Package ‘bslib’

January 26, 2026
Title Custom 'Bootstrap' 'Sass' Themes for 'shiny' and 'rmarkdown’
Version 0.10.0

Description Simplifies custom 'CSS' styling of both 'shiny’ and
'rmarkdown’ via 'Bootstrap' 'Sass'. Supports 'Bootstrap' 3, 4 and 5 as
well as their various 'Bootswatch' themes. An interactive widget is
also provided for previewing themes in real time.

License MIT + file LICENSE
URL https://rstudio.github.io/bslib/, https://github.com/rstudio/bslib

BugReports https://github.com/rstudio/bslib/issues
Depends R (>=2.10)

Imports baseb4enc, cachem, fastmap (>= 1.1.1), grDevices, htmltools
(>=0.5.8), jquerylib (>= 0.1.3), jsonlite, lifecycle, memoise
(>=2.0.1), mime, rlang, sass (>= 0.4.9)

Suggests brand.yml, bsicons, curl, fontawesome, future, ggplot2,
knitr, lattice, magrittr, rappdirs, rmarkdown (>= 2.7), shiny
(>= L.11.1), testthat, thematic, tools, utils, withr, yaml

Config/Needs/deploy BH, chiflights22, colourpicker, commonmark, cppl1,
cpsievert/chiflights22, cpsievert/histoslider, dplyr, DT,
ggplot2, ggridges, gt, hexbin, histoslider, htmlwidgets,
lattice, leaflet, lubridate, markdown, modelr, plotly,
reactable, reshape2, rprojroot, rsconnect, rstudio/shiny,
scales, styler, tibble

Config/Needs/routine chromote, desc, renv

Config/Needs/website brio, crosstalk, dplyr, DT, ggplot2, glue,
htmlwidgets, leaflet, lorem, palmerpenguins, plotly, purrr,
rprojroot, rstudio/htmltools, scales, stringr, tidyr, webshot2

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first zzzz-bs-sass, fonts, zzz-precompile,
theme-*, rmd-*

Encoding UTF-8

https://rstudio.github.io/bslib/
https://github.com/rstudio/bslib
https://github.com/rstudio/bslib/issues

2 Contents

RoxygenNote 7.3.3

Collate 'accordion.R' 'breakpoints.R' 'bs-current-theme.R'
'bs-dependencies.R' 'bs-global.R' 'bs-remove.R'
'bs-theme-layers.R' 'bs-theme-preset-bootswatch.R'
'bs-theme-preset-brand.R' 'bs-theme-preset-builtin.R'’
'bs-theme-preset.R' 'utils.R' 'bs-theme-preview.R'
'bs-theme-update.R' 'bs-theme.R' 'bslib-package.R' 'buttons.R’
'card.R' 'deprecated.R' 'files.R' 'fill.R" 'imports.R’
'input-code-editor.R' 'input-dark-mode.R' 'input-submit.R'
'input-switch.R' 'layout.R' 'nav-items.R' 'nav-update.R’
'navbar_options.R' 'navs-legacy.R' 'navs.R' 'onLoad.R' 'page.R’
'‘popover.R' ‘precompiled.R’ 'print.R' 'shiny-devmode.R'
'sidebar.R' 'staticimports.R' 'toast.R" 'tooltip.R’

'utils-deps.R' 'utils-shiny.R' 'utils-tags.R' 'value-box.R'
'version-default.R' 'versions.R'

NeedsCompilation no

Author Carson Sievert [aut, cre] (ORCID:

<https://orcid.org/0000-0002-4958-2844>),

Joe Cheng [aut],

Garrick Aden-Buie [aut] (ORCID:
<https://orcid.org/0000-0002-7111-0077>),

Posit Software, PBC [cph, fnd],

Bootstrap contributors [ctb] (Bootstrap library),

Twitter, Inc [cph] (Bootstrap library),

Javi Aguilar [ctb, cph] (Bootstrap colorpicker library),

Thomas Park [ctb, cph] (Bootswatch library),

PayPal [ctb, cph] (Bootstrap accessibility plugin)

Maintainer Carson Sievert <carson@posit.co>
Repository CRAN
Date/Publication 2026-01-26 08:10:02 UTC

Contents
accordion oL L L e e e e e e e 3
accordion_panel_set 5
as_fill_carrier o e 7
bind_task_button e 9
bootswatch_themes 11
breakpoints L e 11
bs_add_variables e e 12
bs_current_theme e e 14
bs_dependency e e e e e 15
bs_get_variables. L e e e 18
bs_global_theme 19
bS_Iremove e e e 21
bs_theme L 22

https://orcid.org/0000-0002-4958-2844
https://orcid.org/0000-0002-7111-0077

accordion 3

bs_theme_dependencies 26
bs_theme_preview 28
builtin_themes e e 29
card L e e 29
card_body e e 31
font_face e 34
input_code_editor e e e e e 35
input_dark_mode 38
input_submit_textareao e 39
input_switch e 41
input_task_button oL 42
layout_columns L. 45
layout_column_wrap L e 47
NAV-ItEIMS ot o e 49
navbar_Options e e e e e e 51
NAVSEL . . . o o o e e e e e e e e e e e e e e e e e e e 53
nav_select e e 61
PAZE . o o e e e e 63
page_fillable 64
page_navbar e 66
page_sidebar L 69
POPOVET . . o o o i it e e e e e e e e e e e e e e e 71
run_with_themer e 74
show_toast e 76
sidebar L L e e e 77
theme_bootswatch 80
theme_version e e 81
TOASE e e e e e e 81
tOOLLD . . . o o e e e 84
value_boX s e 86
VETSIONS . . v v v v v e 96
Index 97
accordion Create a vertically collapsing accordion
Description

An accordion can be used to organize Ul elements and content in a limited space. It comprises
multiple, vertically stacked panels that expand or collapse when clicked, providing a compact layout
that works well for grouping input elements in a sidebar() or for organizing detailed context-
specific information.

4 accordion

Usage
accordion(
id = NULL,
open = NULL,
multiple = TRUE,
class = NULL,
width = NULL,
height = NULL
)
accordion_panel(title, ..., value = title, icon = NULL)
Arguments
Named arguments become attributes on the <div class="accordion”> ele-
ment. Unnamed arguments should be accordion_panel()s.

id If provided, you can use input$id in your server logic to determine which of
the accordion_panel()s are currently active. The value will correspond to the
accordion_panel()’s value argument.

open A character vector of accordion_panel() values to open (i.e., show) by de-
fault. The default value of NULL will open the first accordion_panel(). Use a
value of TRUE to open all (or FALSE to open none) of the items. It’s only possible
to open more than one panel when multiple=TRUE.

multiple Whether multiple accordion_panel() can be open at once.

class Additional CSS classes to include on the accordion div.

width, height Any valid CSS unit; for example, height="100%".

title A title to appear in the accordion_panel()’s header.

value A character string that uniquely identifies this panel.

icon A htmltools::tag child (e.g., bsicons: :bs_icon()) which is positioned just be-
fore the title.

References

bslib’s accordion component is derived from the Bootstrap Accordion component. Accordions are
also featured on the bslib website:
* Get Started: Dashboards

e Sidebars: Accordions

See Also
accordion_panel_set(), accordion_panel_open() and accordion_panel_close() program-
matically interact with the state of an accordion panel.

accordion_panel_insert(), accordion_panel_remove() and accordion_panel_update() add
or remove accordion panels from an accordion.

Other Components: card(), popover (), tooltip(), value_box()

https://getbootstrap.com/docs/5.3/components/accordion/
https://rstudio.github.io/bslib/articles/dashboards/index.html#accordions
https://rstudio.github.io/bslib/articles/dashboards/index.html#accordions

accordion_panel_set 5

Examples

items <- lapply(LETTERS, function(x) {
accordion_panel (paste("”Section”, x), paste("”Some narrative for section”, x))

b

First shown by default
accordion(!!!items)

Nothing shown by default
accordion(!!!items, open = FALSE)
Everything shown by default
accordion(!!!items, open = TRUE)

Show particular sections
accordion(!!!items, open = "Section B")
accordion(!!!items, open = c("Section A", "Section B"))

Provide an id to create a shiny input binding
library(shiny)
library(bslib)

ui <- page_fluid(
accordion(!!!items, id = "acc")

)

server <- function(input, output) {
observe(print(input$acc))

}

shinyApp(ui, server)

accordion_panel_set Dynamically update accordions

Description
Dynamically update/modify accordion()s in a Shiny app. To be updated programmatically, the
accordion() must have an id. These functions require an active Shiny session and only work with
a running Shiny app.

Usage
accordion_panel_set(id, values, session = get_current_session())
accordion_panel_open(id, values, session = get_current_session())

accordion_panel_close(id, values, session = get_current_session())

accordion_panel_insert(

id,
panel,

accordion_panel_set

target = NULL,
position = c("after”, "before"),
session

)

get_current_session()

accordion_panel_remove(id, target, session = get_current_session())

accordion_panel_update(

id,

target
title
value
icon =

’

session = get_current_session()

Arguments
id

values

session
panel
target

position

title
value

icon

Functions

an character string that matches an existing accordion()’s id.

either a character string (used to identify particular accordion_panel()s by
their value) or TRUE (i.e., all values).

a shiny session object (the default should almost always be used).
an accordion_panel().

The value of an existing panel to insert next to. If removing: the value of the
accordion_panel () to remove.

Should panel be added before or after the target? When target is NULL (the
default), "after” will append after the last panel and "before"” will prepend
before the first panel.

Elements that become the new content of the panel.
A title to appear in the accordion_panel()’s header.
A character string that uniquely identifies this panel.

A htmltools::tag child (e.g., bsicons: :bs_icon()) which is positioned just be-
fore the title.

* accordion_panel_set(): same as accordion_panel_open(), except it also closes any cur-
rently open panels.

* accordion_panel_open(): open accordion_panel()s.

e accordion_panel_close(): close accordion_panel()s.

e accordion_panel_insert(): insert a new accordion_panel()

e accordion_panel_remove(): remove accordion_panel()s.

* accordion_panel_update(): update a accordion_panel().

as_fill _carrier

See Also

accordion() and accordion_panel() create the accordion component.

as_fill_carrier

Test and/or coerce fill behavior

Description

Filling layouts in bslib are built on the foundation of fillable containers and fill items (fill carri-
ers are both fillable and fill). This is why most bslib components (e.g., card(), card_body(),
layout_sidebar()) possess both fillable and fill arguments (to control their fill behavior).
However, sometimes it’s useful to add, remove, and/or test fillable/fill properties on arbitrary htmltools

which these functions are designed to do.

Usage

as_fill_carrier(
X,
min_height
max_height
gap = NULL,
class = NULL,
style = NULL,
css_selector =

)

NULL,
NULL,

NULL

as_fillable_container(

X,
min_height
max_height
gap = NULL,
class = NULL,
style = NULL,
css_selector =

)

as_fill_item(
X7

)

NULL,
NULL,

NULL

min_height = NULL,
max_height = NULL,

class = NULL,
style = NULL,
css_selector =

NULL

::tag(),

8 as_fill_carrier

)

remove_all_fill(x)
is_fill_carrier(x)
is_fillable_container(x)

is_fill_item(x)

Arguments

X An htmltools: :tag().

Currently ignored.

min_height, max_height
Any valid CSS unit (e.g., 150).

gap Any valid CSS unit.
class A character vector of class names to add to the tag.
style A character vector of CSS properties to add to the tag.

css_selector A character string containing a CSS selector for targeting particular (inner)

tag(s) of interest. For more details on what selector(s) are supported, see htmltools: : tagAppendAttribt

Details

Although as_fill(), as_fillable(), and as_fill_carrier() can work with non-tag objects
that have a htmltools::as.tags method (e.g., htmlwidgets), they return the "tagified" version of that
object.

Value

e For as_fill(), as_fillable(), and as_fill_carrier(): the ragified version x, with rele-
vant tags modified to possess the relevant fill properties.

e For is_fill(), is_fillable(), and is_fill_carrier(): a logical vector, with length
matching the number of top-level tags that possess the relevant fill properties.
References
The Filling Layouts article on the bslib website introduces the concept of fillable containers and fill
items.
See Also

These functions provide a convenient interface to the underlying htmltools: :bindFillRole()
function.

https://rstudio.github.io/bslib/articles/filling.html

bind_task_button 9

Examples

library(shiny)
library(bslib)
shinyApp(
page_fillable(
without “as_fill_carrier()”, the plot won't fill the page because
“uiOutput()” is neither a fillable container nor a fill item by default.
as_fill_carrier(uiOutput("ui™))
),
function(input, output) {
output$ui <- renderUI({
div(
class = "bg-info text-white",
as_fill_item(),

"A fill item”
)
»
}
)
bind_task_button Bind input_task_button fo ExtendedTask
Description

Sets up a shiny::ExtendedTask to relay its state to an existing input_task_button(), so the task
button stays in its "busy" state for as long as the extended task is running.

Note that bind_task_button does not automatically cause button presses to invoke the extended
task; you still need to use shiny: :bindEvent() (or shiny: :observeEvent()) to cause the button
press to trigger an invocation, as in the example below.

bind_task_button cannot be used to bind one task button to multiple ExtendedTask objects; if
you attempt to do so, any bound ExtendedTask that completes will cause the button to return to
"ready" state.

Usage

bind_task_button(target, task_button_id, ...)

Default S3 method:
bind_task_button(target, task_button_id, ...)

S3 method for class 'ExtendedTask'
bind_task_button(target, task_button_id, ..., session = get_current_session())

10 bind_task_ button

Arguments

target The target object (i.e. ExtendedTask).

task_button_id A string matching the id argument passed to the corresponding input_task_button()
call.

Further arguments passed to other methods.
session A Shiny session object (the default should almost always be used).

Value

The target object that was passed in.

Examples

library(shiny)
library(bslib)
library(future)
plan(multisession)

ui <- page_sidebar(
sidebar = sidebar(
input_task_button("recalc”, "Recalculate")
),
textOutput("outval™)
)

server <- function(input, output) {
rand_task <- ExtendedTask$new(function() {
future({
Slow operation goes here
Sys.sleep(2)
runif(1)
}, seed = TRUE)
b))

Make button state reflect task.

If using R >=4.1, you can do this instead:

rand_task <- ExtendedTask$new(...) |> bind_task_button("recalc"”)
bind_task_button(rand_task, "recalc")

observeEvent (input$recalc, {
rand_task$invoke()

bl

output$outval <- renderText({
rand_task$result()
1))
3

shinyApp(ui, server)

bootswatch_themes 11

bootswatch_themes Obtain a list of all available bootswatch themes.

Description

Obtain a list of all available bootswatch themes.

Usage

bootswatch_themes(version = version_default(), full_path = FALSE)

Arguments

version The major version of Bootswatch.

full_path Whether to return a path to the installed theme.
Value

Returns a character vector of Bootswatch themes.

See Also

Other Bootstrap theme utility functions: bs_get_variables(), builtin_themes(), theme_bootswatch(),
theme_version(), versions()

breakpoints Define breakpoint values

Description

A generic constructor for responsive breakpoints.

Usage
breakpoints(..., xs = NULL, sm = NULL, md = NULL, 1g = NULL)
Arguments
Other breakpoints (e.g., x1).

XS The default value to apply to the xs breakpoint. Note that this breakpoint is
generally equivalent to "all sizes" and is typically treated as the base case or a
value to apply by default across all breakpoints unless overridden by a larger
breakpoint.

sm Values to apply at the sm breakpoint.

md Values to apply at the md breakpoint.

1g Values to apply at the 1g breakpoint.

12 bs_add_variables

References

Bootstrap’s Breakpoints article provides more detail on breakpoints and how they are used and
customized.

See Also

breakpoints() is used by layout_columns().

Examples

breakpoints(sm = c(4, 4, 4), md = c(3, 3, 6), 1lg = c(-2, 8, -2))

bs_add_variables Add low-level theming customizations

Description
These functions provide direct access to the layers of a bslib theme created with bs_theme (). Learn
more about composable Sass layers on the sass website.

Usage

bs_add_variables(

theme,

.where = "defaults”,

.default_flag = identical(.where, "defaults")
)

bs_add_rules(theme, rules)
bs_add_functions(theme, functions)

bs_add_mixins(theme, mixins)

bs_bundle(theme, ...)
Arguments
theme A bs_theme() object.

¢ bs_add_variables(): Should be named Sass variables or values that can
be passed in directly to the defaults argument of a sass: : sass_layer ().

* bs_bundle(): Should be arguments that can be handled by sass: : sass_bundle()

to be appended to the theme

.where Whether to place the variable definitions before other Sass "defaults”, after
other Sass "declarations”, or after other Sass "rules”.

https://getbootstrap.com/docs/5.3/layout/breakpoints/
https://rstudio.github.io/sass/articles/sass.html#layering

bs_add_variables

.default_flag

rules

functions

mixins

Details

13

Whether or not to add a !default flag (if missing) to variable expressions. It’s
recommended to keep this as TRUE when .where = "defaults”.

Sass rules. Anything understood by sass: :as_sass() may be provided (e.g., a
list, character vector, sass: :sass_file(), etc)

A character vector or sass: :sass_file() containing functions definitions.

A character vector or sass: :sass_file() containing mixin definitions.

Compared to higher-level theme customization available in bs_theme (), these functions are a more
direct interface to Bootstrap Sass, and therefore, do nothing to ensure theme customizations are
portable between major Bootstrap versions.

Value

Returns a modified bs_theme () object.

Functions

* bs_add_variables(): Add Bootstrap Sass variable defaults.
¢ bs_add_rules(): Add additional Sass rules.
e bs_add_functions(): Add additional Sass functions.

¢ bs_add_mixins(): Add additional Sass mixins.

* bs_bundle(): Add additional sass: : sass_bundle() objects to an existing theme.

References

* bslib’s theming capabilities are powered by the sass package.

* Learn more about composable Sass layers on the sass website.

See Also

bs_theme() creates a Bootstrap theme object, and is the best place to start learning about bslib’s
theming capabilities.

