indices (which are omitted in the
output shown above).

The Pseudo-R2 being lower out-of-sample (above) versus in-sample suggests that bartMa-

chine is slightly overfitting (note also that the training sample during cross-validation is 10%
smaller).

It may also be of interest how the number of trees m affects performance. One can examine
how out-of-sample predictions vary by the number of trees via

R> rmse_by_num_trees(bart_machine, num_replicates = 20)

and the output is shown in Figure 2. This illustration suggests that predictive performance
levels off around m = 50. We observe similar illustrations across a wide variety of datasets
and hyperparameter choices which is the reason we have set m = 50 as the default value in
the package.

Note that there is nominal improvement at m = 200. There may also be improvement if other
hyperparameters are varied. We can attempt to build a better bartMachine model using
the procedure bartMachineCV by grid-searching over a set of hyperparameter combinations,
including m (for more details, see BART-cv in Chipman et al. 2010). The grid of interest can
be customized by the user and defaults to a small grid.
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R> bart_machine_cv <- bartMachineCV(X, y)

...

bartMachine CV win: k: 2 nu, q: 3, 0.9 m: 200

This function returns the “winning” model, which is the one with lowest out-of-sample RMSE
over a 5-fold (by default) cross-validation. Here, the cross-validated bartMachine model has
slightly better in-sample performance (L1 = 8.18, L2 = 0.68 and Pseudo-R2 = 0.978) in
comparison to the default model (output in this section, page 12) as well as slightly better
out-of-sample performance (L1 = 21.05, L2 = 4.40 and Pseudo-R2 = 0.858) in comparison to
the vanilla BART performance above when assessed via:

R> k_fold_cv(X, y, k_folds = 10, k = 2, nu = 3, q = 0.9, num_trees = 200)

Predictions are handled with the predict function. Below are fits for the first seven obser-
vations.

R> predict(bart_machine_cv, X[1:7, ])

[1] 9.494941 9.780791 9.795532 10.058445 9.670211 9.702682 9.911394

We also include a convenience method bart_predict_for_test_data that will predict and
return out-of-sample error metrics when the test outcomes are known.

4.3. Assumption checking

The package includes features that assess the plausibility of the BART model assumptions.
Checking the mean-centeredness of the noise is addressed in the summary output of Sec-
tion 4.2, page 12 and is simply a one-sample t-test of the average residual value against a null
hypothesis of true mean zero. We assess both normality and heteroskedasticity via:

R> check_bart_error_assumptions(bart_machine_cv)

This will display a plot similar to Figure 3 which contains a QQ-plot (to assess normality) as
well as a residual-by-predicted plot (to assess homoskedasticity). There is little evidence of
the errors violating normality and homoskedasticity.

In addition to the model assumptions, BART requires convergence of its Gibbs sampler which
can be investigated via:

R> plot_convergence_diagnostics(bart_machine_cv)

Figure 4 displays the plot which features four types of convergence diagnostics (each one is
detailed in the figure caption). It appears via visual inspection that the bartMachine model
has been sufficiently burned-in as each of the plots seems to exhibit a stationary process.
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Figure 3: Test of normality of errors using QQ-plot and the Shapiro-Wilk test (top), residual
plot to assess heteroskedasticity (bottom).

4.4. Credible intervals and prediction intervals

An advantage of BART is that if we believe the priors and model assumptions, the Bayesian
probability model and corresponding burned-in MCMC iterations provide the approximate
posterior distribution of f (x). Thus, one can compute uncertainty estimates via quantiles of
the posterior samples. These provide Bayesian “credible intervals” which are intervals for the
conditional expectation function, E [y | X].

Another useful uncertainty interval can be computed for individual predictions by combining
uncertainty from the conditional expectation function with the systematic, homoskedastic
normal noise produced by E . This is accomplished by generating 1,000 samples (by default)
from the posterior predictive distribution and then reporting the appropriate quantiles.

Below is an example of how both types of intervals are computed in the package (for the
100th observation of the training data):

R> round(calc_credible_intervals(bart_machine_cv, X[100, ],

+ ci_conf = 0.95), 2)

ci_lower_bd ci_upper_bd

[1,] 8.74 8.98
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Figure 4: Convergence diagnostics for the cross-validated bartMachine model. Top left: σ2

by MCMC iteration. Samples to the left of the first vertical gray line are burn-in from the
first computing core’s MCMC chain. The four subsequent plots separated by gray lines are
the post-burn-in iterations from each of the four computing cores employed during model
construction. Top right: percent acceptance of Metropolis-Hastings proposals across the m
trees where each point plots one iteration. Points before the gray vertical line illustrate
burn-in iterations and points after illustrate post-burn-in iterations. Each computing core
is colored differently. Bottom left: average number of leaves across the m trees by iteration
(post burn-in only where computing cores are separated by vertical gray lines). Bottom right:
average tree depth across the m trees by iteration (post-burn-in only where computing cores
are separated by vertical gray lines).

R> round(calc_prediction_intervals(bart_machine_cv, X[100, ],

+ pi_conf = 0.95), 2)

pi_lower_bd pi_upper_bd

[1,] 8.65 9.07
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(b) Segments illustrate prediction intervals

Figure 5: Fitted versus actual response values for the automobile dataset. Segments are 95%
credible intervals (a) or 95% prediction intervals (b). Green dots indicate the true response
is within the stated interval and red dots indicate otherwise. Note that the percent coverage
in (a) is not expected to be 95% because the response includes a noise term.

