Package ‘brickster’

February 4, 2026
Title R Toolkit for 'Databricks'
Version 0.2.12

Description Collection of utilities that improve using 'Databricks' from
R. Primarily functions that wrap specific 'Databricks' APIs
(<https://docs.databricks.com/api>), 'RStudio’ connection pane
support, quality of life functions to make 'Databricks' simpler to
use.

License Apache License (>= 2)

URL https://github.com/databrickslabs/brickster
Depends R (>=4.1.0)

Imports baseb4enc, cli, curl, DBI, dbplyr, dplyr, fs, glue, httr2 (>=
1.1.1), ini, jsonlite, methods, nanoarrow, purrr, R6, rlang,
tibble, utils

Suggests arrow, grid, htmltools, huxtable, knitr, magick, rmarkdown,
testthat (>= 3.3.0), withr

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Zac Davies [aut, cre],
Rafi Kurlansik [aut],
Databricks [cph, fnd]

Maintainer Zac Davies <zac@databricks.com>
Repository CRAN
Date/Publication 2026-02-04 06:40:22 UTC

https://docs.databricks.com/api
https://github.com/databrickslabs/brickster

2 Contents

Contents
access_control_request L Lo e e 8
access_control_req_group o. oL o e e e e e 9
aCCeSS_CONIOL_IEQ_USET o v v vttt it et e e e e e e 9
add_lib_path e 10
aws_attributes e e 11
azure_attributes L e e e e 13
close_workspace 14
cluster_autoscale e e e 14
cluster_log_conf 15
condition_task e 15
copy_to.DatabricksConnection 16
cron_schedule e 17
databricks-dbi L e 17
databricks-dbplyr L 18
DatabricksConnection-class 18
DatabricksDriver-class e 18
DatabricksResult-class 18
DatabricksSQL e 19
dbAppendTable,DatabricksConnection,character,data.frame-method 19
dbAppendTable,DatabricksConnection,Id,data.frame-method 20
dbBegin,DatabricksConnection-method 20
dbClearResult,DatabricksResult-method 21
dbColumnlnfo,DatabricksResult-method 21
dbCommit,DatabricksConnection-method 22
dbConnect,DatabricksDriver-method 22
dbCreateTable,DatabricksConnection,AsIs-method 23
dbCreateTable,DatabricksConnection,character-method 24
dbCreateTable,DatabricksConnection,Id-method 24
dbDataType,DatabricksConnection-method 25
dbDisconnect,DatabricksConnection-method 26
dbExecute,DatabricksConnection,character-method 26
dbExistsTable,DatabricksConnection,Asls-method 27
dbExistsTable,DatabricksConnection,character-method 27
dbExistsTable,DatabricksConnection,Id-method 28
dbFetch,DatabricksResult-method, 28
dbfs_storage_info 29
dbGetlnfo,DatabricksConnection-method 29
dbGetQuery,DatabricksConnection,character-method 30
dbGetRowCount,DatabricksResult-method 30
dbGetRowsAffected,DatabricksResult-method 31
dbGetStatement,DatabricksResult-method 31
dbHasCompleted,DatabricksResult-method 32
dbIsValid,DatabricksConnection-method 32
dbListFields,DatabricksConnection,Asls-method 33
dbListFields,DatabricksConnection,character-method 33

dbListTables,DatabricksConnection-method 34

Contents

3
dbplyr_edition.DatabricksConnection, 34
dbQuoteldentifier,DatabricksConnection,character-method 35
dbQuoteldentifier,DatabricksConnection,Id-method 35
dbQuoteldentifier,DatabricksConnection,SQL-method 36
dbReadTable,DatabricksConnection,Asls-method 36
dbReadTable,DatabricksConnection,character-method 37
dbReadTable,DatabricksConnection,Jd-method 37
dbRemoveTable,DatabricksConnection,AsIs-method 38
dbRemoveTable,DatabricksConnection,character-method 38
dbRemoveTable,DatabricksConnection,Id-method 39
dbRollback,DatabricksConnection-method 39
dbSendQuery,DatabricksConnection,character-method 40
dbSendStatement,DatabricksConnection,character-method 40
dbWriteTable,DatabricksConnection,Asls,data.frame-method 41
dbWriteTable,DatabricksConnection,character,data.frame-method 42
dbWriteTable,DatabricksConnection,Id,data.frame-method 43
db_cluster_action e 44
db_cluster_create e e 44
db_cluster_delete e e e e 47
db_cluster_edit e e 48
db_cluster_events e e e e 51
db_cluster_get. L e e e e e e 52
db_cluster_list e e 53
db_cluster_list_node_types e 54
db_cluster_list_zones e e e 55
db_cluster_perm_delete 56
db_cluster_pin. e 57
db_cluster_resize e e e e 58
db_cluster_restart e e e e e e e e e e 59
db_cluster_runtime_Versions v e e e e e e e e e e e 59
db_cluster_start e e 60
db_cluster_terminate e e e e e e e e e 61
db_cluster_unpin e e e e 62
db_collect.DatabricksConnection 63
db_context_command_cancel 64
db_context_command_run e e e e e e e e e e e 64
db_context command_run_and_wait L. .. 65
db_context_command_status e e e e e e e e 66
db_context_Create e e e e e e 67
db_context_destroy e e e e e e 68
db_context_manager e e e 69
db_context_Status e e e e e e e e e 70
db_current_cloud e e 71
db_current_USer e e e 71
db_current_workspace_id 72
db_dbfs_add_block 72
db_dbfs_close e 73

db_dbfs_create e 74

Contents

db_dbfs_delete e e 75
db_dbfs_get_status e e 76
db_dbfs_list e 77
db_dbfs_ mkdirs e e 78
db_dbfs_move e e e e 79
db_dbfs_put 80
db_dbfs_read 81
db_host e 82
db_jobs_create e e e 83
db_jobs_delete 84
db_jobs_get 85
db_jobs_list e 86
db_jobs_repair_run L e 87
db_jobs_reset 88
db_jobs_runs_cancel 90
db_jobs_runs_delete 91
db_jobs_runs_export e e 91
db_jobs_runs_get e e e e e e e 92
db_jobs_runs_get_ output Lo e e e 93
db_jobs_runs_list 93
db_jobs_runs_submit 95
db_jobs_Tun_now e e e e e e 96
db_jobs_update 97
db_lakebase_creds_generate 98
db_lakebase_get. e e e e 99
db_lakebase_get_ by _uid L 100
db_lakebase list. L e 101
db_libs_all_cluster_statuses e e e e e 102
db_libs_cluster_status e e e e e e e e e e e e 103
db_libs_install 104
db_libs_uninstall 105
db_mlflow_model_approve_transition_reqo i e 106
db_mlflow_model_delete_transition_reqo e 107
db_mlflow_model_open_transition_reqs e 108
db_mlflow_model_reject_transition_reqo 108
db_mlflow_model_transition_req e 109
db_mlflow_model_transition_stageo 110
db_mlflow_model _version_comment 112
db_mlflow_model_version_comment_delete 113
db_mlflow_model_version_comment_edit 113
db_mlflow_registered_model_details oL 114
db_perform_request e e e e e e 115
db_query_create e e e e e e 116
db_query_delete 117
db_query_get e 118
db_query_list L e e 118
db_query_update 119

db_read_netrc e 120

Contents

5
db_repl e e 121
db_repo_create e e e e e e e 122
db_repo_delete 122
db_repo_get e 123
db_repo_get_all 124
db_repo_update e e 125
db_request 126
db_request_jSOm i e e e e e e e e 126
db_req_error_body 127
db_secrets_delete e 127
db_secrets_LiSt. e 128
db_secrets_put e e e e e e e e e 129
db_secrets_scope_acl_delete 130
db_secrets_scope_acl_get e 131
db_secrets_scope_acl_list. 132
db_secrets_scope_acl_put. 133
db_secrets_Scope_Create i i i e e e 134
db_secrets_scope_delete 136
db_secrets_scope_list_all 137
db_sql_exec_cancel 137
db_sql_exec_poll_for_success 138
db_sql_exec_query e e e 139
db_sql_exec_result 141
db_sql_exec_status e e 142
db_sql_global_warehouse_get 143
db_sql_query e 143
db_sql_query_history 145
db_sql_warehouse_createo 146
db_sql_warehouse_delete 148
db_sql_warehouse_edit 148
db_sql_warehouse_get 150
db_sql_warehouse_list 151
db_sql_warehouse_start 151
db_sql_warehouse_stop 152
db_token e 153
db_uc_catalogs_get e 154
db_uc_catalogs_list L 154
db_uc_schemas_get 155
db_uc_schemas_list e 156
db_uc_tables_delete e 157
db_uc tables_exXiStS e 158
db_uc_tables_get 159
db_uc_tables_list e e e 160
db_uc_tables_summaries e e 161
db_uc_volumes_create e e 162
db_uc_volumes_delete e 163
db_uc_volumes_get e 164

db_uc_volumes_list e 165

Contents

db_uc_volumes_update e 166
db_volume_delete e e e 167
db_volume_dir_create e 168
db_volume_dir_delete 168
db_volume_dir_existS e e e e e e e e 169
db_volume _file exiSts e e 170
db_volume list e 171
db_volume_read e e 171
db_volume_upload_dir 172
db_volume_write e 173
db_vs_endpoints_create e 174
db_vs_endpoints_delete 175
db_vs_endpoints_get 176
db_vs_endpoints_list 176
db_vs_indexes_Create e e e e e e 177
db_vs_indexes_delete 178
db_vs_indexes_delete_data 179
db_vs_indexes_get e e e e e e e 180
db_vs_indexes_list e e e 180
db_vs_indexes_query 181
db_vs_indexes_query_next_pageo i u e e e e 183
db_vs_indexes_scan. e e e e e e e e 184
db_vs_indexes_SYNnC e e e e e e 185
db_vs_indexes_upsert_data 186
db_workspace_delete 186
db_workspace_export e e e e e 187
db_workspace_get_status e 189
db_workspace_import e 189
db_workspace_list 191
db_workspace_mkdirs 191
db_wsid . . . e 192
delta_sync_index_SPeC i e e e e 193
direct_access_INdeX_SPecl e 194
docker_image 195
email_notifications e e e 196
embedding_source_column Lo 197
embedding_vector_column 197
file_storage_info 198
for_each_task e 198
gep_attributes L L L 199
get_and_start_cluster 200
get_and_start_warehouse oL 201
get_latest_dbr e 202
GIL_SOUICE o it it e e e e e e e e e e 203
nit_script_info 203
in_databricks_nb e e 204
is.access_control_request L. oL e e e 204

iS.access_control_req_groupo i i e e e 205

Contents

7
15.2CCESS_CONtIOl_Ieq_USET v v v v i e i e e e e e e e e e 205
isaaws_attributes L. e e e e e e e e e 206
1s.azure_attributes e 206
is.cluster_autoscale e e 207
is.cluster_log_conf L 207
1s.condition_task L L L L e 208
is.cron_schedule L e 208
is.dbfs_storage_info L. 209
is.delta_sync_index e e 209
is.direct_access_IndexX e 210
isddocker_image 210
is.email_notifications L e e e e e 211
is.embedding_source_column 211
is.embedding_vector_column 212
is.file_storage_info L. 212
is.for_each_task 213
is.gep_attributes L 213
IS.ZILSOUICE v v o o e e e e e e e e e e e e e e e e 214
is.dnit_script_info L e 214
isjob_tasko 215
is.ibraries L L e e e e 215
is.library e e e 216
1Is.lib_cran L L e 216
isdib_egg . . .o 217
is.ib_jar e e 217
is.lib_maven L e e e e e e e e e 218
iSib_pypl e 218
is.lib_whl . . . e e e 219
ISNEW_CIUSter e e e e e e e e e e 219
is.notebook_task L 220
is.pipeline_task 220
is.python_wheel_task L 221
isrun_job_tasko Lo e 221
is.s3_storage_info L. 222
is.spark_jar_task 222
is.spark_python_task L L 223
is.spark_submit_task L 223
is.sql_file_task 224
is.sql_query_task L e 224
is.valid_task_type oL e 225
is.vector_search_index_spec o 225
Job_task e e e 226
JOb_tasks . ..o e 227
libraries e 228
Iib_cran e 228
lib_egg e e 229
Lib_jar e 229

Llib_maven e 230

Index

access_control_request

Hb_pypi . . o o e e e 230
Lib_whl e e e 231
new_cluster L. e e e e e e e e e 231
notebook_task L 233
0pen_WOTKSpace e e e e e 234
pipeline_task e 235
python_wheel_task 235
remove_lib_path L 236
run_job_tasko e 236
s3_storage_info 237
show,DatabricksConnection-method 238
show,DatabricksDriver-method 238
show,DatabricksResult-method 239
spark_jar_task L. 239
spark_python_task L 240
spark_submit_task oL 240
sql_file_task e e e 241
sql_query_fields.DatabricksConnection, 241
sql_query_save.DatabricksConnection 242
sql_query_task L e 243
sql_table_analyze.DatabricksConnection 243
wait_for_lib_installs e 244

245

access_control_request

Access Control Request

Description

Access Control Request

Usage

access_control_request(...)

Arguments

See Also

Instances of access_control_req_user() oraccess_control_req_group().

db_jobs_create(), db_jobs_reset(), db_jobs_update()

access_control_req_group 9

access_control_req_group
Access Control Request for Group

Description

Access Control Request for Group

Usage

access_control_req_group(

group,
permission_level = c(”CAN_MANAGE”, "CAN_MANAGE_RUN", "CAN_VIEW")

)

Arguments

group Group name. There are two built-in groups: users for all users, and admins for
administrators.

permission_level
Permission level to grant. One of CAN_MANAGE, CAN_MANAGE_RUN, CAN_VIEW.

See Also

access_control_request()

Other Access Control Request Objects: access_control_req_user()

access_control_req_user
Access Control Request For User

Description

Access Control Request For User

Usage

access_control_reqg_user(

user_name,

permission_level = c(”CAN_MANAGE”, "CAN_MANAGE_RUN”, "CAN_VIEW", "IS_OWNER")
)

10 add_lib_path

Arguments

user_name Email address for the user.
permission_level
Permission level to grant. One of CAN_MANAGE, CAN_MANAGE_RUN, CAN_VIEW,

IS_OWNER.
See Also

access_control_request()

Other Access Control Request Objects: access_control_req_group()

add_lib_path Add Library Path

Description

Add Library Path

Usage

add_lib_path(path, after, version = FALSE)

Arguments
path Directory that will added as location for which packages are searched. Recur-
sively creates the directory if it doesn’t exist. On Databricks remember to use
/dbfs/ or /Volumes/. .. as a prefix.
after Location at which to append the path value after.
version If TRUE will add the R version string to the end of path. This is recommended
if using different R versions and sharing a common path between users.
Details

This functions primary use is when using Databricks notebooks or hosted RStudio, however, it
works anywhere.

See Also

.libPaths(), remove_lib_path()

aws_ attributes

11

aws_attributes

AWS Attributes

Description

AWS Attributes

Usage

aws_attributes(

first_on_demand = 1,

availability = c(”SPOT_WITH_FALLBACK”, "SPOT", "ON_DEMAND"),

zone_id = NULL,

instance_profile_arn = NULL,

spot_bid_price_percent = 100,

ebs_volume_type = c("GENERAL_PURPOSE_SSD", "THROUGHPUT_OPTIMIZED_HDD"),
ebs_volume_count = 1,

ebs_volume_size = NULL,

ebs_volume_iops = NULL,

ebs_volume_throughput = NULL

Arguments

first_on_demand

availability

zone_id

Number of nodes of the cluster that will be placed on on-demand instances. If
this value is greater than 0, the cluster driver node will be placed on an on-
demand instance. If this value is greater than or equal to the current cluster
size, all nodes will be placed on on-demand instances. If this value is less than
the current cluster size, first_on_demand nodes will be placed on on-demand
instances and the remainder will be placed on availability instances. This value
does not affect cluster size and cannot be mutated over the lifetime of a cluster.

One of SPOT_WITH_FALLBACK, SPOT, ON_DEMAND. Type used for all subsequent
nodes past the first_on_demand ones. If first_on_demand is zero, this avail-
ability type will be used for the entire cluster.

Identifier for the availability zone/datacenter in which the cluster resides. You
have three options: availability zone in same region as the Databricks deploy-
ment, auto which selects based on available IPs, NULL which will use the default
availability zone.

instance_profile_arn

Nodes for this cluster will only be placed on AWS instances with this instance
profile. If omitted, nodes will be placed on instances without an instance profile.
The instance profile must have previously been added to the Databricks environ-
ment by an account administrator. This feature may only be available to certain
customer plans.

12 aws_attributes

spot_bid_price_percent
The max price for AWS spot instances, as a percentage of the corresponding
instance type’s on-demand price. For example, if this field is set to 50, and the
cluster needs a new i3.xlarge spot instance, then the max price is half of the
price of on-demand i3.xlarge instances. Similarly, if this field is set to 200, the
max price is twice the price of on-demand i3.xlarge instances. If not specified,
the default value is 100. When spot instances are requested for this cluster, only
spot instances whose max price percentage matches this field will be considered.
For safety, we enforce this field to be no more than 10000.

ebs_volume_type
Either GENERAL _PURPOSE_SSD or THROUGHPUT_OPTIMIZED_HDD

ebs_volume_count
The number of volumes launched for each instance. You can choose up to 10
volumes. This feature is only enabled for supported node types. Legacy node
types cannot specify custom EBS volumes. For node types with no instance
store, at least one EBS volume needs to be specified; otherwise, cluster creation
will fail. These EBS volumes will be mounted at /ebs@, /ebs1, and etc. In-
stance store volumes will be mounted at /local_disk®@, /local_disk1, and
etc.
If EBS volumes are attached, Databricks will configure Spark to use only the
EBS volumes for scratch storage because heterogeneously sized scratch de-
vices can lead to inefficient disk utilization. If no EBS volumes are attached,
Databricks will configure Spark to use instance store volumes.

If EBS volumes are specified, then the Spark configuration spark.local.dir
will be overridden.

ebs_volume_size
The size of each EBS volume (in GiB) launched for each instance. For general
purpose SSD, this value must be within the range 100 - 4096. For throughput
optimized HDD, this value must be within the range 500 - 4096.
Custom EBS volumes cannot be specified for the legacy node types (memory-
optimized and compute-optimized).

ebs_volume_iops
The number of IOPS per EBS gp3 volume. This value must be between 3000
and 16000. The value of IOPS and throughput is calculated based on AWS
documentation to match the maximum performance of a gp2 volume with the
same volume size.

ebs_volume_throughput
The throughput per EBS gp3 volume, in MiB per second. This value must be
between 125 and 1000.

Details

If ebs_volume_iops, ebs_volume_throughput, or both are not specified, the values will be in-
ferred from the throughput and IOPS of a gp2 volume with the same disk size, by using the follow-
ing calculation:

Disk size I0PS Throughput
Greater than 1000 3 times the disk size up to 16000 250

azure_attributes

Between

13

170 and 1000 3000 250

Below 170 3000 128

See Also

db_cluster_create(), db_cluster_edit()
Other Cloud Attributes: azure_attributes(), gcp_attributes()

azure_attributes

Azure Attributes

Description

Azure Attributes

Usage

azure_attributes(
first_on_demand = 1,
availability = c("SPOT_WITH_FALLBACK", "SPOT", "ON_DEMAND"),
spot_bid_max_price = -1

)

Arguments

first_on_demand

availability

Number of nodes of the cluster that will be placed on on-demand instances. If
this value is greater than 0, the cluster driver node will be placed on an on-
demand instance. If this value is greater than or equal to the current cluster
size, all nodes will be placed on on-demand instances. If this value is less than
the current cluster size, first_on_demand nodes will be placed on on-demand
instances and the remainder will be placed on availability instances. This value
does not affect cluster size and cannot be mutated over the lifetime of a cluster.

One of SPOT_WITH_FALLBACK, SPOT, ON_DEMAND. Type used for all subsequent
nodes past the first_on_demand ones. If first_on_demand is zero, this avail-
ability type will be used for the entire cluster.

spot_bid_max_price

See Also

The max bid price used for Azure spot instances. You can set this to greater than
or equal to the current spot price. You can also set this to -1 (the default), which
specifies that the instance cannot be evicted on the basis of price. The price for
the instance will be the current price for spot instances or the price for a standard
instance. You can view historical pricing and eviction rates in the Azure portal.

db_cluster_create(), db_cluster_edit()
Other Cloud Attributes: aws_attributes(), gcp_attributes()

14 cluster_autoscale

close_workspace Close Databricks Workspace Connection

Description

Close Databricks Workspace Connection

Usage

close_workspace(host = db_host())

Arguments

host Databricks workspace URL, defaults to calling db_host ().

Examples

Not run:
close_workspace(host = db_host())

End(Not run)

cluster_autoscale Cluster Autoscale

Description

Range defining the min and max number of cluster workers.

Usage

cluster_autoscale(min_workers, max_workers)

Arguments
min_workers The minimum number of workers to which the cluster can scale down when
underutilized. It is also the initial number of workers the cluster will have after
creation.
max_workers The maximum number of workers to which the cluster can scale up when over-
loaded. max_workers must be strictly greater than min_workers.
See Also

db_cluster_create(), db_cluster_edit()

cluster_log_conf 15

cluster_log_conf Cluster Log Configuration

Description

Path to cluster log.

Usage
cluster_log_conf(dbfs = NULL, s3 = NULL)

Arguments
dbfs Instance of dbfs_storage_info().
s3 Instance of s3_storage_info().
Details

dbf's and s3 are mutually exclusive, logs can only be sent to one destination.

See Also

Other Cluster Log Configuration Objects: dbfs_storage_info(), s3_storage_info()

condition_task Condition Task

Description

Condition Task

Usage

condition_task(
left,
right,
op = c("EQUAL_TO", "GREATER_THAN"”, "GREATER_THAN_OR_EQUAL", "LESS_THAN",
"LESS_THAN_OR_EQUAL", "NOT_EQUAL")

)
Arguments
left Left operand of the condition task. Either a string value or a job state or param-
eter reference.
right Right operand of the condition task. Either a string value or a job state or pa-
rameter reference.
op Operator, one of "EQUAL_TO", "GREATER_THAN", "GREATER_THAN_OR_EQUAL",

"LESS_THAN", "LESS_THAN_OR_EQUAL", "NOT_EQUAL"

16 copy_to.DatabricksConnection

Details

The task evaluates a condition that can be used to control the execution of other tasks when the
condition_task field is present. The condition task does not require a cluster to execute and does not
support retries or notifications.

See Also

Other Task Objects: email_notifications(), for_each_task(), libraries(), new_cluster(),
notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

copy_to.DatabricksConnection
Copy data frame to Databricks as table or view

Description

Copy data frame to Databricks as table or view

Usage

S3 method for class 'DatabricksConnection’
copy_to(

dest,

df,

name = deparse(substitute(df)),

overwrite = FALSE,

temporary = TRUE,

Arguments
dest A DatabricksConnection object
df Data frame to copy
name Name for the table/view
overwrite Whether to overwrite existing table/view
temporary Whether to create as temporary view (default: TRUE, but NOT SUPPORTED -
will error)
Additional arguments passed to dbWriteTable
Details

Note: temporary=TRUE will result in an error as temporary tables are not supported with the SQL
Statement Execution API. Use temporary=FALSE to create regular tables.

cron_schedule 17

Value

dbplyr table reference

cron_schedule Cron Schedule

Description

Cron Schedule

Usage

cron_schedule(

quartz_cron_expression,

timezone_id = "Etc/UTC",

pause_status = c("UNPAUSED"”, "PAUSED")
)

Arguments

quartz_cron_expression

Cron expression using Quartz syntax that describes the schedule for a job. See
Cron Trigger for details.

timezone_id Java timezone ID. The schedule for a job is resolved with respect to this time-
zone. See Java TimeZone for details.

pause_status Indicate whether this schedule is paused or not. Either UNPAUSED (default) or
PAUSED.

See Also

db_jobs_create(), db_jobs_reset(), db_jobs_update()

databricks-dbi DBI Interface for Databricks SQL Warehouses

Description

This file implements a standard DBI interface for Databricks SQL warehouses, built on top of the
existing db_sql_query() infrastructure.

https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
https://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

18 DatabricksResult-class

databricks-dbplyr dbplyr Backend for Databricks SQL

Description

This file implements dbplyr backend support for Databricks SQL warehouses, enabling dplyr syntax
to be translated to Databricks SQL.

DatabricksConnection-class
DBI Connection for Databricks

Description

DBI Connection for Databricks

DatabricksDriver-class
DBI Driver for Databricks

Description

DBI Driver for Databricks

DatabricksResult-class
DBI Result for Databricks

Description

DBI Result for Databricks

DatabricksSQL

19

DatabricksSQL Create Databricks SQL Driver

Description

Create Databricks SQL Driver

Usage
DatabricksSQL ()

Value

A DatabricksDriver object

Examples

Not run:
drv <- DatabricksSQL()
con <- dbConnect(drv, warehouse_id = "your_warehouse_id")

End(Not run)

dbAppendTable,DatabricksConnection,character,data. frame-method
Append rows to an existing Databricks table

Description

Append rows to an existing Databricks table

Usage
S4 method for signature 'DatabricksConnection,character,data.frame'
dbAppendTable(conn, name, value, ..., row.names = FALSE)
Arguments
conn A DatabricksConnection object
name Table name (character, Id, or SQL)
value Data frame to append
Additional arguments
row.names If TRUE, preserve row names as a column
Value

TRUE invisibly on success

20 dbBegin,DatabricksConnection-method

dbAppendTable,DatabricksConnection,Id,data.frame-method
Append rows to an existing Databricks table (Id method)

Description

Append rows to an existing Databricks table (Id method)

Usage
S4 method for signature 'DatabricksConnection,Id,data.frame’
dbAppendTable(conn, name, value, ..., row.names = FALSE)
Arguments
conn A DatabricksConnection object
name Table name as Id object
value Data frame to append

Additional arguments

row.names If TRUE, preserve row names as a column

Value

TRUE invisibly on success

dbBegin,DatabricksConnection-method
Begin transaction (not supported)

Description

Begin transaction (not supported)

Usage
S4 method for signature 'DatabricksConnection'
dbBegin(conn, ...)

Arguments
conn A DatabricksConnection object

Additional arguments (ignored)

Value

Always throws an error (transactions not supported)

dbClearResult,DatabricksResult-method

21

dbClearResult,DatabricksResult-method
Clear result set

Description

Clear result set

Usage
S4 method for signature 'DatabricksResult'
dbClearResult(res, ...)

Arguments
res A DatabricksResult object

Additional arguments (ignored)

Value

TRUE (invisibly)

dbColumnInfo,DatabricksResult-method

Get column information from result

Description

Get column information from result

Usage

S4 method for signature 'DatabricksResult’
dbColumnInfo(res, ...)

Arguments
res A DatabricksResult object
Additional arguments (ignored)
Value

A data.frame with column names and types

22 dbConnect,DatabricksDriver-method

dbCommit,DatabricksConnection-method
Commit transaction (not supported)

Description

Commit transaction (not supported)

Usage
S4 method for signature 'DatabricksConnection'’
dbCommit(conn, ...)

Arguments
conn A DatabricksConnection object

Additional arguments (ignored)

Value

Always throws an error (transactions not supported)

dbConnect,DatabricksDriver-method
Connect to Databricks SQL Warehouse

Description

Connect to Databricks SQL Warehouse

Usage

S4 method for signature 'DatabricksDriver'
dbConnect(
drv,
warehouse_id = NULL,
http_path = NULL,
catalog = NULL,
schema = NULL,
staging_volume = NULL,
max_active_connections = 30,
fetch_timeout = 300,
token = db_token(),
host = db_host(),

dbCreateTable,DatabricksConnection,Asls-method 23
Arguments

drv A DatabricksDriver object

warehouse_id Optional ID of the SQL warehouse to connect to

http_path Optional HTTP path for the SQL warehouse; if provided, the warehouse ID is

extracted from this path
catalog Optional catalog name to use as default
schema Optional schema name to use as default

staging_volume Optional volume path for large dataset staging
max_active_connections

Maximum number of concurrent download connections when fetching query

results (default: 30)

fetch_timeout Timeout in seconds for downloading each result chunk (default: 300)

token Authentication token (defaults to db_token())
host Databricks workspace host (defaults to db_host())
Additional arguments (ignored)

Details

Provide either warehouse_id or http_path. When http_path is supplied, the warehouse ID is

extracted from the /warehouses/<id> segment.

