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checkmate-package

checkmate: Fast and Versatile Argument Checks

Description

Tests and assertions to perform frequent argument checks. A substantial part of the package was
written in C to minimize any worries about execution time overhead.

Check scalars

checkFlag
checkCount
checkNumber
checkInt
checkString
checkScalar
checkScalarNA

Check vectors

checkLogical
checkNumeric
checkDouble
checkInteger
checkIntegerish
checkCharacter
checkComplex
checkFactor
checkList
checkPOSIXct
checkVector

checkAtomic

checkAtomicVector

checkRaw

Check attributes

checkClass
checkMultiClass

checkNames

checkNamed (deprecated)
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Check compound types

* checkArray
e checkDataFrame

e checkMatrix

Check other built-in R types

* checkDate

* checkEnvironment
* checkFunction

e checkFormula

e checkNull

Check sets

e checkChoice
* checkSubset
* checkSetEqual
e checkDisjunct

e checkPermutation

File 10

* checkFileExists
e checkDirectoryExists
¢ checkPathForOutput

e checkAccess

Popular data types of third party packages

e checkDataTable
e checkR6
e checkTibble

Safe coercion to integer

e asCount
e asInt

* aslnteger

Quick argument checks using a DSL

e gassert

e gassertr
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Misc
* checkOS (check operating system)
* assert (combine multiple checks into an assertion)
* anyMissing
* allMissing
* anyNaN
e wf (which.first and which.last)

Author(s)
Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Other contributors:

¢ Bernd Bischl <bernd_bischl@gmx.net> [contributor]

¢ Dénes Téth <toth.denes@kogentum.hu> (ORCID) [contributor]

See Also
Useful links:
e https://mllg.github.io/checkmate/

e https://github.com/mllg/checkmate
* Report bugs at https://github.com/mllg/checkmate/issues

allMissing Check if an object contains missing values

Description

anyMissing checks for the presence of at least one missing value, allMissing checks for the
presence of at least one non-missing value. Supported are atomic types (see is.atomic), lists and
data frames. Missingness is defined as NA or NaN for atomic types and data frame columns, NULL is
defined as missing for lists.

allMissing applied to a data.frame returns TRUE if at least one column has only non-missing
values. If you want to perform the less frequent check that there is at least a single non-missing
observation present in the data. frame, use all(sapply(df, allMissing)) instead.

Usage
allMissing(x)

anyMissing(x)
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Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any (anyMissing) or all (allMissing) elements of x are missing
(see details), FALSE otherwise.

Examples

allMissing(1:2)

allMissing(c(1, NA))

allMissing(c(NA, NA))

x = data.frame(a = 1:2, b = NA)

# Note how allMissing combines the results for data frames:
allMissing(x)

all(sapply(x, allMissing))

anyMissing(c(1, 1))

anyMissing(c(1, NA))

anyMissing(list(1, NULL))

X = iris

x[, "Species"] = NA
anyMissing(x)
allMissing(x)

anyInfinite Check if an object contains infinite values

Description

Supported are atomic types (see is.atomic), lists and data frames.

Usage
anyInfinite(x)
Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any element is -Inf or Inf.



Examples

anyInfinite(1:10)
anyInfinite(c(1:10, Inf))
iris[3, 3] = Inf
anyInfinite(iris)

asInteger

anyNaN Check if an object contains NaN values

Description

Supported are atomic types (see is.atomic), lists and data frames.

Usage
anyNaN(x)
Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any element is NaN.

Examples

anyNaN(1:19)
anyNaN(c(1:10, NaN))
iris[3, 3] = NaN
anyNaN(iris)

asInteger Convert an argument to an integer

Description

asInteger is intended to be used for vectors while asInt is a specialization for scalar integers and
asCount for scalar non-negative integers. Convertible are (a) atomic vectors with all elements NA

and (b) double vectors with all elements being within tol range of an integer.

Note that these functions may be deprecated in the future. Instead, it is advised to use assertCount,

assertInt or assertIntegerish with argument coerce set to TRUE instead.
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Usage

asInteger(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
.var.name = vname(x)

)

asCount(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
.var.name = vname(x)

)

asInt(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
.var.name = vname(x)

)
Arguments

X [any]
Object to convert.

tol [double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]

Upper value all elements of x must be lower than or equal to.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
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all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

na.ok [logical(1)]
Are missing values allowed? Default is FALSE.

positive [logical(1)]
Must x be positive (>= 1)? Default is FALSE.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Converted x.

Examples

asInteger(c(1, 2, 3))
asCount (1)
asInt(1)



assert 11

assert Combine multiple checks into one assertion

Description

You can call this function with an arbitrary number of of check* functions, i.e. functions provided
by this package or your own functions which return TRUE on success and the error message as
character (1) otherwise. The resulting assertion is successful, if combine is “or” (default) and at
least one check evaluates to TRUE or combine is “and” and all checks evaluate to TRUE. Otherwise,
assert throws an informative error message.