Other Bootstrap theme functions: bs_current_theme(), bs_dependency(), bs_global_theme(),
bs_remove(), bs_theme(), bs_theme_dependencies(), bs_theme_preview()

Examples

Function to preview the styling a (primary) Bootstrap button
library(htmltools)
button <- tags$a(class = "btn btn-primary”, href = "#" role = "button”, "Hello")
preview_button <- function(theme) {
browsable(tags$body (bs_theme_dependencies(theme), button))

}

Here we start with a theme based on a Bootswatch theme,

https://rstudio.github.io/bslib/articles/bs5-variables/index.html
https://sass-lang.com/documentation/style-rules
https://rstudio.github.io/sass/articles/sass.html#functions
https://rstudio.github.io/sass/articles/sass.html#mixins
https://rstudio.github.io/sass/
https://rstudio.github.io/sass/articles/sass.html#layering

14 bs_current theme

then override some variable defaults
theme <- bs_add_variables(

bs_theme(bootswatch = "sketchy”, primary = "orange"),
"body-bg" = "#EEEEEE",

"font-family-base” = "monospace”,

"font-size-base” = "1.4rem",

"btn-padding-y"” = ".16rem",

"btn-padding-x" = "2rem”

)
preview_button(theme)

If you need to set a variable based on another Bootstrap variable
theme <- bs_add_variables(theme, "body-color” = "$success”, .where = "declarations”)
preview_button(theme)

Start a new global theme and add some custom rules that

use Bootstrap variables to define a custom styling for a

'person card'

person_rules <- system.file("custom”, "person.scss”, package = "bslib")
theme <- bs_add_rules(bs_theme(), sass::sass_file(person_rules))

Include custom CSS that leverages bootstrap Sass variables
person <- function(name, title, company) {

tags$div(
class = "person”,
h3(class = "name”, name),
div(class = "title"”, title),
div(class = "company”, company)
)
3

page_fluid(
theme = theme,

person("Andrew Carnegie”, "Owner"”, "Carnegie Steel Company"),
person("John D. Rockefeller”, "Chairman", "Standard 0il")
)
bs_current_theme Obtain the currently active theme at render time
Description

Intended for advanced use by developers to obtain the currently active theme at render time and pri-
marily for implementing themable widgets that can’t otherwise be themed via bs_dependency_defer()

Usage

bs_current_theme(session = get_current_session(FALSE))

bs_dependency 15

Arguments

session The current Shiny session (if any).

Details
This function should generally only be called at print/render time. For example:
e Inside the preRenderHook of htmlwidgets: :createWidget().

* Inside of a custom print method that generates htmltools::tags.

* Inside of a htmltools: :tagFunction()

Calling this function at print/render time is important because it does different things based on the
context in which it’s called:

e If a reactive context is active, session$getCurrentTheme() is called (which is a reactive
read).

« If no reactive context is active, shiny: :getCurrentTheme() is called (which returns the cur-
rent app’s theme, if relevant).

e If shiny::getCurrentTheme() comes up empty, then bs_global_get() is called, which is
relevant for rmarkdown: :html_document (), and possibly other static rendering contexts.
Value

Returns a bs_theme () object.

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_dependency(), bs_global_theme(),
bs_remove(), bs_theme(), bs_theme_dependencies(), bs_theme_preview()

bs_dependency Themeable HTML components

Description

Themeable HTML components use Sass to generate CSS rules from Bootstrap Sass variables, func-
tions, and/or mixins (i.e., stuff inside of theme). bs_dependencies() makes it a bit easier to create
themeable components by compiling sass: :sass() (input) together with Bootstrap Sass inside
of a theme, and packaging up the result into an htmltools: :htmlDependency ().

Themable components can also be dynamically themed inside of Shiny (i.e., they may be themed in
‘real-time’ via bs_themer (), and more generally, update their styles in response to shiny::session’s
setCurrentTheme () method). Dynamically themeable components provide a "recipe" (i.e., a func-
tion) to bs_dependency_defer (), describing how to generate new CSS stylesheet(s) from a new
theme. This function is called when the HTML page is first rendered, and may be invoked again
with a new theme whenever shiny::session’s setCurrentTheme() is called.

16 bs_dependency

Usage

bs_dependency (
input = list(),
theme,
name,
version,
cache_key_extra = NULL,
.dep_args = list(),
.sass_args = list()

)

bs_dependency_defer(func, memoise = TRUE)

Arguments
input Sass rules to compile, using theme.
theme A bs_theme() object.
name Library name
version Library version

cache_key_extra
Extra information to add to the sass cache key. It is useful to add the version of
your package.

.dep_args A list of additional arguments to pass to htmltools: :htmlDependency (). Note
that package has no effect and script must be absolute path(s).

.sass_args A list of additional arguments to pass to sass: :sass_partial().

func a non-anonymous function, with a single argument. This function should accept

abs_theme () object and return a single htmltools: :htmlDependency (), alist
of them, or NULL.

memoise whether or not to memoise (i.e., cache) func results for a short period of time.
The default, TRUE, can have large performance benefits when many instances of
the same themable widget are rendered. Note that you may want to avoid mem-
oisation if func relies on side-effects (e.g., files on-disk) that need to change for
each themable widget instance.

Value
bs_dependency () returns an htmltools: :htmlDependency() and bs_dependency_defer() re-
turns an htmltools: :tagFunction()
References
e Theming: Custom components gives a tutorial on creating a dynamically themable custom
component.

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_global_theme(),
bs_remove(), bs_theme(), bs_theme_dependencies(), bs_theme_preview()

https://rstudio.github.io/bslib/articles/custom-components/index.html

bs_dependency 17

Examples

myWidgetVersion <- "1.2.3"

myWidgetDependency <- function() {
list(
bs_dependency_defer(myWidgetCss),
htmlDependency(
name = "mywidget-js”,
version = myWidgetVersion,
src = system.file(package = "mypackage"”, "js"),
script = "mywidget. js”
)
)
3

myWidgetCSS <- function(theme) {
if (!is_bs_theme(theme)) {
return(
htmlDependency (
name = "mywidget-css”,
version = myWidgetVersion,
src = system.file(package = "mypackage", "css"),
stylesheet = "mywidget.css”

)
)
3

Compile mywidget.scss using the variables and defaults from the theme

object.
sass_input <- sass::sass_file(system.file(package = "mypackage”, "scss/mywidget.scss"))

bs_dependency (
input = sass_input,
theme = theme,
name = "mywidget”,
version = myWidgetVersion,
cache_key_extra = utils::packageVersion("mypackage")
)
3

Note that myWidgetDependency is not defined inside of myWidget. This is so
that, if “myWidget()~ is called multiple times, Shiny can tell that the
function objects are identical and deduplicate them.
myWidget <- function(id) {
div(
id = id,
span("myWidget"),
myWidgetDependency ()
)
}

18 bs_get_variables

bs_get_variables Retrieve Sass variable values from the current theme

Description

Useful for retrieving a variable from the current theme and using the value to inform another R
function.

Usage

bs_get_variables(theme, varnames)

bs_get_contrast(theme, varnames)

Arguments

theme A bs_theme() object.

varnames A character string referencing a Sass variable in the current theme.
Value

Returns a character string containing a CSS/Sass value. If the variable(s) are not defined, their value
is NA.

References
Theming: Bootstrap 5 variables provides a searchable reference of all theming variables available
in Bootstrap 5.

See Also

Other Bootstrap theme utility functions: bootswatch_themes(), builtin_themes(), theme_bootswatch(),
theme_version(), versions()

Examples
vars <- c("body-bg"”, "body-color"”, "primary"”, "border-radius"”)
bs_get_variables(bs_theme(), varnames = vars)
bs_get_variables(bs_theme(bootswatch = "darkly"), varnames = vars)

bs_get_contrast(bs_theme(), c("primary"”, "dark"”, "light"))

library(htmltools)

div(
class = "bg-primary”,
style = css(

color = bs_get_contrast(bs_theme(), "primary")

)

https://rstudio.github.io/bslib/articles/bs5-variables/index.html

bs_global_theme

19

bs_global_theme Global theming

Description

bs_global_theme() creates and sets the global Bootstrap Sass theme. This theme is typically
found by bs_theme_dependencies() in the app or document where the global theme is being
used. You can obtain the current global theme with bs_global_get() or directly set the global
theme with bs_global_set().

Usage
bs

)

bs
bs
bs

bs

)

bs

_global_theme(
version = version_default(),
preset = NULL,

bg = NULL,

fg = NULL,

primary = NULL,
secondary = NULL,
success = NULL,

info = NULL,

warning = NULL,
danger = NULL,
base_font = NULL,
code_font = NULL,
heading_font = NULL,

L

bootswatch = NULL

_global_set(theme = bs_theme())
_global_get()

_global_clear()
_global_add_variables(

’

.where = "defaults”,

.default_flag = identical(.where, "defaults")

_global_add_rules(...)

20

bs_global_theme

bs_global_bundle(...)

bs_global_theme_update(

L

preset = NULL,

bg = NULL,
fg = NULL,

primary = NULL,
secondary = NULL,

success
info =

NULL,

warning = NULL,

danger

base_font

NULL,
NULL,

code_font = NULL,
heading_font = NULL,
bootswatch = NULL

Arguments

version

preset

bg
fg

primary

secondary

Success

info

warning
danger
base_font

code_font

The major version of Bootstrap to use (see versions() for possible values).
Defaults to the currently recommended version for new projects (currently Boot-
strap 5).

The name of a theme preset, either a built-in theme provided by bslib or a
Bootswatch theme (see builtin_themes() and bootswatch_themes() for pos-
sible values). This argument takes precedence over the bootswatch argument
and only one preset or bootswatch can be provided. When no bootswatch
theme is specified, and version is 5 or higher, preset defaults to "shiny”. To
remove the "shiny"” preset, provide a value of "bootstrap” (this value will
also work in bs_theme_update () to remove a preset or bootswatch theme).

A color string for the background.
A color string for the foreground.

A color to be used for hyperlinks, to indicate primary/default actions, and to
show active selection state in some Bootstrap components. Generally a bold,
saturated color that contrasts with the theme’s base colors.

A color for components and messages that don’t need to stand out. (Not sup-
ported in Bootstrap 3.)

A color for messages that indicate an operation has succeeded. Typically green.

A color for messages that are informative but not critical. Typically a shade of
blue-green.

A color for warning messages. Typically yellow.
A color for errors. Typically red.
The default typeface.

The typeface to be used for code. Be sure this is monospace!

bs_remove 21

heading_font The typeface to be used for heading elements.
arguments passed along to bs_add_variables().

bootswatch The name of a bootswatch theme (see bootswatch_themes() for possible val-
ues). When provided to bs_theme_update(), any previous Bootswatch theme
is first removed before the new one is applied (use bootswatch = "bootstrap”
to effectively remove the Bootswatch theme).

theme A bs_theme() object.

.where Whether to place the variable definitions before other Sass "defaults”, after
other Sass "declarations”, or after other Sass "rules”.

.default_flag Whether or not to add a !default flag (if missing) to variable expressions. It’s
recommended to keep this as TRUE when .where = "defaults”.

Value

Functions that modify the global theme (e.g., bs_global_set()) invisibly return the previously set
theme. bs_global_get () returns the current global theme.

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_dependency(),
bs_remove(), bs_theme(), bs_theme_dependencies(), bs_theme_preview()

Examples

Remember the global state now (so we can restore later)
theme <- bs_global_get()

Use Bootstrap 3 (globally) with some theme customization
bs_global_theme(3, bg = "#444", fg = "#edede4", primary = "#e39777")
if (rlang::is_interactive()) {

bs_theme_preview(with_themer = FALSE)
3

If no global theme is active, bs_global_get() returns NULL
bs_global_clear()
bs_global_get()

Restore the original state
bs_global_set(theme)

bs_remove Remove or retrieve Sass code from a theme

Description

A Bootstrap theme created with bs_theme () is comprised of many Sass layers. bs_remove() and
bs_retrieve() allow you to remove or retrieve an individual layer, either to reduce the size of the
compiled CSS or to extract styles from a theme.

https://rstudio.github.io/sass/articles/sass.html#layering

22 bs_theme

Usage

bs_remove(theme, ids = character(9))

bs_retrieve(theme, ids = character(®), include_unnamed = TRUE)

Arguments
theme A bs_theme() object.
ids a character vector of ids

include_unnamed
whether or not to include unnamed sass: : sass_layer()s (e.g., Bootstrap Sass
variables, functions, and mixins).
Value

Returns a modified bs_theme () object.

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_dependency(),
bs_global_theme(), bs_theme(), bs_theme_dependencies(), bs_theme_preview()

Examples
bs4 <- bs_theme(version = 4)

Retrieve sass bundle for print styles
bs_retrieve(bs4, "_print"”, include_unnamed = FALSE)

Remove CSS rules for print and carousels

bs4_no_print <- bs_remove(bs4, c("_print”, "_carousel”))
suppressWarnings(

bs_retrieve(bs4_no_print, "_print”, include_unnamed = FALSE)
)

Remove BS3 compatibility layer
bs4_no_compat <- bs_remove(bs4, "bs3compat”)

bs_theme Create a Bootstrap theme

Description

Creates a Bootstrap theme object, where you can:

* Choose a (major) Bootstrap version.

* Choose a Bootswatch theme (optional).

https://bootswatch.com

bs_theme

23

* Customize main colors and fonts via explicitly named arguments (e.g., bg, fg, primary, etc).

* Customize other, lower-level, Bootstrap Sass variable defaults via

To learn more about how to implement custom themes, as well as how to use them inside Shiny and
R Markdown, see here.

Usage

bs_theme (

)

version = version_default(),

preset = NULL,

brand = NULL,

bg = NULL,
fg = NULL,

primary = NULL,
secondary = NULL,
success = NULL,
info = NULL,
warning = NULL,
danger = NULL,
base_font = NULL,
code_font = NULL,
heading_font = NULL,
font_scale = NULL,
bootswatch = NULL

bs_theme_update(

)

theme,

preset = NULL,

bg = NULL,

fg = NULL,

primary = NULL,
secondary = NULL,
success = NULL,
info = NULL,
warning = NULL,
danger = NULL,
base_font = NULL,
code_font = NULL,
heading_font = NULL,
font_scale = NULL,
bootswatch = NULL

is_bs_theme(x)

https://rstudio.github.io/bslib/articles/theming.html

24

Arguments

version

preset

brand

bg
fg
primary

secondary

success

info

warning
danger

base_font

bs_theme

The major version of Bootstrap to use (see versions() for possible values).
Defaults to the currently recommended version for new projects (currently Boot-
strap 5).

The name of a theme preset, either a built-in theme provided by bslib or a
Bootswatch theme (see builtin_themes() and bootswatch_themes() for pos-
sible values). This argument takes precedence over the bootswatch argument
and only one preset or bootswatch can be provided. When no bootswatch
theme is specified, and version is 5 or higher, preset defaults to "shiny”. To
remove the "shiny"” preset, provide a value of "bootstrap” (this value will
also work in bs_theme_update() to remove a preset or bootswatch theme).

arguments passed along to bs_add_variables().

Specifies how to apply branding to your theme using brand.yml, a simple YAML
file that defines key brand elements like colors, fonts, and logos. Valid options:

* NULL (default): Automatically looks for a _brand.yml file in the current
directory or in _brand/ or brand/ in the current directory. If not found,
it searches parent project directories for a _brand.yml file (also possibly
in _brand/ or brand/). If a _brand.yml file is found, it is applied to the
Bootstrap theme.

* TRUE (default): Automatically looks for a _brand.yml file in the current
or app directory as described above. If a _brand.yml file is not found,
bs_theme () will throw an error.

* FALSE: Disables any brand.yml usage, even if a _brand. yml file is present.

* A file path that directly points to a specific brand.yml file (with any file
name) that you want to use.

e Use a list to directly provide brand settings directly in R, following the
brand.yml structure.

Learn more about creating and using brand.yml files at the brand.yml home-
page or run shiny::runExample(”brand.yml"”, package = "bslib") to try
brand.yml in a demo app.

A color string for the background.
A color string for the foreground.

A color to be used for hyperlinks, to indicate primary/default actions, and to
show active selection state in some Bootstrap components. Generally a bold,
saturated color that contrasts with the theme’s base colors.

A color for components and messages that don’t need to stand out. (Not sup-
ported in Bootstrap 3.)

A color for messages that indicate an operation has succeeded. Typically green.

A color for messages that are informative but not critical. Typically a shade of
blue-green.

A color for warning messages. Typically yellow.
A color for errors. Typically red.

The default typeface.

https://posit-dev.github.io/brand-yml/
https://posit-dev.github.io/brand-yml/
https://posit-dev.github.io/brand-yml/

bs_theme 25

code_font The typeface to be used for code. Be sure this is monospace!

heading_font The typeface to be used for heading elements.

font_scale A scalar multiplier to apply to the base font size. For example, a value of 1.5
scales font sizes to 150% and a value of @. 8 scales to 80%. Must be a positive
number.

bootswatch The name of a bootswatch theme (see bootswatch_themes() for possible val-

ues). When provided to bs_theme_update(), any previous Bootswatch theme
is first removed before the new one is applied (use bootswatch = "bootstrap”
to effectively remove the Bootswatch theme).

theme A bs_theme() object.
X an object.
Value

Returns a sass: : sass_bundle() (list-like) object.

Colors

Colors may be provided in any format that htmltools: :parseCssColors() can understand. To
control the vast majority of the (’grayscale’) color defaults, specify both the fg (foreground) and bg
(background) colors. The primary and secondary theme colors are also useful for accenting the
main grayscale colors in things like hyperlinks, tabset panels, and buttons.

Fonts

Use base_font, code_font, and heading_font to control the main typefaces. These arguments set
new defaults for the relevant font-family CSS properties, but don’t necessarily import the relevant
font files. To both set CSS properties and import font files, consider using the various font_face()
helpers.