Value

A DatabricksConnection object

dbCreateTable,DatabricksConnection,AsIs-method
Create an empty Databricks table (Asls method)

Description

Create an empty Databricks table (AsIs method)

Usage

S4 method for signature 'DatabricksConnection,AsIs'’

dbCreateTable(conn, name, fields, ..., row.names = NULL, temporary = FALSE)
Arguments

conn A DatabricksConnection object

name Table name as Asls object (from 1())

fields Either a named character vector of types or a data frame

Additional arguments (ignored)
row.names Ignored (included for DBI compatibility)
temporary If TRUE, create temporary table (NOT SUPPORTED - will error)

24 dbCreateTable,DatabricksConnection,Id-method

Value

TRUE invisibly on success

dbCreateTable,DatabricksConnection, character-method
Create an empty Databricks table

Description

Create an empty Databricks table

Usage
S4 method for signature 'DatabricksConnection,character’
dbCreateTable(conn, name, fields, ..., row.names = NULL, temporary = FALSE)
Arguments
conn A DatabricksConnection object
name Table name to create
fields Either a named character vector of types or a data frame

Additional arguments (ignored)

row.names Ignored (included for DBI compatibility)
temporary If TRUE, create temporary table (NOT SUPPORTED - will error)
Value

TRUE invisibly on success

dbCreateTable,DatabricksConnection, Id-method
Create an empty Databricks table (Id method)

Description

Create an empty Databricks table (Id method)

Usage

S4 method for signature 'DatabricksConnection,Id'’
dbCreateTable(conn, name, fields, ..., row.names = NULL, temporary = FALSE)

dbDataType,DatabricksConnection-method 25

Arguments

conn
name

fields

row.names

temporary

Value

A DatabricksConnection object

Table name as Id object

Either a named character vector of types or a data frame
Additional arguments (ignored)

Ignored (included for DBI compatibility)

If TRUE, create temporary table (NOT SUPPORTED - will error)

TRUE invisibly on success

dbDataType,DatabricksConnection-method

Map R data types to Databricks SQL types

Description

Map R data types to Databricks SQL types

Usage
S4 method for signature 'DatabricksConnection'’
dbDataType(dbObj, obj, ...)
Arguments
dbObj A DatabricksConnection object
obj R object(s) to get SQL types for
Additional arguments (ignored)
Value

Character vector of SQL type names

26 dbExecute,DatabricksConnection,character-method

dbDisconnect,DatabricksConnection-method
Disconnect from Databricks

Description

Disconnect from Databricks

Usage
S4 method for signature 'DatabricksConnection'’
dbDisconnect(conn, ...)

Arguments
conn A DatabricksConnection object

Additional arguments (ignored)

Value

TRUE (invisibly)

dbExecute,DatabricksConnection,character-method
Execute statement on Databricks

Description

Execute statement on Databricks

Usage
S4 method for signature 'DatabricksConnection,character’
dbExecute(conn, statement, ...)
Arguments
conn A DatabricksConnection object
statement SQL statement

Additional arguments (ignored)

Value

Number of rows in result set (from metadata, without loading data)

dbExistsTable, DatabricksConnection, Asls-method 27

dbExistsTable,DatabricksConnection,AsIs-method
Check if table exists (Asls method)

Description

Check if table exists (Asls method)

Usage
S4 method for signature 'DatabricksConnection,AsIs'
dbExistsTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name as Asls object (from 1())

Additional arguments (ignored)

Value

TRUE if table exists, FALSE otherwise

dbExistsTable,DatabricksConnection, character-method
Check if table exists in Databricks

Description

Check if table exists in Databricks

Usage
S4 method for signature 'DatabricksConnection,character’
dbExistsTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name to check

Additional arguments (ignored)

Value

TRUE if table exists, FALSE otherwise

28 dbFetch,DatabricksResult-method

dbExistsTable,DatabricksConnection, Id-method
Check if table exists (Id method)

Description

Check if table exists (Id method)

Usage
S4 method for signature 'DatabricksConnection,Id’
dbExistsTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name as Id object

Additional arguments (ignored)

Value

TRUE if table exists, FALSE otherwise

dbFetch,DatabricksResult-method
Fetch results from Databricks query

Description

Fetch results from Databricks query

Usage
S4 method for signature 'DatabricksResult'
dbFetch(res, n = -1, ...)
Arguments
res A DatabricksResult object
n Maximum number of rows to fetch (-1 for all rows)

Additional arguments (ignored)

Value

A data.frame with query results

dbfs_storage_info

29

dbfs_storage_info DBEFS Storage Information

Description

DBFS Storage Information

Usage

dbfs_storage_info(destination)

Arguments

destination DBFS destination. Example: dbfs:/my/path.

See Also
cluster_log_conf (), init_script_info()
Other Cluster Log Configuration Objects: cluster_log_conf (), s3_storage_info()
Other Init Script Info Objects: file_storage_info(), s3_storage_info()

dbGetInfo,DatabricksConnection-method
Get connection information

Description

Get connection information

Usage

S4 method for signature 'DatabricksConnection'’
dbGetInfo(dbObj, ...)

Arguments
dbObj A DatabricksConnection object
Additional arguments (ignored)
Value

A list with connection details

30 dbGetRowCount,DatabricksResult-method

dbGetQuery,DatabricksConnection, character-method
Execute SQL query and return results

Description

Execute SQL query and return results

Usage

S4 method for signature 'DatabricksConnection,character’
dbGetQuery(

conn,

statement,

disposition = "EXTERNAL_LINKS",

show_progress = TRUE,

)

Arguments
conn A DatabricksConnection object
statement SQL statement to execute

disposition Query disposition mode: "EXTERNAL_LINKS" (default) for large results, "IN-
LINE" for small metadata queries (automatically chooses appropriate format)

show_progress If TRUE, show progress updates during query execution (default: TRUE)

Additional arguments passed to underlying query execution

Value

A data.frame with query results

dbGetRowCount,DatabricksResult-method
Get number of rows fetched

Description

Get number of rows fetched

Usage

S4 method for signature 'DatabricksResult’
dbGetRowCount(res, ...)

dbGetRowsAffected, DatabricksResult-method

Arguments
res A DatabricksResult object
Additional arguments (ignored)
Value

Number of rows fetched so far

31

dbGetRowsAffected,DatabricksResult-method
Get number of rows affected (not applicable for SELECT)

Description

Get number of rows affected (not applicable for SELECT)

Usage
S4 method for signature 'DatabricksResult’
dbGetRowsAffected(res, ...)

Arguments

res A DatabricksResult object

Additional arguments (ignored)

Value

-1 (not applicable for SELECT queries)

dbGetStatement,DatabricksResult-method
Get SQL statement from result

Description

Get SQL statement from result

Usage

S4 method for signature 'DatabricksResult’
dbGetStatement(res, ...)

32 dblsValid,DatabricksConnection-method

Arguments
res A DatabricksResult object
Additional arguments (ignored)
Value

The SQL statement as character

dbHasCompleted,DatabricksResult-method
Check if query has completed

Description

Check if query has completed

Usage
S4 method for signature 'DatabricksResult'
dbHasCompleted(res, ...)

Arguments
res A DatabricksResult object

Additional arguments (ignored)

Value

TRUE if query is complete, FALSE otherwise

dbIsValid,DatabricksConnection-method
Check if connection is valid

Description

Check if connection is valid

Usage

S4 method for signature 'DatabricksConnection'’
dbIsvValid(dbObj, ...)

dbListFields,DatabricksConnection,AsIs-method 33

Arguments
dbObj A DatabricksConnection object
Additional arguments (ignored)
Value

TRUE if connection is valid, FALSE otherwise

dbListFields,DatabricksConnection,AsIs-method
List column names of a Databricks table (Asls method)

Description

List column names of a Databricks table (AsIs method)

Usage
S4 method for signature 'DatabricksConnection,AsIs'’
dbListFields(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name as Asls object (from 1())

Additional arguments (ignored)

Value

Character vector of column names

dbListFields,DatabricksConnection,character-method
List column names of a Databricks table

Description

List column names of a Databricks table

Usage

S4 method for signature 'DatabricksConnection,character’
dbListFields(conn, name, ...)

34 dbplyr_edition.DatabricksConnection

Arguments
conn A DatabricksConnection object
name Table name to describe
Additional arguments (ignored)
Value

Character vector of column names

dbListTables,DatabricksConnection-method
List tables in Databricks catalog/schema

Description

List tables in Databricks catalog/schema

Usage

S4 method for signature 'DatabricksConnection’
dbListTables(conn, ...)

Arguments
conn A DatabricksConnection object
Additional arguments (ignored)
Value

Character vector of table names

dbplyr_edition.DatabricksConnection

Declare dbplyr API version for Databricks connections

Description

Declare dbplyr API version for Databricks connections

Usage

S3 method for class 'DatabricksConnection'
dbplyr_edition(con)

dbQuoteldentifier,DatabricksConnection,character-method

Arguments

con A DatabricksConnection object

Value

The dbplyr edition number (2L)

35

dbQuoteldentifier,DatabricksConnection,character-method
Quote identifiers for Databricks SQL

Description

Quote identifiers for Databricks SQL

Usage
S4 method for signature 'DatabricksConnection,character'’
dbQuoteIdentifier(conn, x, ...)
Arguments
conn A DatabricksConnection object
X Character vector of identifiers to quote

Additional arguments (ignored)

Value

SQL object with quoted identifiers

dbQuoteIdentifier,DatabricksConnection,Id-method
Quote complex identifiers (schema.table)

Description

Quote complex identifiers (schema.table)

Usage

S4 method for signature 'DatabricksConnection,Id'’
dbQuoteIldentifier(conn, x, ...)

36 dbReadTable,DatabricksConnection, Asls-method

Arguments
conn A DatabricksConnection object
X Id object with catalog/schema/table components
Additional arguments (ignored)
Value

SQL object with quoted identifier components

dbQuoteldentifier,DatabricksConnection, SQL-method
Quote SQL objects (passthrough)

Description

Quote SQL objects (passthrough)

Usage
S4 method for signature 'DatabricksConnection,SQL'
dbQuoteldentifier(conn, x, ...)
Arguments
conn A DatabricksConnection object
X SQL object (already quoted)

Additional arguments (ignored)

Value

The SQL object unchanged

dbReadTable,DatabricksConnection,AsIs-method
Read a Databricks table (Asls method)

Description

Read a Databricks table (AsIs method)

Usage

S4 method for signature 'DatabricksConnection,AsIs'
dbReadTable(conn, name, ...)

dbReadTable,DatabricksConnection,character-method 37

Arguments
conn A DatabricksConnection object
name Table name as Asls object (from 1())
Additional arguments passed to dbGetQuery
Value

A data.frame with table contents

dbReadTable,DatabricksConnection, character-method
Read a Databricks table

Description
Read a Databricks table
Usage
S4 method for signature 'DatabricksConnection,character’
dbReadTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name to read

Additional arguments passed to dbGetQuery

Value

A data.frame with table contents

dbReadTable,DatabricksConnection, Id-method
Read a Databricks table (Id method)

Description

Read a Databricks table (Id method)

Usage

S4 method for signature 'DatabricksConnection,Id'’
dbReadTable(conn, name, ...)

38 dbRemoveTable,DatabricksConnection,character-method

Arguments
conn A DatabricksConnection object
name Table name as Id object
Additional arguments passed to dbGetQuery
Value

A data.frame with table contents

dbRemoveTable,DatabricksConnection,AsIs-method
Remove a Databricks table (Asls method)

Description

Remove a Databricks table (Asls method)

Usage
S4 method for signature 'DatabricksConnection,AsIs'
dbRemoveTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name as Asls object (from I())

Additional arguments (ignored)

Value

TRUE invisibly on success

dbRemoveTable,DatabricksConnection, character-method
Remove a Databricks table

Description

Remove a Databricks table

Usage

S4 method for signature 'DatabricksConnection,character’
dbRemoveTable(conn, name, ...)

dbRemoveTable,DatabricksConnection,Id-method 39

Arguments
conn A DatabricksConnection object
name Table name to remove
Additional arguments (ignored)
Value

TRUE invisibly on success

dbRemoveTable,DatabricksConnection, Id-method
Remove a Databricks table (Id method)

Description

Remove a Databricks table (Id method)

Usage
S4 method for signature 'DatabricksConnection,Id’
dbRemoveTable(conn, name, ...)
Arguments
conn A DatabricksConnection object
name Table name as Id object

Additional arguments (ignored)

Value

TRUE invisibly on success

dbRollback,DatabricksConnection-method
Rollback transaction (not supported)

Description

Rollback transaction (not supported)

Usage

S4 method for signature 'DatabricksConnection'’
dbRollback(conn, ...)

40 dbSendStatement,DatabricksConnection,character-method

Arguments
conn A DatabricksConnection object
Additional arguments (ignored)
Value

Always throws an error (transactions not supported)

dbSendQuery,DatabricksConnection, character-method
Send query to Databricks (asynchronous)

Description

Send query to Databricks (asynchronous)

Usage
S4 method for signature 'DatabricksConnection,character'’
dbSendQuery(conn, statement, ...)
Arguments
conn A DatabricksConnection object
statement SQL statement to execute

Additional arguments (ignored)

Value

A DatabricksResult object

dbSendStatement,DatabricksConnection,character-method
Send statement to Databricks

Description

Send statement to Databricks

Usage

S4 method for signature 'DatabricksConnection,character’
dbSendStatement(conn, statement, ...)

dbWriteTable,DatabricksConnection,Asls,data.frame-method

Arguments
conn A DatabricksConnection object
statement SQL statement
Additional arguments (ignored)
Value

A DatabricksResult object

dbWriteTable,DatabricksConnection,AsIs,data.frame-method
Write table to Databricks (Asls name signature)

Description

Write table to Databricks (Asls name signature)

Usage

S4 method for signature 'DatabricksConnection,Asls,data.frame’
dbWriteTable(
conn,
name,
value,
overwrite = FALSE,
append = FALSE,
row.names = FALSE,
temporary = FALSE,
field.types = NULL,
staging_volume = NULL,
progress = TRUE,

)
Arguments
conn DatabricksConnection object
name Table name as Asls object (from 1())
value Data frame to write
overwrite If TRUE, overwrite existing table
append If TRUE, append to existing table
row.names If TRUE, preserve row names as a column
temporary If TRUE, create temporary table (NOT SUPPORTED - will error)

field.types Named character vector of SQL types for columns

42 dbWriteTable, DatabricksConnection,character,data.frame-method

staging_volume Optional volume path for large dataset staging
progress If TRUE, show progress bar for file uploads (default: TRUE)

Additional arguments

Value

TRUE invisibly on success

dbWriteTable,DatabricksConnection,character,data.frame-method
Write a data frame to Databricks table

Description

Write a data frame to Databricks table

Usage

S4 method for signature 'DatabricksConnection,character,data.frame’
dbWriteTable(
conn,
name,
value,
overwrite = FALSE,
append = FALSE,
row.names = FALSE,
temporary = FALSE,
field.types = NULL,
staging_volume = NULL,
progress = TRUE,

)
Arguments
conn A DatabricksConnection object
name Table name (character, Id, or SQL)
value Data frame to write
overwrite If TRUE, overwrite existing table
append If TRUE, append to existing table
row.names If TRUE, preserve row names as a column
temporary If TRUE, create temporary table (NOT SUPPORTED - will error)
field. types Named character vector of SQL types for columns

staging_volume Optional volume path for large dataset staging
progress If TRUE, show progress bar for file uploads (default: TRUE)

Additional arguments

dbWriteTable,DatabricksConnection,lId,data.frame-method

Value

TRUE invisibly on success

43

dbWriteTable,DatabricksConnection,Id,data.frame-method
Write a data frame to Databricks table (Id method)

Description

Write a data frame to Databricks table (Id method)

Usage

S4 method for signature 'DatabricksConnection,Id,data.frame’
dbWriteTable(
conn,
name,
value,
overwrite = FALSE,
append = FALSE,
row.names = FALSE,
temporary = FALSE,
field.types = NULL,
staging_volume = NULL,
progress = TRUE,

)
Arguments
conn A DatabricksConnection object
name Table name as Id object
value Data frame to write
overwrite If TRUE, overwrite existing table
append If TRUE, append to existing table
row.names If TRUE, preserve row names as a column
temporary If TRUE, create temporary table (NOT SUPPORTED - will error)
field.types Named character vector of SQL types for columns

staging_volume Optional volume path for large dataset staging
progress If TRUE, show progress bar for file uploads (default: TRUE)

Additional arguments

Value

TRUE invisibly on success

44 db_cluster_create

db_cluster_action Cluster Action Helper Function

Description

Cluster Action Helper Function

Usage
db_cluster_action(
cluster_id,
action = c("start", "restart”, "delete"”, "permanent-delete”, "pin", "unpin”),

host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Canonical identifier for the cluster.
action One of start, restart, delete, permanent-delete, pin, unpin.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_cluster_create Create a Cluster

Description

Create a Cluster

Usage

db_cluster_create(
name,
spark_version,
node_type_id,
num_workers = NULL,
autoscale = NULL,
spark_conf = list(),
cloud_attrs = aws_attributes(),

db_cluster_create 45

driver_node_type_id = NULL,

custom_tags = list(),

init_scripts = list(),

spark_env_vars = list(),

autotermination_minutes = 120,

log_conf = NULL,

ssh_public_keys = NULL,

driver_instance_pool_id = NULL,

instance_pool_id = NULL,

idempotency_token = NULL,

enable_elastic_disk = TRUE,

apply_policy_default_values = TRUE,

enable_local_disk_encryption = TRUE,

docker_image = NULL,

policy_id = NULL,

kind = c("CLASSIC_PREVIEW"),

data_security_mode = c("NONE", "SINGLE_USER", "USER_ISOLATION", "LEGACY_TABLE_ACL",
"LEGACY_PASSTHROUGH", "LEGACY_SINGLE_USER", "LEGACY_SINGLE_USER_STANDARD",
"DATA_SECURITY_MODE_STANDARD", "DATA_SECURITY_MODE_DEDICATED",
"DATA_SECURITY_MODE_AUTOQ"),

host = db_host(),

token = db_token(),

perform_request = TRUE

)

Arguments

name Cluster name requested by the user. This doesn’t have to be unique. If not
specified at creation, the cluster name will be an empty string.

spark_version The runtime version of the cluster. You can retrieve a list of available runtime
versions by using db_cluster_runtime_versions().

node_type_id The node type for the worker nodes. db_cluster_list_node_types() can be
used to see available node types.

num_workers Number of worker nodes that this cluster should have. A cluster has one Spark
driver and num_workers executors for a total of num_workers + 1 Spark nodes.

autoscale Instance of cluster_autoscale().

spark_conf Named list. An object containing a set of optional, user-specified Spark con-

figuration key-value pairs. You can also pass in a string of extra JVM op-

tions to the driver and the executors via spark.driver.extraJavaOptions and
spark.executor.extraJavaOptions respectively. E.g. 1ist("spark.speculation”
=true, "spark.streaming.ui.retainedBatches"” =5).

cloud_attrs Attributes related to clusters running on specific cloud provider. Defaults to
aws_attributes(). Must be one of aws_attributes(), azure_attributes(),
gcp_attributes().

driver_node_type_id
The node type of the Spark driver. This field is optional; if unset, the driver node
type will be set as the same value as node_type_id defined above. db_cluster_list_node_types()
can be used to see available node types.

46

db_cluster_create

custom_tags Named list. An object containing a set of tags for cluster resources. Databricks
tags all cluster resources with these tags in addition to default_tags. Databricks
allows at most 45 custom tags.

init_scripts Instance of init_script_info().
spark_env_vars Named list. User-specified environment variable key-value pairs. In order to
specify an additional set of SPARK_DAEMON_JAVA_OPTS, we recommend append-

ing them to $SPARK_DAEMON_JAVA_OPTS as shown in the following example.
This ensures that all default Databricks managed environmental variables are in-

cluded as well. E.g. {"SPARK_DAEMON_JAVA_OPTS": "$SPARK_DAEMON_JAVA_OPTS

-Dspark.shuffle.service.enabled=true"}

autotermination_minutes
Automatically terminates the cluster after it is inactive for this time in minutes.
If not set, this cluster will not be automatically terminated. If specified, the
threshold must be between 10 and 10000 minutes. You can also set this value to
0 to explicitly disable automatic termination. Defaults to 120.

log_conf Instance of cluster_log_conf ().

ssh_public_keys
List. SSH public key contents that will be added to each Spark node in this
cluster. The corresponding private keys can be used to login with the user name
ubuntu on port 2200. Up to 10 keys can be specified.

driver_instance_pool_id
ID of the instance pool to use for the driver node. You must also specify
instance_pool_id. Optional.

instance_pool_id
ID of the instance pool to use for cluster nodes. If driver_instance_pool_id
is present, instance_pool_id is used for worker nodes only. Otherwise, it is
used for both the driver and worker nodes. Optional.

idempotency_token
An optional token that can be used to guarantee the idempotency of cluster cre-
ation requests. If an active cluster with the provided token already exists, the
request will not create a new cluster, but it will return the ID of the existing
cluster instead. The existence of a cluster with the same token is not checked
against terminated clusters. If you specify the idempotency token, upon failure
you can retry until the request succeeds. Databricks guarantees that exactly one
cluster will be launched with that idempotency token. This token should have at
most 64 characters.

enable_elastic_disk
When enabled, this cluster will dynamically acquire additional disk space when
its Spark workers are running low on disk space.

apply_policy_default_values
Boolean (Default: TRUE), whether to use policy default values for missing cluster
attributes.

enable_local_disk_encryption
Boolean (Default: TRUE), whether encryption of disks locally attached to the
cluster is enabled.

docker_image Instance of docker_image ().

db_cluster_delete 47

policy_id String, ID of a cluster policy.

kind The kind of compute described by this compute specification.
data_security_mode
Data security mode decides what data governance model to use when accessing
data from a cluster.
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Create a new Apache Spark cluster. This method acquires new instances from the cloud provider if
necessary. This method is asynchronous; the returned cluster_id can be used to poll the cluster
state (db_cluster_get()). When this method returns, the cluster is in a PENDING state. The cluster
is usable once it enters a RUNNING state.

Databricks may not be able to acquire some of the requested nodes, due to cloud provider limita-
tions or transient network issues. If Databricks acquires at least 85% of the requested on-demand
nodes, cluster creation will succeed. Otherwise the cluster will terminate with an informative error
message.

Cannot specify both autoscale and num_workers, must choose one.

More Documentation.

See Also

Other Clusters API: db_cluster_edit(), db_cluster_events(),db_cluster_get(),db_cluster_list(),
db_cluster_list_node_types(), db_cluster_list_zones(), db_cluster_perm_delete(),db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_delete Delete/Terminate a Cluster

Description

Delete/Terminate a Cluster

Usage

db_cluster_delete(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

https://docs.databricks.com/api/workspace/clusters/create

48 db_cluster_edit

Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

The cluster must be in the RUNNING state.

db_cluster_edit Edit a Cluster

Description

Edit the configuration of a cluster to match the provided attributes and size.

Usage

db_cluster_edit(
cluster_id,
spark_version,
node_type_id,
num_workers = NULL,
autoscale = NULL,
name = NULL,
spark_conf = NULL,
cloud_attrs = NULL,
driver_node_type_id = NULL,
custom_tags = NULL,
init_scripts = NULL,
spark_env_vars = NULL,
autotermination_minutes = NULL,
log_conf = NULL,
ssh_public_keys = NULL,
driver_instance_pool_id
instance_pool_id = NULL,
idempotency_token = NULL,
enable_elastic_disk = NULL,
apply_policy_default_values = NULL,
enable_local_disk_encryption = NULL,
docker_image = NULL,
policy_id = NULL,
kind = c("CLASSIC_PREVIEW"),

NULL,

db_cluster_edit 49

data_security_mode = c("NONE", "SINGLE_USER", "USER_ISOLATION", "LEGACY_TABLE_ACL",
"LEGACY_PASSTHROUGH", "LEGACY_SINGLE_USER", "LEGACY_SINGLE_USER_STANDARD",
"DATA_SECURITY_MODE_STANDARD", "DATA_SECURITY_MODE_DEDICATED",
"DATA_SECURITY_MODE_AUTOQ"),

host = db_host(),

token = db_token(),

perform_request = TRUE

)

Arguments

cluster_id Canonical identifier for the cluster.

spark_version The runtime version of the cluster. You can retrieve a list of available runtime
versions by using db_cluster_runtime_versions().

node_type_id The node type for the worker nodes. db_cluster_list_node_types() can be
used to see available node types.

num_workers Number of worker nodes that this cluster should have. A cluster has one Spark
driver and num_workers executors for a total of num_workers + 1 Spark nodes.

autoscale Instance of cluster_autoscale().

name Cluster name requested by the user. This doesn’t have to be unique. If not

specified at creation, the cluster name will be an empty string.

spark_conf Named list. An object containing a set of optional, user-specified Spark con-
figuration key-value pairs. You can also pass in a string of extra JVM op-
tions to the driver and the executors via spark.driver.extraJavaOptions and
spark.executor.extraJavaOptions respectively. E.g. 1ist("spark.speculation”
=true, "spark.streaming.ui.retainedBatches"” =5).

cloud_attrs Attributes related to clusters running on specific cloud provider. Defaults to
aws_attributes(). Must be one of aws_attributes(), azure_attributes(),
gcp_attributes().

driver_node_type_id
The node type of the Spark driver. This field is optional; if unset, the driver node
type will be set as the same value as node_type_id defined above. db_cluster_list_node_types()
can be used to see available node types.

custom_tags Named list. An object containing a set of tags for cluster resources. Databricks
tags all cluster resources with these tags in addition to default_tags. Databricks
allows at most 45 custom tags.

init_scripts Instance of init_script_info().

spark_env_vars Named list. User-specified environment variable key-value pairs. In order to
specify an additional set of SPARK_DAEMON_JAVA_OPTS, we recommend append-
ing them to $SPARK_DAEMON_JAVA_OPTS as shown in the following example.
This ensures that all default Databricks managed environmental variables are in-
cluded as well. E.g. {"SPARK_DAEMON_JAVA_OPTS": "$SPARK_DAEMON_JAVA_OPTS
-Dspark.shuffle.service.enabled=true"}

autotermination_minutes
Automatically terminates the cluster after it is inactive for this time in minutes.
If not set, this cluster will not be automatically terminated. If specified, the

50

db_cluster_edit

threshold must be between 10 and 10000 minutes. You can also set this value to
0 to explicitly disable automatic termination. Defaults to 120.

log_conf Instance of cluster_log_conf ().

ssh_public_keys
List. SSH public key contents that will be added to each Spark node in this
cluster. The corresponding private keys can be used to login with the user name
ubuntu on port 2200. Up to 10 keys can be specified.

driver_instance_pool_id
ID of the instance pool to use for the driver node. You must also specify
instance_pool_id. Optional.

instance_pool_id
ID of the instance pool to use for cluster nodes. If driver_instance_pool_id
is present, instance_pool_id is used for worker nodes only. Otherwise, it is
used for both the driver and worker nodes. Optional.

idempotency_token
An optional token that can be used to guarantee the idempotency of cluster cre-
ation requests. If an active cluster with the provided token already exists, the
request will not create a new cluster, but it will return the ID of the existing
cluster instead. The existence of a cluster with the same token is not checked
against terminated clusters. If you specify the idempotency token, upon failure
you can retry until the request succeeds. Databricks guarantees that exactly one
cluster will be launched with that idempotency token. This token should have at
most 64 characters.

enable_elastic_disk
When enabled, this cluster will dynamically acquire additional disk space when
its Spark workers are running low on disk space.

apply_policy_default_values
Boolean (Default: TRUE), whether to use policy default values for missing cluster
attributes.

enable_local_disk_encryption
Boolean (Default: TRUE), whether encryption of disks locally attached to the
cluster is enabled.

docker_image Instance of docker_image().
policy_id String, ID of a cluster policy.

kind The kind of compute described by this compute specification.
data_security_mode
Data security mode decides what data governance model to use when accessing
data from a cluster.
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_cluster_events 51

Details

You can edit a cluster if it is in a RUNNING or TERMINATED state. If you edit a cluster while it is in
a RUNNING state, it will be restarted so that the new attributes can take effect. If you edit a cluster
while it is in a TERMINATED state, it will remain TERMINATED. The next time it is started using the
clusters/start API, the new attributes will take effect. An attempt to edit a cluster in any other state
will be rejected with an INVALID_STATE error code.

Clusters created by the Databricks Jobs service cannot be edited.

See Also

Other Clusters API: db_cluster_create(), db_cluster_events(), db_cluster_get(), db_cluster_list(),
db_cluster_list_node_types(),db_cluster_list_zones(),db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_events List Cluster Activity Events

Description

List Cluster Activity Events

Usage

db_cluster_events(
cluster_id,
start_time = NULL,
end_time = NULL,
event_types = NULL,
order = c("DESC", "ASC"),
offset = 0,
limit = 50,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments

cluster_id The ID of the cluster to retrieve events about.

start_time The start time in epoch milliseconds. If empty, returns events starting from the
beginning of time.

end_time The end time in epoch milliseconds. If empty, returns events up to the current
time.

event_types List. Optional set of event types to filter by. Default is to return all events. Event

Types.

https://docs.databricks.com/api/workspace/clusters/events#events
https://docs.databricks.com/api/workspace/clusters/events#events

52 db_cluster_get

order Either DESC (default) or ASC.

offset The offset in the result set. Defaults to O (no offset). When an offset is specified
and the results are requested in descending order, the end_time field is required.

limit Maximum number of events to include in a page of events. Defaults to 50, and
maximum allowed value is 500.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Retrieve a list of events about the activity of a cluster. You can retrieve events from active clusters
(running, pending, or reconfiguring) and terminated clusters within 30 days of their last termination.
This API is paginated. If there are more events to read, the response includes all the parameters
necessary to request the next page of events.

See Also

Other Clusters API: db_cluster_create(),db_cluster_edit(),db_cluster_get(),db_cluster_list(),
db_cluster_list_node_types(),db_cluster_list_zones(),db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_get Get Details of a Cluster

Description

Get Details of a Cluster

Usage

db_cluster_get(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE
)

db_cluster_list 53

Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
Retrieve the information for a cluster given its identifier. Clusters can be described while they are
running or up to 30 days after they are terminated.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(),db_cluster_list(),
db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_list List Clusters

Description

List Clusters

Usage

db_cluster_list(host = db_host(), token = db_token(), perform_request = TRUE)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

54 db_cluster_list_node_types

Details

Return information about all pinned clusters, active clusters, up to 150 of the most recently ter-
minated all-purpose clusters in the past 30 days, and up to 30 of the most recently terminated job
clusters in the past 30 days.