Usage
assert(..., combine = "or"”, .var.name = NULL, add = NULL)
Arguments
[any]
List of calls to check functions.
combine [character(1)]
“or” or “and” to combine the check functions with an OR or AND, respectively.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
Value

Throws an error (or pushes the error message to an AssertCollection if add is not NULL) if the
checks fail and invisibly returns TRUE otherwise.

Examples

x =1:10

assert(checkNull(x), checkInteger(x, any.missing = FALSE))

collection <- makeAssertCollection()

assert(checkChoice(x, c("a", "b")), checkDataFrame(x), add = collection)
collection$getMessages()
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AssertCollection Collect multiple assertions

Description

The function makeAssertCollection() returns a simple stack-like closure you can pass to all func-
tions of the assert*-family. All messages get collected and can be reported with reportAssertions().
Alternatively, you can easily write your own report function or customize the the output of the re-
port function to a certain degree. See the example on how to push custom messages or retrieve all
stored messages.

Usage

makeAssertCollection()

reportAssertions(collection)

Arguments
collection [AssertCollection]
Object of type “AssertCollection” (constructed via makeAssertCollection).
Value

makeAssertCollection() returns an object of class “AssertCollection” and reportCollection
returns invisibly TRUE if no error is thrown (i.e., no message was collected).

Examples

nan

x = "a
coll = makeAssertCollection()

print(coll$isEmpty())

assertNumeric(x, add = coll)

coll$isEmpty()

coll$push(”Custom error message")

coll$getMessages()

## Not run:
reportAssertions(coll)

## End(Not run)
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checkAccess Check file system access rights

Description

Check file system access rights

Usage
checkAccess(x, access = "")
check_access(x, access = "")

assertAccess(x, access = .var.name = vname(x), add = NULL)

assert_access(x, access = "", .var.name = vname(x), add = NULL)
testAccess(x, access = "")
test_access(x, access = "")
expect_access(x, access = "", info = NULL, label = vname(x))
Arguments
X [any]
Object to check.
access [character(1)]

Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertAccess/assert_access

return x invisibly, whereas checkAccess/check_access and testAccess/test_access return TRUE.

If the check is not successful, assertAccess/assert_access throws an error message, testAccess/test_access
returns FALSE, and checkAccess/check_access return a string with the error message. The func-

tion expect_access always returns an expectation.

See Also

Other filesystem: checkDirectoryExists(), checkFileExists(), checkPathForOutput()

Examples

# Is R's home directory readable?
testAccess(R.home(), "r")

# Is R's home directory writeable?
testAccess(R.home(), "w")

checkArray Check if an argument is an array

Description

Check if an argument is an array

Usage

checkArray(
X,
mode = NULL,
any.missing = TRUE,
d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE

check_array(
X,
mode = NULL,
any.missing = TRUE,
d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE



checkArray
assertArray(
X ’
mode = NULL,

)

any.missing = TRUE,

d = NULL,

min.d = NULL,

max.d = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_array(

)

X,

mode = NULL,
any.missing = TRUE,

d = NULL,

min.d = NULL,

max.d = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

testArray(

)

X,

mode = NULL,
any.missing = TRUE,
d = NULL,

min.d = NULL,

max.d = NULL,
null.ok = FALSE

test_array(

)

X,

mode = NULL,
any.missing = TRUE,
d = NULL,

min.d = NULL,

max.d = NULL,
null.ok = FALSE

expect_array(

X)
mode = NULL,

15
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any.missing = TRUE,

d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
mode [character(1)]

Storage mode of the array. Arrays can hold vectors, i.e. “logical”, “integer”,
“integerish”, “double”, “numeric”, “complex”, “character” and “list”. You can
also specify “atomic” here to explicitly prohibit lists. Default is NULL (no check).

If all values of x are missing, this check is skipped.
any.missing [logical(1)]
Are missing values allowed? Default is TRUE.
d [integer(1)]
Exact number of dimensions of array x. Default is NULL (no check).

min.d [integer(1)]

Minimum number of dimensions of array x. Default is NULL (no check).
max.d [integer(1)]

Maximum number of dimensions of array x. Default is NULL (no check).
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertArray/assert_array
return x invisibly, whereas checkArray/check_array and testArray/test_array return TRUE. If
the check is not successful, assertArray/assert_array throws an error message, testArray/test_array
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returns FALSE, and checkArray/check_array return a string with the error message. The function
expect_array always returns an expectation.

See Also

Other basetypes: checkAtomic(), checkAtomicVector (), checkCharacter(), checkComplex(),
checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other compound: checkDataFrame(), checkDataTable(), checkMatrix(), checkTibble()

Examples

checkArray(array(1:27, dim = c(3, 3, 3)), d = 3)

checkAtomic Check that an argument is an atomic vector

Description

For the definition of “atomic”, see is.atomic.