Note that the prediction intervals are wider than the credible intervals because they reflect
the uncertainty from the error term. We can then plot these intervals in-sample:

R> plot_y_vs_yhat(bart_machine_cv, credible_intervals = TRUE)

R> plot_y_vs_yhat(bart_machine_cv, prediction_intervals = TRUE)
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Figure 6: Average variable inclusion proportions in the cross-validated bartMachine model for
the automobile data averaged over 100 model constructions to obtain stable estimates across
many posterior modes in the sum-of-trees distribution (as recommended in Bleich et al. 2014).
The segments atop the bars represent 95% confidence intervals. The eight predictors with
inclusion proportions of zero are predictors with identically one value (after missing data was
dropped).

Figure 5a shows how our prediction fared against the original response (in-sample) with 95%
credible intervals. Figure 5b shows the same prediction versus the original response plot now
with 95% prediction intervals.

4.5. Variable importance

After a bartMachine model is built, it is natural to ask the question: which variables are
most important? This is assessed by examining the splitting rules in the m trees across the
post-burn-in MCMC iterations which are known as “inclusion proportions” (Chipman et al.

2010). The inclusion proportion for any given predictor represents the proportion of times
that variable is chosen as a splitting rule out of all splitting rules among the posterior draws
of the sum-of-trees model. Figure 6 illustrates the inclusion proportions for all variables
obtained via:

R> investigate_var_importance(bart_machine_cv, num_replicates_for_avg = 20)

Selection of variables which significantly affect the response is addressed briefly in Section 3.3,
examples are provided in Section 4.9 but for full treatment of this feature, please see Bleich
et al. (2014).

4.6. Variable effects

It is also natural to ask: does xj affect the response, controlling for other variables in the
model? This is roughly analogous to the t-test in ordinary least squares regression of no linear
effect of xj on y while controlling for all other variables, x−j . The null hypothesis here is the
same but the linearity constraint is relaxed. To test this, we employ a permutation approach
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where we record the observed Pseudo-R2 from the bartMachine model built with the original
data. Then we permute the xjth column, thereby destroying any relationship between xj and
y, construct a new duplicate bartMachine model from this permuted design matrix and record
a “null” Pseudo-R2. We then repeat this process to obtain a null distribution of Pseudo-R2’s.
Since the alternative hypothesis is that xj has an effect on y in terms of predictive power, our
p value is the proportion of null Pseudo-R2’s greater than the observed Pseudo-R2, making
our procedure a natural one-sided test. Note, however, that this test is conditional on the
BART model and its selected priors being true, similar to the assumptions of the linear model.

If we wish to test if a set of covariates A ⊂ {x1, . . . , xp} affect the response after controlling
for other variables, we repeat the procedure outlined in the above paragraph by permuting
the predictors in A in every null sample. We do not permute each column separately, but
instead permute the rows as a unit in order to preserve collinearity structure. This is roughly
analogous to the partial F -test in ordinary least squares regression.

If we wish to test if any of the covariates matter in predicting y, we simply permute y during
the null sampling. This procedure breaks the relationship between the response and the
predictors but does not alter the existing associations between predictors. This is roughly
analogous to the omnibus F -test in ordinary least squares regression.

At α = 0.05, Figure 7a demonstrates an insignificant effect of the variable width of car
on price. Even though width is putatively the “most important” variable as measured by
proportions of splits in the posterior sum-of-trees model (Figure 6), note that this is largely an
easy prediction problem with many collinear predictors. Figure 7b shows the results of a test
of the putatively most important categorical variable, body style (which involves permuting
the categories, then dummifying the levels to preserve the structure of the variable). We find
a marginally significant effect (p = 0.0495). A test of the top ten most important variables is
convincingly significant (Figure 7c). For the omnibus test, Figure 7d illustrates an extremely
statistically significant result, as would be expected. The code to run these tests is shown
below (output suppressed).

R> cov_importance_test(bart_machine_cv, covariates = "width")

R> cov_importance_test(bart_machine_cv, covariates = "body_style")

R> cov_importance_test(bart_machine_cv, covariates = c("width",

+ "curb_weight", "city_mpg", "length", "horsepower", "body_style",

+ "engine_size", "highway_mpg", "peak_rpm", "normalized_losses"))

R> cov_importance_test(bart_machine_cv)

4.7. Partial dependence

A data analyst may also be interested in understanding how xj affects the response on average,
after controlling for other predictors. This can be examined using Friedman (2001)’s partial
dependence function (PDP),

fj(xj) = Ex−j
[f(xj , x−j)] :=

∫

f(xj , x−j)dP (x−j) . (4)

The PDP of predictor xj gives the average value of f when xj is fixed and x−j varies over
its marginal distribution, dP (x−j). As neither the true model f nor the distribution of the
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Figure 7: Tests of covariate importance conditional on the cross-validated bartMachine model.
All tests performed with 100 null samples.

predictors dP (x−j) are known, we estimate Equation 4 by computing

f̂j(xj) =
1

n

n∑

i=1

f̂(xj , x−j,i) (5)

where n is the number of observations in the training data and f̂ denotes predictions via the
bartMachine model. Since BART provides an estimated posterior distribution, we can plot
credible bands for the PDP function. Credible bands are computed as follows: in Equation 5,
f̂ can be replaced with a function that calculates the qth quantile of the post-burn-in MCMC
iterations for ŷ. Figure 8a plots the PDP along with the 2.5%ile and the 97.5%ile for the
variable horsepower. By varying over most of the range of horsepower, the price is predicted
to increase by about $1000, holding all else constant. Figure 8b plots the PDP along with
the 2.5%ile and the 97.5%ile for the variable stroke. This predictor seemed to be relatively
unimportant according to Figure 6 and the PDP confirms this, with a very small, yet nonlinear
average partial effect. The code for both plots is below.
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Figure 8: PDPs plotted in black and 95% credible intervals plotted in blue for variables in the
automobile dataset. Points plotted are at the 5%ile, 10%ile, 20%ile, . . . , 90%ile and 95%ile of
the values of the predictor. Lines plotted between the points approximate the PDP by linear
interpolation.