For example, if there is 1 pinned cluster, 4 active clusters, 45 terminated all-purpose clusters in the
past 30 days, and 50 terminated job clusters in the past 30 days, then this API returns:

* the 1 pinned cluster

* 4 active clusters

e All 45 terminated all-purpose clusters

* The 30 most recently terminated job clusters

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list_node_types(),db_cluster_list_zones(),db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(), db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_list_node_types
List Available Cluster Node Types

Description

List Available Cluster Node Types

Usage

db_cluster_list_node_types(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Return a list of supported Spark node types. These node types can be used to launch a cluster.

db_cluster_list_zones 55

See Also

Other Clusters API: db_cluster_create(),db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_zones(), db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(),db_cluster_restart(),db_cluster_runtime_versions(), db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_list_zones List Availability Zones (AWS Only)

Description

List Availability Zones (AWS Only)

Usage

db_cluster_list_zones(
host = db_host(),
token = db_token(),

perform_request = TRUE
)

Arguments

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Amazon Web Services (AWS) ONLY! Return a list of availability zones where clusters can be
created in (ex: us-west-2a). These zones can be used to launch a cluster.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_perm_delete(), db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

56 db_cluster_perm_delete

db_cluster_perm_delete
Permanently Delete a Cluster

Description

Permanently Delete a Cluster

Usage

db_cluster_perm_delete(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

If the cluster is running, it is terminated and its resources are asynchronously removed. If the cluster
is terminated, then it is immediately removed.

You cannot perform *any action, including retrieve the cluster’s permissions, on a permanently
deleted cluster. A permanently deleted cluster is also no longer returned in the cluster list.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_pin(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_pin 57

db_cluster_pin Pin a Cluster

Description

Pin a Cluster

Usage

db_cluster_pin(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Ensure that an all-purpose cluster configuration is retained even after a cluster has been terminated
for more than 30 days. Pinning ensures that the cluster is always returned by db_cluster_list().
Pinning a cluster that is already pinned has no effect.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),db_cluster_start(),
db_cluster_terminate(), db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

58 db_cluster_resize

db_cluster_resize Resize a Cluster

Description

Resize a Cluster

Usage

db_cluster_resize(
cluster_id,
num_workers = NULL,
autoscale = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments

cluster_id Canonical identifier for the cluster.

num_workers Number of worker nodes that this cluster should have. A cluster has one Spark
driver and num_workers executors for a total of num_workers + 1 Spark nodes.

autoscale Instance of cluster_autoscale().

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

The cluster must be in the RUNNING state.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_restart(),db_cluster_runtime_versions(), db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_restart 59

db_cluster_restart Restart a Cluster

Description

Restart a Cluster

Usage

db_cluster_restart(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.
Details

The cluster must be in the RUNNING state.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_runtime_versions(), db_cluster_start(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_runtime_versions
List Available Databricks Runtime Versions

Description

List Available Databricks Runtime Versions

60 db_cluster_start

Usage

db_cluster_runtime_versions(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.
Details

Return the list of available runtime versions. These versions can be used to launch a cluster.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_restart(), db_cluster_start(),db_cluster_terminate(),
db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_start Start a Cluster

Description

Start a Cluster

Usage

db_cluster_start(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE
)

db_cluster_terminate 61

Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Start a terminated cluster given its ID.

This is similar to db_cluster_create(), except:

* The terminated cluster ID and attributes are preserved.

* The cluster starts with the last specified cluster size. If the terminated cluster is an autoscaling
cluster, the cluster starts with the minimum number of nodes.

¢ If the cluster is in the RESTARTING state, a 400 error is returned.

* You cannot start a cluster launched to run a job.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),
db_cluster_terminate(),db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_terminate Delete/Terminate a Cluster

Description

Delete/Terminate a Cluster

Usage

db_cluster_terminate(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

62 db_cluster_unpin

Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

The cluster is removed asynchronously. Once the termination has completed, the cluster will be in
the TERMINATED state. If the cluster is already in a TERMINATING or TERMINATED state, nothing will
happen.

Unless a cluster is pinned, 30 days after the cluster is terminated, it is permanently deleted.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),
db_cluster_start(), db_cluster_unpin(), get_and_start_cluster(), get_latest_dbr()

db_cluster_unpin Unpin a Cluster

Description

Unpin a Cluster

Usage

db_cluster_unpin(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Canonical identifier for the cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_collect.DatabricksConnection 63

Details

Allows the cluster to eventually be removed from the list returned by db_cluster_list (). Unpin-
ning a cluster that is not pinned has no effect.

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(), db_cluster_list_zones(),db_cluster_perm_delete(),
db_cluster_pin(), db_cluster_resize(),db_cluster_restart(), db_cluster_runtime_versions(),
db_cluster_start(),db_cluster_terminate(), get_and_start_cluster(), get_latest_dbr()

db_collect.DatabricksConnection
Collect query results with proper progress timing for Databricks

Description

Collect query results with proper progress timing for Databricks

Usage
S3 method for class 'DatabricksConnection’
db_collect(con, sql, n = -1, warn_incomplete = TRUE, ...)
Arguments
con A DatabricksConnection object
sql SQL query to execute
n Maximum number of rows to collect (-1 for all)

warn_incomplete
Whether to warn if results were truncated

Additional arguments

Value

A data frame with query results

64 db_context_command_run

db_context_command_cancel
Cancel a Command

Description

Cancel a Command

Usage

db_context_command_cancel(
cluster_id,
context_id,
command_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
command_id The ID of the command to get information about.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_parse(), db_context_command_run(), db_context_command_run_
db_context_command_status(), db_context_create(), db_context_destroy(), db_context_status()

db_context_command_run
Run a Command

Description

Run a Command

db_context_command_run_and_wait 65

Usage

db_context_command_run(
cluster_id,
context_id,
language = c("python”, "sql", "scala”, "r"),
command = NULL,
command_file = NULL,
options = list(),
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
language The language for the context. One of python, sql, scala, r.
command The command string to run.

command_file The path to a file containing the command to run.

options Named list of values used downstream. For example, a ’displayRowLimit’ over-
ride (used in testing).

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run_and_wait(), db_context_command_status(), db_context_create(),
db_context_destroy(), db_context_status()

db_context_command_run_and_wait
Run a Command and Wait For Results

Description

Run a Command and Wait For Results

66 db_context_command_status

Usage

db_context_command_run_and_wait(
cluster_id,
context_id,
language = c("python”, "sql", "scala”, "r"),
command = NULL,
command_file = NULL,
options = list(),
parse_result = TRUE,
host = db_host(),
token = db_token()

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
language The language for the context. One of python, sql, scala, r.
command The command string to run.

command_file The path to a file containing the command to run.

options Named list of values used downstream. For example, a ’displayRowLimit” over-
ride (used in testing).

parse_result Boolean, determines if results are parsed automatically.

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run(), db_context_command_status(), db_context_create(), db_context_destroy(),
db_context_status()

db_context_command_status
Get Information About a Command

Description

Get Information About a Command

db_context_create 67

Usage

db_context_command_status(
cluster_id,
context_id,
command_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
command_id The ID of the command to get information about.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run(), db_context_command_run_and_wait(), db_context_create(),
db_context_destroy(), db_context_status()

db_context_create Create an Execution Context

Description

Create an Execution Context

Usage

db_context_create(
cluster_id,
language = c("python”, "sql", "scala”, "r"),
host = db_host(),
token = db_token(),
perform_request = TRUE

68 db_context_destroy

Arguments
cluster_id The ID of the cluster to create the context for.
language The language for the context. One of python, sql, scala, r.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run(), db_context_command_run_and_wait(), db_context_command_status(),
db_context_destroy(), db_context_status()

db_context_destroy Delete an Execution Context

Description

Delete an Execution Context

Usage

db_context_destroy(
cluster_id,
context_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run(), db_context_command_run_and_wait(), db_context_command_status(),
db_context_create(), db_context_status()

db_context_manager 69

db_context_manager Databricks Execution Context Manager (R6 Class)

Description

Databricks Execution Context Manager (R6 Class)
Databricks Execution Context Manager (R6 Class)

Details

db_context_manager () provides a simple interface to send commands to Databricks cluster and
return the results.

Methods

Public methods:
¢ db_context_manager$new()
e db_context_manager$close()
¢ db_context_manager$cmd_run()
e db_context_manager$clone()

Method new(): Create a new context manager object.

Usage:
db_context_manager$new(
cluster_id,

language = C("I"“, llpyH7 ”SCala“, ”Sql”’ “Sh“),
host = db_host(),
token = db_token()

)

Arguments:

cluster_id The ID of the cluster to execute command on.
language One of r, py, scala, sql, or sh.

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

Returns: A new databricks_context_manager object.

Method close(): Destroy the execution context
Usage:
db_context_manager$close()
Method cmd_run(): Execute a command against a Databricks cluster

Usage:
db_context_manager$cmd_run(cmd, language = c("r", "py", "scala”, "sql”, "sh"))

70 db_context_status

Arguments:

cmd code to execute against Databricks cluster
language One of r, py, scala, sql, or sh.

Returns: Command results

Method clone(): The objects of this class are cloneable with this method.
Usage:
db_context_manager$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

db_context_status Get Information About an Execution Context

Description

Get Information About an Execution Context

Usage

db_context_status(
cluster_id,
context_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id The ID of the cluster to create the context for.
context_id The ID of the execution context.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Execution Context API: db_context_command_cancel (), db_context_command_parse(),
db_context_command_run(), db_context_command_run_and_wait(), db_context_command_status(),
db_context_create(), db_context_destroy()

db_current_cloud 71

db_current_cloud Detect Current Workspaces Cloud

Description

Detect Current Workspaces Cloud

Usage
db_current_cloud(host = db_host(), token = db_token(), perform_request = TRUE)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

String

db_current_user Get Current User Info

Description

Get Current User Info

Usage

db_current_user(host = db_host(), token = db_token(), perform_request = TRUE)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

list of user metadata

72 db_dbfs_add_block

db_current_workspace_id
Detect Current Workspace 1D

Description

Detect Current Workspace ID

Usage

db_current_workspace_id(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

String

db_dbf's_add_block DBFS Add Block

Description

Append a block of data to the stream specified by the input handle.

Usage

db_dbfs_add_block(
handle,
data,
convert_to_raw = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_dbfs_close 73

Arguments
handle Handle on an open stream.
data Either a path for file on local system or a character/raw vector that will be

base64-encoded. This has a limit of 1 MB.

convert_to_raw Boolean (Default: FALSE), if TRUE will convert character vector to raw via

as.raw().
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.
Details

* Ifthe handle does not exist, this call will throw an exception with RESOURCE_DOES_NOT_EXIST.
* If the block of data exceeds 1 MB, this call will throw an exception with MAX_BLOCK_SIZE_EXCEEDED.

Typical File Upload Flow

* Call create and get a handle via db_dbfs_create()
* Make one or more db_dbfs_add_block() calls with the handle you have
e Call db_dbfs_close() with the handle you have

See Also

Other DBFS API: db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(), db_dbfs_get_status(),
db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_close DBFS Close

Description

Close the stream specified by the input handle.

Usage

db_dbfs_close(
handle,
host = db_host(),
token = db_token(),
perform_request = TRUE
)

74 db_dbfs_create

Arguments
handle The handle on an open stream. This field is required.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

If the handle does not exist, this call throws an exception with RESOURCE_DOES_NOT_EXIST.

Value

HTTP Response

Typical File Upload Flow

* Call create and get a handle via db_dbfs_create()
* Make one or more db_dbfs_add_block() calls with the handle you have
e Call db_dbfs_close() with the handle you have

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_create(), db_dbfs_delete(), db_dbfs_get_status(),
db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_create DBFS Create

Description

Open a stream to write to a file and returns a handle to this stream.

Usage

db_dbfs_create(
path,
overwrite = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_dbfs_delete 75

Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file. txt).
overwrite Boolean, specifies whether to overwrite existing file or files.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.
Details
There is a 10 minute idle timeout on this handle. If a file or directory already exists on the given
path and overwrite is set to FALSE, this call throws an exception with RESOURCE_ALREADY_EXISTS.
Value
Handle which should subsequently be passed into db_dbfs_add_block() and db_dbfs_close()
when writing to a file through a stream.
Typical File Upload Flow

* Call create and get a handle via db_dbfs_create()
* Make one or more db_dbfs_add_block() calls with the handle you have
 Call db_dbfs_close() with the handle you have

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_delete(), db_dbfs_get_status(),
db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_delete DBFS Delete

Description

DBES Delete

Usage

db_dbfs_delete(
path,
recursive = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

76 db_dbfs_get_status

Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file. txt).
recursive Whether or not to recursively delete the directory’s contents. Deleting empty
directories can be done without providing the recursive flag.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_get_status(),
db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_get_status DBFS Get Status

Description

Get the file information of a file or directory.

Usage

db_dbfs_get_status(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file.txt).
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
* If the file or directory does not exist, this call throws an exception with RESOURCE_DOES_NOT_EXIST.

db_dbfs_list 77

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_list DBFS List

Description

List the contents of a directory, or details of the file.

Usage

db_dbfs_list(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file. txt).
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

When calling list on a large directory, the list operation will time out after approximately 60 seconds.

We strongly recommend using list only on directories containing less than 10K files and discourage
using the DBFS REST API for operations that list more than 10K files. Instead, we recommend that
you perform such operations in the context of a cluster, using the File system utility (dbutils.fs),
which provides the same functionality without timing out.

* If the file or directory does not exist, this call throws an exception with RESOURCE_DOES_NOT_EXIST.

Value

data.frame

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_get_status(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

78 db_dbfs_mkdirs

db_dbfs_mkdirs DBFS mkdirs

Description

Create the given directory and necessary parent directories if they do not exist.

Usage

db_dbfs_mkdirs(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file.txt).
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

* If there exists a file (not a directory) at any prefix of the input path, this call throws an exception
with RESOURCE_ALREADY_EXISTS.

* If this operation fails it may have succeeded in creating some of the necessary parent directo-
ries.

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_get_status(), db_dbfs_list(), db_dbfs_move(), db_dbfs_put(), db_dbfs_read()

db_dbfs_move 79

db_dbfs_move DBFS Move

Description

Move a file from one location to another location within DBFS.

Usage

db_dbfs_move(
source_path,
destination_path,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

source_path The source path of the file or directory. The path should be the absolute DBFS
path (for example, /mnt/my-source-folder/).

destination_path
The destination path of the file or directory. The path should be the absolute
DBFS path (for example, /mnt/my-destination-folder/).

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

If the given source path is a directory, this call always recursively moves all files.

When moving a large number of files, the API call will time out after approximately 60 seconds, po-
tentially resulting in partially moved data. Therefore, for operations that move more than 10K files,
we strongly discourage using the DBFS REST API. Instead, we recommend that you perform such
operations in the context of a cluster, using the File system utility (dbutils.fs) from a notebook,
which provides the same functionality without timing out.

* If the source file does not exist, this call throws an exception with RESOURCE_DOES_NOT_EXIST.
* If there already exists a file in the destination path, this call throws an exception with RESOURCE_ALREADY_EXISTS.

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_get_status(), db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_put(), db_dbfs_read()

80 db_dbfs_put

db_dbfs_put DBFS Put

Description

Upload a file through the use of multipart form post.

Usage
db_dbf's_put(
path,
file = NULL,

contents = NULL,
overwrite = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file.txt).
file Path to a file on local system, takes precedent over path.
contents String that is base64 encoded.
overwrite Flag (Default: FALSE) that specifies whether to overwrite existing files.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Either contents or file must be specified. file takes precedent over contents if both are speci-
fied.

Mainly used for streaming uploads, but can also be used as a convenient single call for data upload.

The amount of data that can be passed using the contents parameter is limited to 1 MB if specified
as a string (MAX_BLOCK_SIZE_EXCEEDED is thrown if exceeded) and 2 GB as a file.
See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_get_status(), db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_read()

db_dbfs_read 81

db_dbfs_read DBFS Read

Description

Return the contents of a file.

Usage
db_dbfs_read(
path,
offset = 0,

length = NULL,

host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments

path The path of the new file. The path should be the absolute DBFS path (for exam-
ple /mnt/my-file.txt).

offset Offset to read from in bytes.

length Number of bytes to read starting from the offset. This has a limit of 1 MB, and
a default value of 0.5 MB.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

If offsset + length exceeds the number of bytes in a file, reads contents until the end of file.

* If the file does not exist, this call throws an exception with RESOURCE_DOES_NOT_EXIST.

* If the path is a directory, the read length is negative, or if the offset is negative, this call throws
an exception with INVALID_PARAMETER_VALUE.

* If the read length exceeds 1 MB, this call throws an exception with MAX_READ_SIZE_EXCEEDED.

See Also

Other DBFS API: db_dbfs_add_block(), db_dbfs_close(), db_dbfs_create(), db_dbfs_delete(),
db_dbfs_get_status(), db_dbfs_list(), db_dbfs_mkdirs(), db_dbfs_move(), db_dbfs_put()

82 db_host

db_host Generate/Fetch Databricks Host

Description

If both id and prefix are NULL then the function will check for the DATABRICKS_HOST environment
variable. .databrickscfg will be searched if db_profile and use_databrickscfg are set or if
Posit Workbench managed OAuth credentials are detected.

When defining id and prefix you do not need to specify the whole URL. E.g. https://<prefix>.<id>.cloud.databrick
is the form to follow.

Usage

db_host(id = NULL, prefix = NULL, profile = default_config_profile())

Arguments
id The workspace string
prefix Workspace prefix
profile Profile to use when fetching from environment variable (e.g. .Renviron) or
.databricksfg file
Details

The behaviour is subject to change depending if db_profile and use_databrickscfg options are
set.

e use_databrickscfg: Boolean (default: FALSE), determines if credentials are fetched from
profile of .databrickscfg or .Renviron

* db_profile: String (default: NULL), determines profile used. .databrickscfg will automat-
ically be used when Posit Workbench managed OAuth credentials are detected.

See vignette on authentication for more details.

Value

workspace URL

See Also

Other Databricks Authentication Helpers: db_read_netrc(), db_token(), db_wsid()

db_jobs_create 83

db_jobs_create Create Job

Description

Create Job

Usage

db_jobs_create(
name,
tasks,
schedule = NULL,
job_clusters = NULL,
parameters = list(),
email_notifications = NULL,
timeout_seconds = NULL,
max_concurrent_runs = 1,
access_control_list = NULL,
git_source = NULL,
queue = TRUE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name for the job.
tasks Task specifications to be executed by this job. Use job_tasks().
schedule Instance of cron_schedule().

job_clusters Named list of job cluster specifications (using new_cluster()) that can be
shared and reused by tasks of this job. Libraries cannot be declared in a shared
job cluster. You must declare dependent libraries in task settings.

parameters Named list of job level parameters. Values of the list represent default values.

email_notifications
Instance of email_notifications().

timeout_seconds
An optional timeout applied to each run of this job. The default behavior is to
have no timeout.

max_concurrent_runs
Maximum allowed number of concurrent runs of the job. Set this value if you
want to be able to execute multiple runs of the same job concurrently. This
setting affects only new runs. This value cannot exceed 1000. Setting this value
to O causes all new runs to be skipped. The default behavior is to allow only 1
concurrent run.

84 db_jobs_delete

access_control_list

Instance of access_control_request().

git_source Optional specification for a remote repository containing the notebooks used by
this job’s notebook tasks. Instance of git_source().

queue If true, enable queueing for the job.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Full Documentation

See Also

job_tasks(), job_task(), email_notifications(), cron_schedule(), access_control_request(),
access_control_req_user(), access_control_req_group(), git_source()

Other Jobs API: db_jobs_delete(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),

db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_cancel(), db_jobs_runs_delete(), db_jobs_runs_export(),

db_jobs_runs_get (), db_jobs_runs_get_output(),db_jobs_runs_list(), db_jobs_runs_submit(),
db_jobs_update()

db_jobs_delete Delete a Job

Description

Delete a Job

Usage

db_jobs_delete(
job_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
job_id The canonical identifier of the job.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

https://docs.databricks.com/api/workspace/jobs/create

db_jobs_get 85

See Also

Other Jobs API: db_jobs_create(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),

db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(),db_jobs_runs_list(), db_jobs_runs_submit(),
db_jobs_update()

db_jobs_get Get Job Details

Description

Get Job Details

Usage

db_jobs_get(
job_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
job_id The canonical identifier of the job.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_list(),db_jobs_repair_run(),

db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(),
db_jobs_update()

86 db_jobs_list

db_jobs_list List Jobs
Description
List Jobs
Usage
db_jobs_list(
limit = 25,
offset = 0,

expand_tasks = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
limit Number of jobs to return. This value must be greater than 0 and less or equal to
25. The default value is 25. If a request specifies a limit of 0, the service instead
uses the maximum limit.
offset The offset of the first job to return, relative to the most recently created job.

expand_tasks Whether to include task and cluster details in the response.
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_repair_run(),

db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(),db_jobs_runs_list(),db_jobs_runs_submit(),
db_jobs_update()

db_jobs_repair_run 87

db_jobs_repair_run Repair A Job Run

Description

Repair A Job Run

Usage

db_jobs_repair_run(
run_id,
rerun_tasks = NULL,
job_parameters = list(),
latest_repair_id = NULL,
performance_target = NULL,
pipeline_full_refresh = NULL,
rerun_all_failed_tasks = NULL,
rerun_dependent_tasks = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
run_id Job run ID of the run to repair. The run must not be in progress.
rerun_tasks Character vector. Task keys of the task runs to repair.

job_parameters Named list of job level parameters used in the run.

latest_repair_id
The ID of the latest repair. This parameter is not required when repairing a run
for the first time, but must be provided on subsequent requests to repair the same
run.

performance_target
The performance mode on a serverless job (either ' PERFORMANCE_OPTIMIZED'
or 'STANDARD'). The performance target determines the level of compute per-
formance or cost-efficiency for the run. This field overrides the performance
target defined on the job level.

pipeline_full_refresh
Boolean. Controls whether the pipeline should perform a full refresh.

rerun_all_failed_tasks
Boolean. If TRUE, repair all failed tasks. Only one of rerun_tasks or rerun_all_failed_tasks
can be used.

rerun_dependent_tasks
Boolean. If TRUE, repair all tasks that depend on the tasks in rerun_tasks,
even if they were previously successful. Can be also used in combination with
rerun_all_failed_tasks.

88 db_jobs_reset

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Parameters which are shared with db_jobs_create() are optional, only specify those that are
changing.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_reset(),
db_jobs_run_now(), db_jobs_runs_cancel (), db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get(), db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(),
db_jobs_update()

db_jobs_reset Overwrite All Settings For A Job

Description

Overwrite All Settings For A Job

Usage

db_jobs_reset(
job_id,
name,
tasks,
schedule = NULL,
job_clusters = NULL,
parameters = list(),
email_notifications = NULL,
timeout_seconds = NULL,
max_concurrent_runs = 1,
access_control_list = NULL,
git_source = NULL,
queue = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_jobs_reset 89

Arguments
job_id The canonical identifier of the job.
name Name for the job.
tasks Task specifications to be executed by this job. Use job_tasks().
schedule Instance of cron_schedule().

job_clusters Named list of job cluster specifications (using new_cluster()) that can be
shared and reused by tasks of this job. Libraries cannot be declared in a shared
job cluster. You must declare dependent libraries in task settings.

parameters Named list of job level parameters. Values of the list represent default values.

email_notifications
Instance of email_notifications().

timeout_seconds
An optional timeout applied to each run of this job. The default behavior is to
have no timeout.

max_concurrent_runs
Maximum allowed number of concurrent runs of the job. Set this value if you
want to be able to execute multiple runs of the same job concurrently. This
setting affects only new runs. This value cannot exceed 1000. Setting this value
to O causes all new runs to be skipped. The default behavior is to allow only 1
concurrent run.

access_control_list
Instance of access_control_request().

git_source Optional specification for a remote repository containing the notebooks used by
this job’s notebook tasks. Instance of git_source().

queue If true, enable queueing for the job.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),
db_jobs_run_now(), db_jobs_runs_cancel (), db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get(),db_jobs_runs_get_output(),db_jobs_runs_list(), db_jobs_runs_submit(),
db_jobs_update()

90 db_jobs_runs_cancel

db_jobs_runs_cancel Cancel Job Run

Description

Cancels a run.

Usage

db_jobs_runs_cancel(
run_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
run_id The canonical identifier of the run.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

The run is canceled asynchronously, so when this request completes, the run may still be running.
The run are terminated shortly. If the run is already in a terminal 1ife_cycle_state, this method
is a no-op.

See Also
Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),

db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_delete(), db_jobs_runs_export(),db_jobs_runs_get(),
db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_delete 91

db_jobs_runs_delete Delete Job Run

Description

Delete Job Run

Usage

db_jobs_runs_delete(
run_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
run_id The canonical identifier of the run.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_cancel(), db_jobs_runs_export(), db_jobs_runs_get(),
db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_export Export Job Run Output

Description

Export and retrieve the job run task.

Usage

db_jobs_runs_export(
run_id,
views_to_export = c("CODE"”, "DASHBOARDS"”, "ALL"),
host = db_host(),
token = db_token(),
perform_request = TRUE

92 db_jobs_runs_get

Arguments

run_id The canonical identifier of the run.
views_to_export

Which views to export. One of CODE, DASHBOARDS, ALL. Defaults to CODE.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset(), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(),db_jobs_runs_get(),
db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_get Get Job Run Details

Description

Retrieve the metadata of a run.

Usage

db_jobs_runs_get(
run_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
run_id The canonical identifier of the run.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also
Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),

db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),

db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_get_output

93

db_jobs_runs_get_output
Get Job Run Output

Description

Get Job Run Output

Usage

db_jobs_runs_get_output(
run_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
run_id The canonical identifier of the run.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get(), db_jobs_runs_list(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_list List Job Runs

Description

List runs in descending order by start time.

94 db_jobs_runs_list

Usage

db_jobs_runs_list(
job_id,
active_only = FALSE,
completed_only = FALSE,
offset = 0,
limit = 25,
run_type = c("JOB_RUN", "WORKFLOW_RUN", "SUBMIT_RUN"),
expand_tasks = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

job_id The canonical identifier of the job.

active_only Boolean (Default: FALSE). If TRUE only active runs are included in the re-
sults; otherwise, lists both active and completed runs. An active run is a run
in the PENDING, RUNNING, or TERMINATING. This field cannot be true when
completed_only is TRUE.

completed_only Boolean (Default: FALSE). If TRUE, only completed runs are included in the
results; otherwise, lists both active and completed runs. This field cannot be
true when active_only is TRUE.

offset The offset of the first job to return, relative to the most recently created job.

limit Number of jobs to return. This value must be greater than 0 and less or equal to
25. The default value is 25. If a request specifies a limit of 0, the service instead
uses the maximum limit.

run_type The type of runs to return. One of JOB_RUN, WORKFLOW_RUN, SUBMIT_RUN.
expand_tasks Whether to include task and cluster details in the response.
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(), db_jobs_runs_submit(), db_jobs_update()

db_jobs_runs_submit

95

db_jobs_runs_submit Create And Trigger A One-Time Run

Description

Create And Trigger A One-Time Run

Usage

db_jobs_runs_submit(

tasks,
run_name,

timeout_seconds = NULL,
idempotency_token = NULL,
access_control_list = NULL,

git_source

NULL,

job_clusters = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

tasks

run_name

timeout_seconds

Task specifications to be executed by this job. Use job_tasks().

Name for the run.

An optional timeout applied to each run of this job. The default behavior is to
have no timeout.

idempotency_token

An optional token that can be used to guarantee the idempotency of job run
requests. If an active run with the provided token already exists, the request does
not create a new run, but returns the ID of the existing run instead. If you specify
the idempotency token, upon failure you can retry until the request succeeds.
Databricks guarantees that exactly one run is launched with that idempotency
token. This token must have at most 64 characters.

access_control_list

git_source

job_clusters

host

token

Instance of access_control_request().

Optional specification for a remote repository containing the notebooks used by
this job’s notebook tasks. Instance of git_source().

Named list of job cluster specifications (using new_cluster()) that can be
shared and reused by tasks of this job. Libraries cannot be declared in a shared
job cluster. You must declare dependent libraries in task settings.

Databricks workspace URL, defaults to calling db_host ().
Databricks workspace token, defaults to calling db_token().

96 db_jobs_run_now

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get(), db_jobs_runs_get_output(), db_jobs_runs_list(), db_jobs_update()

db_jobs_run_now Trigger A New Job Run

Description

Trigger A New Job Run

Usage

db_jobs_run_now(
job_id,
parameters = list(),
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
job_id The canonical identifier of the job.
parameters Named list of job level parameters.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

» *_params parameters cannot exceed 10,000 bytes when serialized to JSON.

* jar_params and notebook_params are mutually exclusive.

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get (), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset(), db_jobs_runs_cancel (), db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(), db_jobs_runs_list(),db_jobs_runs_submit(),
db_jobs_update()

db_jobs_update 97

db_jobs_update Partially Update A Job

Description

Partially Update A Job

Usage

db_jobs_update(
job_id,
fields_to_remove = list(),
name = NULL,
schedule = NULL,
tasks = NULL,
job_clusters = NULL,
parameters = NULL,
email_notifications = NULL,
timeout_seconds = NULL,
max_concurrent_runs = NULL,
access_control_list = NULL,
git_source = NULL,
queue = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

job_id The canonical identifier of the job.

fields_to_remove
Remove top-level fields in the job settings. Removing nested fields is not sup-
ported. This field is optional. Must be a 1ist().

name Name for the job.
schedule Instance of cron_schedule().
tasks Task specifications to be executed by this job. Use job_tasks().

job_clusters Named list of job cluster specifications (using new_cluster()) that can be
shared and reused by tasks of this job. Libraries cannot be declared in a shared
job cluster. You must declare dependent libraries in task settings.

parameters Named list of job level parameters. Values of the list represent default values.

email_notifications
Instance of email_notifications().

timeout_seconds
An optional timeout applied to each run of this job. The default behavior is to
have no timeout.

