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cctest Tests of Independence Based on Canonical Correlations
Description

cctest estimates canonical correlations between two sets of variables, possibly after removing
effects of a third set of variables, and performs a classical multivariate test of (conditional) indepen-
dence based on Pillai’s statistic.



Usage

cctest

cctest(formula, data=NULL, df=NULL, ..., tol=1e-07, stats=FALSE)

Arguments

formula

data

df

tol

stats

Details

A formula object of the form Y ~ X ~ A, where Y represents dependent variables,
X represents a second set of dependent variables or explanatory variables not
present under the null hypothesis, and A represents explanatory variables that
remain under the null hypothesis. Typically A includes at least the constant
1 to specify a model with intercepts; unlike 1m, the function never adds this
automatically.

If stats is FALSE (recommended, see Note), A, X, Y are specified in a simpli-
fied notation where all symbols and operators except | and : have their regular
meaning, with | used for joining terms (instead of +; see cbind) and : for mul-
tiplying terms, valid anywhere in the expression. The latter differs from * in
that each combination of columns in the arguments contributes a column to the
result and multiplication by 0 always yields 0, even for missing values. Single-
row arguments in ~, |, : are expanded to objects with identical rows, and every
factor or character variable is represented by its full set of indicator (dummy)
variables, with values of character variables sorted by the "radix” method.

An optional list (or data frame) or environment in which the variables in formula,
df and ... are looked for (prior to lookup in the environment in which ~ or
cctest was invoked).

An optional formula object of the form ~ A, where A@ replaces A for the degrees
of freedom computation. The default value NULL means both are the same.

Additional optional arguments. In particular, subset specifies which rows of
data to include and weights is a vector of any nonnegative numbers that spec-
ify how many identical observations each row represents. If stats is FALSE,
only these two are handled, and in case weights is missing or NULL, rows with
missing values are given weight 0.

The tolerance in the QR decomposition for detecting linear dependencies of the
matrix columns.

A logical value. If TRUE, the expressions in formula, data, df and ... are
passed to model. frame and model.matrix for processing; the operators and
expansion rules defined for the model part of a formula object here apply to
all parts. If FALSE, formula and df are interpreted according to the simplified
notation.

cctest unifies various classical statistical procedures that involve the same underlying computa-
tions, including t-tests, tests in univariate and multivariate linear models, parametric and nonpara-
metric tests for correlation, Kruskal-Wallis tests, common approximate versions of Wilcoxon rank-
sum and signed rank tests, chi-squared tests of independence, score tests of particular hypotheses
in generalized linear models, canonical correlation analysis and linear discriminant analysis (see

Examples).
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Specifically, for the matrices with ranks K and L obtained from X and Y by subtracting from each
column its orthogonal projection on the column space of A, the function computes factorizations
XU and YV with X and Y having K and L columns, respectively, such that both XTX =rl
and Y'Y = rI,and XY = rD is zero except for nonnegative elements on its main diagonal
arranged in decreasing order. The scaling factor r, which should be nonzero, is the dimension of
the orthogonal complement of the column space of Ag.

The function realizes this variant of the singular value decomposition by first computing prelimi-
nary QR factorizations of the stated form (taking » = 1) without the requirement on D, and then,
in a second step, modifying these based on a standard singular value decomposition of that ma-
trix. The main work is done in a rotated coordinate system where the column space of A aligns
with the coordinate axes. The basic approach and the rank detection algorithm are inspired by the
implementations in cancor and in 1m, respectively.

The main diagonal elements of D, or singular values, are the estimated canonical correlations
(Hotelling, 1936) of the variables represented by X and Y if these follow a linear model (X Y) =
A(a B) + (6 €) with known A, unknown (« () and error terms (& ¢) that have uncorrelated
rows with expectation zero and an identical unknown covariance matrix. In the most common case,
where A is given as a constant 1, these are the sample canonical correlations (i.e., based on simple
centering) most often presented in the literature for full column ranks K and L. They are always
decreasing and between 0 and 1.