R> pd_plot(bart_machine_cv, j = "horsepower")

R> pd_plot(bart_machine_cv, j = "stroke")

4.8. Incorporating missing data

The procedure for incorporating missing data was introduced in Section 3.2. We now build a
bartMachine model using this procedure below:

R> y <- automobile$log_price

R> X <- automobile; X$log_price <- NULL

R> bart_machine <- bartMachine(X, y, use_missing_data = TRUE,

+ use_missing_data_dummies_as_covars = TRUE)

The model output below parallels the model output with the missing rows omitted (Sec-
tion 4.2).

R> bart_machine

bartMachine v1.2.1 for regression

Missing data feature ON

training data n = 201 and p = 50

built in 1.4 secs on 1 core, 50 trees, 250 burn-in and 1000 post. samples

sigsq est for y beforehand: 0.016

avg sigsq estimate after burn-in: 0.00939
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in-sample statistics:

L1 = 11.49

L2 = 1.04

rmse = 0.07

Pseudo-Rsq = 0.9794

p-val for shapiro-wilk test of normality of residuals: 0.69814

p-val for zero-mean noise: 0.96389

Note that the output reflects the use of the complete data set. There are 41 observations now
included for which there are missing features. Also note that p has now increased from 41 to
50. The nine “new” predictors are:

[1] "engine_location_rear" "engine_type_rotor" "fuel_system_4bbl"

[4] "fuel_system_spfi" "M_normalized_losses" "M_bore"

[7] "M_stroke" "M_horsepower" "M_peak_rpm"

The first two predictors are two new levels for the variable engine_location which appear
in the 41 rows with missingness. The next two predictors are two new levels for the variable
fuel_system which appear in the 41 rows with missingness as well. The last five new predic-
tors are dummy variables which indicate missingness constructed from the predictors which
exhibited missingness (due to the use_missing_data_dummies_as_covars parameter being
set to true).

The procedure of Section 3.2 also natively incorporates missing data during prediction. Miss-
ingness will yield larger credible intervals. In the example below, we suppose that the
curb_weight and symboling values were suddenly unavailable for the 20th automobile and
we observe their credible intervals widening as a result.

R> x_star <- X[20, ]

R> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.650093 8.824515

R> is.na(x_star[c("curb_weight", "symboling")]) <- TRUE

R> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.622582 8.978313

4.9. Variable selection

In this section we demonstrate the variable selection procedures introduced in Section 3.3 and
developed in detail in Bleich et al. (2014). The following code will select variables based on
the three thresholds and also displays the plot in Figure 9.5

5By default, variable selection is performed individually on dummy variables for a factor. The variable
selection procedures return the permutation distribution and an aggregation of the dummy variables’ inclusion
proportions can allow for variable selection to be performed on an entire factor.
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Figure 9: Visualization of the three variable selection procedures outlined in Section 3.3 with
α = 0.05. The top plot illustrates the “Local” procedure. The green lines are the threshold
levels determined from the permutation distributions that must be exceeded for a variable to
be selected. The plotted points are the variable inclusion proportions for the observed data
(averaged over five duplicate bartMachine models). If the observed value is higher than the
green bar, the variable is included and is displayed as a solid dot; if not, it is not included
and it is displayed as an open dot. The bottom plot illustrates both the “Global SE” and
“Global Max” thresholds. The red line is the cutoff for “Global Max” and variables passing
this threshold are displayed as solid dots. The blue lines represent the thresholds for the
“Global SE” procedure. Variables that exceed this cutoff but not the “Global Max” threshold
are displayed as asterisks. Open dots exceed neither threshold.
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R> vs <- var_selection_by_permute(bart_machine,

+ bottom_margin = 10, num_permute_samples = 10)

R> vs$important_vars_local_names

"curb_weight" "city_mpg" "engine_size" "horsepower"

"length" "width" "num_cylinders" "body_style_convertible"

"wheel_base" "peak_rpm" "highway_mpg" "wheel_drive_fwd"

R> vs$important_vars_global_max_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

R> vs$important_vars_global_se_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

"width" "num_cylinders" "wheel_base" "wheel_drive_fwd"

Usually, “Global Max” and “Global SE” perform similarly, as they are both more stringent
in selection. However, in many situations it will not be clear to the data analyst which
threshold is most appropriate. The “best” procedure can be chosen via cross-validation on
out-of-sample RMSE as follows:

var_selection_by_permute_response_cv(bart_machine)

$best_method

[1] "important_vars_local_names"

$important_vars_cv

[1] "body_style_convertible" "city_mpg" "curb_weight"

[4] "engine_size" "engine_type_ohc" "horsepower"

[7] "length" "num_cylinders" "peak_rpm"

[10] "wheel_base" "wheel_drive_fwd" "wheel_drive_rwd"

[13] "width"

On this dataset, the “best” approach (as defined by out-of-sample prediction error) is the
“Local” procedure.