98 db_lakebase_creds_generate

max_concurrent_runs
Maximum allowed number of concurrent runs of the job. Set this value if you
want to be able to execute multiple runs of the same job concurrently. This
setting affects only new runs. This value cannot exceed 1000. Setting this value
to O causes all new runs to be skipped. The default behavior is to allow only 1
concurrent run.

access_control_list
Instance of access_control_request().

git_source Optional specification for a remote repository containing the notebooks used by
this job’s notebook tasks. Instance of git_source().

queue If true, enable queueing for the job.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
Parameters which are shared with db_jobs_create() are optional, only specify those that are
changing. Job-level parameters can be updated using the same structure as db_jobs_create().

See Also

Other Jobs API: db_jobs_create(), db_jobs_delete(), db_jobs_get(), db_jobs_list(), db_jobs_repair_run(),
db_jobs_reset (), db_jobs_run_now(), db_jobs_runs_cancel(),db_jobs_runs_delete(), db_jobs_runs_export(),
db_jobs_runs_get (), db_jobs_runs_get_output(), db_jobs_runs_list(),db_jobs_runs_submit()

db_lakebase_creds_generate
Generate Database Credential

Description

Generate Database Credential

Usage

db_lakebase_creds_generate(
instance_names,
tables = NULL,
permission_set = c("READ_ONLY"),
host = db_host(),
token = db_token(),
perform_request = TRUE

db_lakebase_get 99

Arguments

instance_names Character vector of database instance names to scope the credential to.

tables Optional character vector of table names to scope the credential to.

permission_set Permission set for the credential request. Currently only READ_ONLY is sup-
ported.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

An idempotency token is generated automatically for each request (UUID4-like string).

Value

List

See Also
Other Database API: db_lakebase_get(), db_lakebase_get_by_uid(), db_lakebase_list()

db_lakebase_get Get Database Instance

Description

Get Database Instance

Usage

db_lakebase_get(
name,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the database instance to retrieve.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

100 db_lakebase_get_by_uid

Value

List

See Also

Other Database API: db_lakebase_creds_generate(), db_lakebase_get_by_uid(), db_lakebase_list()

db_lakebase_get_by_uid
Find Database Instance by UID

Description

Find Database Instance by UID

Usage

db_lakebase_get_by_uid(
uid,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
uid UID of the database instance to retrieve.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Database API: db_lakebase_creds_generate(), db_lakebase_get(), db_lakebase_list()

db_lakebase_list 101

db_lakebase_list List Database Instances

Description

List Database Instances

Usage

db_lakebase_list(
page_size = 50,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
page_size Maximum number of instances to return in a single page.
page_token Pagination token to retrieve the next page of results.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also
Other Database API: db_lakebase_creds_generate(), db_lakebase_get(), db_lakebase_get_by_uid()

Examples

Not run:
library(brickster)
library(DBI)
library(RPostgres)

list all lakebase instances
dbs <- db_lakebase_list()

connect to the first instance available using {RPostgres}
using identity that brickster is running as generate a token

102 db_libs_all _cluster_statuses

creds <- db_lakebase_creds_generate(instance_names = dbs[[1]]$name)

con <- dbConnect(
drv = RPostgres: :Postgres(),
host = dbs[[1]]$read_write_dns,
user = db_current_user()$userName,
password = creds$token,

dbname = "databricks_postgres”,
sslmode = "require”

)

dbListTables(con)

End(Not run)

db_libs_all_cluster_statuses
Get Status of All Libraries on All Clusters

Description

Get Status of All Libraries on All Clusters

Usage

db_libs_all_cluster_statuses(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

A status will be available for all libraries installed on clusters via the API or the libraries UI as well
as libraries set to be installed on all clusters via the libraries UI.

If a library has been set to be installed on all clusters, is_library_for_all_clusters will be true,
even if the library was also installed on this specific cluster.

db_libs_cluster_status 103

See Also

Other Libraries API: db_libs_cluster_status(), db_libs_install(), db_libs_uninstall()

db_libs_cluster_status
Get Status of Libraries on Cluster

Description

Get Status of Libraries on Cluster

Usage

db_libs_cluster_status(
cluster_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Unique identifier of a Databricks cluster.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

wait_for_lib_installs()

Other Libraries API: db_libs_all_cluster_statuses(),db_libs_install(),db_libs_uninstall()

104 db_libs_install

db_libs_install Install Library on Cluster

Description

Install Library on Cluster

Usage
db_libs_install(
cluster_id,
libraries,
host = db_host(),
token = db_token(),
perform_request = TRUE
)
Arguments
cluster_id Unique identifier of a Databricks cluster.
libraries An object created by libraries() and the appropriate 1ib_x* () functions.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Installation is asynchronous - it completes in the background after the request.

This call will fail if the cluster is terminated. Installing a wheel library on a cluster is like running
the pip command against the wheel file directly on driver and executors.

Installing a wheel library on a cluster is like running the pip command against the wheel file directly
on driver and executors. All the dependencies specified in the library setup.py file are installed and
this requires the library name to satisfy the wheel file name convention.

The installation on the executors happens only when a new task is launched. With Databricks
Runtime 7.1 and below, the installation order of libraries is nondeterministic. For wheel libraries,
you can ensure a deterministic installation order by creating a zip file with suffix .wheelhouse.zip
that includes all the wheel files.

See Also

lib_egg(), lib_cran(), 1lib_jar (), lib_maven(), lib_pypi(), 1lib_wh1()
Other Libraries API: db_libs_all_cluster_statuses(), db_libs_cluster_status(),db_libs_uninstall()

db_libs_uninstall 105

db_libs_uninstall Uninstall Library on Cluster

Description

Uninstall Library on Cluster

Usage

db_libs_uninstall(
cluster_id,
libraries,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
cluster_id Unique identifier of a Databricks cluster.
libraries An object created by libraries() and the appropriate 1ib_x() functions.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

The libraries aren’t uninstalled until the cluster is restarted.

Uninstalling libraries that are not installed on the cluster has no impact but is not an error.

See Also

Other Libraries API: db_libs_all_cluster_statuses(),db_libs_cluster_status(),db_libs_install()

106 db_mlflow_model_approve_transition_req

db_mlflow_model_approve_transition_req
Approve Model Version Stage Transition Request

Description

Approve Model Version Stage Transition Request

Usage
db_mlflow_model_approve_transition_req(
name,
version,
stage = c("None"”, "Staging"”, "Production”, "Archived"),

archive_existing_versions = TRUE,
comment = NULL,

host = db_host(),

token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
stage Target stage of the transition. Valid values are: None, Staging, Production,

Archived.

archive_existing_versions
Boolean (Default: TRUE). Specifies whether to archive all current model versions
in the target stage.

comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry API: db_ml1flow_model_delete_transition_req(), db_mlflow_model_open_transition_reqs(
db_mlflow_model_reject_transition_req(), db_mlflow_model_transition_req(),db_mlflow_model_transition
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

db_mlflow_model_delete_transition_req 107

db_mlflow_model_delete_transition_req
Delete a Model Version Stage Transition Request

Description

Delete a Model Version Stage Transition Request

Usage
db_mlflow_model_delete_transition_req(
name,
version,
stage = c("None”, "Staging”, "Production”, "Archived"),
creator,

comment = NULL,

host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments

name Name of the model.

version Version of the model.

stage Target stage of the transition. Valid values are: None, Staging, Production,
Archived.

creator Username of the user who created this request. Of the transition requests match-
ing the specified details, only the one transition created by this user will be
deleted.

comment User-provided comment on the action.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry API: db_mlflow_model_approve_transition_req(), db_mlflow_model_open_transition_reqgs
db_mlflow_model_reject_transition_req(), db_mlflow_model_transition_req(),db_mlflow_model_transition
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

108 db_mlflow_model_reject_transition_req

db_mlflow_model_open_transition_regs
Get All Open Stage Transition Requests for the Model Version

Description

Get All Open Stage Transition Requests for the Model Version

Usage

db_mlflow_model_open_transition_reqs(
name,
version,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry API: db_ml1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_re
db_mlflow_model_reject_transition_req(), db_mlflow_model_transition_req(),db_mlflow_model_transition
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

db_mlflow_model_reject_transition_req
Reject Model Version Stage Transition Request

Description

Reject Model Version Stage Transition Request

db_mlflow_model_transition_req 109

Usage

db_mlflow_model_reject_transition_req(
name,
version,
stage = c("None”, "Staging"”, "Production”, "Archived"),
comment = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
stage Target stage of the transition. Valid values are: None, Staging, Production,
Archived.
comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry APIL: db_m1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_rec
db_mlflow_model_open_transition_reqs(),db_mlflow_model_transition_req(),db_mlflow_model_transition_.
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

db_mlflow_model_transition_req
Make a Model Version Stage Transition Request

Description

Make a Model Version Stage Transition Request

110 db_mlflow_model_transition_stage

Usage

db_mlflow_model_transition_req(
name,
version,
stage = c("None”, "Staging"”, "Production”, "Archived"),
comment = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
stage Target stage of the transition. Valid values are: None, Staging, Production,
Archived.
comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry APIL: db_m1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_rec
db_mlflow_model_open_transition_reqs(), db_mlflow_model_reject_transition_req(),db_mlflow_model_tran
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

db_mlflow_model_transition_stage
Transition a Model Version’s Stage

Description

Transition a Model Version’s Stage

db_mlflow_model_transition_stage 111

Usage
db_mlflow_model_transition_stage(
name,
version,
stage = c("None”, "Staging”, "Production”, "Archived"),

archive_existing_versions = TRUE,
comment = NULL,

host = db_host(),

token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
stage Target stage of the transition. Valid values are: None, Staging, Production,

Archived.

archive_existing_versions
Boolean (Default: TRUE). Specifies whether to archive all current model versions
in the target stage.

comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

This is a Databricks version of the MLflow endpoint that also accepts a comment associated with
the transition to be recorded.

See Also

Other Model Registry API: db_mlflow_model_approve_transition_req(), db_mlflow_model_delete_transition_re
db_mlflow_model_open_transition_reqgs(), db_mlflow_model_reject_transition_req(), db_mlflow_model_tran
db_mlflow_model_version_comment(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version_
db_mlflow_registered_model_details()

112 db_mlflow_model_version_comment

db_mlflow_model_version_comment
Make a Comment on a Model Version

Description

Make a Comment on a Model Version

Usage

db_mlflow_model_version_comment(
name,
version,
comment,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of the model.
version Version of the model.
comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry API: db_mlflow_model_approve_transition_req(), db_mlflow_model_delete_transition_re
db_mlflow_model_open_transition_reqs(), db_mlflow_model_reject_transition_req(), db_mlflow_model_tran
db_mlflow_model_transition_stage(), db_mlflow_model_version_comment_delete(), db_mlflow_model_version
db_mlflow_registered_model_details()

db_mlflow_model_version_comment_delete

113

db_mlflow_model_version_comment_delete
Delete a Comment on a Model Version

Description

Delete a Comment on a Model Version

Usage

db_mlflow_model_version_comment_delete(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id Unique identifier of an activity.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.

See Also

Other Model Registry APIL: db_m1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_rec
db_mlflow_model_open_transition_reqs(), db_mlflow_model_reject_transition_req(), db_mlflow_model_tran
db_mlflow_model_transition_stage(), db_mlflow_model_version_comment(),db_mlflow_model_version_commen

db_mlflow_registered_model_details()

db_mlflow_model_version_comment_edit
Edit a Comment on a Model Version

Description

Edit a Comment on a Model Version

114 db_mlflow_registered_model_details

Usage

db_mlflow_model_version_comment_edit(
id,
comment,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id Unique identifier of an activity.
comment User-provided comment on the action.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Model Registry APIL: db_m1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_re
db_mlflow_model_open_transition_reqs(), db_mlflow_model_reject_transition_req(),db_mlflow_model_tran
db_mlflow_model_transition_stage(), dbo_mlflow_model_version_comment(),db_mlflow_model_version_commen
db_mlflow_registered_model_details()

db_mlflow_registered_model_details
Get Registered Model Details

Description

Get Registered Model Details

Usage

db_mlflow_registered_model_details(
name,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

db_perform_request

Arguments
name Name of the model.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

115

If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.

See Also

Other Model Registry API: db_m1flow_model_approve_transition_req(), db_mlflow_model_delete_transition_re
db_mlflow_model_open_transition_reqs(), db_mlflow_model_reject_transition_req(),db_mlflow_model_tran
db_mlflow_model_transition_stage(), dbo_mlflow_model_version_comment(),db_mlflow_model_version_commen

db_mlflow_model_version_comment_edit()

db_perform_request Perform Databricks API Request

Description

Perform Databricks API Request

Usage
db_perform_request(req, ...)
Arguments
req {httr2} request.
Parameters passed to httr2: :resp_body_json()
See Also

Other Request Helpers: db_req_error_body(), db_request(), db_request_json()

116 db_query_create

db_query_create Create a SQL Query

Description

Create a SQL Query

Usage

db_query_create(
warehouse_id,
query_text,
display_name,
description = NULL,
catalog = NULL,
schema = NULL,
parent_path = NULL,
run_as_mode = c("OWNER", "VIEWER"),
apply_auto_limit = FALSE,
auto_resolve_display_name = TRUE,
tags = list(),
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

warehouse_id description

query_text Text of the query to be run.

display_name Display name of the query that appears in list views, widget headings, and on
the query page.

description General description that conveys additional information about this query such
as usage notes.

catalog Name of the catalog where this query will be executed.

schema Name of the schema where this query will be executed.

parent_path Workspace path of the workspace folder containing the object.

run_as_mode Sets the "Run as" role for the object.
apply_auto_limit

Whether to apply a 1000 row limit to the query result.
auto_resolve_display_name

Automatically resolve query display name conflicts. Otherwise, fail the request
if the query’s display name conflicts with an existing query’s display name.

db_query_delete 117

tags Named list that describes the warehouse. Databricks tags all warehouse re-
sources with these tags.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also
Other SQL Queries API: db_query_delete(), db_query_get(), db_query_list(), db_query_update()

db_query_delete Delete a SQL Query

Description

Delete a SQL Query

Usage

db_query_delete(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id String, ID for the query.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Moves a query to the trash. Trashed queries immediately disappear from searches and list views,
and cannot be used for alerts. You can restore a trashed query through the Ul A trashed query is
permanently deleted after 30 days.

See Also

Other SQL Queries API: db_query_create(), db_query_get(), db_query_list(), db_query_update()

118 db_query_list

db_query_get Get a SQL Query

Description

Returns the repo with the given repo ID.

Usage

db_query_get(id, host = db_host(), token = db_token(), perform_request = TRUE)

Arguments
id String, ID for the query.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other SQL Queries API: db_query_create(), db_query_delete(), db_query_list(), db_query_update()

db_query_list List SOQL Queries

Description

List SQL Queries

Usage

db_query_list(
page_size = 20,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_query_update 119

Arguments
page_size Integer, number of results to return for each request.
page_token Token used to get the next page of results. If not specified, returns the first page
of results as well as a next page token if there are more results.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Gets a list of queries accessible to the user, ordered by creation time. Warning: Calling this API
concurrently 10 or more times could result in throttling, service degradation, or a temporary ban.

See Also

Other SQL Queries API: db_query_create(), db_query_delete(), db_query_get (), db_query_update()

db_query_update Update a SQL Query

Description

Update a SQL Query

Usage

db_query_update(
id,
warehouse_id = NULL,
query_text = NULL,
display_name = NULL,
description = NULL,
catalog = NULL,
schema = NULL,
parent_path = NULL,
run_as_mode = NULL,
apply_auto_limit = NULL,
auto_resolve_display_name = NULL,
tags = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

120 db_read_netrc

Arguments

id Query id

warehouse_id description

query_text Text of the query to be run.

display_name Display name of the query that appears in list views, widget headings, and on
the query page.

description General description that conveys additional information about this query such
as usage notes.

catalog Name of the catalog where this query will be executed.

schema Name of the schema where this query will be executed.

parent_path Workspace path of the workspace folder containing the object.

run_as_mode Sets the "Run as" role for the object.
apply_auto_limit
Whether to apply a 1000 row limit to the query result.
auto_resolve_display_name
Automatically resolve query display name conflicts. Otherwise, fail the request
if the query’s display name conflicts with an existing query’s display name.

tags Named list that describes the warehouse. Databricks tags all warehouse re-
sources with these tags.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also
Other SQL Queries API: db_query_create(), db_query_delete(), db_query_get (), db_query_list()

db_read_netrc Read .netrc File

Description

Read .netrc File

Usage

db_read_netrc(path = "~/.netrc")

Arguments

path path of .netrc file, default is ~/.netrc.

db_repl 121

Value

named list of . netrc entries

See Also

Other Databricks Authentication Helpers: db_host (), db_token(), db_wsid()

db_repl Remote REPL to Databricks Cluster

Description

Remote REPL to Databricks Cluster

Usage
db_repl(
cluster_id,
1anguage - C(”r”, prll, ”scalall’ llsqlll’ Hsh”>,
host = db_host(),
token = db_token()
)
Arguments
cluster_id Cluster Id to create REPL context against.
language for REPL (Cr’, ’py’, ’scala’, ’sql’, ’sh’) are supported.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
Details

db_repl () will take over the existing console and allow execution of commands against a Databricks
cluster. For RStudio users there are Addins which can be bound to keyboard shortcuts to improve
usability.

122 db_repo_delete

db_repo_create Create Repo

Description

Creates a repo in the workspace and links it to the remote Git repo specified.

Usage

db_repo_create(
url,
provider,
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments

url URL of the Git repository to be linked.

provider Git provider. This field is case-insensitive. The available Git providers are
gitHub, bitbucketCloud, gitlLab, azureDevOpsServices, gitHubEnterprise,
bitbucketServer and gitlLabEnterpriseEdition.

path Desired path for the repo in the workspace. Must be in the format /Repos/{folder}/{repo-name}.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Repos API: db_repo_delete(), db_repo_get(), db_repo_get_all(), db_repo_update()

db_repo_delete Delete Repo

Description

Deletes the specified repo

db_repo_get 123

Usage

db_repo_delete(
repo_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
repo_id The ID for the corresponding repo to access.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also
Other Repos API: db_repo_create(), db_repo_get(), db_repo_get_all(), db_repo_update()

db_repo_get Get Repo

Description

Returns the repo with the given repo ID.

Usage

db_repo_get(
repo_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
repo_id The ID for the corresponding repo to access.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

124 db_repo_get_all

See Also

Other Repos API: db_repo_create(), db_repo_delete(), db_repo_get_all(), db_repo_update()

db_repo_get_all Get All Repos

Description

Get All Repos

Usage

db_repo_get_all(
path_prefix,
next_page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

path_prefix Filters repos that have paths starting with the given path prefix.

next_page_token
Token used to get the next page of results. If not specified, returns the first page
of results as well as a next page token if there are more results.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
Returns repos that the calling user has Manage permissions on. Results are paginated with each
page containing twenty repos.

See Also

Other Repos API: db_repo_create(), db_repo_delete(), db_repo_get (), db_repo_update()

db_repo_update 125

db_repo_update Update Repo

Description

Updates the repo to the given branch or tag.

Usage

db_repo_update(
repo_id,
branch = NULL,
tag = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
repo_id The ID for the corresponding repo to access.
branch Branch that the local version of the repo is checked out to.
tag Tag that the local version of the repo is checked out to.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Specify either branch or tag, not both.

Updating the repo to a tag puts the repo in a detached HEAD state. Before committing new changes,
you must update the repo to a branch instead of the detached HEAD.

See Also

Other Repos API: db_repo_create(), db_repo_delete(), db_repo_get(), db_repo_get_all()

126 db_request_json

db_request Databricks Request Helper

Description

Databricks Request Helper

Usage

db_request(endpoint, method, version = NULL, body = NULL, host, token, ...)
Arguments

endpoint Databricks REST API Endpoint

method Passed to httr2: :req_method()

version String, API version of endpoint. E.g. 2.0.

body Named list, passed to httr2::req_body_json().

host Databricks host, defaults to db_host ().

token Databricks token, defaults to db_token().

Parameters passed on to httr2: :req_body_json() when body is not NULL.

Value

request
See Also

Other Request Helpers: db_perform_request(), db_req_error_body(), db_request_json()

db_request_json Generate Request JSON

Description

Generate Request JSON

Usage

db_request_json(req)

Arguments

req a httr2 request, ideally from db_request ().

db_req_error_body

Value

JSON string

See Also

Other Request Helpers: db_perform_request(), db_req_error_body(), db_request()

127

db_req_error_body Propagate Databricks API Errors

Description

Propagate Databricks API Errors

Usage

db_reqg_error_body(resp)

Arguments

resp Object with class httr2_response.

See Also

Other Request Helpers: db_perform_request(), db_request(), db_request_json()

db_secrets_delete Delete Secret in Secret Scope

Description

Delete Secret in Secret Scope

Usage

db_secrets_delete(
scope,
key,
host = db_host(),
token = db_token(),
perform_request = TRUE

128 db_secrets_list

Arguments
scope Name of the scope that contains the secret to delete.
key Name of the secret to delete.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.
Details

You must have WRITE or MANAGE permission on the secret scope.

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope or secret exists.
* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete(),
db_secrets_scope_acl_get(), db_secrets_scope_acl_list(),db_secrets_scope_acl_put(),
db_secrets_scope_create(), db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_list List Secrets in Secret Scope

Description

List Secrets in Secret Scope

Usage

db_secrets_list(
scope,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
scope Name of the scope whose secrets you want to list
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_secrets_put 129

Details

This is a metadata-only operation; you cannot retrieve secret data using this API. You must have
READ permission to make this call.

The last_updated_timestamp returned is in milliseconds since epoch.

e Throws RESOURCE_DOES_NOT_EXIST if no such secret scope exists.
* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_put(), db_secrets_scope_acl_delete(),
db_secrets_scope_acl_get(),db_secrets_scope_acl_list(),db_secrets_scope_acl_put(),
db_secrets_scope_create(), db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_put Put Secret in Secret Scope

Description

Insert a secret under the provided scope with the given name.

Usage

db_secrets_put(
scope,
key,
value,
as_bytes = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
scope Name of the scope to which the secret will be associated with
key Unique name to identify the secret.
value Contents of the secret to store, must be a string.
as_bytes Boolean (default: FALSE). Determines if value is stored as bytes.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

130 db_secrets_scope_acl_delete

Details

If a secret already exists with the same name, this command overwrites the existing secret’s value.

The server encrypts the secret using the secret scope’s encryption settings before storing it. You
must have WRITE or MANAGE permission on the secret scope.

The secret key must consist of alphanumeric characters, dashes, underscores, and periods, and
cannot exceed 128 characters. The maximum allowed secret value size is 128 KB. The maximum
number of secrets in a given scope is 1000.

You can read a secret value only from within a command on a cluster (for example, through a
notebook); there is no API to read a secret value outside of a cluster. The permission applied is
based on who is invoking the command and you must have at least READ permission.

The input fields string_value or bytes_value specify the type of the secret, which will determine
the value returned when the secret value is requested. Exactly one must be specified, this function
interfaces these parameters via as_bytes which defaults to FALSE.

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope exists.

* Throws RESOURCE_LIMIT_EXCEEDED if maximum number of secrets in scope is exceeded.

* Throws INVALID_PARAMETER_VALUE if the key name or value length is invalid.

e Throws PERMISSION_DENIED if the user does not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(),db_secrets_scope_acl_delete(),
db_secrets_scope_acl_get (), db_secrets_scope_acl_list(), db_secrets_scope_acl_put(),
db_secrets_scope_create(), db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_scope_acl_delete
Delete Secret Scope ACL

Description

Delete the given ACL on the given scope.

Usage

db_secrets_scope_acl_delete(
scope,
principal,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_secrets_scope_acl_get 131

Arguments
scope Name of the scope to remove permissions.
principal Principal to remove an existing ACL.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
You must have the MANAGE permission to invoke this APIL.

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope, principal, or ACL exists.
* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(),db_secrets_put(), db_secrets_scope_acl_get(),
db_secrets_scope_acl_list(),db_secrets_scope_acl_put(), db_secrets_scope_create(),
db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_scope_acl_get
Get Secret Scope ACL

Description

Get Secret Scope ACL

Usage

db_secrets_scope_acl_get(
scope,
principal,
host = db_host(),
token = db_token(),
perform_request = TRUE

132 db_secrets_scope_acl_list

Arguments
scope Name of the scope to fetch ACL information from.
principal Principal to fetch ACL information from.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

You must have the MANAGE permission to invoke this

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope exists.
* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(),db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_list(),db_secrets_scope_acl_put(), db_secrets_scope_create(),
db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_scope_acl_list
List Secret Scope ACL’s

Description

List Secret Scope ACL’s

Usage

db_secrets_scope_acl_list(
scope,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
scope Name of the scope to fetch ACL information from.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_secrets_scope_acl_put 133

Details

You must have the MANAGE permission to invoke this APL

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope exists.
* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_get (), db_secrets_scope_acl_put(), db_secrets_scope_create(),
db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_scope_acl_put
Put ACL on Secret Scope

Description

Put ACL on Secret Scope

Usage

db_secrets_scope_acl_put(
scope,
principal,
permission = c("READ", "WRITE", "MANAGE"),
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
scope Name of the scope to apply permissions.
principal Principal to which the permission is applied
permission Permission level applied to the principal. One of READ, WRITE, MANAGE.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

134 db_secrets_scope_create

Details

Create or overwrite the ACL associated with the given principal (user or group) on the specified
scope point. In general, a user or group will use the most powerful permission available to them,
and permissions are ordered as follows:

* MANAGE - Allowed to change ACLs, and read and write to this secret scope.

* WRITE - Allowed to read and write to this secret scope.

* READ - Allowed to read this secret scope and list what secrets are available.

You must have the MANAGE permission to invoke this API.
The principal is a user or group name corresponding to an existing Databricks principal to be granted
or revoked access.

* Throws RESOURCE_DOES_NOT_EXIST if no such secret scope exists.

* Throws RESOURCE_ALREADY_EXISTS if a permission for the principal already exists.

* Throws INVALID_PARAMETER_VALUE if the permission is invalid.

* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_get(),db_secrets_scope_acl_list(), db_secrets_scope_create(),
db_secrets_scope_delete(), db_secrets_scope_list_all()

db_secrets_scope_create
Create Secret Scope

Description

Create Secret Scope

Usage

db_secrets_scope_create(
scope,
initial_manage_principal = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

db_secrets_scope_create 135

Arguments

scope Scope name requested by the user. Scope names are unique.

initial_manage_principal
The principal that is initially granted MANAGE permission to the created scope.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Create a Databricks-backed secret scope in which secrets are stored in Databricks-managed storage
and encrypted with a cloud-based specific encryption key.

The scope name:

* Must be unique within a workspace.

* Must consist of alphanumeric characters, dashes, underscores, and periods, and may not ex-
ceed 128 characters.

The names are considered non-sensitive and are readable by all users in the workspace. A workspace
is limited to a maximum of 100 secret scopes.

If initial_manage_principal is specified, the initial ACL applied to the scope is applied to the
supplied principal (user or group) with MANAGE permissions. The only supported principal for this
option is the group users, which contains all users in the workspace. If initial_manage_principal
is not specified, the initial ACL with MANAGE permission applied to the scope is assigned to the API
request issuer’s user identity.

* Throws RESOURCE_ALREADY_EXISTS if a scope with the given name already exists.

e Throws RESOURCE_LIMIT_EXCEEDED if maximum number of scopes in the workspace is ex-
ceeded.

* Throws INVALID_PARAMETER_VALUE if the scope name is invalid.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_get(),db_secrets_scope_acl_list(),db_secrets_scope_acl_put(),
db_secrets_scope_delete(), db_secrets_scope_list_all()

136 db_secrets_scope_delete

db_secrets_scope_delete
Delete Secret Scope

Description

Delete Secret Scope

Usage

db_secrets_scope_delete(
scope,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
scope Name of the scope to delete.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

* Throws RESOURCE_DOES_NOT_EXIST if the scope does not exist.

* Throws PERMISSION_DENIED if the user does not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_get(),db_secrets_scope_acl_list(),db_secrets_scope_acl_put(),
db_secrets_scope_create(), db_secrets_scope_list_all()

db_secrets_scope_list_all 137

db_secrets_scope_list_all
List Secret Scopes

Description

List Secret Scopes

Usage

db_secrets_scope_list_all(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

* Throws PERMISSION_DENIED if you do not have permission to make this API call.

See Also

Other Secrets API: db_secrets_delete(), db_secrets_list(), db_secrets_put(), db_secrets_scope_acl_delete()
db_secrets_scope_acl_get(),db_secrets_scope_acl_list(),db_secrets_scope_acl_put(),
db_secrets_scope_create(), db_secrets_scope_delete()

db_sql_exec_cancel Cancel SQL Query

Description

Cancel SQL Query

138 db_sql_exec_poll_for_success

Usage

db_sqgl_exec_cancel(
statement_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments

statement_id String, query execution statement_id
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Requests that an executing statement be canceled. Callers must poll for status to see the terminal
state.