In the case of the linear model with independent normally distributed rows and Ay = A, the ranks
K and L equal, with probability 1, the ranks of the covariance matrices of the rows of X and Y,
respectively, or , whichever is smaller. Under the hypothesis of independence of X and Y, given
those ranks, the joint distribution of the J squared singular values, where .J is the smaller of the two
ranks, is then known and in the case » > K + L has a probability density (Hsu, 1939, Anderson,
2003, Anderson, 2007) given by

p(t1, . ty) o Ht [K=LI=D) /2 —t;) K LmD/2 H (tj —tjr),
Jj’'>3
1>t >--->1t; > 0. For J = 1 this reduces to the well-known case of a single beta dis-
tributed R2 or equivalently an F distributed = R? )/ /(gL)K L with the divisors in the numerator and

denominator representing the degrees of freedom or twice the parameters of the beta distribution.

Pillai’s statistic is the sum of squares of the canonical correlations, which equals, even without
the diagonal requirement on D), the squared Frobenius norm of that matrix (or trace of DT D).
Replacing the distribution of that statistic divided by J (i.e., of the mean of squares) with beta or
gamma distributions with first or shape parameter K L /2 and expectation K L/(r.J) leads to the F
and chi-squared approximations that the p-values returned by cctest are based on.

The F or beta approximation (Pillai, 1954, p. 99, p. 44) is usually used with Ag = A and then
is exact if J = 1. The chi-squared approximation represents Rao’s (1948) score test (with a test
statistic that is r times Pillai’s statistic) in the model obtained after removing (or conditioning on)
the orthogonal projections on the column space of A, provided that is a subset of the column space
of A; see Mardia and Kent (1991) for the case with independent identically distributed rows.

Value
A list with class htest containing the following components:

X,y matrices X and Y of new transformed variables
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xinv, yinv matrices U and V representing the inverse coordinate transformations

estimate vector of canonical correlations, i.e., the diagonal elements of D, possibly (only
if K = L = 1) with a name indicating the direction of the correlation

statistic vector of p-values based on Pillai’s statistic and classical F (beta) and chi-squared
(gamma) approximations

df.residual the number r

method the name of the function

data.name a character string representation of formula (possibly shortened)

Note

The handling of weights differs from that in 1m unless the nonzero weights are scaled so as to have
a mean of 1. Also, to facilitate predictions for rows with zero weights (see Examples), the square
roots of the weights, used internally for scaling the data, are always computed as nonzero numbers,
even for zero weights, where they are so small that their square is still numerically zero and hence
without effect on the correlation analysis.

The simplified formula notation is intended to provide a simpler, more consistent behavior than the
legacy stats procedure based on terms.formula, model. frame and model.matrix. Inconsistent
or hard-to-predict behavior can result in model . matrix, in particular, from the special interpretation
of common symbols, the identification of variables by deparsed expressions, the locale-dependent
conversion of character variables to factors and the attempts at reducing linear dependencies subject
to options(”contrasts”).

For the classical rank tests shown in the Examples, data must be passed to cctest with subsetting
and removal of missing values done beforehand.

Author(s)
Robert Schlicht
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See Also

Functions cancor, anova.mlmin package stats and implementations of canonical correlation anal-
ysis in other packages such as CCP (tests only), MVar, candisc (both including tests based on Wilks’
statistic), yacca, CCA, acca, whitening.

Examples

## Artificial observations in 5-by-5 meter subplots in a forest for
## comparing cctest analyses with equivalent 'stats' methods:
dat <- within(data.frame(row.names=1:150), {
u <- function() replicate(150, z<<-(z*69069+2"-32)%%1); z<-0
plot <- factor(u() < .5, , c("a","b")) # plot a or b
X <- as.integer(30xu() + c(1,82)[plotl) # x position on grid
y <- as.integer(30*xu() + c(1,62)[plot]) # y position on grid
ori <- factor(u()%/%.25,,c("E","N","S","W")) # orientation of slope
elev <- 40*u() + c(605,610)[plot] # elevation (in meters)
h <- 115 - .15%elev + 2*log(1/u()-1) # tree height (in meters)
h5 <= h + log(1/u()-1) # tree height 5 years earlier
h10 <- h5 + log(1/u()-1) # tree height 10 years earlier
c15 <- as.integer(h10 + log(1/u()-1) > 20) # ©0-1 coded, 15 years earlier
sapl <- as.integer(log(1/u())*.8*elev/40) # number of saplings
rm(u, z)
»
## Not run:
dat