4.10. Informed prior information on covariates

Bleich et al. (2014) propose a method for incorporating informed prior information about
the predictors into the BART model. This can be achieved by modifying the prior on the
splitting rules as well as the corresponding calculations in the Metropolis-Hastings step. In
particular, covariates believed to influence the response can a priori be proposed more often
as candidates for splitting rules. Useful prior information can aid in both variable selection
and prediction tasks. We demonstrate the impact of a correctly informed prior in the context
of the Friedman (1991) function (Equation 6).

y = 10 sin (πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + E, E ∼ Nn

(

0, σ2I
)

. (6)
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To illustrate, we construct a design matrix X where the first five columns are predictors which
influence the response (x1, . . . , x5 in Equation 6) and the next 95 columns are predictors that
do not affect the response.

All that is required is a specification of relative weights for each predictor. These weights are
normalized internally to become probabilities. As an example, we assign ten times the weight
to the 5 true covariates of the model relative to the 95 useless covariates.

R> p <- 5

R> p0 <- 95

R> prior <- c(rep(10, times = p), rep(1, times = p0))

We now sample 500 observations from the Friedman function with σ = 1 for training and
another 500 observations for testing.

R> gen_friedman_data = function(n, p, sigma){

+ if (p < 5){stop("p must be greater than or equal to 5")}

+ X <- matrix(runif(n * p), nrow = n, ncol = p)

+ y <- 10 * sin(pi * X[, 1] * X[, 2]) + 20 * (X[, 3] - .5)^2 +

+ 10 * X[, 4] + 5 * X[, 5] + rnorm(n, 0, sigma)

+ data.frame(y, X)

+ }

R> ntrain <- 500

R> sigma <- 1

R> fr_data <- gen_friedman_data(ntrain, p + p0, sigma)

R> y <- fr_data$y

R> X <- fr_data[, 2:101]

R> ntest <- 500

R> fr_data <- gen_friedman_data(ntest, p + p0, sigma)

R> Xtest <- fr_data[, 2:101]

R> ytest <- fr_data$y

We construct a default bartMachine model as well as a bartMachine model with the informed
prior and compare their performance using the RMSE metric on a test set of another 500
observations.

R> bart_machine <- bartMachine(X, y)

R> bart_machine_informed <- bartMachine(X, y, cov_prior_vec = prior)

R> bart_predict_for_test_data(bart_machine, Xtest, ytest)$rmse

[1] 1.661159

R> bart_predict_for_test_data(bart_machine_informed, Xtest, ytest)$rmse

[1] 1.232925

There is a substantial improvement in out-of-sample predictive performance when a properly
informed prior is used.



26 bartMachine: Machine Learning with Bayesian Additive Regression Trees

Note that by default the prior vector down-weights the indicator variables that result from
dummifying factors so that the total set of dummy variables has the same weight as a con-
tinuous covariate.

4.11. Interaction effect detection

In Section 4.5, we explored using variable inclusion proportions to understand the relative
influences of different covariates. A similar procedure can be carried out for examining in-
teraction effects within a BART model. This question was initially explored in Damien,
Dellaportas, Polson, and Stephens (2013) where an interaction was considered to exist be-
tween two variables if they both appeared in at least one splitting rule in a given tree. We
refine the definition of an interaction as follows.

We first begin with a p× p matrix of zeroes. Within a given tree, for each split rule variable
j, we look at all split rule variables of child nodes, k, and we increment the j, k element of
the matrix. Hence variables are considered to interact in a given tree only if they appear
together in a contiguous downward path from the root node to a terminal node. Note that a
variable may interact with itself (when fitting a linear effect, for instance). Since there is no
order between the parent and child, we then add the j, k counts together with the k, j counts
(if j 6= k). Summing across trees and MCMC iterations gives the total number of interactions
for each pair of variables from which relative importance can be assessed.

We demonstrate interaction detection on the Friedman function using 10 covariates using the
code below:

R> interaction_investigator(bart_machine, num_replicates_for_avg = 25,

+ num_var_plot = 10, bottom_margin = 5)

Figure 10 shows the ten most important interactions in the model. The illustration is averaged
over 25 model constructions to obtain stable estimates across many posterior modes in the
sum-of-trees distribution. Notice that the interaction between x1 and x2 dominates all other
interaction terms, as bartMachine is correctly capturing the single true interaction effect:
the sin (πx1x2) term in Equation 6. Choosing which of these interactions significantly affect
the response is not addressed in this paper. The methods suggested in Section 3.3 may be
applicable here and we consider this to be fruitful future work.

4.12. bartMachine model persistence across R sessions

A convenient feature of bartMachine is its ability to “serialize” the model. Serialization allows
the user to construct models and have them persist across R sessions. The cost is time during
model creation and hard drive space. Thus, the serialize feature is defaulted to “off.” We
demonstrate the serialize feature using the code below:

R> bart_machine <- bartMachine(X, y, serialize = TRUE)

R> save.image("bart_demo.RData")

R> q("no")

Start a new R session:

R> options(java.parameters = "-Xmx2500m")

R> library(bartMachine)



Adam Kapelner, Justin Bleich 27

X
2

 x
 X

1

X
2

 x
 X

2

X
1

 x
 X

1

X
4

 x
 X

4

X
3

 x
 X

3

X
3

 x
 X

2

X
3

 x
 X

1

X
5

 x
 X

5

X
4

 x
 X

1

X
4

 x
 X

3

R
e

la
ti
ve

 I
m

p
o

rt
a

n
c
e

0

1000

2000

3000

4000

5000

Figure 10: The top 10 average variable interaction counts (termed “relative importance”)
in the default bartMachine model for the Friedman function data averaged over 25 model
constructions. The segments atop the bars represent 95% confidence intervals.