Read more on Databricks API docs

See Also
Other SQL Execution APIs: db_sql_exec_query(), db_sql_exec_result(), db_sql_exec_status()

db_sql_exec_poll_for_success
Poll a Query Until Successful

Description

Poll a Query Until Successful

Usage

db_sql_exec_poll_for_success(
statement_id,
interval =1,
show_progress = TRUE,
host = db_host(),
token = db_token()

https://docs.databricks.com/api/workspace/statementexecution/cancelexecution

db_sql_exec_query

Arguments
statement_id
interval
show_progress
host

token

139

String, query execution statement_id

Number of seconds between status checks.

If TRUE, show progress updates during polling (default: TRUE)
Databricks workspace URL, defaults to calling db_host ().
Databricks workspace token, defaults to calling db_token().

db_sql_exec_query

Execute SQL Query

Description

Execute SQL Query

Usage

db_sqgl_exec_query(

statement,

warehouse_id,

catalog = NULL,

schema = NULL,

parameters = NULL,

row_limit = NULL,

byte_limit = NULL,

disposition = c("INLINE", "EXTERNAL_LINKS"),
format = c("JSON_ARRAY", "ARROW_STREAM", "CSV"),
wait_timeout = "0@s",

on_wait_timeout = c("CONTINUE", "CANCEL"),
host = db_host(),

token = db_token(),

perform_request = TRUE

Arguments

statement

warehouse_id

catalog

schema

String, the SQL statement to execute. The statement can optionally be parame-
terized, see parameters

String, ID of warehouse upon which to execute a statement.

String, sets default catalog for statement execution, similar to USE CATALOG in
SQL.

String, sets default schema for statement execution, similar to USE SCHEMA in
SQL.

140 db_sql_exec_query

parameters List of Named Lists, parameters to pass into a SQL statement containing param-
eter markers.

A parameter consists of a name, a value, and optionally a type. To represent a
NULL value, the value field may be omitted or set to NULL explicitly.

See docs for more details.

row_limit Integer, applies the given row limit to the statement’s result set, but unlike the
LIMIT clause in SQL, it also sets the truncated field in the response to indicate
whether the result was trimmed due to the limit or not.

byte_limit Integer, applies the given byte limit to the statement’s result size. Byte counts
are based on internal data representations and might not match the final size
in the requested format. If the result was truncated due to the byte limit, then
truncated in the response is set to true. When using EXTERNAL_LINKS disposi-
tion, a default byte_limit of 100 GiB is applied if byte_limit is not explicitly
set.

disposition One of "INLINE" (default) or "EXTERNAL_LINKS". See docs for details.

format One of "JSON_ARRAY" (default), "ARROW_STREAM", or "CSV". See docs for de-
tails.

wait_timeout String, default is "10s". The time in seconds the call will wait for the state-
ment’s result set as Ns, where N can be set to @ or to a value between 5 and
50. When set to @s, the statement will execute in asynchronous mode and the
call will not wait for the execution to finish. In this case, the call returns di-
rectly with PENDING state and a statement ID which can be used for polling with
db_sqgl_exec_status().
When set between 5 and 5@ seconds, the call will behave synchronously up to
this timeout and wait for the statement execution to finish. If the execution
finishes within this time, the call returns immediately with a manifest and result
data (or a FAILED state in case of an execution error).
If the statement takes longer to execute, on_wait_timeout determines what
should happen after the timeout is reached.

on_wait_timeout
One of "CONTINUE" (default) or "CANCEL"”. When wait_timeout > @s, the call
will block up to the specified time. If the statement execution doesn’t finish

within this time, on_wait_timeout determines whether the execution should
continue or be canceled.

When set to CONTINUE, the statement execution continues asynchronously and
the call returns a statement ID which can be used for polling with db_sql_exec_status().

When set to CANCEL, the statement execution is canceled and the call returns
with a CANCELED state.
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

https://docs.databricks.com/api/workspace/statementexecution/executestatement
https://docs.databricks.com/api/workspace/statementexecution/executestatement
https://docs.databricks.com/api/workspace/statementexecution/executestatement

db_sql_exec_result 141

Details

Refer to the web documentation for detailed material on interaction of the various parameters and
general recommendations

See Also

Other SQL Execution APIs: db_sql_exec_cancel (), db_sql_exec_result(), db_sql_exec_status()

db_sqgl_exec_result Get SQL Query Results

Description

Get SQL Query Results

Usage

db_sqgl_exec_result(
statement_id,
chunk_index,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

statement_id String, query execution statement_id

chunk_index Integer, chunk index to fetch result. Starts from 0.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

After the statement execution has SUCCEEDED, this request can be used to fetch any chunk by index.

Whereas the first chunk with chunk_index = @ is typically fetched with db_sql_exec_result() or
db_sql_exec_status(), this request can be used to fetch subsequent chunks

The response structure is identical to the nested result element described in the db_sql_exec_result()
request, and similarly includes the next_chunk_index and next_chunk_internal_link fields for
simple iteration through the result set.

Read more on Databricks API docs

https://docs.databricks.com/api/workspace/statementexecution/executestatement
https://docs.databricks.com/api/workspace/statementexecution/getstatementresultchunkn

142 db_sql_exec_status

See Also

Other SQL Execution APIs: db_sql_exec_cancel (), db_sql_exec_query(), db_sql_exec_status()

db_sql_exec_status Get SQL Query Status

Description

Get SQL Query Status

Usage

db_sqgl_exec_status(
statement_id,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

statement_id String, query execution statement_id
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

This request can be used to poll for the statement’s status. When the status.state field is
SUCCEEDED it will also return the result manifest and the first chunk of the result data.

‘When the statement is in the terminal states CANCELED, CLOSED or FAILED, it returns HTTP 200 with
the state set.

After at least 12 hours in terminal state, the statement is removed from the warehouse and further
calls will receive an HTTP 404 response.

Read more on Databricks API docs

See Also

Other SQL Execution APIs: db_sql_exec_cancel (), db_sql_exec_query(), db_sql_exec_result()

https://docs.databricks.com/api/workspace/statementexecution/getstatement

db_sql_global_warehouse_get 143

db_sqgl_global_warehouse_get
Get Global Warehouse Config

Description

Get Global Warehouse Config

Usage

db_sqgl_global_warehouse_get(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Warehouse API: db_sql_warehouse_create(), db_sql_warehouse_delete(), db_sql_warehouse_edit(),
db_sqgl_warehouse_get (), db_sqgl_warehouse_list(), db_sql_warehouse_start(), db_sql_warehouse_stop(),
get_and_start_warehouse()

db_sql_query Execute query with SQL Warehouse

Description

Execute query with SQL Warehouse

Usage

db_sql_query(
warehouse_id,
statement,
schema = NULL,
catalog = NULL,
parameters = NULL,

db_sql_query

max_active_connections = 30,

disposition = "EXTERNAL_LINKS",

= TRUE

144
row_limit = NULL,
byte_limit = NULL,
wait_timeout = "5s”,
return_arrow = FALSE,
fetch_timeout = 300,
host = db_host(),
token = db_token(),
show_progress

)
Arguments

warehouse_id

statement

schema

catalog

parameters

row_limit

byte_limit

wait_timeout

String, ID of warehouse upon which to execute a statement.

String, the SQL statement to execute. The statement can optionally be parame-
terized, see parameters.

String, sets default schema for statement execution, similar to USE SCHEMA in
SQL.

String, sets default catalog for statement execution, similar to USE CATALOG in
SQL.

List of Named Lists, parameters to pass into a SQL statement containing param-
eter markers.

A parameter consists of a name, a value, and optionally a type. To represent a
NULL value, the value field may be omitted or set to NULL explicitly.

See docs for more details.

Integer, applies the given row limit to the statement’s result set, but unlike the
LIMIT clause in SQL, it also sets the truncated field in the response to indicate
whether the result was trimmed due to the limit or not.

Integer, applies the given byte limit to the statement’s result size. Byte counts
are based on internal data representations and might not match the final size
in the requested format. If the result was truncated due to the byte limit, then
truncated in the response is set to true. When using EXTERNAL_LINKS disposi-
tion, a default byte_limit of 100 GiB is applied if byte_limit is not explicitly
set.

String, default is "10s"”. The time in seconds the call will wait for the state-
ment’s result set as Ns, where N can be set to @ or to a value between 5 and
50. When set to s, the statement will execute in asynchronous mode and the
call will not wait for the execution to finish. In this case, the call returns di-
rectly with PENDING state and a statement ID which can be used for polling with
db_sqgl_exec_status().

When set between 5 and 50 seconds, the call will behave synchronously up to
this timeout and wait for the statement execution to finish. If the execution
finishes within this time, the call returns immediately with a manifest and result
data (or a FAILED state in case of an execution error).

If the statement takes longer to execute, on_wait_timeout determines what
should happen after the timeout is reached.

https://docs.databricks.com/api/workspace/statementexecution/executestatement

db_sql_query_history 145

return_arrow Boolean, determine if result is tibble::tibble or arrow::Table.
max_active_connections
Integer to decide on concurrent downloads.

fetch_timeout Integer, timeout in seconds for downloading each result chunk
disposition Disposition mode ("INLINE" or "EXTERNAL_LINKS")

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
show_progress If TRUE, show progress updates during query execution (default: TRUE)

Value

tibble::tibble or arrow::Table.

db_sql_query_history List Warehouse Query History

Description

For more details refer to the query history documentation. This function elevates the sub-components
of filter_by parameter to the R function directly.

Usage

db_sqgl_query_history(
statuses = NULL,
user_ids = NULL,
endpoint_ids = NULL,
start_time_ms = NULL,
end_time_ms = NULL,
max_results = 100,
page_token = NULL,
include_metrics = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
statuses Allows filtering by query status. Possible values are: QUEUED, RUNNING, CANCELED,
FAILED, FINISHED. Multiple permitted.
user_ids Allows filtering by user ID’s. Multiple permitted.

endpoint_ids Allows filtering by endpoint ID’s. Multiple permitted.

start_time_ms Integer, limit results to queries that started after this time.

https://docs.databricks.com/api/workspace/queryhistory/list

146 db_sql_warehouse_create

end_time_ms Integer, limit results to queries that started before this time.
max_results Limit the number of results returned in one page. Default is 100.
page_token Opaque token used to get the next page of results. Optional.

include_metrics
Whether to include metrics about query execution.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

By default the filter parameters statuses, user_ids, and endpoints_ids are NULL.

db_sqgl_warehouse_create
Create Warehouse

Description

Create Warehouse

Usage

db_sqgl_warehouse_create(
name,
cluster_size,
min_num_clusters
max_num_clusters
auto_stop_mins = 30,
tags = list(),
spot_instance_policy = c("COST_OPTIMIZED", "RELIABILITY_OPTIMIZED"),
enable_photon = TRUE,
warehouse_type = c("CLASSIC"”, "PR0O"),
enable_serverless_compute = NULL,
disable_uc = FALSE,
channel = c("CHANNEL_NAME_CURRENT", "CHANNEL_NAME_PREVIEW"),
host = db_host(),
token = db_token(),
perform_request = TRUE

I n
—_

db_sql_warehouse_create 147

Arguments

name Name of the SQL warehouse. Must be unique.

cluster_size Size of the clusters allocated to the warehouse. One of 2X-Small, X-Small,
Small, Medium, Large, X-Large, 2X-Large, 3X-Large, 4X-Large.
min_num_clusters
Minimum number of clusters available when a SQL warehouse is running. The
default is 1.
max_num_clusters
Maximum number of clusters available when a SQL warehouse is running. If
multi-cluster load balancing is not enabled, this is limited to 1.

auto_stop_mins Time in minutes until an idle SQL warehouse terminates all clusters and stops.
Defaults to 30. For Serverless SQL warehouses (enable_serverless_compute
= TRUE), set this to 10.

tags Named list that describes the warehouse. Databricks tags all warehouse re-
sources with these tags.

spot_instance_policy
The spot policy to use for allocating instances to clusters. This field is not used
if the SQL warehouse is a Serverless SQL warehouse.

enable_photon Whether queries are executed on a native vectorized engine that speeds up query
execution. The default is TRUE.

warehouse_type Either "CLASSIC" (default), or "PRO"

enable_serverless_compute
Whether this SQL warehouse is a Serverless warehouse. To use a Serverless
SQL warehouse, you must enable Serverless SQL warehouses for the workspace.
If Serverless SQL warehouses are disabled for the workspace, the default is
FALSE If Serverless SQL warehouses are enabled for the workspace, the default

is TRUE.

disable_uc If TRUE will use Hive Metastore (HMS). If FALSE (default), then it will be en-
abled for Unity Catalog (UC).

channel Whether to use the current SQL warehouse compute version or the preview ver-

sion. Databricks does not recommend using preview versions for production
workloads. The default is CHANNEL _NAME_CURRENT.

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Warehouse API: db_sql_global_warehouse_get (), db_sql_warehouse_delete(), db_sql_warehouse_edit(),
db_sqgl_warehouse_get (), db_sql_warehouse_list(), db_sql_warehouse_start(), db_sql_warehouse_stop(),
get_and_start_warehouse()

148

db_sql_warehouse_edit

db_sql_warehouse_delete
Delete Warehouse

Description

Delete Warehouse

Usage

db_sqgl_warehouse_delete(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id ID of the SQL warehouse.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned

without being performed.

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_edit(),
db_sqgl_warehouse_get (), db_sql_warehouse_list(), db_sql_warehouse_start(), db_sql_warehouse_stop(),

get_and_start_warehouse()

db_sql_warehouse_edit Edit Warehouse

Description

Edit Warehouse

db_sql_warehouse_edit

149

Usage
db_sqgl_warehouse_edit(
id,
name = NULL,

cluster_size

= NULL,

min_num_clusters = NULL,
max_num_clusters = NULL,
auto_stop_mins = NULL,

tags = NULL,

spot_instance_policy = NULL,
enable_photon = NULL,
warehouse_type = NULL,
enable_serverless_compute = NULL,
channel = NULL,

host = db_host(),

token = db_token(),
perform_request = TRUE

Arguments
id
name

cluster_size

ID of the SQL warehouse.
Name of the SQL warehouse. Must be unique.

Size of the clusters allocated to the warehouse. One of 2X-Small, X-Small,
Small, Medium, Large, X-Large, 2X-Large, 3X-Large, 4X-Large.

min_num_clusters

Minimum number of clusters available when a SQL warehouse is running. The
default is 1.

max_num_clusters

auto_stop_mins

tags

Maximum number of clusters available when a SQL warehouse is running. If
multi-cluster load balancing is not enabled, this is limited to 1.

Time in minutes until an idle SQL warehouse terminates all clusters and stops.
Defaults to 30. For Serverless SQL warehouses (enable_serverless_compute
= TRUE), set this to 10.

Named list that describes the warehouse. Databricks tags all warehouse re-
sources with these tags.

spot_instance_policy

enable_photon

warehouse_type

The spot policy to use for allocating instances to clusters. This field is not used
if the SQL warehouse is a Serverless SQL warehouse.

Whether queries are executed on a native vectorized engine that speeds up query
execution. The default is TRUE.

Either "CLASSIC" (default), or "PRO"

enable_serverless_compute

Whether this SQL warehouse is a Serverless warehouse. To use a Serverless
SQL warehouse, you must enable Serverless SQL warehouses for the workspace.
If Serverless SQL warehouses are disabled for the workspace, the default is

150 db_sql_warehouse_get

FALSE If Serverless SQL warehouses are enabled for the workspace, the default
is TRUE.

channel Whether to use the current SQL warehouse compute version or the preview ver-
sion. Databricks does not recommend using preview versions for production
workloads. The default is CHANNEL _NAME_CURRENT .

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details
Modify a SQL warehouse. All fields are optional. Missing fields default to the current values.

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_delete()
db_sqgl_warehouse_get (), db_sqgl_warehouse_list(), db_sql_warehouse_start(), db_sql_warehouse_stop(),
get_and_start_warehouse()

db_sql_warehouse_get Get Warehouse

Description

Get Warehouse

Usage

db_sql_warehouse_get(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id ID of the SQL warehouse.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_sql_warehouse_list 151

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sqgl_warehouse_delete()
db_sqgl_warehouse_edit(), db_sql_warehouse_list(), db_sqgl_warehouse_start(), db_sql_warehouse_stop(),
get_and_start_warehouse()

db_sql_warehouse_list List Warehouses

Description

List Warehouses

Usage

db_sqgl_warehouse_list(
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_delete()
db_sqgl_warehouse_edit (), db_sql_warehouse_get (), db_sql_warehouse_start(), db_sqgl_warehouse_stop(),
get_and_start_warehouse()

db_sqgl_warehouse_start
Start Warehouse

Description

Start Warehouse

152 db_sql_warehouse_stop

Usage

db_sqgl_warehouse_start(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id ID of the SQL warehouse.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_delete()
db_sqgl_warehouse_edit(), db_sql_warehouse_get (), db_sql_warehouse_list(), db_sql_warehouse_stop(),
get_and_start_warehouse()

db_sql_warehouse_stop Stop Warehouse

Description

Stop Warehouse

Usage

db_sqgl_warehouse_stop(
id,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
id ID of the SQL warehouse.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_token 153

See Also

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_delete()
db_sqgl_warehouse_edit (), db_sql_warehouse_get (), db_sql_warehouse_list(), db_sql_warehouse_start(),
get_and_start_warehouse()

db_token Fetch Databricks Token

Description

The function will check for a token in the DATABRICKS_HOST environment variable. .databrickscfg
will be searched if db_profile and use_databrickscfg are set or if Posit Workbench managed
OAuth credentials are detected. If none of the above are found then db_token() returns NULL.

Refer to api authentication docs

Usage
db_token(profile = default_config_profile())

Arguments
profile Profile to use when fetching from environment variable (e.g. .Renviron) or
.databricksfg file
Details

The behaviour is subject to change depending if db_profile and use_databrickscfg options are
set.

e use_databrickscfg: Boolean (default: FALSE), determines if credentials are fetched from
profile of .databrickscfgor .Renviron

* db_profile: String (default: NULL), determines profile used. .databrickscfg will automat-
ically be used when Posit Workbench managed OAuth credentials are detected.

See vignette on authentication for more details.

Value

databricks token

See Also
Other Databricks Authentication Helpers: db_host (), db_read_netrc(), db_wsid()

https://docs.databricks.com/aws/en/dev-tools/auth

154 db_uc_catalogs_list

db_uc_catalogs_get Get Catalog (Unity Catalog)

Description

Get Catalog (Unity Catalog)

Usage

db_uc_catalogs_get(
catalog,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog The name of the catalog.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Management: db_uc_catalogs_list(), db_uc_schemas_get(), db_uc_schemas_list()

db_uc_catalogs_list List Catalogs (Unity Catalog)

Description

List Catalogs (Unity Catalog)

db_uc_schemas_get 155

Usage

db_uc_catalogs_list(
max_results = 1000,
include_browse = TRUE,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

max_results Maximum number of catalogs to return (default: 1000).

include_browse Whether to include catalogs in the response for which the principal can only
access selective metadata for.

page_token Opaque token used to get the next page of results. Optional.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Management: db_uc_catalogs_get(), db_uc_schemas_get (), db_uc_schemas_list()

db_uc_schemas_get Get Schema (Unity Catalog)

Description

Get Schema (Unity Catalog)

Usage

db_uc_schemas_get(
catalog,
schema,
include_browse = TRUE,
host = db_host(),
token = db_token(),
perform_request = TRUE

156 db_uc_schemas_list

Arguments
catalog Parent catalog for schema of interest.
schema Schema of interest.

include_browse Whether to include catalogs in the response for which the principal can only
access selective metadata for.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Management: db_uc_catalogs_get(), db_uc_catalogs_list(),db_uc_schemas_list()

db_uc_schemas_list List Schemas (Unity Catalog)

Description

List Schemas (Unity Catalog)

Usage

db_uc_schemas_list(
catalog,
max_results = 1000,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
catalog Parent catalog for schemas of interest.
max_results Maximum number of schemas to return (default: 1000).
page_token Opaque token used to get the next page of results. Optional.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db _uc_tables_delete 157

Value

List

See Also

Other Unity Catalog Management: db_uc_catalogs_get(), db_uc_catalogs_list(), db_uc_schemas_get()

db_uc_tables_delete Delete Table (Unity Catalog)

Description

Delete Table (Unity Catalog)

Usage

db_uc_tables_delete(
catalog,
schema,
table,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog Parent catalog of table.
schema Parent schema of table.
table Table name.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

Boolean

See Also

Other Unity Catalog Table Management: db_uc_tables_exists(), db_uc_tables_get(),db_uc_tables_list(),
db_uc_tables_summaries()

158 db_uc_tables_exists

db_uc_tables_exists Check Table Exists (Unity Catalog)

Description

Check Table Exists (Unity Catalog)

Usage

db_uc_tables_exists(
catalog,
schema,
table,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog Parent catalog of table.
schema Parent schema of table.
table Table name.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List with fields table_exists and supports_foreign_metadata_update

See Also

Other Unity Catalog Table Management: db_uc_tables_delete(), db_uc_tables_get(), db_uc_tables_list(),
db_uc_tables_summaries()

db_uc_tables_get 159

db_uc_tables_get Get Table (Unity Catalog)

Description

Get Table (Unity Catalog)

Usage

db_uc_tables_get(
catalog,
schema,
table,
omit_columns = TRUE,
omit_properties = TRUE,
omit_username = TRUE,
include_browse = TRUE,
include_delta_metadata = TRUE,
include_manifest_capabilities = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
catalog Parent catalog of table.
schema Parent schema of table.
table Table name.

omit_columns Whether to omit the columns of the table from the response or not.
omit_properties
Whether to omit the properties of the table from the response or not.

omit_username Whether to omit the username of the table (e.g. owner, updated_by, created_by)
from the response or not.

include_browse Whether to include tables in the response for which the principal can only access
selective metadata for.
include_delta_metadata

Whether delta metadata should be included in the response.
include_manifest_capabilities

Whether to include a manifest containing capabilities the table has.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

160 db_uc_tables_list
Value
List

See Also

Other Unity Catalog Table Management: db_uc_tables_delete(), db_uc_tables_exists(),
db_uc_tables_list(), db_uc_tables_summaries()

db_uc_tables_list List Tables (Unity Catalog)

Description

List Tables (Unity Catalog)

Usage

db_uc_tables_list(
catalog,
schema,
max_results = 50,
omit_columns = TRUE,
omit_properties = TRUE,
omit_username = TRUE,
include_browse = TRUE,
include_delta_metadata = FALSE,
include_manifest_capabilities = FALSE,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog Name of parent catalog for tables of interest.
schema Parent schema of tables.
max_results Maximum number of tables to return (default: 50, max: 50).

omit_columns Whether to omit the columns of the table from the response or not.
omit_properties
Whether to omit the properties of the table from the response or not.

omit_username Whether to omit the username of the table (e.g. owner, updated_by, created_by)
from the response or not.

include_browse Whether to include tables in the response for which the principal can only access
selective metadata for.

db_uc_tables_summaries 161

include_delta_metadata
Whether delta metadata should be included in the response.

include_manifest_capabilities
Whether to include a manifest containing capabilities the table has.

page_token Opaque token used to get the next page of results. Optional.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Table Management: db_uc_tables_delete(), db_uc_tables_exists(),
db_uc_tables_get(), db_uc_tables_summaries()

db_uc_tables_summaries
List Table Summaries (Unity Catalog)

Description

List Table Summaries (Unity Catalog)

Usage

db_uc_tables_summaries(
catalog,
schema_name_pattern = NULL,
table_name_pattern = NULL,
max_results = 10000,
include_manifest_capabilities = FALSE,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

162 db_uc_volumes_create

Arguments

catalog Name of parent catalog for tables of interest.
schema_name_pattern
A sql LIKE pattern (% and _) for schema names. All schemas will be returned if
not set or empty.
table_name_pattern
A sql LIKE pattern (% and _) for table names. All tables will be returned if not
set or empty.
max_results Maximum number of summaries for tables to return (default: 10000, max:
10000). If not set, the page length is set to a server configured value.
include_manifest_capabilities
Whether to include a manifest containing capabilities the table has.

page_token Opaque token used to get the next page of results. Optional.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Table Management: db_uc_tables_delete(), db_uc_tables_exists(),
db_uc_tables_get(), db_uc_tables_list()

db_uc_volumes_create Update Volume (Unity Catalog)

Description

Update Volume (Unity Catalog)

Usage

db_uc_volumes_create(
catalog,
schema,
volume,
volume_type = c("MANAGED", "EXTERNAL"),
storage_location = NULL,
comment = NULL,
host = db_host(),

db_uc_volumes_delete 163

token = db_token(),
perform_request = TRUE

)

Arguments
catalog Parent catalog of volume
schema Parent schema of volume
volume Volume name.

volume_type Either '"MANAGED' or 'EXTERNAL"'.
storage_location
The storage location on the cloud, only specified when volume_typeis 'EXTERNAL '.

comment The comment attached to the volume.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Volume Management: db_uc_volumes_delete(), db_uc_volumes_get(),
db_uc_volumes_list(), db_uc_volumes_update()

db_uc_volumes_delete Delete Volume (Unity Catalog)

Description

Delete Volume (Unity Catalog)

Usage

db_uc_volumes_delete(
catalog,
schema,
volume,
host = db_host(),
token = db_token(),
perform_request = TRUE

164 db_uc_volumes_get

Arguments
catalog Parent catalog of volume
schema Parent schema of volume
volume Volume name.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

Boolean

See Also

Other Unity Catalog Volume Management: db_uc_volumes_create(), db_uc_volumes_get(),
db_uc_volumes_list(), db_uc_volumes_update()

db_uc_volumes_get Get Volume (Unity Catalog)

Description

Get Volume (Unity Catalog)

Usage

db_uc_volumes_get(
catalog,
schema,
volume,
include_browse = TRUE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
catalog Parent catalog of volume
schema Parent schema of volume
volume Volume name.

include_browse Whether to include volumes in the response for which the principal can only
access selective metadata for.

db_uc_volumes_list 165

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Value

List

See Also

Other Unity Catalog Volume Management: db_uc_volumes_create(), db_uc_volumes_delete(),
db_uc_volumes_list(), db_uc_volumes_update()

db_uc_volumes_list List Volumes (Unity Catalog)

Description

List Volumes (Unity Catalog)

Usage

db_uc_volumes_list(
catalog,
schema,
max_results = 10000,
include_browse = TRUE,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog Parent catalog of volume
schema Parent schema of volume
max_results Maximum number of volumes to return (default: 10000).

include_browse Whether to include volumes in the response for which the principal can only
access selective metadata for.

page_token Opaque token used to get the next page of results. Optional.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

166 db_uc_volumes_update

Value

List

See Also

Other Unity Catalog Volume Management: db_uc_volumes_create(), db_uc_volumes_delete(),
db_uc_volumes_get (), db_uc_volumes_update()

db_uc_volumes_update Update Volume (Unity Catalog)

Description

Update Volume (Unity Catalog)

Usage

db_uc_volumes_update(
catalog,
schema,
volume,
owner = NULL,
comment = NULL,
new_name = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
catalog Parent catalog of volume
schema Parent schema of volume
volume Volume name.
owner The identifier of the user who owns the volume (Optional).
comment The comment attached to the volume (Optional).
new_name New name for the volume (Optional).
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_volume_delete 167

Value

List

See Also

Other Unity Catalog Volume Management: db_uc_volumes_create(), db_uc_volumes_delete(),
db_uc_volumes_get (), db_uc_volumes_list()

db_volume_delete Volume FileSystem Delete

Description

Volume FileSystem Delete

Usage

db_volume_delete(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_dir_create(), db_volume_dir_delete(), db_volume_dir_exists(),
db_volume_file_exists(),db_volume_list(), db_volume_read(), db_volume_upload_dir(),
db_volume_write()

168 db_volume_dir_delete

db_volume_dir_create Volume FileSystem Create Directory

Description

Volume FileSystem Create Directory

Usage

db_volume_dir_create(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_delete(), db_volume_dir_exists(),
db_volume_file_exists(),db_volume_list(), db_volume_read(), db_volume_upload_dir(),
db_volume_write()

db_volume_dir_delete Volume FileSystem Delete Directory

Description

Volume FileSystem Delete Directory

db_volume_dir_exists 169

Usage

db_volume_dir_delete(
path,
recursive = FALSE,
verbose = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
recursive If TRUE, recursively delete directory contents (default: FALSE)
verbose If TRUE, announce each file/directory deletion (default: FALSE)
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_exists(),
db_volume_file_exists(),db_volume_list(), db_volume_read(), db_volume_upload_dir(),
db_volume_write()

db_volume_dir_exists Volume FileSystem Check Directory Exists

Description

Volume FileSystem Check Directory Exists

Usage

db_volume_dir_exists(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

170 db_volume_file_exists

Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_file_exists(),db_volume_list(), db_volume_read(), db_volume_upload_dir(),
db_volume_write()

db_volume_file_exists Volume FileSystem File Status

Description

Volume FileSystem File Status

Usage

db_volume_file_exists(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_dir_exists(),db_volume_list(),db_volume_read(), db_volume_upload_dir(),
db_volume_write()

db_volume_list 171

db_volume_list Volume FileSystem List Directory Contents

Description

Volume FileSystem List Directory Contents

Usage

db_volume_list(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_dir_exists(),db_volume_file_exists(), db_volume_read(), db_volume_upload_dir(),
db_volume_write()

db_volume_read Volume FileSystem Read

Description

Return the contents of a file within a volume (up to 5GiB).

172 db_volume_upload_dir

Usage

db_volume_read(
path,
destination,
host = db_host(),
token = db_token(),
perform_request = TRUE,
progress = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
destination Path to write downloaded file to.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

progress If TRUE, show progress bar for file operations (default: TRUE for uploads/downloads,
FALSE for other operations)

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_dir_exists(),db_volume_file_exists(), db_volume_list(), db_volume_upload_dir(),
db_volume_write()

db_volume_upload_dir Upload Directory to Volume in Parallel

Description

Upload all files from a local directory to a volume directory using parallel requests.