Each x_font argument may be a single font or a font_collection(). A font can be created with
font_google(), font_link(), or font_face(), or it can be a character vector of font names in
the following format:

* A single unquoted name (e.g., "Source Sans Pro").
* A single quoted name (e.g., " 'Source Sans Pro'").

* A comma-separated list of names w/ individual names quoted as necessary. (e.g. c("Open
Sans"”, "'Source Sans Pro'"”, "'Helvetica Neue', Helvetica, sans-serif"))

font_google() sets local = TRUE by default, which ensures that the font files are downloaded
from Google Fonts when your document or app is rendered. This guarantees that the client has
access to the font family, making it relatively safe to specify just one font family:

bs_theme(base_font = font_google("Pacifico”, local = TRUE))

That said, we recommend you specify multiple "fallback” font families, especially when relying on
remote and/or system fonts being available. Fallback fonts are useful not only for handling missing
fonts, but also ensure that your users don’t experience a Flash of Invisible Text (FOIT) which can
be quite noticeable with remote web fonts on a slow internet connection.

bs_theme(base_font = font_collection(font_google("Pacifico”, local = FALSE), "Roboto”, "sans-serif"))

https://fonts.google.com/

26 bs_theme_dependencies

References

* Get Started: Theming introduces theming with bslib in Shiny apps and R Markdown docu-
ments.

* Theming: Bootstrap 5 variables provides a searchable reference of all theming variables avail-
able in Bootstrap 5.

* Theming: Custom components gives a tutorial on creating a dynamically themable custom
component.

* bslib’s theming capabilities are powered by the sass package.

* Bootstrap’s utility classes can be helpful when you want to change the appearance of an ele-
ment without writing CSS or customizing your bs_theme().

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_dependency(),
bs_global_theme(), bs_remove(), bs_theme_dependencies(), bs_theme_preview()

Examples

theme <- bs_theme(
Controls the default grayscale palette
bg = "#202123", fg = "#B8BCC2",
Controls the accent (e.g., hyperlink, button, etc) colors
primary = "#EA8QFC", secondary = "#48DAC6",

base_font = c("Grandstander"”, "sans-serif”),
code_font = c("Courier"”, "monospace"”),
heading_font = "'Helvetica Neue', Helvetica, sans-serif”,

Can also add lower-level customization
"input-border-color” = "#EA8QFC"

)
bs_theme_preview(theme)

Lower-level bs_add_*() functions allow you to work more

directly with the underlying Sass code

theme <- bs_add_variables(theme, "my-class-color” = "red")

theme <- bs_add_rules(theme, ".my-class { color: $my-class-color }")

bs_theme_dependencies Compile Bootstrap Sass with (optional) theming

Description

bs_theme_dependencies() compiles Bootstrap Sass into CSS and returns it, along with other
HTML dependencies, as a list of htmltools: :htmlDependency()s. Most users won’t need to call
this function directly as Shiny & R Markdown will perform this compilation automatically when
handed a bs_theme (). If you’re here looking to create a themeable component, see bs_dependency ().

https://rstudio.github.io/bslib/articles/theming/index.html
https://rstudio.github.io/bslib/articles/bs5-variables/index.html
https://rstudio.github.io/bslib/articles/custom-components/index.html
https://rstudio.github.io/sass/
https://rstudio.github.io/bslib/articles/utility-classes/index.html

bs_theme_dependencies 27

Usage
bs_theme_dependencies(
theme,
sass_options = sass::sass_options_get(output_style = "compressed”),

cache = sass::sass_cache_get(),
jquery = jquerylib::jquery_core(3),
precompiled = get_precompiled_option("bslib.precompiled”, default = TRUE)

Arguments

theme A bs_theme() object.
sass_options a sass::sass_options() object.

cache This can be a directory to use for the cache, a FileCache object created by
sass_file_cache(), or FALSE or NULL for no caching.

jquery a jquerylib::jquery_core() object.

precompiled Before compiling the theme object, first look for a precompiled CSS file for the
theme_version(). If precompiled = TRUE and a precompiled CSS file exists
for the theme object, it will be fetched immediately and not compiled. At the
moment, we only provide precompiled CSS for "stock" builds of Bootstrap (i.e.,
no theming additions, Bootswatch themes, or non-default sass_options).

Value

Returns a list of HTML dependencies containing Bootstrap CSS, Bootstrap JavaScript, and jquery.
This list may contain additional HTML dependencies if bundled with the theme.

Sass caching and precompilation

If Shiny Developer Mode is enabled (by setting options(shiny.devmode = TRUE) or calling shiny: :devmode (TRUE)),
both sass caching and bslib precompilation are disabled by default; that is, a call to bs_theme_dependencies(theme)
expands to bs_theme_dependencies(theme, cache =F, precompiled = F)). This is useful for

local development as enabling caching/precompilation may produce incorrect results if local changes

are made to bslib’s source files.

See Also

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_dependency(),
bs_global_theme(), bs_remove(), bs_theme(), bs_theme_preview()

Examples

Function to preview the styling a (primary) Bootstrap button

library(htmltools)

button <- tags$a(class = "btn btn-primary”, href = "#" role = "button”, "Hello")

preview_button <- function(theme) {
browsable(tags$body(bs_theme_dependencies(theme), button))

28 bs_theme_preview

}

Latest Bootstrap

preview_button(bs_theme())

Bootstrap 3

preview_button(bs_theme(3))

Bootswatch 4 minty theme
preview_button(bs_theme(4, bootswatch = "minty"))

Bootswatch 4 sketchy theme
preview_button(bs_theme(4, bootswatch = "sketchy"))

bs_theme_preview Preview a Bootstrap theme

Description

Launches an example shiny app that can be used to get a quick preview of a bs_theme(), as well
as an interactive GUI for tweaking some of the main theme settings. Calling bs_theme_preview()
with no arguments starts the theme preview app with the default theme, which is a great way to see
the available theme presets or to start creating your own theme.

Usage
bs_theme_preview(theme = bs_theme(), ..., with_themer = TRUE)
Arguments
theme A bs_theme() object.
passed along to shiny: :runApp().
with_themer whether or not to run the app with run_with_themer ().
Details

The app that this launches is subject to change as new features are developed in bslib and shiny.

Value

nothing, this function is called for its side-effects (launching an application).

See Also

Use run_with_themer () or bs_themer () to add the theming UI to an existing shiny app.

Other Bootstrap theme functions: bs_add_variables(), bs_current_theme(), bs_dependency(),
bs_global_theme(), bs_remove(), bs_theme(), bs_theme_dependencies()

builtin_themes 29

Examples

theme <- bs_theme(bg = "#6c757d", fg = "white”, primary = "orange")
bs_theme_preview(theme)

builtin_themes Obtain a list of all available built-in bslib themes.

Description

Obtain a list of all available built-in bslib themes.

Usage

builtin_themes(version = version_default(), full_path = FALSE)

Arguments

version the major version of Bootstrap.

full_path whether to return a path to the installed theme.
Value

Returns a character vector of built-in themes provided by bslib.

See Also

Other Bootstrap theme utility functions: bootswatch_themes(), bs_get_variables(), theme_bootswatch(),
theme_version(), versions()

card A Bootstrap card component

Description

A general purpose container for grouping related Ul elements together with a border and optional
padding. To learn more about card()s, see the Cards article or the other articles listed in the
References section below.

https://rstudio.github.io/bslib/articles/cards/index.html

30

Usage

card(

L

card

full_screen = FALSE,
height = NULL,
max_height = NULL,
min_height = NULL,

wrapper = card_body,

fill = TRUE,
class = NULL,
id = NULL
)
Arguments

full_screen

height

Unnamed arguments can be any valid child of an htmltools tag (which includes
card items such as card_body(). Named arguments become HTML attributes
on returned UI element.

If TRUE, an icon will appear when hovering over the card body. Clicking the
icon expands the card to fit viewport size.

Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made
full_screen (in this case, consider setting a height in card_body()).

max_height, min_height

fill

class

wrapper

id

Value

Any valid CSS unit (e.g., max_height="200px"). Doesn’t apply when a card is
made full_screen (in this case, consider setting amax_height in card_body()).

Whether or not to allow the card to grow/shrink to fit a fillable container with an
opinionated height (e.g., page_fillable()).

Additional CSS classes for the returned UI element.

A function (which returns a Ul element) to call on unnamed arguments in . . .
which are not already card item(s) (like card_header(), card_body(), etc.).
Note that non-card items are grouped together into one wrapper call (e.g. given
card("a", "b", card_body("c"), "d"), wrapper would be called twice, once
with "a" and "b" and once with "d").

Provide a unique identifier for the card() or value_box() to report its full
screen state to Shiny. For example, using id = "my_card”, you can observe the
card’s full screen state with input$my_card_full_screen.

A htmltools::div() tag.

References

Several articles on the bslib website feature the card component:

e Cards

¢ Get Started: Dashboards

https://rstudio.github.io/bslib/articles/cards/index.html
https://rstudio.github.io/bslib/articles/dashboards/index.html

card_body 31

* Get Started: Any Project
¢ Column-based layouts

* Filling layouts: Full-screen cards

See Also

Card item functions create the various parts of a card.

navset_card_tab(), navset_card_pill() and navset_card_underline() create cards with
tabbed navigation.

layout_columns() and layout_column_wrap() help position multiple cards into columns and
rows and can also be used inside a card.

layout_sidebar () adds a sidebar to a card when nested in card() or card_body ().
value_box () uses card() to highlight a showcase a key piece of information.

Other Components: accordion(), popover(), tooltip(), value_box()

Examples

library(htmltools)

card(
full_screen = TRUE,
card_header (
"This is the header”
),
card_body(
p("This is the body."),
p("This is still the body.")
),
card_footer(
"This is the footer”
)
)

card_body Card items

Description

Components designed to be provided as direct children of a card(). For a general overview of the
card() API, see the Cards article or the other articles listed in the References section of the card()
documentation.

https://rstudio.github.io/bslib/articles/any-project/index.html
https://rstudio.github.io/bslib/articles/column-layout/index.html
https://rstudio.github.io/bslib/articles/filling/index.html#full-screen-cards
https://rstudio.github.io/bslib/articles/cards/index.html

32 card_body

Usage
card_body(

fillable = TRUE,

min_height = NULL,

max_height = NULL,
max_height_full_screen = max_height,
height = NULL,

padding = NULL,

gap = NULL,
fill = TRUE,
class = NULL
)
card_title(..., container = htmltools::h5)
card_header(..., gap = NULL, class = NULL, container = htmltools::div)
card_footer(..., class = NULL)

card_image(

file,

alt = "",

src = NULL,

href = NULL,
border_radius = c("auto”, "top”, "bottom”, "all", "none"),
mime_type = NULL,
class = NULL,
height = NULL,
fill = FALSE,
width = NULL,
container = NULL

)

as.card_item(x)

is.card_item(x)

Arguments

Unnamed arguments can be any valid child of an htmltools tag. Named argu-
ments become HTML attributes on returned Ul element.
fillable Whether or not the card item should be a fillable (i.e. flexbox) container.
min_height, max_height, max_height_full_screen
Any valid CSS length unit.
height Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made
full_screen (in this case, consider setting a height in card_body()).

card_body

padding

gap

fill
class

container

file

alt

src

href

border_radius

mime_type

width

Value

33

Padding to use for the body. This can be a numeric vector (which will be inter-
preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

A CSS length unit defining the gap (i.e., spacing) between elements provided to
. ... This argument is only applicable when fillable = TRUE

Whether to allow this element to grow/shrink to fit its card() container.
Additional CSS classes for the returned UI element.

A function to generate an HTML element to contain the image. Setting this
value to card_body () places the image inside the card body area, otherwise the
image will extend to the edges of the card.

A file path pointing an image. Local images (i.e. not a URI starting with
https:// or similar) will be base64 encoded and provided to the src attribute
of the . Alternatively, you may directly set the image src, in which case
file is ignored.

Alternate text for the image, used by screen readers and assistive devices. Pro-
vide alt text with a description of the image for any images with important con-
tent. If alt text is not provided, the image will be considered to be decorative
and will not be read or announced by screen readers.

For more information, the Web Accessibility Initiative (WAI) has a helpful tu-
torial on alt text.

The src attribute of the tag. If provided, file is ignored entirely. Use
src to provide a relative path to a file that will be served by the Shiny application
and should not be base64 encoded.

An optional URL to link to when a user clicks on the image.
Which side of the image should have rounded corners, useful when card_image ()
is used as an image cap at the top or bottom of the card.

The value of border_radius determines whether the card-img-top ("top”),
card-img-bottom ("bottom"), or card-img ("all") Bootstrap classes are ap-
plied to the card. The default "auto” value will use the image’s position within
a card() to automatically choose the appropriate class.

The mime type of the file when it is base64 encoded. This argument is avail-
able for advanced use cases where mime: : guess_type() is unable to automat-
ically determine the file type.

Any valid CSS unit (e.g., width="100%").

an object to test (or coerce to) a card item.

An htmltools::div() tag.

https://www.w3.org/WAI/tutorials/images/
https://www.w3.org/WAI/tutorials/images/
https://getbootstrap.com/docs/5.3/components/card/#images

34 font_tace

Functions

e card_body(): A general container for the "main content" of a card().
e card_title(): Similar to card_header () but without the border and background color.

e card_header(): A header (with border and background color) for the card(). Typically
appears before a card_body ().

e card_footer(): A header (with border and background color) for the card(). Typically
appears after a card_body ().

* card_image(): Include static images in a card, for example as an image cap at the top or
bottom of the card.

* as.card_item(): Mark an object as a card item. This will prevent the card() from putting
the object inside a wrapper (i.e., a card_body()).

See Also

card() creates a card component.

navset_card_tab(), navset_card_pill() and navset_card_underline() create cards with
tabbed navigation.

layout_columns() and layout_column_wrap() help position multiple cards into columns and
rows and can also be used inside a card.

layout_sidebar () adds a sidebar to a card when nested in card() or card_body ().

font_face Helpers for importing web fonts

Description

font_google(), font_link(), and font_face() are all re-exported from the sass package (see
sass: :font_face() for details). For a quick example of how to use these functions with bs_theme (),
see the examples section below.

Examples

If you have an internet connection, running the following code
will download, cache, and import the relevant Google Font files
for local use
theme <- bs_theme(

base_font = font_google("Fira Sans"),

code_font = font_google("Fira Code"),

heading_font = font_google("Fredoka One")
)
if (interactive()) {

bs_theme_preview(theme)

}

Three different yet equivalent ways of importing a remotely-hosted Google Font

input_code_editor 35

a <- font_google("Crimson Pro”, wght = "200..900", local = FALSE)
b <- font_link(
"Crimson Pro",
href = "https://fonts.googleapis.com/css2?family=Crimson+Pro:wght@200..900"
)
url <- "https://fonts.gstatic.com/s/crimsonpro/v13/g5uDsoa5M_tv7IihmnkabARboYF6CsKj.woff2"
c <- font_face(
family = "Crimson Pro",
style = "normal”,
weight = "200 900",
src = paste@("url(”, url, ") format('woff2')")
)
theme <- bs_theme(base_font = c¢)
if (interactive()) {
bs_theme_preview(theme)

}

input_code_editor Code editor input

Description

Creates an interactive light-weight code editor input that can be used in Shiny applications. The
editor provides syntax highlighting, line numbers, and other basic code editing features powered by
Prism Code Editor. For a complete example, run shiny: : runExample("code-editor”, package
= "bslib").

The editor value is not sent to R on every keystroke. Instead, updates are reflected on the server
when the user moves away from the editor or when they press Ctrl/Cmd + Enter.

Note that this input is not designed for editing or rendering large files. Displaying files with 1,000
lines or more may lead to performance issues.
Usage

input_code_editor(

id,
label = NULL,

value = s

language = "plain”,

height = "auto”,

width = "100%",

theme_light = "github-light",
theme_dark = "github-dark"”,
read_only = FALSE,

line_numbers = NULL,

word_wrap = NULL,

tab_size = 2,

indentation = c("space”, "tab"),

36 input_code_editor

fill = TRUE
)
update_code_editor(
id,
value = NULL,
label = NULL,

language = NULL,

theme_light = NULL,

theme_dark = NULL,

read_only = NULL,

line_numbers = NULL,

word_wrap = NULL,

tab_size = NULL,

indentation = NULL,

session = get_current_session()

)
Arguments

id Input ID. Access the current value with input$<id>.

label Display label for the input. Default is NULL for no label.

value Code content. Default is an empty string.
Named arguments, e.g. class and style, that will be added to the outer con-
tainer of the input.

language Programming language for syntax highlighting. Supported languages include
"r", "python”, "julia”, "sql”, "javascript”, "typescript”, "html”, "css",
”SCSS”, nsassu7 "jSOh", ”markdown”, ”yaml”, "Xm].", ”toml”, "ini", ”bash”,
"docker"”, "latex"”, "cpp”, "rust”, "diff", and "plain”. Defaultis "plain”.

height CSS height of the editor. Default is "300px".

width CSS width of the editor. Default is "100%".

theme_light, theme_dark
Theme to use in light or dark mode. Defaults to "github-1light" and "github-dark”,
respectively. See the Theme section for more details.

read_only Whether the editor should be read-only. Default is FALSE.

line_numbers Whether to show line numbers. Default is TRUE, except for markdown and plain
text.

word_wrap Whether to wrap long lines, by default disabled when 1ine_numbers is FALSE.

tab_size Number of spaces per tab. Default is 2.

indentation Type of indentation: "space” or "tab"”. Default is "space”.

fill Whether or not to allow the card to grow/shrink to fit a fillable container with an

opinionated height (e.g., page_fillable()).

session a shiny session object (the default should almost always be used).

input_code_editor 37

Value

An HTML tag object that can be included in a Shiny UL

Keyboard shortcuts
The editor supports the following keyboard shortcuts:
e Ctrl/Cmd+Enter: Submit the current code to R

e Ctrl/Cmd+Z: Undo
Ctrl/Cmd+Shift+Z: Redo

¢ Tab: Indent selection

e Shift+Tab: Dedent selection

Themes

The editor automatically switches between theme_light and theme_dark when used with input_dark_mode ().
Otherwise, the editor will use theme_light by default.