R> load("bart_demo.RData")

R> predict(bart_machine, X[1:4, ])

[1] 20.0954617 14.8860727 10.9483889 11.4350277

The training data is the same as in the previous section: n = 100 and p = 10. For the default
bartMachine settings, m = 50, number of burn-in MCMC iterations is 250 and number of
posterior samples is 1000. These settings yielded an almost instant serialization and a 2.1MB
RData image file. For a more realistic dataset with n = 5000, p = 1000, m = 100 and 5000
posterior samples, the serialization and saving of the file took a few minutes and required
100MB.

Note that the package throws an error if the user attempts to make use of a bartMachine

object in another session which was not serialized:

R> bart_machine <- bartMachine(X, y) #serialize is FALSE here

R> save.image("bart_demo.RData")

R> q("no")

Start a new R session:

R> options(java.parameters = "-Xmx2500m")

R> library(bartMachine)

R> load("bart_demo.RData")

R> predict(bart_machine, X[1:4, ])

Error in check_serialization(object) :

This bartMachine object was loaded from an R image but was not serialized.

Please build bartMachine using the option "serialize = TRUE" next time.
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5. bartMachine package features for classification

In this section we highlight the features that differ from bartMachine for regression when
the response is dichotomous and bartMachine for classification is employed. The illustrative
dataset consists of 332 Pima Indians obtained from the UCI Machine Learning Repository.
Of the 332 subjects, 109 were diagnosed with diabetes, the binary response variable. There
are seven continuous predictors which are body metrics such as blood pressure, glucose con-
centration, etc. and there is no missing data.

Building a bartMachine model for classification has the same computing parameters except
that q, ν cannot be specified since there is no longer a prior on σ2 (see Section 2.3). We first
build a cross-validated model below.

R> data("Pima.te", package = "MASS")

R> X <- data.frame(Pima.te[, -8])

R> y <- Pima.te[, 8]

R> bart_machine_cv <- bartMachineCV(X, y)

... bartMachine CV win: k: 3 m: 50

R> bart_machine_cv

bartMachine v1.2.1 for regression

training data n = 332 and p = 7

built in 0.7 secs on 4 cores, 50 trees, 250 burn-in and 1000 post. samples

confusion matrix:

predicted No predicted Yes model errors

actual No 209.000 14.000 0.063

actual Yes 35.000 74.000 0.321

use errors 0.143 0.159 0.148

Classification models have an added hyperparameter, prob_rule_class, which is the rule
for determining if the probability estimate is great enough to be classified into the positive
category. We can see above that the bartMachine at times predicts “NO” for true “YES”
outcomes and we suffer from a 37.6% error rate for this outcome. We can try to mitigate this
error by lowering the threshold to increase the number of “YES” labels predicted:

R> bartMachine(X, y, prob_rule_class = 0.3)

bartMachine v1.2.1 for classification

training data n = 332 and p = 7

built in 0.7 secs on 4 cores, 50 trees, 250 burn-in and 1000 post. samples

confusion matrix:
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predicted No predicted Yes model errors

actual No 176.000 47.000 0.211

actual Yes 13.000 96.000 0.119

use errors 0.069 0.329 0.181

This lowers the model error to 10% for the “YES” class, but at the expense of increasing the
error rate for the “NO” class. We encourage the user to cross-validate this rule based on an
appropriate objective function for the problem at hand.

We can also check out-of-sample statistics:

R> oos_stats <- k_fold_cv(X, y, k_folds = 10)

R> oos_stats$confusion_matrix

predicted No predicted Yes model errors

actual No 197.000 26.000 0.117

actual Yes 44.000 65.000 0.404

use errors 0.183 0.286 0.211

Note that it is possible to predict both class labels and probability estimates for given obser-
vations:

R> round(predict(bart_machine_cv, X[1 : 2, ], type = "prob"), 3)

[1] 0.599 0.100

R> predict(bart_machine_cv, X[1:2, ], type = "class")

[1] Yes No

Levels: No Yes

When using the covariate tests of Section 4.6, total misclassification error becomes the statistic
of interest instead of Pseudo-R2. The p value is calculated now as the proportion of null
samples with lower misclassification error. Figure 11 illustrates the test showing that predictor
age seems to matter in the prediction of Diabetes, controlling for other predictors.

The partial dependence plots of Section 4.7 are now scaled as probit of the probability esti-
mate. Figure 12 is generated via

R> pd_plot(bart_machine_cv, j = "glu")

illustrates that as glucose increases, the probability of contracting Diabetes increases linearly
on a probit scale.

Credible intervals are implemented for classification bartMachine and are displayed on the
probit scale. Note that the prediction intervals of Section 4.4 do not exist for classification
since E noise is not part of the probit model.

R> round(calc_credible_intervals(bart_machine_cv, X[1:2, ]), 3)
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bartMachine test for importance of covariate(s): age 
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Figure 11: Test of covariate importance for predictor age on whether or not the subject will
contract Diabetes.
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Figure 12: PDP for predictor glu. The blue lines are 95% credible intervals.

ci_lower_bd ci_upper_bd

[1,] 0.273 0.878

[2,] 0.009 0.291

Other functions work similarly to regression except those that plot the responses and those
that explicitly depend on RMSE as an error metric.