Usage

db_volume_upload_dir(
local_dir,
volume_dir,
overwrite = TRUE,
preserve_structure = TRUE,
host = db_host(),
token = db_token()

db_volume_write 173

Arguments
local_dir Path to local directory containing files to upload
volume_dir Volume directory path (must start with /Volumes/)
overwrite Flag to overwrite existing files (default: TRUE)

preserve_structure
If TRUE, preserve subdirectory structure (default: TRUE)

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
Value

TRUE if all uploads successful

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_dir_exists(),db_volume_file_exists(),db_volume_list(), db_volume_read(),
db_volume_write()

db_volume_write Volume FileSystem Write

Description

Upload a file to volume filesystem.

Usage
db_volume_write(
path,
file = NULL,

overwrite = FALSE,

host = db_host(),

token = db_token(),
perform_request = TRUE,
progress = TRUE

)
Arguments
path Absolute path of the file in the Files API, omitting the initial slash.
file Path to a file on local system, takes precedent over path.
overwrite Flag (Default: FALSE) that specifies whether to overwrite existing files.

host Databricks workspace URL, defaults to calling db_host ().

174 db_vs_endpoints_create

token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

progress If TRUE, show progress bar for file operations (default: TRUE for uploads/downloads,
FALSE for other operations)
Details
Uploads a file of up to 5 GiB.

See Also

Other Volumes FileSystem API: db_volume_delete(), db_volume_dir_create(), db_volume_dir_delete(),
db_volume_dir_exists(),db_volume_file_exists(), db_volume_list(), db_volume_read(),
db_volume_upload_dir()

db_vs_endpoints_create
Create a Vector Search Endpoint

Description

Create a Vector Search Endpoint

Usage

db_vs_endpoints_create(
name,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
name Name of vector search endpoint
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

This function can take a few moments to run.

db_vs_endpoints_delete 175

See Also

Other Vector Search API: db_vs_endpoints_delete(), db_vs_endpoints_get(), db_vs_endpoints_list(),
db_vs_indexes_create(), db_vs_indexes_delete(),db_vs_indexes_delete_data(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(), db_vs_indexes_scan(),

db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_endpoints_delete

Delete a Vector Search Endpoint

Description

Delete a Vector Search Endpoint

Usage

db_vs_endpoints_delete(
endpoint,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
endpoint Name of vector search endpoint
host Databricks workspace URL, defaults to calling db_host ().
token

Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_get(), db_vs_endpoints_list(),
db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),db_vs_indexes_scan(),

db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

176 db_vs_endpoints_list

db_vs_endpoints_get Get a Vector Search Endpoint

Description

Get a Vector Search Endpoint

Usage

db_vs_endpoints_get(
endpoint,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
endpoint Name of vector search endpoint
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_list(),
db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(),delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_endpoints_list List Vector Search Endpoints

Description

List Vector Search Endpoints

db_vs_indexes_create 177

Usage

db_vs_endpoints_list(
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
page_token Token for pagination
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_create Create a Vector Search Index

Description

Create a Vector Search Index

Usage

db_vs_indexes_create(
name,
endpoint,
primary_key,
spec,
host = db_host(),
token = db_token(),
perform_request = TRUE

178 db_vs_indexes_delete

Arguments
name Name of vector search index
endpoint Name of vector search endpoint
primary_key Vector search primary key column name
spec Either delta_sync_index_spec() or direct_access_index_spec().
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_delete(), db_vs_indexes_delete_data(),db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_delete Delete a Vector Search Index

Description

Delete a Vector Search Index

Usage

db_vs_indexes_delete(
index,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
index Name of vector search index
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

db_vs_indexes_delete _data 179

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete_data(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_delete_data

Delete Data from a Vector Search Index

Description

Delete Data from a Vector Search Index

Usage

db_vs_indexes_delete_data(
index,
primary_keys,
host = db_host(),
token = db_token(),
perform_request = TRUE

Arguments

index Name of vector search index
primary_keys primary keys to be deleted from index
host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_get(),
db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),db_vs_indexes_scan(),

db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

180 db_vs_indexes_list

db_vs_indexes_get Get a Vector Search Index

Description

Get a Vector Search Index

Usage

db_vs_indexes_get(
index,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
index Name of vector search index
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_list(),db_vs_indexes_query(),db_vs_indexes_query_next_page(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(),direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_list List Vector Search Indexes

Description

List Vector Search Indexes

db_vs_indexes_query 181

Usage

db_vs_indexes_list(
endpoint,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
endpoint Name of vector search endpoint
page_token page_token returned from prior query
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get (), db_vs_indexes_query(), db_vs_indexes_query_next_page(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(),delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_query Query a Vector Search Index

Description

Query a Vector Search Index

Usage

db_vs_indexes_query(
index,
columns,
filters_json,
query_vector = NULL,
query_text = NULL,
score_threshold = 0,
query_type = c("ANN", "HYBRID"),
num_results = 10,
host = db_host(),

182 db_vs_indexes_query

token = db_token(),
perform_request = TRUE

)

Arguments
index Name of vector search index
columns Column names to include in response

filters_json JSON string representing query filters, see details.
query_vector Numeric vector. Required for direct vector access index and delta sync index
using self managed vectors.

query_text Required for delta sync index using model endpoint.
score_threshold
Numeric score threshold for the approximate nearest neighbour (ANN) search.

Defaults to 0.0.
query_type One of ANN (default) or HYBRID
num_results Number of returns to return (default: 10).
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

You cannot specify both query_vector and query_text at the same time.

filter_jsons examples:

e '"{"id<": 5}': Filter for id less than 5

o '"{"id >": 5}': Filter for id greater than 5

e '{"id <=": 5}": Filter for id less than equal to 5

e '{"id>=": 5}": Filter for id greater than equal to 5

e '{"id": 53}': Filter for id equal to 5

e '{"id": 5, "age >=": 18}": Filter for id equal to 5 and age greater than equal to 18
filter_jsons will convert attempt to use jsonlite: :toJSON on any non character vectors.

Refer to docs for Vector Search.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(),db_vs_indexes_list(),db_vs_indexes_query_next_page(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#use-filters-on-queries

db_vs_indexes_query_next_page 183

Examples

Not run:
db_vs_indexes_sync(
index = "myindex”,
columns = c("id", "text"),
query_vector = c(1, 2, 3)

)

End(Not run)

db_vs_indexes_query_next_page
Query Vector Search Next Page

Description

Query Vector Search Next Page

Usage

db_vs_indexes_query_next_page(
index,
endpoint,
page_token = NULL,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
index Name of vector search index
endpoint Name of vector search endpoint
page_token page_token returned from prior query
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_scan(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(),delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

184 db_vs_indexes_scan

db_vs_indexes_scan Scan a Vector Search Index

Description

Scan a Vector Search Index

Usage

db_vs_indexes_scan(
endpoint,
index,
last_primary_key,
num_results = 10,
host = db_host(),
token = db_token(),
perform_request = TRUE

)

Arguments
endpoint Name of vector search endpoint to scan
index Name of vector search index to scan

last_primary_key
Primary key of the last entry returned in previous scan

num_results Number of returns to return (default: 10)
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Scan the specified vector index and return the first num_results entries after the exclusive primary_key.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_vs_indexes_sync 185

db_vs_indexes_sync Synchronize a Vector Search Index

Description

Synchronize a Vector Search Index

Usage

db_vs_indexes_sync(
index,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
index Name of vector search index
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request

If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Triggers a synchronization process for a specified vector index. The index must be a ’Delta Sync’
index.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_upsert_data(), delta_sync_index_spec(), direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

186 db_workspace_delete

db_vs_indexes_upsert_data
Upsert Data into a Vector Search Index

Description

Upsert Data into a Vector Search Index

Usage

db_vs_indexes_upsert_data(
index,
df,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
index Name of vector search index
df data.frame containing data to upsert
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(),db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_sync(), delta_sync_index_spec(),direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

db_workspace_delete Delete Object/Directory (Workspaces)

Description

Delete Object/Directory (Workspaces)

db_workspace_export 187

Usage

db_workspace_delete(
path,
recursive = FALSE,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the notebook or directory.
recursive Flag that specifies whether to delete the object recursively. False by default.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Delete an object or a directory (and optionally recursively deletes all objects in the directory). If
path does not exist, this call returns an error RESOURCE_DOES_NOT_EXIST. If path is a non-empty
directory and recursive is set to false, this call returns an error DIRECTORY_NOT_EMPTY.

Object deletion cannot be undone and deleting a directory recursively is not atomic.

See Also

Other Workspace API: db_workspace_export (), db_workspace_get_status(), db_workspace_import(),
db_workspace_list(), db_workspace_mkdirs()

db_workspace_export Export Notebook or Directory (Workspaces)

Description

Export Notebook or Directory (Workspaces)

Usage
db_workspace_export(
path,
format c("AUTO", "SOURCE", "HTML", "JUPYTER", "DBC", "R_MARKDOWN"),

host = db_host(),
token = db_token(),
output_path = NULL,

188 db_workspace_export

direct_download = FALSE,
perform_request = TRUE
)
Arguments
path Absolute path of the notebook or directory.
format One of AUTO, SOURCE, HTML, JUPYTER, DBC, R_MARKDOWN. Default is SOURCE.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
output_path Path to export file to, ensure to include correct suffix.

direct_download
Boolean (default: FALSE), if TRUE download file contents directly to file. Must
also specify output_path.

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Export a notebook or contents of an entire directory. If path does not exist, this call returns an error
RESOURCE_DOES_NOT_EXIST.

You can export a directory only in DBC format. If the exported data exceeds the size limit, this call
returns an error MAX_NOTEBOOK_SIZE_EXCEEDED. This API does not support exporting a library.

At this time we do not support the direct_download parameter and returns a base64 encoded
string.

See More.

Value

base64 encoded string

See Also

Other Workspace API: db_workspace_delete(), db_workspace_get_status(), db_workspace_import(),
db_workspace_list(), db_workspace_mkdirs()

https://docs.databricks.com/api/workspace/workspace/export

db_workspace_get_status 189

db_workspace_get_status
Get Object Status (Workspaces)

Description

Gets the status of an object or a directory.

Usage

db_workspace_get_status(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the notebook or directory.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

If path does not exist, this call returns an error RESOURCE_DOES_NOT_EXIST.

See Also

Other Workspace API: db_workspace_delete(), db_workspace_export(), db_workspace_import(),
db_workspace_list(), db_workspace_mkdirs()

db_workspace_import Import Notebook/Directory (Workspaces)

Description

Import a notebook or the contents of an entire directory.

190 db_workspace_import

Usage
db_workspace_import(
path,
file = NULL,

content = NULL,

format = c("AUTO", "SOURCE", "HTML", "JUPYTER"”, "DBC", "R_MARKDOWN"),
language = NULL,

overwrite = FALSE,

host = db_host(),

token = db_token(),

perform_request = TRUE

)
Arguments

path Absolute path of the notebook or directory.

file Path of local file to upload. See formats parameter.

content Content to upload, this will be base64-encoded and has a limit of 10MB.

format One of AUTO, SOURCE, HTML, JUPYTER, DBC, R_MARKDOWN. Default is SOURCE

language One of R, PYTHON, SCALA, SQL. Required when format is SOURCE otherwise ig-
nored.

overwrite Flag that specifies whether to overwrite existing object. FALSE by default. For
DBC overwrite is not supported since it may contain a directory.

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

file and content are mutually exclusive. If both are specified content will be ignored.

If path already exists and overwrite is set to FALSE, this call returns an error RESOURCE_ALREADY_EXISTS.
You can use only DBC format to import a directory.

See Also

Other Workspace API: db_workspace_delete(), db_workspace_export(), db_workspace_get_status(),
db_workspace_list(), db_workspace_mkdirs()

db_workspace_list 191

db_workspace_list List Directory Contents (Workspaces)

Description

List Directory Contents (Workspaces)

Usage

db_workspace_list(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the notebook or directory.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.
Details
List the contents of a directory, or the object if it is not a directory. If the input path does not exist,
this call returns an error RESOURCE_DOES_NOT_EXIST.
See Also

Other Workspace API: db_workspace_delete(), db_workspace_export(), db_workspace_get_status(),
db_workspace_import(), db_workspace_mkdirs()

db_workspace_mkdirs Make a Directory (Workspaces)

Description

Make a Directory (Workspaces)

192 db_wsid

Usage

db_workspace_mkdirs(
path,
host = db_host(),
token = db_token(),
perform_request = TRUE

)
Arguments
path Absolute path of the directory.
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

perform_request
If TRUE (default) the request is performed, if FALSE the httr2 request is returned
without being performed.

Details

Create the given directory and necessary parent directories if they do not exists. If there exists an ob-
ject (not a directory) at any prefix of the input path, this call returns an error RESOURCE_ALREADY_EXISTS.
If this operation fails it may have succeeded in creating some of the necessary parent directories.

See Also

Other Workspace API: db_workspace_delete(), db_workspace_export(), db_workspace_get_status(),
db_workspace_import(), db_workspace_list()

db_wsid Fetch Databricks Workspace ID

Description

Workspace ID, optionally specified to make connections pane more powerful. Specified as an
environment variable DATABRICKS_WSID. .databrickscfg will be searched if db_profile and
use_databrickscfg are set or if Posit Workbench managed OAuth credentials are detected.

Refer to api authentication docs

Usage
db_wsid(profile = default_config_profile())

Arguments

profile Profile to use when fetching from environment variable (e.g. .Renviron) or
.databricksfg file

https://docs.databricks.com/aws/en/dev-tools/auth

delta_sync_index_spec 193

Details

The behaviour is subject to change depending if db_profile and use_databrickscfg options are
set.

e use_databrickscfg: Boolean (default: FALSE), determines if credentials are fetched from
profile of .databrickscfg or .Renviron

e db_profile: String (default: NULL), determines profile used. .databrickscfg will automat-
ically be used when Posit Workbench managed OAuth credentials are detected.

See vignette on authentication for more details.

Value

databricks workspace ID

See Also
Other Databricks Authentication Helpers: db_host (), db_read_netrc(), db_token()

delta_sync_index_spec Delta Sync Vector Search Index Specification

Description

Delta Sync Vector Search Index Specification

Usage

delta_sync_index_spec(
source_table,
embedding_writeback_table = NULL,
embedding_source_columns = NULL,
embedding_vector_columns = NULL,
pipeline_type = c("TRIGGERED", "CONTINUOUS")

Arguments

source_table The name of the source table.
embedding_writeback_table
Name of table to sync index contents and computed embeddings back to delta
table, see details.
embedding_source_columns
The columns that contain the embedding source, must be one or list of embedding_source_column()
embedding_vector_columns
The columns that contain the embedding, must be one or list of embedding_vector_column()

pipeline_type Pipeline execution mode, see details.

194 direct_access_index_spec

Details
pipeline_type is either:

e "TRIGGERED": If the pipeline uses the triggered execution mode, the system stops processing
after successfully refreshing the source table in the pipeline once, ensuring the table is updated
based on the data available when the update started.

» "CONTINUOUS" If the pipeline uses continuous execution, the pipeline processes new data as it
arrives in the source table to keep vector index fresh.

The only supported naming convention for embedding_writeback_tableis "<index_name>_writeback_table".

See Also

db_vs_indexes_create()

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_sync(), db_vs_indexes_upsert_data(),direct_access_index_spec(),
embedding_source_column(), embedding_vector_column()

direct_access_index_spec
Delta Sync Vector Search Index Specification

Description

Delta Sync Vector Search Index Specification

Usage

direct_access_index_spec(

embedding_source_columns = NULL,
embedding_vector_columns = NULL,
schema
)
Arguments

embedding_source_columns
The columns that contain the embedding source, must be one or list of embedding_source_column()
embedding_vector_columns
The columns that contain the embedding, must be one or list of embedding_vector_column()
vectors.

schema Named list, names are column names, values are types. See details.

docker_image 195

Details

The supported types are:

e "integer"
e "long”

e "float”

* "double”
* "boolean”
e "string”
* "date”

e "timestamp”
e "array<float>": supported for vector columns

* "array<double>": supported for vector columns

See Also

db_vs_indexes_create()

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(),
embedding_source_column(), embedding_vector_column()

docker_image Docker Image

Description

Docker image connection information.

Usage

docker_image(url, username, password)

Arguments
url URL for the Docker image.
username User name for the Docker repository.
password Password for the Docker repository.
Details

Uses basic authentication, strongly recommended that credentials are not stored in any scripts and
environment variables should be used.

196 email_notifications

See Also

db_cluster_create(), db_cluster_edit()

email_notifications Email Notifications

Description

Email Notifications

Usage

email_notifications(
on_start = NULL,
on_success = NULL,
on_failure = NULL,
no_alert_for_skipped_runs = TRUE

)
Arguments

on_start List of email addresses to be notified when a run begins. If not specified on job
creation, reset, or update, the list is empty, and notifications are not sent.

on_success List of email addresses to be notified when a run successfully completes. A
run is considered to have completed successfully if it ends with a TERMINATED
life_cycle_state and a SUCCESSFUL result_state. If not specified on job
creation, reset, or update, the list is empty, and notifications are not sent.

on_failure List of email addresses to be notified when a run unsuccessfully completes. A

run is considered to have completed unsuccessfully if it ends with an INTERNAL_ERROR
life_cycle_state or a SKIPPED, FAILED, or TIMED_OUT result_state. If
this is not specified on job creation, reset, or update the list is empty, and notifi-
cations are not sent.

no_alert_for_skipped_runs
If TRUE (default), do not send email to recipients specified in on_failure if the
run is skipped.

See Also

job_task()

Other Task Objects: condition_task(), for_each_task(), libraries(), new_cluster(), notebook_task(),
pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(), spark_python_task(),
spark_submit_task(), sql_file_task(), sql_query_task()

embedding_source_column 197

embedding_source_column
Embedding Source Column

Description

Embedding Source Column

Usage

embedding_source_column(name, model_endpoint_name)

Arguments

name Name of the column
model_endpoint_name
Name of the embedding model endpoint

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(),
direct_access_index_spec(), embedding_vector_column()

embedding_vector_column
Embedding Vector Column

Description

Embedding Vector Column

Usage

embedding_vector_column(name, dimension)

Arguments

name Name of the column

dimension dimension of the embedding vector

198 for_each_task

See Also

Other Vector Search API: db_vs_endpoints_create(), db_vs_endpoints_delete(), db_vs_endpoints_get(),
db_vs_endpoints_list(),db_vs_indexes_create(), db_vs_indexes_delete(), db_vs_indexes_delete_data(),
db_vs_indexes_get(), db_vs_indexes_list(), db_vs_indexes_query(), db_vs_indexes_query_next_page(),
db_vs_indexes_scan(), db_vs_indexes_sync(), db_vs_indexes_upsert_data(), delta_sync_index_spec(),
direct_access_index_spec(), embedding_source_column()

file_storage_info File Storage Information

Description

File Storage Information

Usage

file_storage_info(destination)

Arguments

destination File destination. Example: file:/my/file.sh.

Details

The file storage type is only available for clusters set up using Databricks Container Services.

See Also
init_script_info()

Other Init Script Info Objects: dbfs_storage_info(), s3_storage_info()

for_each_task For Each Task

Description

For Each Task

Usage

for_each_task(inputs, task, concurrency = 1)

gcp_attributes 199

Arguments
inputs Array for task to iterate on. This can be a JSON string or a reference to an array
parameter.
task Must be a job_task().
concurrency Maximum allowed number of concurrent runs of the task.
See Also

Other Task Objects: condition_task(),email_notifications(), libraries(), new_cluster(),
notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

gcp_attributes GCP Attributes

Description

GCP Attributes

Usage

gcp_attributes(use_preemptible_executors = TRUE, google_service_account = NULL)

Arguments

use_preemptible_executors

Boolean (Default: TRUE). If TRUE Uses preemptible executors
google_service_account

Google service account email address that the cluster uses to authenticate with

Google Identity. This field is used for authentication with the GCS and Big-
Query data sources.
Details
For use with GCS and BigQuery, your Google service account that you use to access the data source
must be in the same project as the SA that you specified when setting up your Databricks account.
See Also

db_cluster_create(), db_cluster_edit()

Other Cloud Attributes: aws_attributes(), azure_attributes()

200 get_and_start_cluster

get_and_start_cluster Get and Start Cluster

Description

Get and Start Cluster

Usage

get_and_start_cluster(
cluster_id,
polling_interval = 5,
host = db_host(),
token = db_token(),
silent = FALSE

Arguments

cluster_id Canonical identifier for the cluster.
polling_interval
Number of seconds to wait between status checks

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().

silent Boolean (default: FALSE), will emit cluster state progress if TRUE.
Details

Get information regarding a Databricks cluster. If the cluster is inactive it will be started and wait
until the cluster is active.

Value

db_cluster_get()

See Also

db_cluster_get() and db_cluster_start().

Other Clusters API: db_cluster_create(),db_cluster_edit(), db_cluster_events(),db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(),db_cluster_list_zones(), db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_restart(),db_cluster_runtime_versions(),
db_cluster_start(), db_cluster_terminate(), db_cluster_unpin(), get_latest_dbr()

Other Cluster Helpers: get_latest_dbr()

get_and_start_warehouse 201

get_and_start_warehouse
Get and Start Warehouse

Description

Get and Start Warehouse

Usage

get_and_start_warehouse(
id,
polling_interval = 5,
host = db_host(),
token = db_token()

Arguments

id ID of the SQL warehouse.

polling_interval
Number of seconds to wait between status checks

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
Details

Get information regarding a Databricks cluster. If the cluster is inactive it will be started and wait
until the cluster is active.

Value

db_sql_warehouse_get()

See Also

db_sql_warehouse_get () and db_sqgl_warehouse_start().

Other Warehouse API: db_sql_global_warehouse_get(), db_sql_warehouse_create(), db_sql_warehouse_delete()
db_sqgl_warehouse_edit(), db_sql_warehouse_get (), db_sql_warehouse_list(), db_sql_warehouse_start(),
db_sqgl_warehouse_stop()

202 get_latest_dbr

get_latest_dbr Get Latest Databricks Runtime (DBR)

Description

Get Latest Databricks Runtime (DBR)

Usage

get_latest_dbr(lts, ml, gpu, photon, host = db_host(), token = db_token())

Arguments

1ts Boolean, if TRUE returns only LTS runtimes

ml Boolean, if TRUE returns only ML runtimes

gpu Boolean, if TRUE returns only ML GPU runtimes

photon Boolean, if TRUE returns only photon runtimes

host Databricks workspace URL, defaults to calling db_host ().

token Databricks workspace token, defaults to calling db_token().
Details

There are runtime combinations that are not possible, such as GPU/ML and photon. This function
does not permit invalid combinations.

Value

Named list

See Also

Other Clusters API: db_cluster_create(), db_cluster_edit(), db_cluster_events(), db_cluster_get(),
db_cluster_list(),db_cluster_list_node_types(),db_cluster_list_zones(), db_cluster_perm_delete(),
db_cluster_pin(),db_cluster_resize(), db_cluster_restart(), db_cluster_runtime_versions(),
db_cluster_start(),db_cluster_terminate(), db_cluster_unpin(), get_and_start_cluster()

Other Cluster Helpers: get_and_start_cluster()

git_source 203

git_source Git Source for Job Notebook Tasks

Description

Git Source for Job Notebook Tasks

Usage

git_source(
git_url,
git_provider,
reference,
type = c("branch”, "tag", "commit")

Arguments

git_url URL of the repository to be cloned by this job. The maximum length is 300
characters.

git_provider Unique identifier of the service used to host the Git repository. Must be one of:
github, bitbucketcloud, azuredevopsservices, githubenterprise, bitbucketserver,
gitlab, gitlabenterpriseedition, awscodecommit.

reference Branch, tag, or commit to be checked out and used by this job.
type Type of reference being used, one of: branch, tag, commit.
init_script_info Init Script Info
Description

Init Script Info

Usage

init_script_info(...)

Arguments
Accepts multiple instances s3_storage_info(), file_storage_info(), or
dbfs_storage_info().

Details

file_storage_info() is only available for clusters set up using Databricks Container Services.

For instructions on using init scripts with Databricks Container Services, see Use an init script.

https://docs.databricks.com/clusters/custom-containers.html#containers-init-script

204 is.access_control_request

See Also

db_cluster_create(), db_cluster_edit()

in_databricks_nb Detect if running within Databricks Notebook

Description

Detect if running within Databricks Notebook

Usage

in_databricks_nb()

Details

R sessions on Databricks can be detected via various environment variables and directories.

Value

Boolean

is.access_control_request
Test if object is of class AccessControlRequest

Description

Test if object is of class AccessControlRequest

Usage

is.access_control_request(x)

Arguments

X An object

Value

TRUE if the object inherits from the AccessControlRequest class.

is.access_control_req_group

205

is.access_control_req_group
Test if object is of class AccessControlRequestForGroup

Description

Test if object is of class AccessControlRequestForGroup

Usage

is.access_control_req_group(x)

Arguments

X An object

Value

TRUE if the object inherits from the AccessControlRequestForGroup class.

is.access_control_req_user
Test if object is of class AccessControlRequestForUser

Description

Test if object is of class AccessControlRequestForUser

Usage

is.access_control_req_user(x)

Arguments

X An object

Value

TRUE if the object inherits from the AccessControlRequestForUser class.

206

is.azure_attributes

is.aws_attributes Test if object is of class AwsAttributes

Description

Test if object is of class AwsAttributes

Usage

is.aws_attributes(x)

Arguments

X An object

Value

TRUE if the object inherits from the AwsAttributes class.

is.azure_attributes Test if object is of class AzureAttributes

Description

Test if object is of class AzureAttributes

Usage

is.azure_attributes(x)

Arguments

X An object

Value

TRUE if the object inherits from the AzureAttributes class.

is.cluster_autoscale

207

is.cluster_autoscale Test if object is of class AutoScale

Description

Test if object is of class AutoScale

Usage

is.cluster_autoscale(x)

Arguments

X An object

Value

TRUE if the object inherits from the AutoScale class.

is.cluster_log_conf Test if object is of class ClusterLogConf

Description

Test if object is of class ClusterLogConf

Usage

is.cluster_log_conf(x)

Arguments

X An object

Value

TRUE if the object inherits from the ClusterLogConf class.

208

is.cron_schedule

is.condition_task Test if object is of class ConditionTask

Description

Test if object is of class ConditionTask

Usage

is.condition_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the ConditionTask class.

is.cron_schedule Test if object is of class CronSchedule

Description

Test if object is of class CronSchedule

Usage

is.cron_schedule(x)

Arguments

X An object

Value

TRUE if the object inherits from the CronSchedule class.

is.dbfs_storage_info

209

is.dbfs_storage_info Test if object is of class DbfsStoragelnfo

Description

Test if object is of class DbfsStoragelnfo

Usage

is.dbfs_storage_info(x)

Arguments

X An object

Value

TRUE if the object inherits from the DbfsStorageInfo class.

is.delta_sync_index Test if object is of class DeltaSyncIndex

Description

Test if object is of class DeltaSyncIndex

Usage

is.delta_sync_index(x)

Arguments

X An object

Value

TRUE if the object inherits from the DeltaSyncIndex class.

210 is.docker_image

is.direct_access_index
Test if object is of class DirectAccessIndex

Description

Test if object is of class DirectAccessIndex

Usage

is.direct_access_index(x)

Arguments

X An object

Value

TRUE if the object inherits from the DirectAccessIndex class.

is.docker_image Test if object is of class Dockerlmage

Description

Test if object is of class DockerImage

Usage

is.docker_image(x)

Arguments

X An object

Value

TRUE if the object inherits from the DockerImage class.

is.email_notifications

211

is.email_notifications
Test if object is of class JobEmailNotifications

Description

Test if object is of class JobEmailNotifications

Usage

is.email_notifications(x)

Arguments

X An object

Value

TRUE if the object inherits from the JobEmailNotifications class.

is.embedding_source_column
Test if object is of class EmbeddingSourceColumn

Description

Test if object is of class EmbeddingSourceColumn

Usage

is.embedding_source_column(x)

Arguments

X An object

Value

TRUE if the object inherits from the EmbeddingSourceColumn class.

212

is.file_storage_info

is.embedding_vector_column
Test if object is of class EmbeddingVectorColumn

Description

Test if object is of class EmbeddingVectorColumn

Usage

is.embedding_vector_column(x)

Arguments

X An object

Value

TRUE if the object inherits from the EmbeddingVectorColumn class.

is.file_storage_info Test if object is of class FileStoragelnfo

Description

Test if object is of class FileStorageInfo

Usage

is.file_storage_info(x)

Arguments

X An object

Value

TRUE if the object inherits from the FileStorageInfo class.

is.for_each_task

213

is.for_each_task Test if object is of class ForEachTask

Description

Test if object is of class ForEachTask

Usage

is.for_each_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the ForEachTask class.

is.gcp_attributes Test if object is of class GepAttributes

Description

Test if object is of class GepAttributes

Usage

is.gcp_attributes(x)

Arguments

X An object

Value

TRUE if the object inherits from the GecpAttributes class.

214

is.init_script_info

is.git_source Test if object is of class GitSource

Description

Test if object is of class GitSource

Usage

is.git_source(x)

Arguments

X An object

Value

TRUE if the object inherits from the GitSource class.

is.init_script_info Test if object is of class InitScriptInfo

Description

Test if object is of class InitScriptInfo

Usage

is.init_script_info(x)

Arguments

X An object

Value

TRUE if the object inherits from the InitScriptInfo class.

is.job_task 215

is.job_task Test if object is of class JobTaskSettings

Description

Test if object is of class JobTaskSettings

Usage

is.job_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the JobTaskSettings class.

is.libraries Test if object is of class Libraries

Description

Test if object is of class Libraries

Usage

is.libraries(x)

Arguments

X An object

Value

TRUE if the object inherits from the Libraries class.