A variety of themes are available for use. The full list of bundled themes is: "atom-one-dark”,
"dracula”, "github-dark-dimmed”, "github-dark”, "github-light"”, "night-owl-light",

non

"night-owl”, "prism-okaidia”, "prism-solarized-light"”, "prism-tomorrow”, "prism-twilight",

n on

"prism”, "vs-code-dark"”, "vs-code-light".

See Also

Other input controls: input_dark_mode(), input_switch()

Examples

library(shiny)
library(bslib)

ui <- page_fluid(
input_code_editor(
"sql_query",
value = "SELECT * FROM table”,
language = "sql”
),
verbatimTextOutput ("code_output”)
)

server <- function(input, output, session) {
output$code_output <- renderPrint({
input$sql_query
D)
3

shinyApp(ui, server)

38 input_dark_mode

input_dark_mode Dark mode input control

Description

Creates a button that toggles between dark and light modes, specifically for toggling between light
and dark Bootstrap color modes — a new feature added in Bootstrap 5.3.

Usage
input_dark_mode(..., id = NULL, mode = NULL)
toggle_dark_mode(mode = NULL, ..., session = get_current_session())
Arguments
Additional attributes to be passed to the input control UI, such as class, style,
etc.
In toggle_dark_mode(), the ... are included for future extensibility and are
currently ignored.
id An optional input id, required to reactively read the current color mode.
mode The initial mode of the dark mode switch. By default or when set to NULL, the
user’s system settings for preferred color scheme will be used. Otherwise, set to
"light" or "dark" to force a particular initial mode.
session A Shiny session object (the default should almost always be used).
Value

Returns a Ul element for a dark mode switch input control. The server value received for the input
corresponding to id will be a string value with the current color mode ("light” or "dark").
Functions

e input_dark_mode(): Create a dark mode switch input control

* toggle_dark_mode(): Programmatically toggle or set the current light or dark color mode.

See Also

Other input controls: input_code_editor(), input_switch()

https://getbootstrap.com/docs/5.3/customize/color-modes/
https://getbootstrap.com/docs/5.3/migration/#color-modes

input_submit_textarea 39

input_submit_textarea Create a textarea input control with explicit submission

Description

Creates a textarea input where users can enter multi-line text and submit their input using a dedicated
button or keyboard shortcut. This control is ideal when you want to capture finalized input, rather
than reacting to every keystroke, making it useful for chat boxes, comments, or other scenarios
where users may compose and review their text before submitting.

Usage
input_submit_textarea(
id,
label = NULL,

placeholder = NULL,

value = "",

width = "min(680px, 100%)",

rows = 1,

button = NULL,

toolbar = NULL,

submit_key = c("enter+modifier”, "enter"”)
)
update_submit_textarea(

id,

value = NULL,

placeholder = NULL,

label = NULL,

submit = FALSE,
focus = FALSE,
session = get_current_session()

)
Arguments
id The input ID.
label The label to display above the input control. If NULL, no label is displayed.

Additional attributes to apply to the underlying <textarea>element (e.g., spellcheck,
autocomplete, etc).

placeholder The placeholder text for the user input.
value The value to set the user input to.
width Any valid CSS unit (e.g., width="100%").

40 input_submit_textarea

rows The number of rows (i.e., height) of the textarea. This essentially sets the mini-
mum height — the textarea can grow taller as the user enters more text.

button A htmltools::tags element to use for the submit button. It’s recommended that
this be a input_task_button() since it will automatically provide a busy in-
dicator (and disable) until the next flush occurs. Note also that if the submit
button launches a shiny::ExtendedTask, this button can also be bound to the task
(bind_task_button()) and/or manually updated for more accurate progress
reporting (update_task_button()).

toolbar A list of optional UI elements (e.g., links, icons) to display next to the submit
button.
submit_key A character string indicating what keyboard event should trigger the submit but-

ton. The default is enter+modifier, which requires the user to hold down Ctrl
(or Cmd on Mac) before pressing Enter to submit. This helps prevent accidental
submissions. To allow submission with just the Enter key, use enter. In this
case, the user can still insert new lines using Shift+Enter or Alt+Enter.

submit Whether to automatically submit the text for the user. Requires value.
focus Whether to move focus to the input element. Requires value.
session The session object; using the default is recommended.

Value

A textarea input control that can be added to a Ul definition.

Server value

The server receives a character string containing the user’s text input.

Important: The initial server value is always " " (empty string), regardless of any value parameter
provided to input_submit_textarea(). The server value updates only when the user explicitly
submits the input by either pressing the Enter key (possibly with a modifier key) or clicking the
submit button.

See Also

update_submit_textarea(), input_task_button()

Examples

library(shiny)
library(bslib)

ui <- page_fluid(
input_submit_textarea("text"”, placeholder = "Enter some input..."),
verbatimTextOutput(”value")
)
server <- function(input, output) {
output$value <- renderText({
req(input$text)
Sys.sleep(2)

input_switch 41

paste("You entered:", input$text)
b))
3

shinyApp(ui, server)

input_switch Switch input control

Description

Create an on-off style switch control for specifying logical values.

Usage
input_switch(id, label, value = FALSE, width = NULL)

update_switch(id, label = NULL, value = NULL, session = get_current_session())

toggle_switch(id, value = NULL, session = get_current_session())

Arguments

id An input id.

label A label for the switch.

value Whether or not the switch should be checked by default.

width Any valid CSS unit (e.g., width="200px").

session a shiny session object (the default should almost always be used).
Value

Returns a Ul element for a switch input control. The server value received for the input correspond-
ing to id will be a logical (TRUE/FALSE) value.

See Also

Other input controls: input_code_editor (), input_dark_mode ()

Examples

library(shiny)
library(bslib)

ui <- page_fixed(
title = "Keyboard Settings”,
h2("Keyboard Settings"),
input_switch("auto_capitalization”, "Auto-Capitalization”, TRUE),
input_switch("auto_correction”, "Auto-Correction”, TRUE),

42

input_switch("check_spelling”, "Check Spelling”, TRUE),
input_switch("”smart_punctuation”, "Smart Punctuation”),
h2("Preview"),
verbatimTextOutput("preview”)

)

server <- function(input, output, session) {
output$preview <- renderPrint({
list(
auto_capitalization = input$auto_capitalization,
auto_correction = input$auto_correction,
check_spelling = input$check_spelling,
smart_punctuation = input$smart_punctuation
)
D)
}

shinyApp(ui, server)

input_task_button

input_task_button Button for launching longer-running operations

Description

input_task_button is a button that can be used in conjuction with shiny::bindEvent() (or
the older shiny: :eventReactive() and shiny: :observeEvent() functions) to trigger actions or

recomputation.

It is similar to shiny: :actionButton(), except it prevents the user from clicking when its opera-

tion is already in progress.

Upon click, it automatically displays a customizable progress message and disables itself; and after
the server has dealt with whatever reactivity is triggered from the click, the button automatically

reverts to its original appearance and re-enables itself.

Usage

input_task_button(
id,
label,
icon = NULL,
label_busy = "Processing...",

icon_busy = rlang::missing_arg(),
type = "primary”,
auto_reset = TRUE

update_task_button(id, ..., state = NULL, session = get_current_session())

input_task_button 43

Arguments

id The input slot that will be used to access the value.

label The label of the button while it is in ready (clickable) state; usually a string.
In input_task_button(), named arguments become attributes to include on
the <button> element, e.g. class or data attributes. Unnamed arguments can
provide additional states for the button, see the "Custom states" section.
Inupdate_task_button(), ... are ignored and must be empty. The task button
only supports changing between pre-defined states.

icon An optional icon to display next to the label while the button is in ready state.
See fontawesome: :fa_i().

label_busy The label of the button while it is busy.

icon_busy The icon to display while the button is busy. By default, fontawesome: : fa_i("refresh”,
class = "fa-spin”, "aria-hidden” = "true") is used, which displays a spin-
ning "chasing arrows" icon. You can create spinning icons out of other Font
Awesome icons by using the same expression, but replacing "refresh” with a
different icon name. See fontawesome: :fa_i().

type One of the Bootstrap theme colors ("primary”, "default”, "secondary”, "success”,
"danger”, "warning”, "info", "light"”, "dark"), or NULL to leave off the
Bootstrap-specific button CSS classes altogether.

auto_reset If TRUE (the default), automatically put the button back in "ready" state after its
click is handled by the server.

state If "busy”, put the button into busy/disabled state. If "ready”, put the button
into ready/enabled state.

session The session object; using the default is recommended.

Manual button reset

In some advanced use cases, it may be necessary to keep a task button in its busy state even after the
normal reactive processing has completed. Calling update_task_button(id, state = "busy")
from the server will opt out of any currently pending reset for a specific task button. After doing so,
the button can be re-enabled by calling update_task_button(id, state = "ready”) after each
click’s work is complete.

You can also pass an explicit auto_reset = FALSE to input_task_button(), which means that
button will never be automatically re-enabled and will require update_task_button(id, state =
"ready") to be called each time.

Note that, as a general rule, Shiny’s update family of functions do not take effect at the in-
stant that they are called, but are held until the end of the current reactive cycle. So if you have
many different reactive calculations and outputs, you don’t have to be too careful about when you
call update_task_button(id, state = "ready"), as the button on the client will not actually re-
enable until the same moment that all of the updated outputs simultaneously sent to the client.

Custom states

The task button is designed to automatically switch between two states: the "ready" state, where
the button is clickable and displays the label and icon; and the "busy" state, where the button is
disabled and displays label_busy and icon_busy.

44 input_task_button

In advanced use cases, you can include additional states by adding an htmltools::div() with a
slot attribute naming the state and the icon and label as the first and second children, respectively.

input_task_button(
label = "Ring home”,
icon = fontawesome::fa_i("phone"),
div(slot = "ringing”, fontawesome::fa_i("bell”), "Ringing..."),
div(
slot = "voice-mail”,
fontawesome: :fa_i("voicemail”),
"Leaving a message..."

)
)

You can move between these states by calling update_task_button() and passing the slot name
to the state argument, e.g. state="ringing". See the section above on manual button resetting,
which you will likely need to use in conjunction with custom states.

Server value

An integer of class "shinyActionButtonValue”. This class differs from ordinary integers in that
a value of 0 is considered "falsy". This implies two things:

* Event handlers (e.g., shiny: :observeEvent(), shiny::eventReactive()) won’t execute
on initial load.

* Input validation (e.g., shiny: :req(), shiny: :need()) will fail on initial load.

See Also

bind_task_button()

Examples

library(shiny)
library(bslib)

ui <- page_sidebar(
sidebar = sidebar(

open = "always"”,
input_task_button("resample”, "Resample”),
) ’
verbatimTextOutput ("summary")

)

server <- function(input, output, session) {
sample <- eventReactive(input$resample, ignoreNULL=FALSE, {
Sys.sleep(2) # Make this artificially slow
rnorm(100)
b))

output$summary <- renderPrint({

layout_columns 45

summary (sample())
H
3

shinyApp(ui, server)

layout_columns Responsive 12-column grid layouts

Description

Create responsive, column-based grid layouts, based on a 12-column grid.

Usage

layout_columns(
col_widths = NA,
row_heights = NULL,
fill = TRUE,
fillable = TRUE,
gap = NULL,
class = NULL,
height = NULL,
min_height = NULL,
max_height = NULL

)
Arguments
Unnamed arguments should be Ul elements (e.g., card()). Named arguments
become attributes on the containing htmltools::tag element.
col_widths One of the following:

* NA (the default): Automatically determines a sensible number of columns
based on the number of children.

* A numeric vector of integers between 1 and 12, where each element repre-
sents the number of columns for the relevant Ul element. Elements that
happen to go beyond 12 columns wrap onto the next row. For exam-
ple, col_widths = c(4, 8, 12) allocates 4 columns to the first element, 8
columns to the second element, and 12 columns to the third element (which
wraps to the next row). Negative values are also allowed, and are treated as
empty columns. For example, col_widths = c(-2, 8, -2) would allocate
8 columns to an element (with 2 empty columns on either side).

* Abreakpoints() object, where each breakpoint may be either of the above.

row_heights One of the following:

46

fill

fillable
gap

class
height

layout_columns

* A numeric vector, where each value represents the fractional unit (fr) height
of the relevant row. If there are more rows than values provided, the pattern
will repeat. For example, row_heights = c(1, 2) allows even rows to take
up twice as much space as odd rows.

* A list of numeric and CSS length units, where each value represents the
height of the relevant row. If more rows are needed than values provided,
the pattern will repeat. For example, row_heights = list("auto”, 1) al-
lows the height of odd rows to be driven by its contents and even rows to be
1fr.

* A character vector/string of CSS length units. In this case, the value is
supplied directly to grid-auto-rows.

* Abreakpoints() object, where each breakpoint may be either of the above.

Whether or not to allow the layout to grow/shrink to fit a fillable container with
an opinionated height (e.g., page_fillable()).

Whether or not each element is wrapped in a fillable container.

A CSS length unit defining the gap (i.e., spacing) between elements provided to
. ... This argument is only applicable when fillable = TRUE

Additional CSS classes for the returned Ul element.

Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made
full_screen (in this case, consider setting a height in card_body()).

min_height, max_height

References

The maximum or minimum height of the layout container. Can be any valid
CSS unit (e.g., max_height="200px"). Use these arguments in filling layouts to
ensure that a layout container doesn’t shrink below min_height or grow beyond
max_height.

Column-based layouts on the bslib website.

See Also

breakpoints() for more information on specifying column widths at responsive breakpoints.

Other Column layouts: layout_column_wrap()

Examples

x <- card("A simple card")

page_fillable(

layout_columns(x, x, x, Xx)

)

Or add a list of items, spliced with rlang's ~!!!" operator

page_fillable(

layout_columns(!!!list(x, x, x))

)

https://css-tricks.com/introduction-fr-css-unit/
https://css-tricks.com/introduction-fr-css-unit/
https://rstudio.github.io/bslib/articles/column-layout/index.html

layout_column_wrap 47

page_fillable(
layout_columns(
col_widths = c(6, 6, 12),
X, X, X
)
)

page_fillable(
layout_columns(
col_widths = c(6, 6, -2, 8),
row_heights = c(1, 3),
X, X, X
)
)

page_fillable(
fillable_mobile = TRUE,
layout_columns(
col_widths = breakpoints(
sm = c(12, 12, 12),
md = c(6, 6, 12),

lg =c(4, 4, 4
) ’
X, X, X
)
)
layout_column_wrap Column-first uniform grid layouts
Description

Wraps a 1d sequence of UI elements into a 2d grid. The number of columns (and rows) in the
grid dependent on the column width as well as the size of the display. For more explanation and
illustrative examples, see the References section below.

Usage

layout_column_wrap(

width = "200px",

fixed_width = FALSE,
heights_equal = c("all”, "row"),
fill = TRUE,

fillable = TRUE,

height = NULL,

height_mobile = NULL,

min_height = NULL,

48 layout_column_wrap

max_height = NULL,

gap = NULL,
class = NULL
)
Arguments
Unnamed arguments should be Ul elements (e.g., card()). Named arguments
become attributes on the containing htmltools::tag element.
width The desired width of each card, which can be any of the following:

¢ A (unit-less) number between 0 and 1.

— This should be specified as 1/num, where num represents the number of
desired columns.

* A CSS length unit
— Either the minimum (when fixed_width=FALSE) or fixed width (fixed_width=TRUE).
* NULL

— Allows power users to set the grid-template-columns CSS property
manually, either via a style attribute or a CSS stylesheet.

fixed_width When width is greater than 1 or is a CSS length unit, e.g. "200px", fixed_width
indicates whether that width value represents the absolute size of each column
(fixed_width=TRUE) or the minimum size of a column (fixed_width=FALSE).
When fixed_width=FALSE, new columns are added to a row when width space
is available and columns will never exceed the container or viewport size. When
fixed_width=TRUE, all columns will be exactly width wide, which may result
in columns overflowing the parent container.

heights_equal If "all"” (the default), every card in every row of the grid will have the same
height. If "row"”, then every card in each row of the grid will have the same
height, but heights may vary between rows.

fill Whether or not to allow the layout to grow/shrink to fit a fillable container with
an opinionated height (e.g., page_fillable()).

fillable Whether or not each element is wrapped in a fillable container.

height Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made

full_screen (in this case, consider setting a height in card_body()).

height_mobile Any valid CSS unit to use for the height when on mobile devices (or narrow
windows).

min_height, max_height
The maximum or minimum height of the layout container. Can be any valid
CSS unit (e.g., max_height="200px"). Use these arguments in filling layouts to
ensure that a layout container doesn’t shrink below min_height or grow beyond
max_height.

gap A CSS length unit defining the gap (i.e., spacing) between elements provided to
.. .. This argument is only applicable when fillable = TRUE

class Additional CSS classes for the returned Ul element.

nav-items 49

References
The bslib website features layout_column_wrap() in two places:

e Column-based layouts

e Cards: Multiple cards

See Also

Other Column layouts: layout_columns()

Examples

x <- card("A simple card")

Always has 2 columns (on non-mobile)
layout_column_wrap(width = 1/2, x, x, Xx)

Automatically lays out three cards into columns
such that each column is at least 200px wide:
layout_column_wrap(x, x, X)

To use larger column widths by default, set “width™.
This example has 3 columns when the screen is at least 900px wide:
layout_column_wrap(width = "300px", x, x, Xx)

You can add a list of items, spliced with rlang's ~!!!" operator
layout_column_wrap(!!!list(x, x, x))

nav-items Navigation items

Description

Create nav item(s) for use inside nav containers (e.g., navset_tab(), navset_bar(), etc).