## t-tests:
cctest(h~plot~1, dat)
t.test(h~plot, dat, var.equal=TRUE)
summary(1lm(h~plot, dat))
cctest(h-20~1~0, dat)
t.test(dat$h, mu=20)
t.test(h~1, dat, mu=20)
cctest(h-h5~1~0, dat)
t.test(dat$h, dat$h5, paired=TRUE)
t.test(Pair(h,h5)~1, dat)

## Test for correlation:
cctest(h~elev~1, dat)
cor.test(~h+telev, dat)

## One-way analysis of variance:
cctest(h~ori~1, dat)
anova(lm(h~ori, dat))
oneway.test(h~ori, dat, var.equal=TRUE)

## F-tests in linear models:
cctest(h~ori~1]|elev, dat)
anova(lm(h~1+elev, dat), lm(h~oritelev, dat))
cctest(h-h5~(h5-h10): (1|x|x*2)~0, dat, subset=1:50)
summary (Im(h-h5~0+I(h5-h10)+I(h5-h10): (x+I(x*2)), dat, subset=1:50))
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## Test in multivariate linear model based on Pillai's statistic:
cctest(h|h5|h10~x|y~1|elev, dat)
anova(lm(cbind(h,h5,h10)~elev, dat), lm(cbind(h,h5,h10)~elev+x+y, dat))

## Test based on Spearman's rank correlation coefficient:
cctest(rank(h)~rank(elev)~1, dat)
cor.test(~h+elev, dat, method="spearman”, exact=FALSE)

## Kruskal-Wallis and Wilcoxon rank-sum tests:
cctest(rank(h)~ori~1, dat)

kruskal.test(h~ori, dat)
cctest(rank(h)~plot~1, dat)

wilcox.test(h~plot, dat, exact=FALSE, correct=FALSE)

## Wilcoxon signed rank test:

cctest(rank(abs(h-h5))~sign(h-h5)~0, subset(dat, h-h5 != 0))

#dat|> within(d<-h-h5)|> subset(d|@)|> with(rank(abs(d))~sign(d)~@)|> cctest()
wilcox.test(h-h5 ~ 1, dat, exact=FALSE, correct=FALSE)

## Chi-squared test of independence:

cctest(ori~plot~1, dat, ~0)

cctest(ori~plot~1, as.data.frame(xtabs(~ori+plot,dat)), df=~0, weights=Freq)
summary (xtabs(~ori+plot, dat, drop.unused.levels=TRUE))
chisq.test(dat$ori, dat$plot, correct=FALSE)

## Score test in logistic regression (logit model, ...~1 only):
cctest(c15~x|y~1, dat, ~0@)
anova(glm(c15~1, binomial, dat, epsilon=1e-12),
glm(c15~1+x+y, binomial, dat), test="Rao")

## Score test in multinomial logit model (...~1 only):
cctest(ori~x|y~1, dat, ~0)
with(expand.grid(stringsAsFactors=FALSE,i=row.names(dat), j=levels(dat$ori)),
anova(glm(ori==j ~ j+x+y, poisson, dat[i,], epsilon=1e-12),
glm(ori==j ~ jx(x+y), poisson, dat[i,]), test="Rao"))

## Absolute values of (partial) correlation coefficients:
cctest(h~elev~1, dat)$est
cor(dat$h, dat$elev)
cctest(h~elev~1|x|y, dat)$est
cov2cor(estVar(Im(cbind(h,elev)~1+x+y, dat)))
cctest(h~x|y|elev~1, dat)$est”2
summary (Im(h~1+x+y+elev, dat))$r.squared

## Canonical correlations:
cctest(h|h5|h10~x|y~1, dat)$est
cancor(dat[c("x","y")]1,dat[c("h","”h5","h10")]1)$cor

## Linear discriminant analysis:
with(cctest(h|h5[h10~ori~1, dat, ~ori), y / sqrt(1-estimate”2)[col(y)I)[1:7,]
#predict (MASS: :1da(ori~h+h5+h10,dat))$x[1:7,]