216

is.lib_cran

is.library Test if object is of class Library

Description

Test if object is of class Library

Usage

is.library(x)

Arguments

X An object

Value

TRUE if the object inherits from the Library class.

is.lib_cran Test if object is of class CranLibrary

Description

Test if object is of class CranLibrary

Usage

is.lib_cran(x)

Arguments

X An object

Value

TRUE if the object inherits from the CranLibrary class.

is.lib_egg 217

is.lib_egg Test if object is of class EggLibrary

Description

Test if object is of class EggLibrary

Usage

is.lib_egg(x)

Arguments

X An object

Value

TRUE if the object inherits from the EgglL ibrary class.

is.lib_jar Test if object is of class JarLibrary

Description

Test if object is of class JarLibrary

Usage

is.lib_jar(x)

Arguments

X An object

Value

TRUE if the object inherits from the JarLibrary class.

218 is.lib_pypi

is.lib_maven Test if object is of class MavenLibrary

Description

Test if object is of class MavenLibrary

Usage

is.lib_maven(x)

Arguments

X An object

Value

TRUE if the object inherits from the MavenLibrary class.

is.lib_pypi Test if object is of class PyPiLibrary

Description

Test if object is of class PyPiLibrary

Usage

is.lib_pypi(x)

Arguments

X An object

Value

TRUE if the object inherits from the PyPiLibrary class.

is.lib_whl

219

is.lib_whl Test if object is of class WhiLibrary

Description

Test if object is of class WhiLibrary

Usage

is.1lib_wh1(x)

Arguments

X An object

Value

TRUE if the object inherits from the WhlLibrary class.

is.new_cluster Test if object is of class NewCluster

Description

Test if object is of class NewCluster

Usage

is.new_cluster(x)

Arguments

X An object

Value

TRUE if the object inherits from the NewCluster class.

220

is.pipeline_task

is.notebook_task Test if object is of class NotebookTask

Description

Test if object is of class NotebookTask

Usage

is.notebook_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the NotebookTask class.

is.pipeline_task Test if object is of class PipelineTask

Description

Test if object is of class PipelineTask

Usage

is.pipeline_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the PipelineTask class.

is.python_wheel_task 221

is.python_wheel_task Test if object is of class PythonWheelTask

Description

Test if object is of class PythonWheelTask

Usage

is.python_wheel_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the PythonWheelTask class.

is.run_job_task Test if object is of class RunJobTask

Description

Test if object is of class RunJobTask

Usage

is.run_job_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the RunJobTask class.

222

is.spark_jar_task

is.s3_storage_info Test if object is of class S3Storagelnfo

Description

Test if object is of class S3Storagelnfo

Usage

is.s3_storage_info(x)

Arguments

X An object

Value

TRUE if the object inherits from the S3StorageInfo class.

is.spark_jar_task Test if object is of class SparkJarTask

Description

Test if object is of class SparkJarTask

Usage

is.spark_jar_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the SparkJarTask class.

is.spark_python_task

223

is.spark_python_task Test if object is of class SparkPythonTask

Description

Test if object is of class SparkPythonTask

Usage

is.spark_python_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the SparkPythonTask class.

is.spark_submit_task Test if object is of class SparkSubmitTask

Description

Test if object is of class SparkSubmitTask

Usage

is.spark_submit_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the SparkSubmitTask class.

224

is.sql_query_task

is.sql_file_task Test if object is of class SqlFileTask

Description

Test if object is of class SqlFileTask

Usage

is.sql_file_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the SqlFileTask class.

is.sql_query_task Test if object is of class SqlQueryTask

Description

Test if object is of class SqlQueryTask

Usage

is.sql_query_task(x)

Arguments

X An object

Value

TRUE if the object inherits from the SqlQueryTask class.

is.valid_task_type

225

is.valid_task_type Test if object is of class JobTask

Description

Test if object is of class JobTask

Usage

is.valid_task_type(x)

Arguments

X An object

Value

TRUE if the object inherits from the JobTask class.

is.vector_search_index_spec
Test if object is of class VectorSearchindexSpec

Description

Test if object is of class VectorSearchIndexSpec

Usage

is.vector_search_index_spec(x)

Arguments

X An object

Value

TRUE if the object inherits from the VectorSearchIndexSpec class.

226 job_task

job_task Job Task

Description

Job Task

Usage

job_task(
task_key,
description = NULL,
depends_on = c(),
existing_cluster_id = NULL,
new_cluster = NULL,
job_cluster_key = NULL,
task,
libraries = NULL,
email_notifications = NULL,
timeout_seconds = NULL,
max_retries = 0,
min_retry_interval_millis = 0,
retry_on_timeout = FALSE,
run_if = c("ALL_SUCCESS"”, "ALL_DONE", "NONE_FAILED", "AT_LEAST_ONE_SUCCESS",
"ALL_FAILED", "AT_LEAST_ONE_FAILED")

)
Arguments

task_key A unique name for the task. This field is used to refer to this task from other
tasks. This field is required and must be unique within its parent job. On
db_jobs_update() or db_jobs_reset(), this field is used to reference the
tasks to be updated or reset. The maximum length is 100 characters.

description An optional description for this task. The maximum length is 4096 bytes.

depends_on Vector of task_key’s specifying the dependency graph of the task. All task_key’s

specified in this field must complete successfully before executing this task. This
field is required when a job consists of more than one task.
existing_cluster_id
ID of an existing cluster that is used for all runs of this task.
new_cluster Instance of new_cluster().
job_cluster_key
Task is executed reusing the cluster specified in db_jobs_create() with job_clusters
parameter.

task One of notebook_task(), spark_jar_task(), spark_python_task(), spark_submit_task(),
pipeline_task(), python_wheel_task().

job_tasks 227

libraries Instance of libraries().

email_notifications
Instance of email_notifications.

timeout_seconds
An optional timeout applied to each run of this job task. The default behavior is
to have no timeout.

max_retries An optional maximum number of times to retry an unsuccessful run. A run is
considered to be unsuccessful if it completes with the FAILED result_state or
INTERNAL_ERROR life_cycle_state. The value -1 means to retry indefinitely
and the value 0 means to never retry. The default behavior is to never retry.

min_retry_interval_millis
Optional minimal interval in milliseconds between the start of the failed run

and the subsequent retry run. The default behavior is that unsuccessful runs are
immediately retried.

retry_on_timeout
Optional policy to specify whether to retry a task when it times out. The default
behavior is to not retry on timeout.

run_if The condition determining whether the task is run once its dependencies have
been completed.

job_tasks Job Tasks

Description

Job Tasks

Usage

job_tasks(...)

Arguments

Multiple Instance of tasks job_task().

See Also

db_jobs_create(), db_jobs_reset(), db_jobs_update()

228 lib_cran

libraries Libraries

Description

Libraries

Usage

libraries(...)

Arguments
Accepts multiple instances of 1ib_jar (), lib_cran(), lib_maven(), lib_pypi(),
lib_wh1(), lib_egg().

Details

Optional list of libraries to be installed on the cluster that executes the task.

See Also
job_task(), lib_jar(), lib_cran(), 1lib_maven(), lib_pypi(), lib_wh1(), lib_egg()

Other Task Objects: condition_task(),email_notifications(), for_each_task(), new_cluster(),
notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

Other Library Objects: 1ib_cran(), lib_egg(), lib_jar(), lib_maven(), lib_pypi(), lib_wh1()

lib_cran Cran Library (R)

Description

Cran Library (R)

Usage

lib_cran(package, repo = NULL)

Arguments
package The name of the CRAN package to install.
repo The repository where the package can be found. If not specified, the default

CRAN repo is used.

Iib_egg 229

See Also

libraries()

Other Library Objects: 1ib_egg(), lib_jar(), lib_maven(), lib_pypi(), lib_wh1(), libraries()

lib_egg Egg Library (Python)

Description

Egg Library (Python)

Usage

lib_egg(egg)

Arguments
egg URI of the egg to be installed. DBFS and S3 URIs are supported. For example:
dbfs:/my/egg or s3://my-bucket/egg. If S3 is used, make sure the cluster
has read access on the library. You may need to launch the cluster with an
instance profile to access the S3 URI.
See Also
libraries()

Other Library Objects: 1ib_cran(), lib_jar(), lib_maven(), lib_pypi (), lib_wh1l(), libraries()

lib_jar Jar Library (Scala)

Description

Jar Library (Scala)

Usage
lib_jar(jar)

Arguments

jar URI of the JAR to be installed. DBFS and S3 URIs are supported. For example:
dbfs:/mnt/databricks/library. jar or s3://my-bucket/library. jar. If
S3 is used, make sure the cluster has read access on the library. You may need
to launch the cluster with an instance profile to access the S3 URL

230 lib_pypi

See Also

libraries()
Other Library Objects: 1ib_cran(), lib_egg(), lib_maven(), lib_pypi (), lib_wh1l(), libraries()

lib_maven Maven Library (Scala)

Description

Maven Library (Scala)

Usage

lib_maven(coordinates, repo = NULL, exclusions = NULL)

Arguments
coordinates Gradle-style Maven coordinates. For example: org. jsoup: jsoup:1.7.2.
repo Maven repo to install the Maven package from. If omitted, both Maven Central
Repository and Spark Packages are searched.
exclusions List of dependencies to exclude. For example: 1ist("s1f4j:s1f4j", "*:hadoop-client").
Maven dependency exclusions.
See Also
libraries()

Other Library Objects: 1ib_cran(), lib_egg(), lib_jar(), lib_pypi(), lib_wh1(), libraries()

lib_pypi PyPi Library (Python)

Description

PyPi Library (Python)

Usage
lib_pypi(package, repo = NULL)

Arguments
package The name of the PyPI package to install. An optional exact version specification
is also supported. Examples: simplejson and simplejson==3.8.0.
repo The repository where the package can be found. If not specified, the default pip

index is used.

https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html

Iib_whl 231

See Also

libraries()

Other Library Objects: 1ib_cran(), lib_egg(), lib_jar(), lib_maven(), lib_whl(), libraries()

lib_whl Wheel Library (Python)

Description

Wheel Library (Python)

Usage

1ib_wh1(whl)

Arguments
whl URI of the wheel or zipped wheels to be installed. DBFS and S3 URIs are
supported. For example: dbfs:/my/whl or s3://my-bucket/whl. If S3 is used,
make sure the cluster has read access on the library. You may need to launch the
cluster with an instance profile to access the S3 URI. Also the wheel file name
needs to use the correct convention. If zipped wheels are to be installed, the file
name suffix should be .wheelhouse.zip.
See Also
libraries()

Other Library Objects: 1ib_cran(), lib_egg(), lib_jar(), lib_maven(), lib_pypi(), libraries()

new_cluster New Cluster

Description

New Cluster

232 new_cluster

Usage

new_cluster(

num_workers,

spark_version,

node_type_id,

driver_node_type_id = NULL,

autoscale = NULL,

cloud_attrs = NULL,

spark_conf = NULL,

spark_env_vars = NULL,

custom_tags = NULL,

ssh_public_keys = NULL,

log_conf = NULL,

init_scripts = NULL,

enable_elastic_disk = TRUE,

driver_instance_pool_id = NULL,

instance_pool_id = NULL,

kind = c("CLASSIC_PREVIEW"),

data_security_mode = c("NONE"”, "SINGLE_USER", "USER_ISOLATION", "LEGACY_TABLE_ACL",
"LEGACY_PASSTHROUGH", "LEGACY_SINGLE_USER", "LEGACY_SINGLE_USER_STANDARD",
"DATA_SECURITY_MODE_STANDARD", "DATA_SECURITY_MODE_DEDICATED",
"DATA_SECURITY_MODE_AUTO")

Arguments

num_workers Number of worker nodes that this cluster should have. A cluster has one Spark
driver and num_workers executors for a total of num_workers + 1 Spark nodes.

spark_version The runtime version of the cluster. You can retrieve a list of available runtime
versions by using db_cluster_runtime_versions().

node_type_id The node type for the worker nodes. db_cluster_list_node_types() can be
used to see available node types.

driver_node_type_id
The node type of the Spark driver. This field is optional; if unset, the driver node
type will be set as the same value as node_type_id defined above. db_cluster_list_node_types()
can be used to see available node types.

autoscale Instance of cluster_autoscale().

cloud_attrs Attributes related to clusters running on specific cloud provider. Defaults to
aws_attributes(). Mustbe one of aws_attributes(), azure_attributes(),
gcp_attributes().

spark_conf Named list. An object containing a set of optional, user-specified Spark con-
figuration key-value pairs. You can also pass in a string of extra JVM op-
tions to the driver and the executors via spark.driver.extraJavaOptions and
spark.executor.extraJavaOptions respectively. E.g. 1ist("spark.speculation
=true, "spark.streaming.ui.retainedBatches"” =5).

n

notebook _task 233

spark_env_vars Named list. User-specified environment variable key-value pairs. In order to
specify an additional set of SPARK_DAEMON_JAVA_OPTS, we recommend append-
ing them to $SPARK_DAEMON_JAVA_OPTS as shown in the following example.
This ensures that all default Databricks managed environmental variables are in-
cluded as well. E.g. {"SPARK_DAEMON_JAVA_OPTS": "$SPARK_DAEMON_JAVA_OPTS
-Dspark.shuffle.service.enabled=true"}

custom_tags Named list. An object containing a set of tags for cluster resources. Databricks
tags all cluster resources with these tags in addition to default_tags. Databricks
allows at most 45 custom tags.

ssh_public_keys
List. SSH public key contents that will be added to each Spark node in this
cluster. The corresponding private keys can be used to login with the user name
ubuntu on port 2200. Up to 10 keys can be specified.

log_conf Instance of cluster_log_conf ().

init_scripts Instance of init_script_info().

enable_elastic_disk
When enabled, this cluster will dynamically acquire additional disk space when
its Spark workers are running low on disk space.

driver_instance_pool_id
ID of the instance pool to use for the driver node. You must also specify
instance_pool_id. Optional.

instance_pool_id
ID of the instance pool to use for cluster nodes. If driver_instance_pool_id
is present, instance_pool_id is used for worker nodes only. Otherwise, it is
used for both the driver and worker nodes. Optional.

kind The kind of compute described by this compute specification.

data_security_mode
Data security mode decides what data governance model to use when accessing
data from a cluster.

See Also
job_task()

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

notebook_task Notebook Task

Description

Notebook Task

234 open_workspace

Usage

notebook_task(notebook_path, base_parameters = NULL)

Arguments

notebook_path The absolute path of the notebook to be run in the Databricks workspace. This
path must begin with a slash.

base_parameters
Named list of base parameters to be used for each run of this job.

Details

If the run is initiated by a call to db_jobs_run_now() with parameters specified, the two parameters
maps are merged. If the same key is specified in base_parameters and in run-now, the value from
run-now is used.

Use Task parameter variables to set parameters containing information about job runs.

If the notebook takes a parameter that is not specified in the job’s base_parameters or the run-now
override parameters, the default value from the notebook is used.

Retrieve these parameters in a notebook using dbutils.widgets.get.

See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), pipeline_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

open_workspace Connect to Databricks Workspace

Description

Connect to Databricks Workspace

Usage

open_workspace(host = db_host(), token = db_token(), name = NULL)

Arguments
host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().

name Desired name to assign the connection

pipeline_task 235

Examples

Not run:
open_workspace(host = db_host(), token = db_token, name = "MyWorkspace")

End(Not run)

pipeline_task Pipeline Task

Description

Pipeline Task

Usage

pipeline_task(pipeline_id)

Arguments

pipeline_id The full name of the pipeline task to execute.

See Also

Other Task Objects: condition_task(), email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), python_wheel_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

python_wheel_task Python Wheel Task

Description

Python Wheel Task

Usage

python_wheel_task(package_name, entry_point = NULL, parameters = list())

Arguments

package_name Name of the package to execute.

entry_point Named entry point to use, if it does not exist in the metadata of the package it ex-
ecutes the function from the package directly using $packageName. $entryPoint ().

parameters Command-line parameters passed to python wheel task.

236 run_job_task

See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), run_job_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

remove_lib_path Remove Library Path

Description

Remove Library Path

Usage

remove_lib_path(path, version = FALSE)

Arguments

path Directory to remove from .1libPaths().

version If TRUE will add the R version string to the end of path before removal.
See Also

.libPaths(), remove_lib_path()

run_job_task Run Job Task

Description

Run Job Task

Usage

run_job_task(job_id, job_parameters, full_refresh = FALSE)

Arguments

job_id ID of the job to trigger.
job_parameters Named list, job-level parameters used to trigger job.
full_refresh If the pipeline should perform a full refresh.

See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), spark_jar_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

s3_storage_info

237

s3_storage_info

S3 Storage Info

Description

S3 Storage Info

Usage

s3_storage_info(

destination,

region = NULL,

endpoint = NULL,

enable_encryption = FALSE,
encryption_type = c("sse-s3", "sse-kms"),
kms_key = NULL,

canned_acl = NULL

Arguments

destination

region

endpoint

S3 destination. For example: s3://my-bucket/some-prefix. You must con-
figure the cluster with an instance profile and the instance profile must have write
access to the destination. You cannot use AWS keys.

S3 region. For example: us-west-2. Either region or endpoint must be set. If
both are set, endpoint is used.

S3 endpoint. For example: https://s3-us-west-2.amazonaws.com. Either
region or endpoint must be set. If both are set, endpoint is used.

enable_encryption

encryption_type

kms_key
canned_acl

See Also

Boolean (Default: FALSE). If TRUE Enable server side encryption.

Encryption type, it could be sse-s3 or sse-kms. It is used only when encryption
is enabled and the default type is sse-s3.

KMS key used if encryption is enabled and encryption type is set to sse-kms.

Set canned access control list. For example: bucket-owner-full-control.
If canned_acl is set, the cluster instance profile must have s3:PutObjectAcl
permission on the destination bucket and prefix. The full list of possible canned
ACLs can be found in docs. By default only the object owner gets full con-
trol. If you are using cross account role for writing data, you may want to set
bucket-owner-full-control to make bucket owner able to read the logs.

cluster_log_conf (), init_script_info()

Other Cluster Log Configuration Objects: cluster_log_conf (), dbfs_storage_info()

Other Init Script Info Objects: dbfs_storage_info(), file_storage_info()

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

238 show,DatabricksDriver-method

show,DatabricksConnection-method
Show method for DatabricksConnection

Description

Show method for DatabricksConnection

Usage
S4 method for signature 'DatabricksConnection'’
show(object)

Arguments
object A DatabricksConnection object

show,DatabricksDriver-method
Show method for DatabricksDriver

Description

Show method for DatabricksDriver

Usage

S4 method for signature 'DatabricksDriver'
show(object)

Arguments

object A DatabricksDriver object

show,DatabricksResult-method 239

show,DatabricksResult-method
Show method for DatabricksResult

Description

Show method for DatabricksResult

Usage
S4 method for signature 'DatabricksResult'’
show(object)

Arguments

object A DatabricksResult object

spark_jar_task Spark Jar Task

Description

Spark Jar Task

Usage

spark_jar_task(main_class_name, parameters = list())

Arguments

main_class_name
The full name of the class containing the main method to be executed. This
class must be contained in a JAR provided as a library. The code must use
SparkContext.getOrCreate to obtain a Spark context; otherwise, runs of the
job fail.

parameters Named list. Parameters passed to the main method. Use Task parameter vari-
ables to set parameters containing information about job runs.

See Also

Other Task Objects: condition_task(), email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(),
spark_python_task(), spark_submit_task(), sql_file_task(), sql_query_task()

240 spark_submit_task

spark_python_task Spark Python Task

Description

Spark Python Task

Usage

spark_python_task(python_file, parameters = list())

Arguments

python_file The URI of the Python file to be executed. DBFS and S3 paths are supported.

parameters List. Command line parameters passed to the Python file. Use Task parameter
variables to set parameters containing information about job runs.

See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(),
spark_jar_task(), spark_submit_task(), sql_file_task(), sql_query_task()

spark_submit_task Spark Submit Task

Description

Spark Submit Task

Usage

spark_submit_task(parameters)

Arguments
parameters List. Command-line parameters passed to spark submit. Use Task parameter
variables to set parameters containing information about job runs.
See Also

Other Task Objects: condition_task(), email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(),
spark_jar_task(), spark_python_task(), sql_file_task(), sql_query_task()

sql_file_task 241

sql_file_task SQOL File Task

Description

SQL File Task

Usage

sql_file_task(path, warehouse_id, source = NULL, parameters = NULL)

Arguments

path Path of the SQL file. Must be relative if the source is a remote Git repository
and absolute for workspace paths.

warehouse_id The canonical identifier of the SQL warehouse.

source Optional location type of the SQL file. When set to WORKSPACE, the SQL file
will be retrieved from the local Databricks workspace. When set to GIT, the
SQL file will be retrieved from a Git repository defined in git_source() If the
value is empty, the task will use GIT if git_source() is defined and WORKSPACE
otherwise.

parameters Named list of paramters to be used for each run of this job.

See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(),
spark_jar_task(), spark_python_task(), spark_submit_task(), sql_query_task()

sql_query_fields.DatabricksConnection
SQL Query Fields for Databricks connections

Description
Generate SQL for field discovery queries optimized for Databricks. This method generates appro-
priate SQL for discovering table fields.

Usage

S3 method for class 'DatabricksConnection'
sql_query_fields(con, sql, ...)

242 sql_query_save.DatabricksConnection

Arguments
con DatabricksConnection object
sql SQL query to discover fields for
Additional arguments passed to other methods
Value

SQL object for field discovery

sql_query_save.DatabricksConnection
Create temporary views and tables in Databricks

Description

Create temporary views and tables in Databricks

Usage

S3 method for class 'DatabricksConnection’

sql_query_save(con, sql, name, temporary = TRUE, ...)
Arguments

con A DatabricksConnection object

sql SQL query to save as table/view

name Name for the temporary view or table

temporary Whether the object should be temporary (default: TRUE)

Additional arguments (ignored)

Value

The table/view name (invisibly)

sql_query_task 243

sql_query_task SQL Query Task

Description

SQL Query Task

Usage

sql_query_task(query_id, warehouse_id, parameters = NULL)

Arguments
query_id The canonical identifier of the SQL query.
warehouse_id The canonical identifier of the SQL warehouse.
parameters Named list of paramters to be used for each run of this job.
See Also

Other Task Objects: condition_task(),email_notifications(), for_each_task(), libraries(),
new_cluster(), notebook_task(), pipeline_task(), python_wheel_task(), run_job_task(),
spark_jar_task(), spark_python_task(), spark_submit_task(), sql_file_task()

sql_table_analyze.DatabricksConnection
Handle table analysis for Databricks

Description

Handle table analysis for Databricks

Usage
S3 method for class 'DatabricksConnection’
sql_table_analyze(con, table, ...)

Arguments
con A DatabricksConnection object
table Table name to analyze

Additional arguments (ignored)

Value

SQL statement for table analysis

244 wait_for_lib_installs

wait_for_lib_installs Wait for Libraries to Install on Databricks Cluster

Description

Wait for Libraries to Install on Databricks Cluster

Usage

wait_for_lib_installs(
cluster_id,
polling_interval = 5,
allow_failures = FALSE,
host = db_host(),
token = db_token()

Arguments

cluster_id Unique identifier of a Databricks cluster.
polling_interval
Number of seconds to wait between status checks

allow_failures If FALSE (default) will error if any libraries status is FAILED. When TRUE any
FAILED installs will be presented as a warning.

host Databricks workspace URL, defaults to calling db_host ().
token Databricks workspace token, defaults to calling db_token().
Details

Library installs on Databricks clusters are asynchronous, this function allows you to repeatedly
check installation status of each library.

Can be used to block any scripts until required dependencies are installed.

See Also

db_libs_cluster_status()

Index

x Access Control Request Objects
access_control_req_group, 9
access_control_req_user, 9

* Cloud Attributes
aws_attributes, 11
azure_attributes, 13
gcp_attributes, 199

* Cluster Helpers
get_and_start_cluster, 200
get_latest_dbr, 202

* Cluster Log Configuration Objects
cluster_log_conf, 15
dbfs_storage_info, 29
s3_storage_info, 237

* Cluster Objects
cluster_autoscale, 14

x Clusters API
db_cluster_create, 44
db_cluster_edit, 48
db_cluster_events, 51
db_cluster_get, 52
db_cluster_list, 53
db_cluster_list_node_types, 54
db_cluster_list_zones, 55
db_cluster_perm_delete, 56
db_cluster_pin, 57
db_cluster_resize, 58
db_cluster_restart, 59
db_cluster_runtime_versions, 59
db_cluster_start, 60
db_cluster_terminate, 61
db_cluster_unpin, 62
get_and_start_cluster, 200
get_latest_dbr, 202

+ DBFS API
db_dbfs_add_block, 72
db_dbfs_close, 73
db_dbfs_create, 74
db_dbfs_delete, 75

245

db_dbfs_get_status, 76
db_dbfs_list, 77
db_dbfs_mkdirs, 78
db_dbfs_move, 79
db_dbfs_put, 80
db_dbfs_read, 81

* Database API
db_lakebase_creds_generate, 98
db_lakebase_get, 99
db_lakebase_get_by_uid, 100
db_lakebase_list, 101

+ Databricks Authentication Helpers
db_host, 82
db_read_netrc, 120
db_token, 153
db_wsid, 192

+ Execution Context API
db_context_command_cancel, 64
db_context_command_run, 64
db_context_command_run_and_wait,

65

db_context_command_status, 66
db_context_create, 67
db_context_destroy, 68
db_context_status, 70

* Init Script Info Objects
dbfs_storage_info, 29
file_storage_info, 198
s3_storage_info, 237

+ Jobs API
db_jobs_create, 83
db_jobs_delete, 84
db_jobs_get, 85
db_jobs_list, 86
db_jobs_repair_run, 87
db_jobs_reset, 88
db_jobs_run_now, 96
db_jobs_runs_cancel, 90
db_jobs_runs_delete, 91

246

db_jobs_runs_export, 91
db_jobs_runs_get, 92
db_jobs_runs_get_output, 93
db_jobs_runs_list, 93
db_jobs_runs_submit, 95
db_jobs_update, 97

* Libraries API

db_libs_all_cluster_statuses, 102
db_libs_cluster_status, 103
db_libs_install, 104
db_libs_uninstall, 105

* Library Objects

lib_cran, 228
lib_egg, 229
lib_jar, 229
lib_maven, 230
lib_pypi, 230
lib_whl, 231
libraries, 228

* Model Registry API

db_mlflow_model_approve_transition_req,
106
db_mlflow_model_delete_transition_req,
107
db_mlflow_model_open_transition_regs
108
db_mlflow_model_reject_transition_req,
108
db_mlflow_model_transition_req,
109
db_mlflow_model_transition_stage
110
db_mlflow_model_version_comment,
112
db_mlflow_model_version_comment_delete,
113
db_mlflow_model_version_comment_edit
113
db_mlflow_registered_model_details,
114

* Repos API

db_repo_create, 122
db_repo_delete, 122
db_repo_get, 123
db_repo_get_all, 124
db_repo_update, 125

+ Request Helpers

db_perform_request, 115

INDEX

db_req_error_body, 127
db_request, 126
db_request_json, 126

+ SQL Execution APIs
db_sql_exec_cancel, 137
db_sql_exec_query, 139
db_sql_exec_result, 141
db_sql_exec_status, 142

* SQL Queries API
db_query_create, 116
db_query_delete, 117
db_query_get, 118
db_query_list, 118
db_query_update, 119

* SQL Query History API
db_sql_query_history, 145

* Secrets API
db_secrets_delete, 127
db_secrets_list, 128
db_secrets_put, 129
db_secrets_scope_acl_delete, 130
db_secrets_scope_acl_get, 131
db_secrets_scope_acl_list, 132
db_secrets_scope_acl_put, 133
db_secrets_scope_create, 134
db_secrets_scope_delete, 136
db_secrets_scope_list_all, 137

+ Task Objects
condition_task, 15
email_notifications, 196
for_each_task, 198
libraries, 228
new_cluster, 231
notebook_task, 233
pipeline_task, 235
python_wheel_task, 235
run_job_task, 236
spark_jar_task, 239
spark_python_task, 240
spark_submit_task, 240
sql_file_task, 241
sql_query_task, 243

+ Unity Catalog Management
db_uc_catalogs_get, 154
db_uc_catalogs_list, 154
db_uc_schemas_get, 155
db_uc_schemas_list, 156

x Unity Catalog Table Management

INDEX

db_uc_tables_delete, 157
db_uc_tables_exists, 158
db_uc_tables_get, 159
db_uc_tables_list, 160
db_uc_tables_summaries, 161

* Unity Catalog Volume Management

db_uc_volumes_create, 162
db_uc_volumes_delete, 163
db_uc_volumes_get, 164
db_uc_volumes_list, 165
db_uc_volumes_update, 166

* Vector Search API

db_vs_endpoints_create, 174
db_vs_endpoints_delete, 175
db_vs_endpoints_get, 176
db_vs_endpoints_list, 176
db_vs_indexes_create, 177
db_vs_indexes_delete, 178
db_vs_indexes_delete_data, 179
db_vs_indexes_get, 180
db_vs_indexes_list, 180
db_vs_indexes_query, 181

db_vs_indexes_query_next_page, 183

db_vs_indexes_scan, 184
db_vs_indexes_sync, 185
db_vs_indexes_upsert_data, 186
delta_sync_index_spec, 193
direct_access_index_spec, 194
embedding_source_column, 197
embedding_vector_column, 197