6. Discussion

This article introduced bartMachine, a new R package which implements Bayesian additive
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regression trees. The goal of this package is to provide a fast, extensive and user-friendly
implementation accessible to a wide range of data analysts, and increase the visibility of BART
to a broader statistical audience. We hope we have provided organized, well-documented
open-source code and we encourage the community to make innovations on this package.

Replication

The stable version of bartMachine is on CRAN and the development version is located at
https://github.com/kapelner/bartMachine. The package code is under the General Pub-
lic License, version 3 (GPL-3). Results, tables, and figures found in this paper can be repli-
cated via the scripts located in the bart_package_paper folder within the git repository.
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A. Sampling to modify tree structure

This section provides details on the implementation of Equation 3 (steps 1, 3, . . . , 2m − 1),
the Metropolis-Hastings step for sampling new trees. Recall from Section 2.2 that trees can
be altered via growing new child nodes from an existing terminal node, pruning two terminal
nodes such that their parent becomes terminal, or changing the splitting rule in a node.

Below is the Metropolis ratio (Gelman et al. 2004, p. 291) where the parameter sampled is
the tree and the data are the responses unexplained by other trees denoted by R. We denote
the new, proposal tree with an asterisk and the original tree without the asterisk.

r =
P (T∗ → T)
P (T → T∗)

P
(T∗ | R, σ2

)

P (T | R, σ2)
. (7)

We accept a draw from the posterior distribution of trees if a draw from a standard uniform
distribution is less than the value of r. Immediately we note that it is difficult (if not im-
possible) to calculate the posterior probabilities for the trees themselves. Instead, we employ
Bayes’ rule,

P

(

T | R, σ2
)

=
P
(
R | T, σ2

)
P
(T | σ2

)

P (R | σ2)
,

and plug the result into Equation 7 to obtain:

r =
P (T∗ → T)
P (T → T∗)
︸ ︷︷ ︸

transition ratio

× P
(
R | T∗, σ2

)

P (R | T, σ2)
︸ ︷︷ ︸

likelihood ratio

× P (T∗)

P (T)
︸ ︷︷ ︸

tree structure ratio

.

Note that the probability of the tree structure is independent of σ2.

The goal of this section is to explicitly calculate r for all possible tree proposals — GROW,
PRUNE and CHANGE. For each proposal, the calculations are organized into separate sec-
tions detailing each of the three ratios — transition, likelihood and tree structure. Note that
our actual implementation uses the following expressions in log form for numerical accuracy.

A.1. Grow proposal

Transition ratio

Transitioning from the original tree to a new tree involves growing two child nodes from a
current terminal node:

P (T → T∗) = P (GROW)P (selecting η to grow from)× (8)

P (selecting the jth attribute to split on)×
P (selecting the ith value to split on)

= P (GROW)
1

b

1

padj(η)

1

nj·adj(η)
.

We chose one of the current b terminal nodes which we denote the ηth node, and then we
pick an attribute and split point. padj(η) denotes the number of predictors left available to
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split on. This can be less than p if certain predictors do not have two or more unique values
once the data reaches the ηth node. For example, this regularly occurs if a dummy variable
was split on in some node higher up in the lineage. nj·adj(η) denotes the number of unique

values left in the pth attribute after adjusting for parents’ splits.

Transitioning from the new tree back to the original tree involves pruning that node:

P (T∗ → T) = P (PRUNE)P (selecting η to prune from) = P (PRUNE)
1

w∗
2

,

where w∗
2 denotes the number of second generation internal nodes (nodes with two terminal

child nodes) in the new tree. Thus, the full transition ratio is:

P (T∗ → T)
P (T → T∗)

=
P (PRUNE)

P (GROW)

b padj(η) nj·adj(η)

w∗
2

.

Note that when there are no variables with more than two or more unique values, the prob-
ability of GROW is set to zero and the step will be automatically rejected.

Likelihood ratio

To calculate the likelihood, the tree structure determines which responses fall into which of
the b terminal nodes. Thus,

P

(

R1, . . . , Rn | T, σ2
)

=
b∏

ℓ=1

P

(

Rℓ1
, . . . , Rℓnℓ

| σ2
)

,

where each term on the right hand side is the probability of responses in one of the b terminal
nodes, which are independent by assumption. The Rℓ’s denote the data in the ℓth terminal
node and where nℓ denotes how many observations are in each terminal node and n =

∑b
ℓ=1 nℓ.

We now find an analytic expression for the node likelihood term. Remember, if the mean in

each terminal node, which we denote µℓ, was known, then we would have Rℓ1
, . . . , Rℓnℓ

|µℓσ
2 iid∼

N (µℓ, σ2
)
. BART requires µℓ to be integrated out, allowing the Gibbs sampler in Equation 3

to avoid dealing with jumping between continuous spaces of varying dimensions (Chipman
et al. 2010, p. 275). Recall that one of the BART model assumptions is a prior on the average

value of µ ∼ N
(

0, σ2
µ

)

and thus,

P

(

Rℓ1
, . . . , Rℓnℓ

| σ2
)

=

∫

R

P

(

Rℓ1
, . . . , Rℓnℓ

| µℓ, σ2
)

P

(

µℓ; σ2
µ

)

dµℓ,

which can be shown via completion of the square or convolution to be

P

(

Rℓ1
, . . . , Rℓnℓ

| σ2
)