## Correspondence analysis:
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cctest(ori~plot~1, as.data.frame(xtabs(~ori+plot,dat)), ~0, weights=Freq)[1:2]
#MASS: :corresp(~plot+ori, dat, nf=2)

## Prediction in multivariate linear model:
with(cctest(h|h5|h10~1|x|y~0, dat, weights=plot=="a"),
x %*% diag(estimate,ncol(x),ncol(y)) %*% yinv)[1:7,]
predict(lm(cbind(h,h5,h10)~1+x+y, dat, subset=plot=="a"), dat)[1:7,]

## Other constructions:
cctest(ave(h,plot,FUN=rank)~ori~plot, aggregate(h~ori+plot,dat,mean))
friedman.test(h~ori|plot, aggregate(h~ori+plot,dat,mean))
cctest(ori:cut(elev,4)-cut(elev,4):0ri~1~0, dat)
mcnemar. test(dat$ori, cut(dat$elev,4), correct=FALSE)
cctest(ave(abs(rank(h,ties.method="f")-mean(rank(h))),h)~plot~1, dat)
ansari.test(h~plot, dat, exact=FALSE)
cctest(ave((rank(h,ties.method="f")-mean(rank(h)))*2,h)~plot~1, dat)
mood. test(h~plot, dat)
cctest(gnorm(rank(-abs(h-ave(h,ori,FUN=median)))/(length(h)+1)/2)~ori~1, dat)
fligner.test(h~ori, dat)
cctest(h~diag(plot=="a",length(plot))~plot, dat)
var.test(h~plot, dat, alternative="greater")
cctest(ori:sum(Freq)/Freq-1~1~0, as.data.frame(xtabs(~ori,dat)),
weights=if(all(Freq)) Freq*2/sum(Freq)/c(.2,.3,.4,.1) else stop())
chisq.test(xtabs(~ori,dat), p=c(.2,.3,.4,.1))
with(cctest({h|h5|h10;0;0;0} ~ {h|h5|h10;diag(3)} ~ {1|0*x;0;0;03},
c(dat, {"=rbind), ~ {h|h5|h10;diag(3)} | {1]0*x;0;0;0}),
list(estimate/(s<-sqrt((1-estimate”2)*df.residual)), t(xinv*s)))
prcomp(~h+h5+h10, dat)

## Handling of additional arguments and edge cases:

cctest(1:150~ori=="E" |ori=="W"~1, c(dat, :"=":7,7|"="|"))
anova(lm(1:150~ori=="E" |ori=="W", dat))

cctest(h-h5~h10-h5~1|x]|y, dat)

cctest(h~h10~1+x+y, dat, offset=h5, stats=TRUE)
anova(lm(h~x+y+offset(h5), dat), Im(h~x+y+I(h10-h5)+offset(h5), dat))

cctest(hxc15/c15~elev~1, dat[1:6,]1)[1:2]

cctest(I(hxc15/c15)~elev~1, dat[1:6,], stats=TRUE, na.action=na.exclude)[1:2]
scale(with(dat[1:6,], cbind(elev,h)*c15/c15))

cctest(h~x~1, dat, weights=sapl/mean(sapllsapl!=01))
anova(lm(h~1, dat, weights=sapl), lm(h~1+x, dat, weights=sapl))

cctest(c15~h~1, dat, tol=0.999*sqrt(1-cctest(h~1~0,dat) $est*2))
summary (Im(c15~h, dat, tol=0.999*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest(c15~h~1, dat, tol=1.001*xsqgrt(1-cctest(h~1~0,dat)$est”2))

summary (1Im(c15~h, dat, tol=1.001*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest (NULL~NULL~NULL)
cctest(0~0~0)
anova(lm(0~0), 1m(0~0+0))
cctest(1~0~0)
anova(lm(1~0), 1m(1~0+0))
cctest(1~1~0)
anova(lm(1~0), 1Im(1~0+1))
cctest(1~1~0, dat, stats=TRUE)
cctest(h”*0~1~0, dat)
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anova(lm(h*0~0, dat), 1lm(h*@~0+1, dat))
## End(Not run)
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