Usage
nav_panel(title, ..., value = title, icon = NULL)
nav_panel_hidden(value, ..., icon = NULL)
nav_menu(title, ..., value = title, icon = NULL, align = c("left"”, "right"))

nav_item(...)

nav_spacer()

https://rstudio.github.io/bslib/articles/column-layout/index.html
https://rstudio.github.io/bslib/articles/cards/index.html#multiple-cards

50 nav-items

Arguments

title A title to display. Can be a character string or UI elements (i.e., htmltools::tags).
Depends on the function:

* Fornav_panel() and nav_panel_hidden(): Ul elements (i.e., htmltools::tags)
to display when the item is active.

» Fornav_menu(): acollection of nav items (e.g., nav_panel(), nav_item()).

* For nav_item(): Ul elements (i.e., htmltools::tags) to place directly in the
navigation panel (e.g., search forms, links to external content, etc).

value A character string to assign to the nav item. This value may be supplied to the
relevant container’s selected argument in order to show particular nav item’s
content immediately on page load. This value is also useful for programmati-
cally updating the selected content via nav_select(), nav_hide(), etc (updat-
ing selected tabs this way is often useful for showing/hiding panels of content
via other UI controls like shiny: :radioButtons() — in this scenario, consider
using nav_panel_hidden() with navset_hidden()).

icon Optional icon to appear next to the nav item’s title.

align horizontal alignment of the dropdown menu relative to dropdown toggle.

Value

A nav item that may be passed to a nav container (e.g. navset_tab()).

Functions

* nav_panel(): Content to display when the given item is selected.

* nav_panel_hidden(): Create nav content for use inside navset_hidden() (for creating cus-
tom navigation controls via navs_select()),

¢ nav_menu(): Create a menu of nav items.

e nav_item(): Place arbitrary content in the navigation panel (e.g., search forms, links to ex-
ternal content, etc.)

* nav_spacer(): Adding spacing between nav items.

See Also

navset create the navigation container holding the nav panels.

nav_menu(), nav_item(), nav_spacer () create menus, items, or space in the navset control area.
nav_insert(), nav_remove() programmatically add or remove nav panels.

nav_select(), nav_show(), nav_hide() change the state of a nav_panel() in a navset.

Other Panel container functions: nav_select(), navset

navbar_options 51

navbar_options Create a set of navbar options

Description

A navbar_options() object captures options specific to the appearance and behavior of the navbar,
independent from the content displayed on the page. This helper should be used to create the list of
options expected by navbar_options in page_navbar () and navset_bar().

Usage

navbar_options(
position = c("static-top”, "fixed-top"”, "fixed-bottom"),
bg = NULL,
theme = c("auto”, "light", "dark"),
collapsible = TRUE,
underline = TRUE

)
Arguments
Additional attributes that will be passed directly to the navbar container element.
position Determines whether the navbar should be displayed at the top of the page with
normal scrolling behavior ("static-top"”), pinned at the top ("fixed-top"),
or pinned at the bottom ("fixed-bottom”). Note that using "fixed-top" or
"fixed-bottom” will cause the navbar to overlay your body content, unless you
add padding, e.g.: tags$style(type="text/css", "body {padding-top: 7@px;}")
bg a CSS color to use for the navbar’s background color.
theme Either "dark” for a light text color (on a dark background) or "light" for
a dark text color (on a light background). If "auto” (the default) and bg is
provided, the best contrast to bg is chosen.
collapsible TRUE to automatically collapse the navigation elements into an expandable menu
on mobile devices or narrow window widths.
underline Whether or not to add underline styling to page or navbar links when active or
focused.
Details

Navbar style with Bootstrap 5 and Bootswatch themes:

In bslib v0.9.0, the default navbar colors for Bootswatch themes with Bootstrap 5 changed.
Prior to v0.9.0, bslib pre-selected navbar background colors in light and dark mode; after v0.9.0
the default navbar colors are less opinionated by default and follow light or dark mode (see
input_dark_mode()).

52

navbar_options

You can use navbar_options() to adjust the colors of the navbar when using a Bootswatch preset
theme with Bootstrap 5. For example, the Bootswatch documentation for the Flatly theme shows
4 navbar variations. Inspecting the source code for the first example reveals the following markup:

<nav class="navbar navbar-expand-lg bg-primary” data-bs-theme="dark">
<!--all of the navbar html -->
</nav>

Note that this navbar uses the bg-primary class for a dark navy background. The navbar’s white
text is controlled by the data-bs-theme="dark" attribute, which is used by Bootstrap for light
text on a dark background. In bslib, you can achieve this look with:

ui <- page_navbar(
theme = bs_theme(5, "flatly"),
navbar_options = navbar_options(class = "bg-primary"”, theme = "dark")

)

This particular combination of class = "bg-primary"” and theme = "dark"” works well for most
Bootswatch presets.

Another variation from the Flatly documentation features a navar with dark text on a light back-
ground:

ui <- page_navbar(
theme = bs_theme(5, "flatly"),
navbar_options = navbar_options(class = "bg-light"”, theme = "light")

)

The above options set navbar foreground and background colors that are always the same in
both light and dark modes. To customize the navbar colors used in light or dark mode, you can
use the $navbar-light-bg and $navbar-dark-bg Sass variables. When provided, bslib will
automatically choose to use light or dark text as the foreground color.

ui <- page_navbar(
theme = bs_theme(
5,
preset = "flatly"”,
navbar_light_bg = "#18BC9C", # flatly's success color (teal)
navbar_dark_bg = "#2C3E50" # flatly's primary color (navy)
)
)

Finally, you can also use the $navbar-bg Sass variable to set the navbar background color for
both light and dark modes:

ui <- page_navbar(
theme = bs_theme(
5,
preset = "flatly",
navbar_bg = "#E74C3C" # flatly's danger color (red)
)
)

https://bootswatch.com/flatly/

navset 53

Value

Returns a list of navbar options.

Changelog

This function was introduced in bslib v0.9.0, replacing the position, bg, inverse, collapsible
and underline arguments of page_navbar() and navset_bar(). Those arguments are depre-
cated with a warning and will be removed in a future version of bslib. Note that the deprecated
inverse argument of page_navbar () and navset_bar () was replaced with the theme argument
of navbar_options().

Examples

navbar_options(position = "static-top"”, bg = "#2e9f7d", underline = FALSE)

navset Navigation containers

Description

Render a collection of nav_panel () items into a container.

Usage
navset_tab(..., id = NULL, selected = NULL, header = NULL, footer = NULL)
navset_pill(..., id = NULL, selected = NULL, header = NULL, footer = NULL)
navset_underline(..., id = NULL, selected = NULL, header = NULL, footer = NULL)

navset_pill_list(

id = NULL,
selected = NULL,
header = NULL,
footer = NULL,
well = TRUE,
fluid = TRUE,
widths = c(4, 8)
)

navset_hidden(..., id = NULL, selected = NULL, header = NULL, footer = NULL)
navset_bar(

title = NULL,

54

)

id = NULL,

selected = NULL,

sidebar = NULL,

fillable = TRUE,

gap = NULL,

padding = NULL,

header = NULL,

footer = NULL,

fluid = TRUE,
navbar_options = NULL,
position = deprecated(),
bg = deprecated(),
inverse = deprecated(),
collapsible = deprecated()

navset_card_tab(

)

id = NULL,

selected = NULL,
title = NULL,
sidebar = NULL,
header = NULL,
footer = NULL,
height = NULL,

full_screen = FALSE,
wrapper = card_body

navset_card_pill(

)

id = NULL,

selected = NULL,

title = NULL,

sidebar = NULL,

header = NULL,

footer = NULL,

height = NULL,

placement = c("above"”, "below"),
full_screen = FALSE,

wrapper = card_body

navset_card_underline(

id = NULL,
selected = NULL,
title = NULL,

navset

navset 55

sidebar = NULL,
header = NULL,
footer = NULL,
height = NULL,
full_screen = FALSE,
wrapper = card_body

)
Arguments

a collection of nav_panel () items.

id a character string used for dynamically updating the container (see nav_select()).

selected a character string matching the value of a particular nav_panel() item to se-
lected by default.

header Ul element(s) (htmltools::tags) to display above the nav content. For card-based
navsets, these elements are implicitly wrapped in a card_body(). To control
things like padding, fill, etc., wrap the elements in an explicit card_body ().

footer Ul element(s) (htmltools::tags) to display below the nav content. For card-based
navsets, these elements are implicitly wrapped in a card_body(). To control
things like padding, fill, etc., wrap the elements in an explicit card_body ().

well TRUE to place a well (gray rounded rectangle) around the navigation list.

fluid TRUE to use fluid layout; FALSE to use fixed layout.

widths Column widths of the navigation list and tabset content areas respectively.

title A (left-aligned) title to place in the card header/footer. If provided, other nav
items are automatically right aligned.

sidebar A sidebar () component to display on every nav_panel() page.

fillable Whether or not to allow fill items to grow/shrink to fit the browser window.
If TRUE, all nav_panel() pages are fillable. A character vector, matching
the value of nav_panel()s to be filled, may also be provided. Note that, if a
sidebar is provided, fillable makes the main content portion fillable.

gap A CSS length unit defining the gap (i.e., spacing) between elements provided to

padding Padding to use for the body. This can be a numeric vector (which will be inter-

preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

navbar_options Options to control the appearance and behavior of the navbar. Use navbar_options()
to create the list of options.

position [Deprecated] Please use navbar_options = navbar_options(position=) in-
stead.

bg [Deprecated] Please use navbar_options = navbar_options(bg=) instead.

56

inverse

collapsible

height

full_screen

wrapper

placement

Examples

navset

[Deprecated] Please use navbar_options = navbar_options(inverse=) in-
stead.

[Deprecated] Please use navbar_options = navbar_options(collapsible=)
instead.

Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made
full_screen (in this case, consider setting a height in card_body()).

If TRUE, an icon will appear when hovering over the card body. Clicking the
icon expands the card to fit viewport size.

A function (which returns a Ul element) to call on unnamed arguments in . . .
which are not already card item(s) (like card_header(), card_body(), etc.).
Note that non-card items are grouped together into one wrapper call (e.g. given
card("a", "b", card_body("c"), "d"), wrapper would be called twice, once
with "a" and "b" and once with "d").

placement of the nav items relative to the content.

A basic example:

This first example creates a simple tabbed navigation container with two tabs. The tab name and
the content of each tab are specified in the nav_panel() calls and navset_tab() creates the
tabbed navigation around these two tabs.

library(htmltools)

navset_tab(

nav_panel(title

"One"”, p("First tab content.”)),

nav_panel(title = "Two", p("Second tab content."))

)

One Two

First tab content.

In the rest of the examples, we’ll include links among the tabs (or pills) in the navigation controls.

link_shiny <- tags$a(shiny::icon("github"), "Shiny"”, href = "https://github.com/rstudio/shiny”, targ
link_posit <- tags$a(shiny::icon("r-project”), "Posit"”, href = "https://posit.co”, target = "_blank")

navset_tab():

You can fully customize the controls in the navigation component. In this example, we’ve added
a direct link to the Shiny repository using nav_item(). We’ve also included a dropdown menu
using nav_menu() containing an option to select a third tab panel and another direct link to Posit’s
website. Finally, we’ve separated the primary tabs on the left from the direct link and dropdown
menu on the right using nav_spacer ().

navset

navset_tab(

nav_panel(title = "One", p("First tab content.”)),
nav_panel(title = "Two", p("Second tab content.”)),
nav_panel(title = "Three”, p("Third tab content")),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

)

One Two Three Links ~

First tab content.
© Shiny

@ Posit

navset_pill():

57

navset_pill() creates a navigation container that behaves exactly like navset_tab(), but the
tab toggles are pills or button-shaped.

navset_pill(

nav_panel(title = "One", p("First tab content.”)),
nav_panel(title = "Two", p("Second tab content.")),
nav_panel(title "Three"”, p("Third tab content”)),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

)

m Two Three Links ~

First tab content.
© Shiny

‘@ Posit

navset_underline():

58 navset

navset_underline() creates a navigation container that behaves exactly like navset_tab() and
navset_pill(), but the active/focused navigation links are styled with an underline.

navset_underline(

nav_panel(title = "One", p("First tab content.”)),
nav_panel(title = "Two", p("Second tab content.")),
nav_panel(title = "Three”, p("Third tab content")),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

)

One wo hree Links ~

First tab content.
© Shiny

@ Posit

navset_card_tab():

The tabbed navigation container can also be used in a card() component thanks to navset_card_tab().
Learn more about this approach in the article about Cards, including how to add a shared sidebar
to all tabs in the card using the sidebar argument of navset_card_tab().

navset_card_tab(

nav_panel(title "One", p("First tab content.")),
nav_panel(title "Two", p("Second tab content.")),
nav_panel(title = "Three"”, p("Third tab content")),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

)
)

https://pkgs.rstudio.com/bslib/articles/cards.html
https://pkgs.rstudio.com/bslib/articles/sidebars.html#multi-page-layout

navset 59

One Two Three Links ~

First tab content. € Shiny
@ Posit

navset_card_pill():

Similar to navset_pill (), navset_card_pill() provides a pill-shaped variant to navset_card_tab().
You can use the placement argument to position the navbar "above"” or "below” the card body.

navset_card_pill(
placement = "above”,
nav_panel(title = "One", p("First tab content.”)),
nav_panel(title = "Two", p("Second tab content.")),
nav_panel(title = "Three”, p("Third tab content")),
nav_spacer(),
nav_menu(
title = "Links",
nav_item(link_shiny),
nav_item(link_posit)
)
)

m Two Three Links ~

€ Shiny
@ Posit

First tab content.

navset_card_underline():
navset_card_underline() provides a card-based variant of navset_underline().

navset_card_underline(

nav_panel(title = "One", p("First tab content.")),
nav_panel(title = "Two", p("Second tab content.")),
nav_panel(title = "Three”, p("Third tab content")),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

60

navset

One Two Three Links ~

©) Shiny
Q@ Posit

First tab content.

navset_pill_list():
Furthermore, navset_pill_list() creates a vertical list of navigation controls adjacent to, rather
than on top of, the tab content panels.

navset_pill_list(

nav_panel(title "One", p("First tab content.”)),
nav_panel(title = "Two", p("Second tab content.”)),
nav_panel(title = "Three"”, p("Third tab content")),
nav_spacer(),
nav_menu(

title = "Links",

nav_item(link_shiny),

nav_item(link_posit)

)
)

First tab content.

Two
Three
Links ~

© Shiny
@ Posit

page_navbar():

Finally, page_navbar () provides full-page navigation container similar to navset_underline()
but where each nav_panel() is treated as a full page of content and the navigation controls
appear in a top-level navigation bar. Note that the navbar background and underline styling can
be controlled via navbar_options.

page_navbar() is complimented by navset_bar () which produces a similar layout intended to
be used within an app.

page_navbar(
title = "My App”,

nav_select 61

navbar_options = navbar_options(

bg = "#0062cc",

underline = TRUE
))
nav_panel(title = "One", p("First tab content.")),
nav_panel(title "Two", p("Second tab content.")),
nav_panel(title = "Three”, p("Third tab content”)),
nav_spacer(),
nav_menu(

title = "Links",

align = "right",

nav_item(link_shiny),

nav_item(link_posit)

)

)

#> shiny devmode - Turning off caching of Sass -> CSS compilation. To turn caching on, call “options(sa
#> This message is displayed once every 8 hours.

My App ©One
© Shiny
@ Posit

First tab content.

See Also
nav_panel (), nav_panel_hidden() create panels of content.
nav_menu(), nav_item(), nav_spacer () create menus, items, or space in the navset control area.
nav_insert(), nav_remove() programmatically add or remove nav panels.
nav_select(), nav_show(), nav_hide() change the state of a nav_panel() in a navset.

Other Panel container functions: nav-items, nav_select()

nav_select Dynamically update nav containers

Description

Functions for dynamically updating nav containers (e.g., select, insert, and remove nav items).
These functions require an id on the nav container to be specified and must be called within an

active Shiny session.

62 nav_select

Usage

nav_select(id, selected = NULL, session = get_current_session())

nav_insert(

id,

nav,

target = NULL,

position = c("after”, "before"),

select = FALSE,
session = get_current_session()
nav_remove(id, target, session = get_current_session())
nav_show(id, target, select = FALSE, session = get_current_session())

nav_hide(id, target, session = get_current_session())

Arguments
id a character string used to identify the nav container.
selected a character string used to identify a particular nav_panel () item.
session a shiny session object (the default should almost always be used).
nav a nav_panel () item.
target The value of an existing nav_panel () item, next to which tab will be added. If
removing: the value of the nav_panel () item that you want to remove.
position Should nav be added before or after the target?
select Should nav be selected upon being inserted?
See Also

Navset functions create the navigation container holding the nav panels.
nav_panel (), nav_panel_hidden() create panels of content.
nav_menu(), nav_item(), nav_spacer () create menus, items, or space in the navset control area.

Other Panel container functions: nav-items, navset

Examples

can_browse <- function() rlang::is_interactive() && require("shiny")

Selecting a tab
if (can_browse()) {
shinyApp(
page_fluid(
radioButtons("item”, "Choose", c("A", "B")),
navset_hidden(
id = "container”,

63

page
nav_panel_hidden("A", "a"),
nav_panel_hidden("B", "b")
)
),
function(input, output) {
observe(nav_select("container”, input$item))
3
)
3

Inserting and removing
if (can_browse()) {
ui <- page_fluid(
actionButton("add”, "Add 'Dynamic' tab"),

actionButton("remove”, "Remove 'Foo' tab"),
navset_tab(

id = "tabs",

nav_panel("Hello"”, "hello"),

nav_panel ("Foo", "foo"),

nav_panel("Bar”, "bar tab")
)

)

server <- function(input, output) {
observeEvent (input$add, {
nav_insert(
"tabs", target = "Bar", select = TRUE,
nav_panel("Dynamic”, "Dynamically added content”)
)
»
observeEvent (input$remove, {
nav_remove("tabs", target = "Foo")
»
}
shinyApp(ui, server)

}

page Modern Bootstrap page layouts

Description

These functions are small wrappers around shiny’s page constructors (i.e., shiny: : fluidPage(),
shiny: :navbarPage(), etc) that differ in two ways:

* The theme parameter defaults bslib’s recommended version of Bootstrap (for new projects).