=
1

(2πσ2)nℓ/2

√

σ2

σ2 + nℓσ2
µ

× (9)

exp



− 1

2σ2





nℓ∑

i=1

(

Rℓi
− R̄ℓ

)2
− R̄2

ℓ n2
ℓ

nℓ + σ2

σ2
µ

+ nℓR̄
2
ℓ







 ,

where R̄ℓ denotes the mean response in the node and Rℓi
denotes the observations i = 1 . . . nℓ

in the node.
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Since the likelihoods are solely determined by the terminal nodes, the proposal tree differs
from the original tree by only the selected node to be grown, denoted by ℓ, which becomes two
children after the GROW step denoted by ℓL and ℓR. Hence, the likelihood ratio becomes:

P
(
R | T∗, σ2

)

P (R | T, σ2)
=

P

(

RℓL,1
, . . . , RℓL,nℓ,L

| σ2
)

P

(

RℓR,1
, . . . , RR,ℓnℓ,R

| σ2
)

P

(

Rℓ1
, . . . , Rℓnℓ

| σ2
) . (10)

Plugging Equation 9 into Equation 10 three times yields the ratio for the GROW step:

√

σ2
(
σ2 + nℓσ2

µ

)

(
σ2 + nℓL

σ2
µ

) (
σ2 + nℓR

σ2
µ

) exp






σ2

µ

2σ2






(
∑nℓL

i=1
RℓL,i

)2

σ2 + nℓL
σ2

µ

+

(
∑nℓR

i=1
RℓR,i

)2

σ2 + nℓR
σ2

µ

− (
∑nℓ

i=1
Rℓ,i)

2

σ2 + nℓσ2
µ









 ,

where nℓL
and nℓR

denote the number of data points in the newly grown left and right child
nodes.

Tree structure ratio

In Section 2.1 we discussed the prior on the tree structure (where the splits occur) as well as
the tree rules. For the entire tree,

P (T) =
∏

η∈Hterminals

(1− PSPLIT (η))
∏

η∈Hinternals

PSPLIT (η)
∏

η∈Hinternals

PRULE (η) ,

where Hterminals denotes the set of terminal nodes and Hinternals denotes the internal nodes.

Recall that the probability of splitting on a given node η is PSPLIT (η) = α/ (1 + dη)β . The
probability is controlled by two hyperparameters, α and β, and dη is the depth (number
of parent generations) of node η. When assigning a rule, recall that BART picks from all
available attributes and then from all available unique split points. Using the notation from
the transition ratio section, PRULE (η) = 1/padj(η)× 1/nj·adj(η).

Once again, the original tree features a node η that was selected to be grown. The proposal
tree differs with two child nodes denoted ηL and ηR. We can now form the ratio:

P (T∗)

P (T) =
(1− PSPLIT (ηL)) (1− PSPLIT (ηR))PSPLIT (η)PRULE (η)

(1− PSPLIT (η))

=

(

1− α

(1 + dηL
)β

)(

1− α

(1 + dηR
)β

)

α

(1 + dη)β

1

padj(η)

1

nj·adj(η)

1− α
(1+dη)β

= α

(

1− α
(2+dη)β

)2

(

(1 + dη)β − α
)

padj(η)nj·adj(η)
.

The last line follows from some algebra and using the fact that the depth of the grown nodes
is the depth of the parent node incremented by one (dηL

= dηR
= dη + 1).
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A.2. Prune proposal

A prune proposal is the “opposite” of a grow proposal. Prune selects a singly internal node
(a node whose children are both terminal) and removes both of its children. Thus, each ratio
will be approximately the inverse of the ratios found in the previous section concerning the
grow proposal. Note also that prune steps are not considered in trees that consist of a single
root node.

Transition ratio

We begin with transitioning from the original tree to the proposal tree:

P (T → T∗) = P (PRUNE)P (selecting η to prune from) = P (PRUNE)
1

w2
,

where w2 denotes the number of singly internal parent nodes which have two terminal children
(thus no grandchildren). To transition in the opposite direction, we are obligated to grow
from node η. This is similar to Equation 8 except the proposed tree has one less terminal
node due to the pruning of the original tree, resulting in a 1/(b− 1) term:

P (T∗ → T) = P (GROW)
1

b− 1

1

padj(η∗)

1

nj∗·adj(η∗)
.

Thus, the transition ratio is:

P (T∗ → T)
P (T → T∗)

=
P (GROW)

P (PRUNE)

w2

(b− 1)padj(η∗)nj∗·adj(η∗)
.

Likelihood ratio

This is simply the inverse of the likelihood ratio for the grow proposal:

P
(
R | T∗, σ2

)

P (R | T, σ2)
=

√
√
√
√
√

(

σ2 + nℓL
σ2

µ

) (

σ2 + nℓR
σ2

µ

)

σ2
(

σ2 + nℓσ2
µ

) ×

exp






σ2
µ

2σ2






(
∑nℓ

i=1 Rℓ,i

)2

σ2 + nℓσ2
µ

−

(
∑nℓL

i=1 RℓL,i

)2

σ2 + nℓL
σ2

µ

−

(
∑nℓR

i=1 RℓR,i

)2

σ2 + nℓR
σ2

µ









 .