* Volumes FileSystem API

db_volume_delete, 167
db_volume_dir_create, 168
db_volume_dir_delete, 168
db_volume_dir_exists, 169
db_volume_file_exists, 170
db_volume_list, 171
db_volume_read, 171
db_volume_upload_dir, 172
db_volume_write, 173

* Warehouse API

db_sql_global_warehouse_get, 143
db_sql_warehouse_create, 146
db_sqgl_warehouse_delete, 148
db_sql_warehouse_edit, 148
db_sqgl_warehouse_get, 150
db_sql_warehouse_list, 151
db_sqgl_warehouse_start, 151

247

db_sql_warehouse_stop, 152
get_and_start_warehouse, 201
+ Warehouse Helpers
get_and_start_warehouse, 201
+* Workspace API
db_workspace_delete, 186
db_workspace_export, 187
db_workspace_get_status, 189
db_workspace_import, 189
db_workspace_list, 191
db_workspace_mkdirs, 191
.libPaths(), 10, 236

access_control_req_group, 9, 10
access_control_req_group(), 8, 84
access_control_req_user, 9,9
access_control_req_user(), 8, 84
access_control_request, 8
access_control_request(), 9, 10, 84, 89,
95, 98
add_lib_path, 10
arrow: :Table, /45
as.raw(), 73
aws_attributes, 11, /13, 199
aws_attributes(), 45, 49, 232
azure_attributes, /3, 13, 199
azure_attributes(), 45, 49, 232

close_workspace, 14
cluster_autoscale, 14
cluster_autoscale(), 45, 49, 58, 232
cluster_log_conf, 15, 29, 237
cluster_log_conf(), 29, 46, 50, 233, 237
condition_task, 15, 196, 199, 228, 233-236,
239-241, 243
copy_to.DatabricksConnection, 16
cron_schedule, 17
cron_schedule(), 83, 84, 89, 97

databricks-dbi, 17
databricks-dbplyr, 18
DatabricksConnection-class, 18
DatabricksDriver-class, 18
DatabricksResult-class, 18
DatabricksSQL, 19
db_cluster_action, 44
db_cluster_create, 44, 51-63, 200, 202
db_cluster_create(), 13, 14, 61, 196, 199,
204

248

db_cluster_delete, 47
db_cluster_edit, 47, 48, 52-63, 200, 202
db_cluster_edit(), 13, 14, 196, 199, 204
db_cluster_events, 47, 51,51, 53-63, 200,
202
db_cluster_get, 47, 51, 52, 52, 54-63, 200,
202
db_cluster_get(), 47, 200
db_cluster_list, 47, 51-53, 53, 55-63, 200,
202
db_cluster_list(), 57,63
db_cluster_list_node_types, 47, 51-54,
54, 55-63, 200, 202
db_cluster_list_node_types(), 45, 49,
232
db_cluster_list_zones, 47, 51-55, 55,
56-63, 200, 202
db_cluster_perm_delete, 47, 51-55, 56,
57-63, 200, 202
db_cluster_pin, 47, 51-56, 57, 58-63, 200,
202
db_cluster_resize, 47, 51-57, 58, 59-63,
200, 202
db_cluster_restart, 47, 51-58, 59, 60-63,
200, 202
db_cluster_runtime_versions, 47, 51-59,
59, 61-63, 200, 202
db_cluster_runtime_versions(), 45, 49,
232
db_cluster_start, 47, 51-60, 60, 62, 63,
200, 202
db_cluster_start(), 200
db_cluster_terminate, 47, 51-61, 61, 63,
200, 202
db_cluster_unpin, 47, 51-62, 62, 200, 202
db_collect.DatabricksConnection, 63
db_context_command_cancel, 64, 65-68, 70
db_context_command_parse, 64-68, 70
db_context_command_run, 64, 64, 6668, 70
db_context_command_run_and_wait, 64, 65,
65, 67, 68, 70
db_context_command_status, 64-66, 66, 68,
70
db_context_create, 64-67, 67, 68, 70
db_context_destroy, 64-68, 68, 70
db_context_manager, 69
db_context_status, 64-68, 70
db_current_cloud, 71

INDEX

db_current_user, 71
db_current_workspace_id, 72
db_dbfs_add_block, 72, 74-81
db_dbfs_add_block(), 73-75
db_dbfs_close, 73, 73, 75-81
db_dbfs_close(), 73-75
db_dbfs_create, 73, 74, 74, 76-81
db_dbfs_create(), 73-75
db_dbfs_delete, 73-75,75, 77-81
db_dbfs_get_status, 73-76, 76, 77-81
db_dbfs_list, 73-77,77, 78-81
db_dbfs_mkdirs, 73-77,78, 79-81
db_dbfs_move, 73-78, 79, 80, 81
db_dbfs_put, 73-79, 80, 81
db_dbfs_read, 73-80, 81
db_host, 82, 121, 153, 193
db_host(), 14, 44, 47, 48, 50, 52-62, 64-81,
84-86, 88-96, 98-115, 117-126,
128, 129, 131-133, 135-143,
145-148, 150—152, 154-159,
161-192, 200-202, 234, 244
db_jobs_create, 83, 85, 86, 88-94, 96, 98
db_jobs_create(), 8, 17, 88, 98, 226, 227
db_jobs_delete, 84, 84, 85, 86, 88-94, 96, 98
db_jobs_get, 84, 85, 85, 86, 88-94, 96, 98
db_jobs_list, 84, 85, 86, 8894, 96, 98
db_jobs_repair_run, 84-86, 87, 89-94, 96,
98
db_jobs_reset, 84-86, 88, 88, 90-94, 96, 98
db_jobs_reset(), 8, 17, 226, 227
db_jobs_run_now, 84-86, 88-94, 96, 96, 98
db_jobs_run_now(), 234
db_jobs_runs_cancel, 84-86, 88, 89, 90,
91-94, 96, 98
db_jobs_runs_delete, 84-86, 88-90, 91,
92-94, 96, 98
db_jobs_runs_export, 84-86, 88-91, 91,
92-94, 96, 98
db_jobs_runs_get, 84-86, 88-92, 92, 93, 94,
96, 98
db_jobs_runs_get_output, 84-86, 8§-92,
93, 94, 96, 98
db_jobs_runs_list, 84-86, 88-93, 93, 96,
98
db_jobs_runs_submit, 84-86, 88-94, 95, 96,
98
db_jobs_update, 84-86, 88-94, 96, 97
db_jobs_update(), 8, 17, 226, 227

INDEX

db_lakebase_creds_generate, 98, 100, 101
db_lakebase_get, 99, 99, 100, 101
db_lakebase_get_by_uid, 99, 100, 100, 101
db_lakebase_list, 99, 100, 101
db_libs_all_cluster_statuses, 102,
103-105
db_libs_cluster_status, /103, 103, 104,
105
db_libs_cluster_status(), 244
db_libs_install, 103, 104, 105
db_libs_uninstall, 103, 104, 105
db_mlflow_model_approve_transition_req,
106, 107-115
db_mlflow_model_delete_transition_req,
106, 107, 108-115
db_mlflow_model_open_transition_regs
106, 107, 108, 109-115
db_mlflow_model_reject_transition_req,
106-108, 108, 110-115
db_mlflow_model_transition_req,
106-109, 109, 111-115
db_mlflow_model_transition_stage
106-110, 110, 112-115
db_mlflow_model_version_comment,
106-111,112,113-115
db_mlflow_model_version_comment_delete,
106-112,113, 114, 115
db_mlflow_model_version_comment_edit
106-113,113,115
db_mlflow_registered_model_details,
106-114, 114
db_perform_request, 115, 126, 127
db_query_create, 116, 117-120
db_query_delete, 117,117, 118-120
db_query_get, 117,118, 119, 120
db_query_list, 117, 118, 118, 120
db_query_update, 117-119, 119
db_read_netrc, 82, 120, 153, 193
db_repl, 121
db_repo_create, 122, 123-125
db_repo_delete, 122, 122, 124, 125
db_repo_get, 122, 123,123, 124, 125
db_repo_get_all, 122-124, 124, 125
db_repo_update, 122-124, 125
db_req_error_body, 115, 126, 127, 127
db_request, 115, 126, 127
db_request(), 126
db_request_json, 115, 126, 126, 127

249

db_secrets_delete, 127, 129-137
db_secrets_list, 128, 128, 130-137
db_secrets_put, 128, 129, 129, 131-137
db_secrets_scope_acl_delete, 128-130,

130, 132-137
db_secrets_scope_acl_get, 128-131, 131,
133-137
db_secrets_scope_acl_list, 128-132, 132,
134-137
db_secrets_scope_acl_put, 128-133, 133,
135-137
db_secrets_scope_create, 128-134, 134,
136, 137
db_secrets_scope_delete, 128-135, 136,
137

db_secrets_scope_list_all, 128-136, 137
db_sql_exec_cancel, 137, 141, 142
db_sql_exec_poll_for_success, 138
db_sql_exec_query, 138, 139, 142
db_sql_exec_result, 138, 141, 141, 142
db_sql_exec_result(), 141
db_sql_exec_status, 138, 141, 142, 142
db_sql_exec_status(), 140, 141, 144
db_sql_global_warehouse_get, 143, 147,
148, 150-153, 201
db_sql_query, 143
db_sql_query_history, 145
db_sql_warehouse_create, 143, 146, 148,
150-153, 201
db_sql_warehouse_delete, 143, 147, 148,
150-153, 201
db_sql_warehouse_edit, 143, 147, 148, 148,
151-153, 201
db_sql_warehouse_get, 143, 147, 148, 150,
150, 151-153, 201
db_sql_warehouse_get (), 201
db_sql_warehouse_list, 143, 147, 148, 150,
151,151, 152, 153, 201
db_sql_warehouse_start, 143, 147, 148,
150, 151,151, 153, 201
db_sql_warehouse_start(), 201
db_sql_warehouse_stop, 143, 147, 148,
150-152, 152, 201
db_token, 82, 121, 153, 193
db_token(), 44, 47, 48, 50, 52-62, 64-81,
84-86, 88-96, 98-115, 117-126,
128, 129, 131-133, 135-143,
145-148, 150—-152, 154159,

250 INDEX

161-192, 200-202, 234, 244 183-186, 194, 195, 197, 198
db_uc_catalogs_get, 154, 155-157 db_vs_indexes_query_next_page, 175-182,
db_uc_catalogs_list, 154, 154, 156, 157 183, 184-186, 194, 195, 197, 198
db_uc_schemas_get, 154, 155, 155, 157 db_vs_indexes_scan, 175183, 184, 185,
db_uc_schemas_list, 154-156, 156 186, 194, 195, 197, 198
db_uc_tables_delete, 157, 158, 160—162 db_vs_indexes_sync, 175-184, 185, 186,
db_uc_tables_exists, 157, 158, 160-162 194, 195, 197, 198
db_uc_tables_get, 157, 158, 159, 161, 162 db_vs_indexes_upsert_data, 175-185, 186,
db_uc_tables_list, 157, 158, 160, 160, 162 194, 195, 197, 198
db_uc_tables_summaries, 157, 158, 160, db_workspace_delete, 186, 188—192

161, 161 db_workspace_export, 187, 187, 189-192
db_uc_volumes_create, 162, 164—167 db_workspace_get_status, 187, 188, 189,
db_uc_volumes_delete, 163, 163, 165-167 190-192
db_uc_volumes_get, 163, 164, 164, 166, 167 db_workspace_import, 187-189, 189, 191,
db_uc_volumes_list, 163-165, 165, 167 192
db_uc_volumes_update, 163-166, 166 db_workspace_list, 187-190, 191, 192
db_volume_delete, 167, 168—174 db_workspace_mkdirs, 187-191, 191
db_volume_dir_create, 167, 168, 169—174 db_wsid, 82, 121, 153, 192
db_volume_dir_delete, 167, 168, 168, dbAppendTable,DatabricksConnection,character,data.frame-me

170-174 19
db_volume_dir_exists, 167-169, 169, dbAppendTable,DatabricksConnection,Id,data.frame-method,

170-174 20
db_volume_file_exists, 167-170, 170, dbBegin,DatabricksConnection-method,

171-174 20
db_volume_list, 167-170, 171, 172174 dbClearResult,DatabricksResult-method,
db_volume_read, 167-171, 171, 173, 174 21
db_volume_upload_dir, 167-172,172, 174 dbColumnInfo,DatabricksResult-method,
db_volume_write, 167-173, 173 21
db_vs_endpoints_create, 174, 175-186, dbCommit,DatabricksConnection-method,

194, 195, 197, 198 22
db_vs_endpoints_delete, 175, 175, dbConnect,DatabricksDriver-method, 22

176-186, 194, 195, 197, 198 dbCreateTable,DatabricksConnection,AsIs-method,
db_vs_endpoints_get, 175, 176, 177-186, 23

194, 195, 197, 198 dbCreateTable,DatabricksConnection,character-method,
db_vs_endpoints_list, 175, 176, 176, 24

178-186, 194, 195, 197, 198 dbCreateTable,DatabricksConnection, Id-method,
db_vs_indexes_create, 175-177, 177, 24

179-186, 194, 195, 197, 198 dbDataType,DatabricksConnection-method,
db_vs_indexes_create(), 194, 195 25
db_vs_indexes_delete, 175-178, 178, dbDisconnect,DatabricksConnection-method,

179-186, 194, 195, 197, 198 26
db_vs_indexes_delete_data, 175-179, 179, dbExecute,DatabricksConnection,character-method,

180-186, 194, 195, 197, 198 26
db_vs_indexes_get, 175-179, 180, 181-186, dbExistsTable,DatabricksConnection,AsIs-method,

194, 195, 197, 198 27
db_vs_indexes_list, 175180, 180, dbExistsTable,DatabricksConnection,character-method,

182-186, 194, 195, 197, 198 27

db_vs_indexes_query, 175-181, 181, dbExistsTable,DatabricksConnection, Id-method,

INDEX 251

28 dbSendStatement,DatabricksConnection, character-method,
dbFetch,DatabricksResult-method, 28 40
dbfs_storage_info, 15,29, 198, 237 dbWriteTable,DatabricksConnection,AsIs,data.frame-method,
dbfs_storage_info(), 15, 203 41
dbGetInfo,DatabricksConnection-method, dbWriteTable,DatabricksConnection,character,data.frame-met
29 42
dbGetQuery,DatabricksConnection’Character-metﬁb@fiteTable,DatabricksConnection,Id,data.frame—method,
30 43
dbGetRowCount,DatabricksResult-method, delta_sync_index_spec, /75-186, 193, 195,
30 197, 198
dbGetRowsAffected,DatabricksResult-method, delta_sync_index_spec(), 178
31 direct_access_index_spec, 175-186, 194,
dbGetStatement,DatabricksResult-method, 194, 197, 198
31 direct_access_index_spec(), 178
dbHasCompleted,DatabricksResult-method, docker_image, 195
32 docker_image(), 46, 50
desVal1géDatabr1cksConnect1on-method, email_notifications, 16, 196, 199, 227,
dbL i ield brick . hod 228, 233-236, 239-241, 243
L1$tF1§3 s,DatabricksConnection,AsIs-metho email_notifications(), 83, 84, 89, 97

. . .) embedding_source_column, /75-186, 194,
dbListFields,DatabricksConnection,character-method, 195,197, 198

) 33)) embedding_source_column(), 193, 194

dbListTables,DatabricksConnection-method, embedding_vector_column, 175186, 194,

34 . _ 195,197,197
dbplyr_egitlon.DatabrlcksConnectlon, embedding_vector_column(), 193, 194
dbQuoteldentifier,DatabricksConnection,characftekremstbodge_info, 29, 198, 237

35 file_storage_info(), 203
dbQuoteldentifier,DatabricksConnection,Id-method, each_task, 16, 196, 198, 228, 233-236,

35 239-241, 243
dbQuoteIdentifier,DatabricksConnection,SQL-method,

36 gcp_attributes, 13, 199
dbReadTable,DatabricksConnection, AsIs-method, 8cP-attributes(), 45, 49, 232

36 get_and_start_cluster, 47, 51-63, 200,
dbReadTable,DatabricksConnection, character-method, 202

37 get_and_start_warehouse, 143, 147, 148,
dbReadTable,DatabricksConnection, Id-method, 150-153, 201

37 get_latest_dbr, 47, 51-63, 200, 202
dbRemoveTable,DatabricksConnection,AsIs—metho%}t—source’203

38 git_source(), 84, 89, 95, 98, 241

dbRemoveTable,DatabricksConnection,character—lcg@{:pﬁ)gtreq body_json(), 126

38 httr2::reqg_method(), 126
dbRemoveTable,Da‘cabricksConnection,Id—me‘chod,httrz::resp body_json(), 115

39 T '
dbRollback,DatabricksConnection-method, in_databricks_nb, 204

39 init_script_info, 203

dbSendQuery,DatabricksConnection, character-methot, script_info(), 29, 46, 49, 198, 233,
40 237

252

is
is.
is.
is.
is.
is.
is.
is.
is.
is
is.
is.
is
is.
is.
is.
is.
is.
is
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.
is.

.access_control_req_group, 205

access_control_req_user, 205
access_control_request, 204
aws_attributes, 206
azure_attributes, 206
cluster_autoscale, 207
cluster_log_conf, 207
condition_task, 208
cron_schedule, 208

.dbfs_storage_info, 209

delta_sync_index, 209
direct_access_index, 210

.docker_image, 210

email_notifications, 211
embedding_source_column, 211
embedding_vector_column, 212
file_storage_info, 212
for_each_task, 213

.gcp_attributes, 213

git_source, 214
init_script_info, 214
job_task, 215
lib_cran, 216

lib_egg, 217

lib_jar, 217
lib_maven, 218
lib_pypi, 218

lib_whl, 219
libraries, 215
library, 216
new_cluster, 219
notebook_task, 220
pipeline_task, 220
python_wheel_task, 221
run_job_task, 221
s3_storage_info, 222
spark_jar_task, 222
spark_python_task, 223
spark_submit_task, 223
sql_file_task, 224
sql_query_task, 224
valid_task_type, 225
vector_search_index_spec, 225

job_task, 226

job_task(), 84, 196, 199, 227, 228, 233

job_tasks, 227
job_tasks(), 83, 84, 89, 95, 97

INDEX

lib_cran, 228, 228, 229-231
lib_cran(), 104, 228
lib_egg, 228, 229, 229, 230, 231
lib_egg(), 104, 228
lib_jar, 228, 229, 229, 230, 231
lib_jar (), 104, 228
lib_maven, 228-230, 230, 231
lib_maven(), 104, 228
lib_pypi, 228-230, 230, 231
lib_pypi(), 104, 228
lib_whl, 228-231, 231
lib_whl(), 104, 228
libraries, 16, 196, 199, 228, 229-231,
233-236, 239-241, 243
libraries(), 104, 105, 227, 229-231

new_cluster, 16, 196, 199, 228, 231,
234-236, 239-241, 243
new_cluster(), 83, 89, 95, 97, 226
notebook_task, 16, 196, 199, 228, 233, 233,
235, 236, 239-241, 243
notebook_task(), 226

open_workspace, 234

pipeline_task, 16, 196, 199, 228, 233, 234,
235, 236, 239-241, 243
pipeline_task(), 226
python_wheel_task, 16, 196, 199, 228,
233-235, 235, 236, 239-241, 243
python_wheel_task(), 226

remove_lib_path, 236

remove_lib_path(), 10, 236

run_job_task, 16, 196, 199, 228, 233-236,
236, 239-241, 243

s3_storage_info, 15, 29, 198, 237
s3_storage_info(), 15, 203
show,DatabricksConnection-method, 238
show,DatabricksDriver-method, 238
show,DatabricksResult-method, 239
spark_jar_task, 16, 196, 199, 228, 233-236,
239, 240, 241, 243
spark_jar_task(), 226
spark_python_task, 16, 196, 199, 228,
233-236, 239, 240, 240, 241, 243
spark_python_task(), 226
spark_submit_task, 16, 196, 199, 228,
233-236, 239, 240, 240, 241, 243

INDEX

spark_submit_task(), 226

sql_file_task, 16, 196, 199, 228, 233-236,
239, 240, 241, 243

sql_query_fields.DatabricksConnection,
241

sql_query_save.DatabricksConnection,
242

sql_query_task, 16, 196, 199, 228, 233-236,
239-241, 243

sql_table_analyze.DatabricksConnection,
243

tibble::tibble, /45

wait_for_lib_installs, 244
wait_for_lib_installs(), 103

253

	access_control_request
	access_control_req_group
	access_control_req_user
	add_lib_path
	aws_attributes
	azure_attributes
	close_workspace
	cluster_autoscale
	cluster_log_conf
	condition_task
	copy_to.DatabricksConnection
	cron_schedule
	databricks-dbi
	databricks-dbplyr
	DatabricksConnection-class
	DatabricksDriver-class
	DatabricksResult-class
	DatabricksSQL
	dbAppendTable,DatabricksConnection,character,data.frame-method
	dbAppendTable,DatabricksConnection,Id,data.frame-method
	dbBegin,DatabricksConnection-method
	dbClearResult,DatabricksResult-method
	dbColumnInfo,DatabricksResult-method
	dbCommit,DatabricksConnection-method
	dbConnect,DatabricksDriver-method
	dbCreateTable,DatabricksConnection,AsIs-method
	dbCreateTable,DatabricksConnection,character-method
	dbCreateTable,DatabricksConnection,Id-method
	dbDataType,DatabricksConnection-method
	dbDisconnect,DatabricksConnection-method
	dbExecute,DatabricksConnection,character-method
	dbExistsTable,DatabricksConnection,AsIs-method
	dbExistsTable,DatabricksConnection,character-method
	dbExistsTable,DatabricksConnection,Id-method
	dbFetch,DatabricksResult-method
	dbfs_storage_info
	dbGetInfo,DatabricksConnection-method
	dbGetQuery,DatabricksConnection,character-method
	dbGetRowCount,DatabricksResult-method
	dbGetRowsAffected,DatabricksResult-method
	dbGetStatement,DatabricksResult-method
	dbHasCompleted,DatabricksResult-method
	dbIsValid,DatabricksConnection-method
	dbListFields,DatabricksConnection,AsIs-method
	dbListFields,DatabricksConnection,character-method
	dbListTables,DatabricksConnection-method
	dbplyr_edition.DatabricksConnection
	dbQuoteIdentifier,DatabricksConnection,character-method
	dbQuoteIdentifier,DatabricksConnection,Id-method
	dbQuoteIdentifier,DatabricksConnection,SQL-method
	dbReadTable,DatabricksConnection,AsIs-method
	dbReadTable,DatabricksConnection,character-method
	dbReadTable,DatabricksConnection,Id-method
	dbRemoveTable,DatabricksConnection,AsIs-method
	dbRemoveTable,DatabricksConnection,character-method
	dbRemoveTable,DatabricksConnection,Id-method
	dbRollback,DatabricksConnection-method
	dbSendQuery,DatabricksConnection,character-method
	dbSendStatement,DatabricksConnection,character-method
	dbWriteTable,DatabricksConnection,AsIs,data.frame-method
	dbWriteTable,DatabricksConnection,character,data.frame-method
	dbWriteTable,DatabricksConnection,Id,data.frame-method
	db_cluster_action
	db_cluster_create
	db_cluster_delete
	db_cluster_edit
	db_cluster_events
	db_cluster_get
	db_cluster_list
	db_cluster_list_node_types
	db_cluster_list_zones
	db_cluster_perm_delete
	db_cluster_pin
	db_cluster_resize
	db_cluster_restart
	db_cluster_runtime_versions
	db_cluster_start
	db_cluster_terminate
	db_cluster_unpin
	db_collect.DatabricksConnection
	db_context_command_cancel
	db_context_command_run
	db_context_command_run_and_wait
	db_context_command_status
	db_context_create
	db_context_destroy
	db_context_manager
	db_context_status
	db_current_cloud
	db_current_user
	db_current_workspace_id
	db_dbfs_add_block
	db_dbfs_close
	db_dbfs_create
	db_dbfs_delete
	db_dbfs_get_status
	db_dbfs_list
	db_dbfs_mkdirs
	db_dbfs_move
	db_dbfs_put
	db_dbfs_read
	db_host
	db_jobs_create
	db_jobs_delete
	db_jobs_get
	db_jobs_list
	db_jobs_repair_run
	db_jobs_reset
	db_jobs_runs_cancel
	db_jobs_runs_delete
	db_jobs_runs_export
	db_jobs_runs_get
	db_jobs_runs_get_output
	db_jobs_runs_list
	db_jobs_runs_submit
	db_jobs_run_now
	db_jobs_update
	db_lakebase_creds_generate
	db_lakebase_get
	db_lakebase_get_by_uid
	db_lakebase_list
	db_libs_all_cluster_statuses
	db_libs_cluster_status
	db_libs_install
	db_libs_uninstall
	db_mlflow_model_approve_transition_req
	db_mlflow_model_delete_transition_req
	db_mlflow_model_open_transition_reqs
	db_mlflow_model_reject_transition_req
	db_mlflow_model_transition_req
	db_mlflow_model_transition_stage
	db_mlflow_model_version_comment
	db_mlflow_model_version_comment_delete
	db_mlflow_model_version_comment_edit
	db_mlflow_registered_model_details
	db_perform_request
	db_query_create
	db_query_delete
	db_query_get
	db_query_list
	db_query_update
	db_read_netrc
	db_repl
	db_repo_create
	db_repo_delete
	db_repo_get
	db_repo_get_all
	db_repo_update
	db_request
	db_request_json
	db_req_error_body
	db_secrets_delete
	db_secrets_list
	db_secrets_put
	db_secrets_scope_acl_delete
	db_secrets_scope_acl_get
	db_secrets_scope_acl_list
	db_secrets_scope_acl_put
	db_secrets_scope_create
	db_secrets_scope_delete
	db_secrets_scope_list_all
	db_sql_exec_cancel
	db_sql_exec_poll_for_success
	db_sql_exec_query
	db_sql_exec_result
	db_sql_exec_status
	db_sql_global_warehouse_get
	db_sql_query
	db_sql_query_history
	db_sql_warehouse_create
	db_sql_warehouse_delete
	db_sql_warehouse_edit
	db_sql_warehouse_get
	db_sql_warehouse_list
	db_sql_warehouse_start
	db_sql_warehouse_stop
	db_token
	db_uc_catalogs_get
	db_uc_catalogs_list
	db_uc_schemas_get
	db_uc_schemas_list
	db_uc_tables_delete
	db_uc_tables_exists
	db_uc_tables_get
	db_uc_tables_list
	db_uc_tables_summaries
	db_uc_volumes_create
	db_uc_volumes_delete
	db_uc_volumes_get
	db_uc_volumes_list
	db_uc_volumes_update
	db_volume_delete
	db_volume_dir_create
	db_volume_dir_delete
	db_volume_dir_exists
	db_volume_file_exists
	db_volume_list
	db_volume_read
	db_volume_upload_dir
	db_volume_write
	db_vs_endpoints_create
	db_vs_endpoints_delete
	db_vs_endpoints_get
	db_vs_endpoints_list
	db_vs_indexes_create
	db_vs_indexes_delete
	db_vs_indexes_delete_data
	db_vs_indexes_get
	db_vs_indexes_list
	db_vs_indexes_query
	db_vs_indexes_query_next_page
	db_vs_indexes_scan
	db_vs_indexes_sync
	db_vs_indexes_upsert_data
	db_workspace_delete
	db_workspace_export
	db_workspace_get_status
	db_workspace_import
	db_workspace_list
	db_workspace_mkdirs
	db_wsid
	delta_sync_index_spec
	direct_access_index_spec
	docker_image
	email_notifications
	embedding_source_column
	embedding_vector_column
	file_storage_info
	for_each_task
	gcp_attributes
	get_and_start_cluster
	get_and_start_warehouse
	get_latest_dbr
	git_source
	init_script_info
	in_databricks_nb
	is.access_control_request
	is.access_control_req_group
	is.access_control_req_user
	is.aws_attributes
	is.azure_attributes
	is.cluster_autoscale
	is.cluster_log_conf
	is.condition_task
	is.cron_schedule
	is.dbfs_storage_info
	is.delta_sync_index
	is.direct_access_index
	is.docker_image
	is.email_notifications
	is.embedding_source_column
	is.embedding_vector_column
	is.file_storage_info
	is.for_each_task
	is.gcp_attributes
	is.git_source
	is.init_script_info
	is.job_task
	is.libraries
	is.library
	is.lib_cran
	is.lib_egg
	is.lib_jar
	is.lib_maven
	is.lib_pypi
	is.lib_whl
	is.new_cluster
	is.notebook_task
	is.pipeline_task
	is.python_wheel_task
	is.run_job_task
	is.s3_storage_info
	is.spark_jar_task
	is.spark_python_task
	is.spark_submit_task
	is.sql_file_task
	is.sql_query_task
	is.valid_task_type
	is.vector_search_index_spec
	job_task
	job_tasks
	libraries
	lib_cran
	lib_egg
	lib_jar
	lib_maven
	lib_pypi
	lib_whl
	new_cluster
	notebook_task
	open_workspace
	pipeline_task
	python_wheel_task
	remove_lib_path
	run_job_task
	s3_storage_info
	show,DatabricksConnection-method
	show,DatabricksDriver-method
	show,DatabricksResult-method
	spark_jar_task
	spark_python_task
	spark_submit_task
	sql_file_task
	sql_query_fields.DatabricksConnection
	sql_query_save.DatabricksConnection
	sql_query_task
	sql_table_analyze.DatabricksConnection
	wait_for_lib_installs
	Index