* The return value is rendered as an static HTML page when printed interactively at the console.

64 page_fillable

Usage
page(..., title = NULL, theme = bs_theme(), lang = NULL)
page_fluid(..., title = NULL, theme = bs_theme(), lang = NULL)
page_fixed(..., title = NULL, theme = bs_theme(), lang = NULL)
Arguments
UI elements for the page. Named arguments become HTML attributes.
title The browser window title (defaults to the host URL of the page)
theme A bs_theme() object.
lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.
Functions

* page(): A bslib wrapper for shiny: :bootstrapPage(), a basic Boostrap page where the
content is added directly to the page body.

* page_fluid(): A bslib wrapper for shiny: : fluidPage(), a fluid Bootstrap-based page lay-
out that extends to the full viewport width.

* page_fixed(): A bslib wrapper for shiny::fixedPage(), a fixed Bootstrap-based page
layout where the page content container is centered horizontally and its width is constrained.

See Also

Dashboard-style pages: page_sidebar(), page_navbar(), page_fillable().

page_fillable A screen-filling page layout

Description

A Bootstrap-based page layout whose contents fill the full height and width of the browser window.

Usage
page_fillable(

padding = NULL,

gap = NULL,
fillable_mobile = FALSE,
title = NULL,

theme = bs_theme(),

lang = NULL

page_fillable

Arguments

padding

gap

65

UI elements for the page. Named arguments become HTML attributes.

Padding to use for the body. This can be a numeric vector (which will be inter-
preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

A CSS length unit defining the gap (i.e., spacing) between elements provided to

fillable_mobile

title
theme

lang

References

Whether or not the page should fill the viewport’s height on mobile devices (i.e.,
narrow windows).

The browser window title (defaults to the host URL of the page)
A bs_theme() object.

ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

* Filling Layouts on the bslib website.

* Getting Started with Dashboards on the bslib website.

See Also

layout_columns() and layout_column_wrap() for laying out content into rows and columns.

layout_sidebar() for ’floating’ sidebar layouts.

accordion() for grouping related input controls in the sidebar.

card() for wrapping outputs in the main’ content area.

value_box () for highlighting values.

Other Dashboard page layouts: page_navbar (), page_sidebar()

Examples

library(shiny)
library(ggplot2)
library(bslib)

ui <- page_fillable(
h1("Example”, code("mtcars”), "dashboard"),

layout_columns(
card(

full_screen = TRUE,

https://rstudio.github.io/bslib/articles/filling/index.html
https://rstudio.github.io/bslib/articles/dashboards/index.html

66

card_header ("Number of forward gears"),
plotOutput(”gear")
),
card(
full_screen = TRUE,
card_header ("Number of carburetors”),
plotOutput(”carb”)
)
),
card(
full_screen = TRUE,
card_header("Weight vs. Quarter Mile Time"),
layout_sidebar(
sidebar = sidebar(
varSelectInput(”var_x", "Compare to gsec:”, mtcars[-7], "wt"),
varSelectInput(”color”, "Color by:", mtcars[-7], "cyl"),
position = "right”
),
plotOutput(”var_vs_qgsec")
)
)
)

server <- function(input, output) {
for (var in c("cyl”, "vs", "am", "gear"”, "carb")) {
mtcars[[var]] <- as.factor(mtcars[[var]ll])

3

output$gear <- renderPlot({
ggplot(mtcars, aes(gear)) + geom_bar()
b))

output$carb <- renderPlot({
ggplot(mtcars, aes(carb)) + geom_bar()
D

output$var_vs_gsec <- renderPlot({
req(input$var_x, input$color)

ggplot(mtcars) +
aes(y = gsec, x = !linput$var_x, color = !linput$color) +
geom_point()
b))
3

shinyApp(ui, server)

page_navbar

page_navbar Multi-page app with a top navigation bar

page_navbar 67

Description

Create a page that contains a top level navigation bar that can be used to toggle a set of nav_panel ()
elements. Use this page layout to create the effect of a multi-page app, where your app’s content is
broken up into multiple "pages" that can be navigated to via the top navigation bar.

Usage

page_navbar(

title = NULL,

id = NULL,

selected = NULL,

sidebar = NULL,

fillable = TRUE,
fillable_mobile = FALSE,
gap = NULL,

padding = NULL,

header = NULL,

footer = NULL,
navbar_options = NULL,
fluid = TRUE,

theme = bs_theme(),
window_title = NA,

lang = NULL,

position = deprecated(),
bg = deprecated(),
inverse = deprecated(),
underline = deprecated(),
collapsible = deprecated()

)
Arguments

a collection of nav_panel () items.

title A (left-aligned) title to place in the card header/footer. If provided, other nav
items are automatically right aligned.

id a character string used for dynamically updating the container (see nav_select()).

selected a character string matching the value of a particular nav_panel () item to se-
lected by default.

sidebar A sidebar () component to display on every nav_panel () page.

fillable Whether or not to allow fill items to grow/shrink to fit the browser window.

If TRUE, all nav_panel() pages are fillable. A character vector, matching

the value of nav_panel()s to be filled, may also be provided. Note that, if a

sidebar is provided, fillable makes the main content portion fillable.
fillable_mobile

Whether or not fillable pages should fill the viewport’s height on mobile de-

vices (i.e., narrow windows).

68 page_navbar

gap A CSS length unit defining the gap (i.e., spacing) between elements provided to

padding Padding to use for the body. This can be a numeric vector (which will be inter-
preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

header Ul element(s) (htmltools::tags) to display above the nav content. For card-based
navsets, these elements are implicitly wrapped in a card_body (). To control
things like padding, fill, etc., wrap the elements in an explicit card_body ().

footer Ul element(s) (htmltools::tags) to display below the nav content. For card-based
navsets, these elements are implicitly wrapped in a card_body(). To control
things like padding, fill, etc., wrap the elements in an explicit card_body ().

navbar_options Options to control the appearance and behavior of the navbar. Use navbar_options()
to create the list of options.

fluid TRUE to use fluid layout; FALSE to use fixed layout.
theme A bs_theme() object.

window_title the browser window title. The default value, NA, means to use any character
strings that appear in title (if none are found, the host URL of the page is
displayed by default).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

position [Deprecated] Please use navbar_options = navbar_options(position=) in-
stead.

bg [Deprecated] Please use navbar_options = navbar_options(bg=) instead.

inverse [Deprecated] Please use navbar_options = navbar_options(inverse=) in-
stead.

underline [Deprecated] Please use navbar_options = navbar_options(underline=) in-
stead.

collapsible [Deprecated] Please use navbar_options = navbar_options(collapsible=)
instead.

References

Getting Started with Dashboards on the bslib website.

See Also

nav_panel(), nav_menu(), and nav_item() for adding content sections and organizing or creating
items in the navigation bar.

layout_columns() and layout_column_wrap() for laying out content into rows and columns.

https://rstudio.github.io/bslib/articles/dashboards/index.html

page_sidebar

card() for wrapping outputs in the main’ content area.
value_box () for highlighting values.
accordion() for grouping related input controls in the sidebar.

Other Dashboard page layouts: page_fillable(), page_sidebar()

Examples

library(shiny)
library(bslib)

link_shiny <- tags$a(
shiny::icon("github"”), "Shiny",
href = "https://github.com/rstudio/shiny”,
target = "_blank”

)

link_posit <- tags$a(
shiny::icon("r-project”), "Posit"”,
href = "https://posit.co”,
target = "_blank”

)

ui <- page_navbar(
title = "My App”,
nav_panel(title = "One", p("First page content.")),
nav_panel(title = "Two", p("Second page content.")),
nav_panel("Three”, p("Third page content.")),
nav_spacer(),
nav_menu (
title = "Links",
align = "right"”,
nav_item(link_shiny),
nav_item(link_posit)
)
)

server <- function(...) { } # not used in this example

shinyApp(ui, server)

69

page_sidebar A sidebar page (i.e., dashboard)

Description

Create a dashboard layout with a full-width header (title) and sidebar().

70

Usage

page_sidebar(

L

sidebar =

page_sidebar

NULL,
title = NULL,

fillable = TRUE,
fillable_mobile = FALSE,
theme = bs_theme(),

window_title
lang = NULL

Arguments

sidebar

title

fillable

fillable_mobile

theme

window_title

lang

References

= NA,

UI elements to display in the 'main’ content area (i.e., next to the sidebar).
These arguments are passed to layout_sidebar (), which has more details.

A sidebar () object.

A string, number, or htmltools: : tag() child to display as the title (just above
the sidebar).

Whether or not the main content area should be considered a fillable (i.e., flexbox)
container.

Whether or not the page should fill the viewport’s height on mobile devices (i.e.,
narrow windows).

A bs_theme() object.

the browser window title. The default value, NA, means to use any character
strings that appear in title (if none are found, the host URL of the page is
displayed by default).

ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

Getting Started with Dashboards on the bslib website.

See Also

layout_columns() and layout_column_wrap() for laying out content into rows and columns.

accordion() for grouping related input controls in the sidebar.

card() for wrapping outputs in the *'main’ content area.

value_box () for highlighting values.

Other Dashboard page layouts: page_fillable(), page_navbar()

https://rstudio.github.io/bslib/articles/dashboards/index.html

popover 71

Examples

library(shiny)
library(ggplot2)
library(bslib)

ui <- page_sidebar(
title = "Example dashboard”,
sidebar = sidebar(
varSelectInput(”var”, "Select variable”, mtcars)
),
card(
full_screen = TRUE,
card_header("My plot"),
plotOutput(”p")
)
)

server <- function(input, output) {
output$p <- renderPlot({
ggplot(mtcars) + geom_histogram(aes(!!input$var))
D)
3

shinyApp(ui, server)

popover Add a popover to a Ul element

Description

Display additional information when clicking on a UI element (typically a button).

Usage

popover (
trigger,
title = NULL,
id = NULL,
placement = c("auto”, "top", "right”, "bottom”, "left"),
options = list()

toggle_popover(id, show = NULL, session = get_current_session())

update_popover(id, ..., title = NULL, session = get_current_session())

72 popover

Arguments
trigger The Ul element to serve as the popover trigger (typically a shiny: :actionButton()
or similar). If trigger renders as multiple HTML elements (e.g., it’s a tagList()),
the last HTML element is used for the trigger. If the trigger should contain all
of those elements, wrap the objectina htmltools: :div() orhtmltools: :span().
Ul elements for the popover’s body. Character strings are automatically escaped
unless marked as htmltools: :HTML().
title A title (header) for the popover. To remove a header with update_popover(),
provide a either an empty string or character(9).
id A character string. Required to re-actively respond to the visibility of the popover
(viathe input[[id]] value) and/or update the visibility/contents of the popover.
placement The placement of the popover relative to its trigger.
options A list of additional options.
show Whether to show (TRUE) or hide (FALSE) the popover. The default (NULL) will
show if currently hidden and hide if currently shown. Note that a popover will
not be shown if the trigger is not visible (e.g., it’s hidden behind a tab).
session A Shiny session object (the default should almost always be used).
Functions

* popover(): Add a popover to a Ul element
* toggle_popover(): Programmatically show/hide a popover.

* update_popover (): Update the contents of a popover.

Closing popovers

In addition to clicking the close_button, popovers can be closed by pressing the Esc/Space key
when the popover (and/or its trigger) is focused.

Theming/Styling

Like other bslib components, popovers can be themed by supplying relevant theming variables
to bs_theme(), which effects styling of every popover on the page. To style a specific popover
differently from other popover, utilize the customClass option:

popover (

"Trigger", "Popover message”,

options = list(customClass = "my-pop"”)
)

And then add relevant rules to bs_theme () via bs_add_rules():

bs_theme() |> bs_add_rules(”.my-pop { max-width: none; }")

https://getbootstrap.com/docs/5.3/components/popovers/#options
https://rstudio.github.io/bslib/articles/bs5-variables/index.html#popover-bg

popover 73

Accessibility of Popover Triggers

Because the user needs to interact with the trigger element to see the popover, it’s best practice to
use an element that is typically accessible via keyboard interactions, like a button or a link. If you
use a non-interactive element, like a or text, bslib will automatically add the tabindex="0"
attribute to the trigger element to make sure that users can reach the element with the keyboard.
This means that in most cases you can use any element you want as the trigger.

One place where it’s important to consider the accessibility of the trigger is when using an icon
without any accompanying text. In these cases, many R packages that provide icons will create
an icon element with the assumption that the icon is decorative, which will make it inaccessible to
users of assistive technologies.

When using an icon as the primary trigger, ensure that the icon does not have aria-hidden="true"
or role="presentation” attributes. Icon packages typically provide a way to specify a title for
the icon, as well as a way to specify that the icon is not decorative. The title should be a short
description of the purpose of the trigger, rather than a description of the icon itself.

* If you’re using bsicons: :bs_icon(), provide a title.

* If you’re using fontawesome: :fa(), set ally = "sem” and provide a title.

For example:

popover (
bsicons::bs_icon("gear"”, title = "Settings"),
title = "Settings”,
sliderInput("n"”, "Number of points”, 1, 100, 50)
)

popover (
fontawesome: :fa("gear”, ally = "sem”, title = "Settings"),
title = "Settings”,
sliderInput(”"n"”, "Number of points”, 1, 100, 50)

)

References

Popovers are based on Bootstrap’s Popover component. See the bslib website for an interactive
introduction to tooltips and popovers.

See Also

tooltip() provides an alternative way to display informational text on demand, typically when
focusing or hovering over a trigger element.

Other Components: accordion(), card(), tooltip(), value_box()

Examples

popover (
shiny::actionButton(”"btn”, "A button”),

https://getbootstrap.com/docs/5.3/components/popovers/
https://rstudio.github.io/bslib/articles/tooltips-popovers/index.html
https://rstudio.github.io/bslib/articles/tooltips-popovers/index.html

74

"Popover body content...”,
title = "Popover title"
)

library(shiny)
library(bslib)

ui <- page_fixed(
card(class = "mt-5",
card_header(
popover (
uiOutput(”card_title"”, inline = TRUE),
title = "Provide a new title”,
textInput(”card_title”, NULL, "An editable title")
)
),
"The card body..."
)
)

server <- function(input, output) {
output$card_title <- renderUI({
list(input$card_title, bsicons::bs_icon("pencil-square”))
1))
}

shinyApp(ui, server)

run_with_themer

run_with_themer Theme customization Ul

Description

A ’real-time’ theme customization UI that you can use to easily make common tweaks to Bootstrap
variables and immediately see how they would affect your app’s appearance. There are two ways
you can launch the theming Ul For most Shiny apps, just use run_with_themer() in place of
shiny: :runApp(); they should take the same arguments and work the same way. Alternatively,
you can call the bs_themer () function from inside your server function (or in an R Markdown app
that is using runtime: shiny, you can call this from any code chunk). Note that this function is

only intended to be used for development!

Usage

run_with_themer(appDir = getwd(), ..., gfonts = TRUE, gfonts_update = FALSE)

bs_themer(gfonts = TRUE, gfonts_update = FALSE)

run_with_themer 75

Arguments
appDir The application to run. This can be a file or directory path, or a shiny: : shinyApp()
object. See shiny: :runApp() for details.
Additional parameters to pass through to shiny: :runApp().
gfonts whether or not to detect Google Fonts and wrap them in font_google() (so

that their font files are automatically imported).

gfonts_update whether or not to update the internal database of Google Fonts.

Details

To help you utilize the changes you see in the preview, this utility prints bs_theme () code to the R
console.

Value

nothing. These functions are called for their side-effects.

Limitations

* Doesn’t work with Bootstrap 3.
* Doesn’t work with IE11.
* Only works inside Shiny apps and runtime: shiny R Markdown documents.

— Can’t be used with static R Markdown documents.

— Can be used to some extent with runtime: shiny_prerendered, but only UI rendered
through a context="server"” may update in real-time.

* Doesn’t work with *3rd party’ custom widgets that don’t make use of bs_dependency_defer ()
or bs_current_theme().

Examples

library(shiny)
library(bslib)

ui <- fluidPage(
theme = bs_theme(bg = "black”, fg = "white"),
h1("Heading 1"),
h2("Heading 2"),
p(
"Paragraph text;",
tags$a(href = "https://www.rstudio.com”, "a link")

),
p(
actionButton("cancel”, "Cancel"),
actionButton("continue”, "Continue”, class = "btn-primary")
),
tabsetPanel(

tabPanel ("First tab”,
"The contents of the first tab”

76 show_toast

),
tabPanel ("Second tab”,

"The contents of the second tab”
)
)
)

if (interactive()) {
run_with_themer (shinyApp(ui, function(input, output) {}))
}

show_toast Show or hide a toast notification

Description

Displays a toast notification in a Shiny application.

Usage
show_toast(toast, ..., session = shiny::getDefaultReactiveDomain())
hide_toast(id, ..., session = shiny::getDefaultReactiveDomain())
Arguments
toast A toast(), or a string that will be automatically converted to a toast with default
settings.
Reserved for future extensions (currently ignored).
session Shiny session object.
id String with the toast ID returned by show_toast() or a toast object provided
that the id was set when created/shown.
Value

show_toast () Invisibly returns the toast ID (string) that can be used with hide_toast().

Functions

¢ show_toast(): Show a toast notification.

* hide_toast(): Hide a toast notification by ID.

See Also

Other Toast components: toast()

sidebar 77

Examples

library(shiny)
library(bslib)

ui <- page_fluid(
actionButton("show_persistent”, "Show Persistent Toast"”),
actionButton(”"hide_persistent”, "Hide Toast")

)

server <- function(input, output, session) {
toast_id <- reactiveVal(NULL)

observeEvent (input$show_persistent, {
id <- show_toast(

toast(
body = "This toast won't disappear automatically.”,
autohide = FALSE
)
)
toast_id(id)
D)

observeEvent (input$hide_persistent, {
req(toast_id())
hide_toast(toast_id())
toast_id(NULL)
D)
3

shinyApp(ui, server)

sidebar Sidebar layouts

Description

Sidebar layouts place Ul elements, like input controls or additional context, next to the main content
area which often holds output elements like plots or tables.