Tree structure ratio

This is also simply the inverse of the tree structure ratio for the grow proposal:

P (T∗)

P (T) =

(

(1 + dη)β − α
)

padj(η
∗)nj∗·adj(η

∗)

α

(

1− α
(2+dη)β

)2 .
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A.3. Change proposal

A change proposal involves picking an internal node and changing its rule by picking both a
new available predictor to split on and a new valid split value among values of the selected
predictor. Although this could be implemented for use in any internal node in the tree, for
simplicity we limit our implementation to singly internal nodes: those that have two terminal
child nodes.

Transition ratio

The transition to a proposal tree is below:

P (T → T∗) = P (CHANGE)P (selecting node η to change)×
P (selecting the new attribute to split on)×
P (selecting the new value to split on) .

When calculating the ratio, the first three terms are shared in both numerator and denomina-
tor. The probability of selecting the new value to split on will differ as different split features
have different numbers of unique values available. Thus we are left with

P (T∗ → T)
P (T → T∗)

=
nj∗·adj(η

∗)

nj·adj(η)
,

where nj∗·adj(η
∗) is the number of split values available under the proposal tree’s splitting rule

and nj·adj(η) is the number of split values available under the original tree’s splitting rule.

Likelihood ratio

The proposal tree differs from the original tree only in the two child nodes of the selected
change node. These two terminal nodes have the unexplained responses apportioned differ-
ently. Denote R1· as the residuals of the first child node and R2· as the unexplained responses
in the second child node. Thus we begin with:

P
(
R | T∗, σ2

)

P (R | T, σ2)
=

P
(
R1∗,1, . . . , R1∗,n1∗

| σ2
)
P
(
R2∗,1, . . . , R2∗,n2∗

| σ2
)

P (R1,1, . . . , R1,n1
| σ2)P (R2,1, . . . , R2,n2

| σ2)
,

where the responses denoted with an asterisk are the responses in the proposal tree’s child
nodes.

Substituting Equation 9 four times and using some algebra, the following expression is ob-
tained for the ratio:

√
√
√
√
√
√

(
σ2

σ2
µ

+ n1

) (
σ2

σ2
µ

+ n2

)

(
σ2

σ2
µ

+ n∗
1

) (
σ2

σ2
µ

+ n∗
2

) ×

exp




1

2σ2





(∑n1∗

i=1 R1∗,i
)2

n1∗ + σ2

σ2
µ

+

(∑n2∗

i=1 R2∗,i
)2

n2∗ + σ2

σ2
µ

− (
∑n1

i=1 R1,i)
2

n1 + σ2

σ2
µ

− (
∑n2

i=1 R2,i)
2

n2 + σ2

σ2
µ







 ,

which simplifies to

exp




1

2σ2





(∑n1∗

i=1 R1∗,i
)2 − (∑n1∗

i=1 R1,i
)2

n1 + σ2

σ2
µ

+

(∑n1∗

i=1 R2∗,i
)2 − (∑n1∗

i=1 R2,i
)2

n2 + σ2

σ2
µ







 ,
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bartMachine BayesTree randomForest

boston 3.003* 4.506 4.581
triazine 0.130 0.130 0.119

ozone 4.105 4.129 4.068
baseball 700.453* 713.488 730.359
wine.red 0.627* 0.653 0.641

ankara 1.303* 1.462 1.571
wine.white 0.715* 0.764 0.745

pole 11.731* 12.764 10.699
compactiv 3.261 2.820* 2.994

Table 3: RMSE values for three machine learning algorithms averaged across 20 replicates. As-
terisks indicate a significant difference between bartMachine and BayesTree at a significance
level of 5% with a Bonferroni correction. Comparisons with randomForest’s performance were
not conducted.

if the number of responses in the children do not change in the proposal (n1 = n∗
1 and

n2 = n∗
2).

Tree structure ratio

The proposal tree has the same structure as the original tree. Thus we only need to take into
account the changed node’s children:

P (T∗)

P (T) =
(1− PSPLIT (η1∗)) (1− PSPLIT (η2∗))PSPLIT (η∗)PRULE (η∗)

(1− PSPLIT (η1) (1− PSPLIT (η2)))PSPLIT (η)PRULE (η)
.

The probability of splits remains the same because the child nodes are at the same depths.
Thus we only need to consider the ratio of the probability of the rules. Once again, the prob-
ability of selecting the new value to split on will differ as different split features have different
numbers of unique values available. We are left with P(T∗)/P(T) = nj·adj(η)/nj∗·adj(η

∗).

Note that this is the inverse of the transition ratio. Hence, for the change step, only the
likelihood ratio needs to be computed to determine the Metropolis-Hastings ratio r.

B. Bakeoff

We baked off nine regression data sets and assessed out-of-sample RMSE using 10-fold cross-
validation. We average the results across 20 replications of cross-validation. The results are
displayed in Table 3. We conclude that the implementation outlined in this paper performs
approximately the same as the previous implementation with regards to predictive accuracy.
Table 4 shows the average run time for each algorithm. Note that bartMachine is run using
4 cores.
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bartMachine BayesTree randomForest

boston 7.8 28.5 5.1
triazine 5.7 10.7 2.6

ozone 4.7 17.6 2.1
baseball 5.6 18.6 3.3
wine.red 13.5 51.1 10.6

ankara 12.8 27.0 10.9
wine.white 13.5 56.0 11.0

pole 18.2 7.0 12.0
compactiv 16.3 18.4 19.2

Table 4: Average run times (in seconds) for each complete k-fold estimation for three machine
learning algorithms on a Windows 7 desktop with four cores at 3.4GHz, 24GB RAM, running
R 3.3.0 development build.
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