There are several page, navigation, and layout functions that allow you to create a sidebar layout.
In each case, you can create a collapsing sidebar layout by providing a sidebar() object to the
sidebar argument the following functions.

* page_sidebar() creates a "page-level" sidebar.

* page_navbar() creates a multi-panel app with an (optional, page-level) sidebar that is shown
on every panel.

* layout_sidebar() creates a "floating" sidebar layout component which can be used inside
any page () and/or card() context.

78 sidebar

e navset_card_tab() and navset_card_pill() create multi-tab cards with a shared sidebar
that is accessible from every panel.

See the Sidebars article on the bslib website to learn more.

Usage

sidebar(

width = 250,
position = c("left”, "right"),
open = NULL,
id = NULL,
title = NULL,
bg = NULL,
fg = NULL,
class = NULL,
max_height_mobile = NULL,
gap = NULL,
padding = NULL,
fillable = FALSE
)

layout_sidebar(
sidebar = NULL,
fillable = TRUE,

fill = TRUE,
bg = NULL,
fg = NULL,

border = NULL,
border_radius = NULL,
border_color = NULL,
padding = NULL,
gap = NULL,
height = NULL

)

toggle_sidebar(id, open = NULL, session = get_current_session())

Arguments
Unnamed arguments can be any valid child of an htmltools tag and named
arguments become HTML attributes on returned Ul element. In the case of
layout_sidebar(), these arguments are passed to the main content tag (not the
sidebar+main content container).
width A valid CSS unit used for the width of the sidebar.
position Where the sidebar should appear relative to the main content.

open The initial state of the sidebar, choosing from the following options:

https://rstudio.github.io/bslib/articles/sidebars.html

sidebar 79

* "desktop": The sidebar starts open on desktop screen, closed on mobile.
This is default sidebar behavior.

* "open” or TRUE: The sidebar starts open.
* "closed” or FALSE: The sidebar starts closed.
* "always" or NA: The sidebar is always open and cannot be closed.

Alternatively, you can use a list with desktop or mobile items to set the initial
sidebar state independently for desktop and mobile screen sizes. In this case,
desktop or mobile can use any of the above options except "desktop”, which
is equivalent to list(desktop = "open”, mobile = "closed”). You can also
choose to place an always open sidebar above the main content on mobile de-
vices by setting mobile = "always-above".

In sidebar_toggle(), open indicates the desired state of the sidebar, where
the default of open = NULL will cause the sidebar to be toggled open if closed or
vice versa. Note that sidebar_toggle() can only open or close the sidebar, so
it does not support the "desktop” and "always" options.

id A character string. Required if wanting to re-actively read (or update) the
collapsible state in a Shiny app.

title A character title to be used as the sidebar title, which will be wrapped in a
<header> element with class sidebar-title. You can also provide a custom
htmltools: :tag() for the title element, in which case you’ll likely want to give
this element class = "sidebar-title”.

bg, fg A background or foreground color. If only one of either is provided, an accessi-
ble contrasting color is provided for the opposite color, e.g. setting bg chooses
an appropriate fg color.

class CSS classes for the sidebar container element, in addition to the fixed . sidebar
class.

max_height_mobile
A CSS length unit defining the maximum height of the horizontal sidebar when
viewed on mobile devices. Only applies to always-open sidebars that use open
= "always", where by default the sidebar container is placed below the main
content container on mobile devices.

gap A CSS length unit defining the vertical gap (i.e., spacing) between adjacent
elements provided to

padding Padding within the sidebar itself. This can be a numeric vector (which will be
interpreted as pixels) or a character vector with valid CSS lengths. padding may
be one to four values. If one, then that value will be used for all four sides. If
two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

fillable Whether or not the main content area should be considered a fillable (i.e., flexbox)
container.

sidebar A sidebar() object.

fill Whether or not to allow the layout container to grow/shrink to fit a fillable con-

tainer with an opinionated height (e.g., page_fillable()).

80 theme_bootswatch

border Whether or not to add a border.
border_radius Whether or not to add a border radius.

border_color The border color that is applied to the entire layout (if border = TRUE) and the
color of the border between the sidebar and the main content area.

height Any valid CSS unit (e.g., height="200px"). Doesn’t apply when a card is made
full_screen (in this case, consider setting a height in card_body()).
session A Shiny session object (the default should almost always be used).
Functions

* toggle_sidebar(): Toggle a sidebar () state during an active Shiny user session. To use
this function, the sidebar () you want to open or close must have an id value.
References
Sidebar layouts are featured in a number of pages on the bslib website:

* Sidebars
* Cards: Sidebars
* Getting Started: Dashboards

theme_bootswatch Obtain a theme’s Bootswatch theme name

Description

Obtain a theme’s Bootswatch theme name

Usage

theme_bootswatch(theme)

Arguments

theme A bs_theme() object.

Value

Returns the Bootswatch theme named used (if any) in the theme.

See Also

Other Bootstrap theme utility functions: bootswatch_themes(), bs_get_variables(),builtin_themes(),
theme_version(), versions()

https://rstudio.github.io/bslib/articles/sidebars.html
https://rstudio.github.io/bslib/articles/cards/index.html#sidebars
https://rstudio.github.io/bslib/articles/dashboards/index.html

theme_version 81

theme_version Obtain a theme’s Bootstrap version

Description

Obtain a theme’s Bootstrap version

Usage

theme_version(theme)

Arguments

theme A bs_theme() object.

Value

Returns the major version of Bootstrap used in the theme.

See Also

Other Bootstrap theme utility functions: bootswatch_themes(), bs_get_variables(),builtin_themes(),
theme_bootswatch(), versions()

toast Toast notifications

Description

Toast notifications are lightweight, temporary messages designed to mimic push notifications from
mobile and desktop operating systems. They are built on Bootstrap 5’s toast component.

bslib includes a complete example of toasts and their many configuration options:
shiny: :runExample(”toast”, package = "bslib")

Usage

toast(

header = NULL,

icon = NULL,
id = NULL,
type = NULL,

duration_s = 5,
position = "top-right"”,

https://getbootstrap.com/docs/5.3/components/toasts/

82

toast

closable = TRUE

)

toast_header(title, ..., icon = NULL, status = NULL)

Arguments

header
icon

id

type

duration_s

position

closable

title
status

Value

Body content of the toast. Can be a string, or any HTML elements. Named
arguments will be treated as HTML attributes for the toast container.

Optional header content. Can be a string, or the result of toast_header(). If
provided, creates a . toast-header with close button (if closable = TRUE).

Optional icon element, for example from shiny: :icon(), bsicons: :bs_icon()
or fontawesome: :fa().

Optional unique identifier for the toast. If NULL, an ID will be automatically
generated when the toast is shown via show_toast(). Providing a stable ID
allows you to hide the toast later. If a toast with id is already visible, that toast
is automatically hidden before showing the new toast with the same id so that
only one toast with a given ID is shown at once.

n o on

Optional semantic type. One of NULL, "primary”, "secondary”, "success”,
"info", "warning”, "danger”, "light", or "dark”. Applies appropriate Boot-
strap background utility classes (text-bg-x).

Numeric. Number of seconds after which the toast should automatically hide.
Use @, or NA to disable auto-hiding (toast will remain visible until manually

dismissed). Default is 5 (5 seconds).
String or character vector specifying where to position the toast container. Can
be provided in several formats:
¢ Kebab-case: "top-left”, "bottom-right"”, etc.
» Space-separated: "top left”, "bottom right”, etc.
¢ Character vector: c("top”, "left”), c("bottom”, "right"), etc.
* Any order: "left top” is equivalent to "top left”
Valid vertical positions are "top"”, "middle”, or "bottom”. Valid horizontal

n on

positions are "left"”, "center”, or "right”. Input is case-insensitive. Default
is "bottom-right".

Logical. Whether to include a close button. Defaults to TRUE. When both
duration_s =NA (or @ or NULL) and closable = FALSE, the toast will remain
visible until manually hidden via hide_toast (). This is useful when the toast
contains interactive Shiny UI elements and you want to manage the toast display
programmatically.

Header text (required).

Optional status text that appears as small, muted text on the right side of the
header.

A bslib_toast object that can be passed to show_toast().

For toast_header(): atoast header object that can be used with the header argument of toast().

toast 83

Functions

e toast(): Create a toast element.

* toast_header(): Create a structured toast header with optional icon and status indicator.
Returns a data structure that can be passed to the header argument of toast().

See Also

show_toast () to display a toast, hide_toast() to dismiss a toast, and toast_header () to create
structured headers.

Other Toast components: show_toast()

Examples

library(shiny)
library(bslib)

ui <- page_fluid(
actionButton(”show_simple”, "Simple Toast"),
actionButton(”show_header”, "Toast with Header™)

)

server <- function(input, output, session) {
observeEvent (input$show_simple, {
show_toast(

toast(
"Operation completed successfully!”,
header = "Success"”,
type = "success”

)

)
H

observeEvent (input$show_header, {
show_toast(
toast(
"Your settings have been saved.”,
header = toast_header(
title = "Settings Updated”,
status = "just now”
),
type = "success"”
)
)
1))
3

shinyApp(ui, server)

84 tooltip

tooltip Add a tooltip to a UI element

Description

Display additional information when focusing (or hovering over) a Ul element.

Usage

tooltip(
trigger,

id = NULL,
placement = c("auto”, "top”, "right”, "bottom”, "left"),

options = list()
)

toggle_tooltip(id, show = NULL, session = get_current_session())

update_tooltip(id, ..., session = get_current_session())
Arguments
trigger A UI element (i.e., htmltools tag) to serve as the tooltip trigger. If trigger

renders as multiple HTML elements (e.g., it’s a tagList()), the last HTML el-
ement is used for the trigger. If the trigger should contain all of those elements,
wrap the object in a htmltools: :div() or htmltools: :span().

UI elements for the tooltip. Character strings are automatically escaped unless
marked as htmltools: :HTML().

id a character string that matches an existing tooltip id.

placement The placement of the tooltip relative to its trigger.

options A list of additional options.

show Whether to show (TRUE) or hide (FALSE) the tooltip. The default (NULL) will

show if currently hidden and hide if currently shown. Note that a tooltip will not
be shown if the trigger is not visible (e.g., it’s hidden behind a tab).

session A Shiny session object (the default should almost always be used).

Functions
* tooltip(): Add a tooltip to a Ul element
* toggle_tooltip(): Programmatically show/hide a tooltip.
* update_tooltip(): Update the contents of a tooltip.

https://getbootstrap.com/docs/5.3/components/tooltips/#options

tooltip 85

Theming/Styling

Like other bslib components, tooltips can be themed by supplying relevant theming variables to
bs_theme (), which effects styling of every tooltip on the page. To style a specific tooltip differently
from other tooltip, utilize the customClass option:

tooltip(

"Trigger"”, "Tooltip message”,

options = list(customClass = "my-tip")
)

And then add relevant rules to bs_theme () via bs_add_rules():

bs_theme() |> bs_add_rules(”.my-tip { max-width: none; }")

Accessibility of Tooltip Triggers

Because the user needs to interact with the trigger element to see the tooltip, it’s best practice to
use an element that is typically accessible via keyboard interactions, like a button or a link. If you
use a non-interactive element, like a or text, bslib will automatically add the tabindex="0"
attribute to the trigger element to make sure that users can reach the element with the keyboard.
This means that in most cases you can use any element you want as the trigger.

One place where it’s important to consider the accessibility of the trigger is when using an icon
without any accompanying text. In these cases, many R packages that provide icons will create
an icon element with the assumption that the icon is decorative, which will make it inaccessible to
users of assistive technologies.

When using an icon as the primary trigger, ensure that the icon does not have aria-hidden="true"
or role="presentation” attributes. Icon packages typically provide a way to specify a title for
the icon, as well as a way to specify that the icon is not decorative. The title should be a short
description of the purpose of the trigger, rather than a description of the icon itself.

* If you're using bsicons: :bs_icon(), provide a title.

* If you’re using fontawesome: :fa(), set ally = "sem” and provide a title.

For example:

tooltip(
bsicons::bs_icon("info-circle”, title = "About tooltips"),
"Text shown in the tooltip.”

)

tooltip(
fontawesome: :fa("info-circle”, ally = "sem”, title = "About tooltips”),
"Text shown in the tooltip.”

)

References

Tooltips are based on Bootstrap’s Tooltip component. See the bslib website for an interactive intro-
duction to tooltips and popovers.

https://rstudio.github.io/bslib/articles/bs5-variables/index.html#tooltip-bg
https://getbootstrap.com/docs/5.3/components/tooltips/
https://rstudio.github.io/bslib/articles/tooltips-popovers/index.html
https://rstudio.github.io/bslib/articles/tooltips-popovers/index.html

86 value_box

See Also

popover () provides a an alternative and more persistent container for additional elements, typically
revealed by clicking on a target element.

Other Components: accordion(), card(), popover(), value_box()

Examples

tooltip(
shiny::actionButton(”"btn”, "A button”),
"A message"

)

card(
card_header(
tooltip(
span("Card title
"Additional info",

"

, bsicons::bs_icon("question-circle-fill")),

placement = "right”
)
) ’
"Card body content...”
)
value_box Value box
Description

An opinionated (card()-powered) box, designed for displaying a value and title. Optionally,
a showcase can provide for context for what the value represents (for example, it could hold a
bsicons::bs_icon(), or even a shiny: :plotOutput()). Find examples and template code you
can use to create engaging value boxes on the bslib website.

Usage

value_box(
title,
value,

L

showcase = NULL,

showcase_layout = c("left center”, "top right”, "bottom"),
full_screen = FALSE,
theme = NULL,

height = NULL,
max_height = NULL,
min_height = NULL,

https://rstudio.github.io/bslib/articles/value-boxes/index.html

value_box

fill = TRUE,
class = NULL,
id = NULL,

theme_color =

)

87

deprecated()

value_box_theme(name = NULL, bg = NULL, fg = NULL)

showcase_left_center(

width = 0.3,

width_full_screen = "1fr",

max_height =

"100px",

max_height_full_screen = 0.67

)

showcase_top_right(

width = 0.4,

width_full_screen = "1fr",
max_height = "75pX" ,
max_height_full_screen = 0.67

)

showcase_bottom(
width = "100%",
width_full_screen = NULL,
height = "auto”,
height_full_screen = "2fr",
max_height = "100px",
max_height_full_screen = NULL

Arguments

title, value

showcase

showcase_layout

full_screen

theme

A string, number, or htmltools: :tag() child to display as the title or value of
the value box. The title appears above the value.

Unnamed arguments may be any htmltools: : tag() children to display below
value. Named arguments become attributes on the containing element.

A htmltools: :tag() child to showcase (e.g., absicons: :bs_icon(),aplotly
etc).

One of "left center” (default), "top right” or "bottom”. Alternatively, you
can customize the showcase layout options with the showcase_left_center(),
showcase_top_right(), or showcase_bottom() functions. Use the options
functions when you want to control the height or width of the showcase area.

If TRUE, an icon will appear when hovering over the card body. Clicking the
icon expands the card to fit viewport size.

::plotlyOutput(),

The name of a theme for the value box, or a theme constructed with value_box_theme().

The theme names provide a convenient way to use your app’s Bootstrap theme

88 value_box

colors as the foreground or background colors of the value box. See below for
more details on the provided themes. For more control, you can create your
own theme with value_box_theme () where you can pass foreground and back-
ground colors directly. See the Themes section for more details.

max_height The maximum height of the value_box() or the showcase area when used in a
showcase_layout_*() function. Can be any valid CSS unit (e.g., max_height="200px").

min_height The minimum height of the values box. Can be any valid CSS unit (e.g., min_height="200px").

fill Whether to allow the value box to grow/shrink to fit a fillable container with an
opinionated height (e.g., page_fillable()).

class Utility classes for customizing the appearance of the summary card. Use bg-*
and text-* classes (e.g, "bg-danger"” and "text-light") to customize the
background/foreground colors.

id Provide a unique identifier for the card() or value_box() to report its full
screen state to Shiny. For example, using id = "my_card", you can observe the
card’s full screen state with input$my_card_full_screen.

theme_color [Deprecated] Use theme instead.
name The name of the theme, e.g. "primary”, "danger”, "purple”.
bg, fg The background and foreground colors for the theme. If only bg is provided,

then the foreground color is automatically chosen from $black or $white to
provide the best contrast with the background color.

width, width_full_screen, height, height_full_screen
one of the following:

* A proportion (i.e., a number between 0 and 1) of available width or height
to allocate to the showcase.
¢ A valid CSS unit defining the width or height of the showcase column, or a
valid value accepted by the grid-template-columns (width) or grid-template-rows
(height) CSS property to define the width or height of the showcase column
or row. Accepted values in the second category are "auto”, "min-content”,
"max-content”, a fractional unit (e.g. 2fr), or aminmax() function (e.g.,
minmax(100px, 1fr)).
max_height_full_screen
A proportion (i.e., a number between 0 and 1) or any valid CSS unit defining the
showcase max_height in a full screen card.

Build-a-Box App

Explore all of the value_box () options and layouts interactively with the Build-a-Box app, avail-
able online thanks to shinyapps.io. Or, you can run the app locally with:

shiny >= 1.8.1
shiny: :runExample("build-a-box", package = "bslib")

shiny < 1.8.1
shiny: :runApp(system.file("examples-shiny"”, "build-a-box", package = "bslib"))

https://bslib.shinyapps.io/build-a-box/
https://www.shinyapps.io/

value_box 89

Themes

The appearance of a value_box () can be controlled via the theme argument in one of two ways:

1. a character value describing the theme, such as theme = "primary"” or theme = "blue"; or

2. theme = value_box_theme() to create a custom theme.

We recommend using named themes for most value boxes (the first approach), because these themes
will automatically match your Bootstrap theme.

Named themes:

Bootstrap provides a list of theme colors, with semantic names like "primary”, "secondary”,
"success"”, "danger", etc. You can set theme to one of these names to use the corresponding
theme color as the background color of your value box.

value_box(
title = "Customer lifetime value",
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "primary”

Customer lifetime value

$5,000

Bootstrap’s theme colors are drawn from a second color list that includes variations on several
main colors, named literally. These colors include "blue”, "purple”, "pink”, "red”, "orange”,

non

"yellow"”, "green”, "teal”, and "cyan".

value_box(
title = "Customer lifetime value”,
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "teal”

https://getbootstrap.com/docs/5.3/customize/color/#theme-colors
https://getbootstrap.com/docs/5.3/customize/color/#all-colors

90

value_box

Background colors:

If the theme or color name is provided without any prefix, the color will be used for the back-
ground of the value box. You can also explicitly prefix the theme or color name with bg- to
indicate that it should apply to the value box background. When the theme sets the background
color, either black or white is chosen automatically for the text color using Bootstrap’s color
contrast algorithm.

As before, you can reference semantic theme color names or literal color names.

value_box(
title = "Customer lifetime value”,
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "bg-success”

)
Customer lifetime value
$5,000
value_box(
title = "Customer lifetime value”,

value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "bg-purple”

value_box 91

m Customer lifetime value
$5,000

Foreground colors:

To set only the foreground colors of the value box, you can prefix the theme or color name with
text-. This changes the text color without affecting the background color.

value_box(
title = "Customer lifetime value",
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "text-success”

m Customer lifetime value
$5,000

value_box(
title = "Customer lifetime value”,
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = "text-purple”

)

m Customer lifetime value
$5,000

value_box

Occasionally you may want to adjust use both background and foreground themes on your value
box. To achieve this, set theme to one of the theme names and use class for the complementary
style. The example below uses theme = "purple” (which could also be "bg-purple”) for a

purple background, and class = "text-light" for light-colored text.

value_box(

title = "Customer lifetime value”,
value = "$5,000",

showcase = bsicons::bs_icon("bank2"),
theme = "purple”,

class = "text-light”

Customer lifetime value

$5,000

Gradient backgrounds:

For a vibrant and attention-grabbing effect, bslib provides an array of gradient background op-

value_box(

title = "Customer lifetime value”,
value = "$5,000",

showcase = bsicons::bs_icon("bank2"),
theme = "bg-gradient-indigo-blue”

tions. Provide theme with a theme name in the form bg-gradient-{from}-{to}, where {from}
and {to} are named main colors, e.g. bg-gradient-indigo-blue.

value_box 93

m Customer lifetime value
$5,000

Custom colors:

Finally, for complete customization, you can use value_box_theme() to create a custom theme.
This function takes arguments bg and fg to set the background and foreground colors, respectively.
Like with the bg- theme names, if only bg is provided, value_box_theme() will choose an
appropriate light or dark color for the text color.

value_box(
title = "Customer lifetime value",
value = "$5,000",
showcase = bsicons::bs_icon("bank2"),
theme = value_box_theme(bg = "#e6f2fd", fg = "#@B538E"),
class = "border”

m Customer lifetime value
$5,000

Note that value_box_theme () optionally takes a theme name, which can be helpful if you want
to use a named theme and modify the default bg or fg colors of that theme.

value_box_theme(name = "orange"”, bg = "#FFFFFF")
value_box_theme(name = "text-danger”, fg = "#FFB6C1")

Also note that bg/fg must be CSS colors, not Bootstrap theme or color names. This means that
theme = "purple” will use your Bootstrap theme’s purple color, and bg = "purple” will use the
CSS color for purple, i.e. "#800080".

94 value_box

Showcase Layouts

Use the showcase argument to add a plot or icon to your value_box(). There are three layouts
available: "left center”, "top right”, and "bottom”. Set showcase to the name of the layout
you’d like, or use the showcase_left_center(), showcase_top_right(), or showcase_bottom()

helper functions to customize the showcase area’s size.

If you’re using a plot as your showcase, you may also want to set fullscreen = TRUE so that your
users can expand the value box into a full screen card. See the value box article for more details.

Left-center showcase:

The "left center” showcase layout is the default, and is perfect for an icon or a small plot. This
layout works best for short value boxes.

value_box(
title = "Energy consumption”,
value = "345 kwh/month”,
showcase = bsicons::bs_icon("ev-station-fill")

Energy consumption

345 kwh/month

Top-right showcase:

The "top right” showcase layout places the icon or plot in the upper right corner of the value
box. This layout works best for medium-height to square value boxes.

value_box(
title = "Energy consumption”,
value = "345 kwh/month”,
showcase = bsicons::bs_icon("ev-station-fill"),
showcase_layout = "top right”

https://rstudio.github.io/bslib/articles/value-boxes/index.html

value_box 95

Energy consumption

345 kwh/month

Bottom showcase:

Finally, the "bottom” showcase layout is perfect for full-bleed plots. This layout places the plot
below the title and value, with the plot taking up the full width of the bottom half.

Try this layout with sparkline-style plots. These can be a little tricky to set up, so be sure to check
out the Expandable sparklines section of the value boxes article on the bslib website. In this ex-
ample, we’ve created a sparkline plot using base R graphics, which isn’t generally recommended.
View the bslib documentation online to see the source of sparkline_plot().

value_box(
title = "Energy consumption”,
value = "345 kwh/month"”,
showcase = sparkline_plot(),
showcase_layout = "bottom”

Energy consumption

345 kwh/month

vl Vi, ASYVICNY
N A
A
A\

References
Value boxes are featured on the bslib website in a few articles:

¢ Value boxes
* Build-a-Box App
¢ Get Started: Dashboards

https://rstudio.github.io/bslib/articles/value-boxes/index.html#expandable-sparklines
https://rstudio.github.io/bslib/articles/value-boxes/index.html
https://rstudio.github.io/bslib/articles/value-boxes/index.html
https://bslib.shinyapps.io/build-a-box
https://rstudio.github.io/bslib/articles/dashboards/index.html#value-boxes

96 versions

See Also

Value boxes are a specialized form of a card() component.

layout_columns() and layout_column_wrap() help position multiple value boxes into columns
and rows.

Other Components: accordion(), card(), popover(), tooltip()

Examples

library(htmltools)

value_box(
"KPI Title”,
h1(HTML("$1 <i>Billion</i> Dollars")),
span(
bsicons::bs_icon("arrow-up"),
" 30% VS PREVIOUS 30 DAYS"

),
showcase = bsicons::bs_icon("piggy-bank”),
theme = "success”
)
versions Available Bootstrap versions
Description

Available Bootstrap versions

Usage

versions()

version_default()

Value

Returns a list of the Bootstrap versions available.

See Also

Other Bootstrap theme utility functions: bootswatch_themes(), bs_get_variables(), builtin_themes(),
theme_bootswatch(), theme_version()

Index

* Bootstrap theme functions
bs_add_variables, 12
bs_current_theme, 14
bs_dependency, 15
bs_global_theme, 19
bs_remove, 21
bs_theme, 22
bs_theme_dependencies, 26
bs_theme_preview, 28

* Bootstrap theme utility functions
bootswatch_themes, 11
bs_get_variables, 18
builtin_themes, 29
theme_bootswatch, 80
theme_version, 81
versions, 96

* Column layouts
layout_column_wrap, 47
layout_columns, 45

+x Components
accordion, 3
card, 29
popover, 71
tooltip, 84
value_box, 86

+ Dashboard page layouts
page_fillable, 64
page_navbar, 66
page_sidebar, 69

x Panel container functions
nav-items, 49
nav_select, 61
navset, 53

+ Toast components
show_toast, 76
toast, 81

* input controls
input_code_editor, 35
input_dark_mode, 38

97

input_switch, 41

accordion, 3, 31, 73, 86, 96
accordion(), 5-7, 65, 69, 70
accordion_panel (accordion), 3
accordion_panel(), 6, 7
accordion_panel_close
(accordion_panel_set), 5
accordion_panel_close(), 4
accordion_panel_insert
(accordion_panel_set), 5
accordion_panel_insert(), 4
accordion_panel_open
(accordion_panel_set), 5
accordion_panel_open(), 4
accordion_panel_remove
(accordion_panel_set), 5
accordion_panel_remove(), 4
accordion_panel_set, 5
accordion_panel_set(), 4
accordion_panel_update
(accordion_panel_set), 5
accordion_panel_update(), 4
as.card_item (card_body), 31
as_fill_carrier,7
as_fill_item (as_fill_carrier),7
as_fillable_container
(as_fill_carrier),7
automatically escaped, 72, 84

bind_task_button, 9
bind_task_button(), 40, 44
bootswatch_themes, 11, 18, 29, 80, 81, 96
bootswatch_themes(), 20, 21, 24, 25
breakpoints, 11

breakpoints(), 45, 46

bs_add_functions (bs_add_variables), 12
bs_add_mixins (bs_add_variables), 12
bs_add_rules (bs_add_variables), 12
bs_add_rules(), 72, 85

98

bs_add_variables, 12, 15, 16, 21, 22, 26-28
bs_add_variables(), 21, 24
bs_bundle (bs_add_variables), 12
bs_current_theme, 13, 14, 16, 21, 22, 26-28
bs_current_theme(), 75
bs_dependency, 13, 15, 15, 21, 22, 26-28
bs_dependency(), 26
bs_dependency_defer (bs_dependency), 15
bs_dependency_defer(), 14,75
bs_get_contrast (bs_get_variables), 18
bs_get_variables, 11, 18, 29, 80, 81, 96
bs_global_add_rules (bs_global_theme),
19
bs_global_add_variables
(bs_global_theme), 19
bs_global_bundle (bs_global_theme), 19
bs_global_clear (bs_global_theme), 19
bs_global_get (bs_global_theme), 19
bs_global_get(), 19
bs_global_set (bs_global_theme), 19
bs_global_set(), 19
bs_global_theme, 13, 15, 16, 19, 22, 26-28
bs_global_theme_update
(bs_global_theme), 19
bs_remove, 13, 15, 16,21, 21, 26-28
bs_retrieve (bs_remove), 21
bs_theme, 13, 15, 16, 21, 22,22, 27, 28
bs_theme(), 12, 13, 15, 16, 18, 21, 22, 25-28,
34, 64, 65,68, 70, 72,75, 80, 81, 85
bs_theme_dependencies, 13, 15, 16, 21, 22,
26, 26, 28
bs_theme_dependencies(), 19
bs_theme_preview, 13, 15, 16, 21, 22, 26, 27,
28
bs_theme_update (bs_theme), 22
bs_themer (run_with_themer), 74
bs_themer(), 15, 28
bsicons::bs_icon(), 4, 6, 73, 82, 85-87
builtin_themes, 11, 18, 29, 80, 81, 96
builtin_themes(), 20, 24

card, 4, 29, 73, 86, 96

Card item functions, 3/

card(), 7,29, 31, 34,45, 48, 65, 69, 70, 77,
86, 96

card_body, 31

card_body (), 7, 30-32, 34, 46, 48, 55, 56, 68,
80

card_footer (card_body), 31

INDEX

card_header (card_body), 31

card_header (), 30, 56

card_image (card_body), 31

card_title (card_body), 31

CSS length unit, 32, 33, 46, 48, 55, 65, 68,
79

CSS length units, 46

CSS unit, 8, 30, 32, 33,41, 46, 48, 56, 78, 80,
88

FileCache, 27

font_collection (font_face), 34
font_face, 34

font_face(), 25

font_google (font_face), 34
font_google(), 25,75

font_link (font_face), 34
font_link(), 25
fontawesome: :fa(), 73, 82, 85
fontawesome: :fa_i(), 43

hide_toast (show_toast), 76
hide_toast(), 82, 83

htmltools tag, 30, 32,78, 84
htmltools::as.tags, 8
htmltools::bindFillRole(), 8
htmltools::div(), 30, 33,44, 72, 84
htmltools: :HTML(), 72, 84

htmltools: :htmlDependency(), 15, 16, 26
htmltools: :parseCssColors(), 25
htmltools::span(), 72, 84
htmltools: :tag, 4, 6, 45,48
htmltools::tag(), 7, 8, 70,79, 87
htmltools: :tagAppendAttributes(), 8§
htmltools: :tagFunction(), 15, 16
htmltools::tags, 15, 40, 50, 55, 68

input_code_editor, 35, 38, 41
input_dark_mode, 37, 38, 41
input_dark_mode(), 37, 51
input_submit_textarea, 39
input_switch, 37, 38, 41
input_task_button, 42
input_task_button(), 9, 10, 40
is.card_item (card_body), 31
is_bs_theme (bs_theme), 22
is_fill_carrier (as_fill_carrier), 7
is_fill_item(as_fill_carrier),7

INDEX

is_fillable_container
(as_fill_carrier),7

jquerylib::jquery_core(), 27

layout_column_wrap, 46, 47
layout_column_wrap(), 31, 34, 65, 68, 70, 96
layout_columns, 45, 49
layout_columns(), 12, 31, 34, 65, 68, 70, 96
layout_sidebar (sidebar), 77
layout_sidebar(), 7, 31, 34, 65, 70

mime: :guess_type(), 33

nav-items, 49

nav_hide (nav_select), 61
nav_hide(), 50, 61

nav_insert (nav_select), 61
nav_insert(), 50, 61

nav_item (nav-items), 49
nav_item(), 50, 61, 62, 68
nav_menu (nav-items), 49
nav_menu(), 50, 61, 62, 68
nav_panel (nav-items), 49
nav_panel (), 50, 53, 55, 61, 62, 67, 68
nav_panel_hidden (nav-items), 49
nav_panel_hidden(), 50, 61, 62
nav_remove (nav_select), 61
nav_remove(), 50, 61
nav_select, 50, 61, 61
nav_select(), 50, 55, 61, 67
nav_show (nav_select), 61
nav_show(), 50, 61

nav_spacer (nav-items), 49
nav_spacer(), 50, 61, 62
navbar_options, 51
navbar_options(), 55, 68
navset, 50, 53, 62

Navset functions, 62
navset_bar (navset), 53
navset_bar(), 49, 51, 53
navset_card_pill (navset), 53
navset_card_pill(), 31,34, 78
navset_card_tab (navset), 53
navset_card_tab(), 31, 34, 78
navset_card_underline (navset), 53
navset_card_underline(), 31, 34
navset_hidden (navset), 53
navset_hidden(), 50

99

navset_pill (navset), 53
navset_pill_list (navset), 53
navset_tab (navset), 53
navset_tab(), 49, 50
navset_underline (navset), 53

page, 63

page(), 77
page_fillable, 64, 69, 70
page_fillable(), 64
page_fixed (page), 63
page_fluid (page), 63
page_navbar, 65, 66, 70
page_navbar(), 51, 53, 64,77
page_sidebar, 65, 69, 69
page_sidebar(), 64, 77
popover, 4, 31,71, 86, 96
popover(), 86

print, 15

remove_all_fill (as_fill_carrier),7
rmarkdown: :html_document(), 15
run_with_themer, 74
run_with_themer(), 28

sass::as_sass(), 13

sass: :font_face(), 34
sass::sass(), 15
sass::sass_bundle(), 12, 13,25
sass::sass_file(), I3
sass::sass_layer(), 12,22
sass::sass_options(), 27
sass::sass_partial(), 16
sass_file_cache(), 27
shiny::actionButton(), 42, 72
shiny: :bindEvent(), 9, 42
shiny: :bootstrapPage(), 64
shiny: :eventReactive(), 42, 44
shiny: :ExtendedTask, 9, 40
shiny: :fixedPage(), 64

shiny: :fluidPage(), 63, 64
shiny::icon(), 82

shiny: :navbarPage(), 63
shiny: :need(), 44

shiny: :observeEvent(), 9, 42, 44
shiny: :plotOutput(), 86
shiny: :radioButtons(), 50
shiny::req(), 44

shiny: :runApp(), 28, 74, 75

100

shiny: :session, 15

shiny: :shinyApp(), 75
show_toast, 76, 83
show_toast(), 82, 83
showcase_bottom (value_box), 86
showcase_bottom(), 87
showcase_left_center (value_box), 86
showcase_left_center(), 87
showcase_top_right (value_box), 86
showcase_top_right(), 87
sidebar, 77
sidebar(), 3, 55, 67, 69, 70, 79

theme_bootswatch, 71, 18, 29, 80, 81, 96
theme_version, 11, 18, 29, 80, 81, 96
theme_version(), 27

toast, 76, 81

toast(), 76

toast_header (toast), 81
toast_header(), 82, 83
toggle_dark_mode (input_dark_mode), 38
toggle_popover (popover), 71
toggle_sidebar (sidebar), 77
toggle_switch (input_switch), 41
toggle_tooltip (tooltip), 84
tooltip, 4, 31, 73, 84, 96

tooltip(), 73

update_code_editor (input_code_editor),
35

update_popover (popover), 71

update_submit_textarea
(input_submit_textarea), 39

update_submit_textarea(), 40

update_switch (input_switch), 41

update_task_button (input_task_button),
42

update_task_button(), 40

update_tooltip (tooltip), 84

value_box, 4, 31, 73, 86, 86
value_box(), 31, 65, 69, 70
value_box_theme (value_box), 86
version_default (versions), 96
versions, 11, 18, 29, 80, 81, 96
versions(), 20, 24

INDEX

	accordion
	accordion_panel_set
	as_fill_carrier
	bind_task_button
	bootswatch_themes
	breakpoints
	bs_add_variables
	bs_current_theme
	bs_dependency
	bs_get_variables
	bs_global_theme
	bs_remove
	bs_theme
	bs_theme_dependencies
	bs_theme_preview
	builtin_themes
	card
	card_body
	font_face
	input_code_editor
	input_dark_mode
	input_submit_textarea
	input_switch
	input_task_button
	layout_columns
	layout_column_wrap
	nav-items
	navbar_options
	navset
	nav_select
	page
	page_fillable
	page_navbar
	page_sidebar
	popover
	run_with_themer
	show_toast
	sidebar
	theme_bootswatch
	theme_version
	toast
	tooltip
	value_box
	versions
	Index