Note that ‘NULL* is recognized as a valid atomic value, as in R versions up to version 4.3.x. For
details, see https://stat.ethz.ch/pipermail/r-devel/2023-September/082892.html

Usage

checkAtomic(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

check_atomic(
X,
any.missing
all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

TRUE,
TRUE,


https://stat.ethz.ch/pipermail/r-devel/2023-September/082892.html
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assertAtomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
.var.name = vname(x),
add = NULL

assert_atomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
.var.name = vname(x),
add = NULL

testAtomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

test_atomic(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

checkAtomic
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expect_atomic(
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X ’
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.
len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.
label [character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

checkAtomic Vector

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomicVector(), checkCharacter(), checkComplex(),
checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other atomicvector: checkAtomicVector (), checkVector()

Examples

testAtomic(letters, min.len = 1L, any.missing = FALSE)

checkAtomicVector

Check that an argument is an atomic vector

Description

An atomic vector is defined slightly different from specifications in is.atomic and is.vector:
An atomic vector is either logical, integer, numeric, complex, character or raw and can have
any attributes except a dimension attribute (like matrices). lL.e., a factor is an atomic vector, but a
matrix or NULL are not. In short, this is basically equivalent to is.atomic(x) && !'is.null(x) &&
is.null(dim(x)).

Usage

checkAtomicVector(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

check_atomic_vector(

X)
any.missing = TRUE,
all.missing = TRUE,
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len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

assertAtomicVector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
.var.name = vname(x),
add = NULL

)

assert_atomic_vector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
.var.name = vname(x),
add = NULL

)

testAtomicVector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

test_atomic_vector(
X,
any.missing
all.missing

TRUE,
TRUE,
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len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL
)
expect_atomic_vector(
X )
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]
Are vectors with only missing values allowed? Default is TRUE.
len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.
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label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomicVector/assert_atomic_vector
return x invisibly, whereas checkAtomicVector/check_atomic_vector and testAtomicVector/test_atomic_vector
return TRUE. If the check is not successful, assertAtomicVector/assert_atomic_vector throws

an error message, testAtomicVector/test_atomic_vector returns FALSE, and checkAtomicVector/check_atomic_vect:
return a string with the error message. The function expect_atomic_vector always returns an

expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkCharacter(), checkComplex(), checkDataFrame(),
checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(), checkFunction(),
checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(),
checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other atomicvector: checkAtomic(), checkVector()

Examples

testAtomicVector(letters, min.len = 1L, any.missing = FALSE)

checkCharacter Check if an argument is a vector of type character

Description

To check for scalar strings, see checkString.

Usage

checkCharacter(
X,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
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)

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

check_character(

)

X,

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

assertCharacter(

X,

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,

fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

checkCharacter
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assert_character(
X,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testCharacter(
X’

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

test_character(
X!
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
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pattern
fixed =

= NULL,
NULL,

ignore.case = FALSE,

any.missing

TRUE,

all.missing = TRUE,
len = NULL,

min.len
max.len

unique =
sorted =

names =

= NULL,

= NULL,
FALSE,
FALSE,

NULL,

typed.missing = FALSE,

null.ok
)

= FALSE

expect_character(

X’
n.chars

= NULL,

min.chars = NULL,
max.chars = NULL,

pattern
fixed =

= NULL,
NULL,

ignore.case = FALSE,

any.missing

TRUE,

all.missing = TRUE,
len = NULL,

min.len
max.len
unique

sorted =

names =

= NULL,

= NULL,
FALSE,
FALSE,

NULL,

typed.missing = FALSE,

null.ok = FALSE,
info = NULL,
label = vname(x)

Arguments

X

n.chars

min.chars

max.chars

[any]
Object to check.

[integer(1)]
Exact number of characters for each element of x.

[integer(1)]

Minimum number of characters for each element of x.

[integer(1)]

Maximum number of characters for each element of x.

checkCharacter
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pattern

fixed

ignore.case

any.missing

all.missing

len

min.len

max.len

unique

sorted

names

typed.missing

null.ok

.var.name

add

info

label
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[character(1)]

Regular expression as used in grepl. All non-missing elements of x must com-
ply to this pattern.

[character(1)]

Substring to detect in x. Will be used as pattern in grepl with option fixed
set to TRUE. All non-missing elements of x must contain this substring.
[logical(1)]

See grepl. Default is FALSE.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertCharacter/assert_character
return x invisibly, whereas checkCharacter/check_character and testCharacter/test_character

return TRUE. If the check is not successful, assertCharacter/assert_character throws an error

message, testCharacter/test_character returns FALSE, and checkCharacter/check_character

return a string with the error message. The function expect_character always returns an expectation.

See Also

Other basetypes: checkArray (), checkAtomic(), checkAtomicVector(), checkComplex(), checkDataFrame(),
checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(), checkFunction(),
checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(),
checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testCharacter(letters, min.len = 1, any.missing = FALSE)

testCharacter(letters, min.chars = 2)
testCharacter("example”, pattern = "xa")
checkChoice Check if an object is an element of a given set

Description

Check if an object is an element of a given set

Usage

checkChoice(x, choices, null.ok = FALSE, fmatch = FALSE)
check_choice(x, choices, null.ok = FALSE, fmatch = FALSE)

assertChoice(
X,
choices,
null.ok = FALSE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL
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assert_choice(
X’
choices,
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null.ok = FALSE,
fmatch = FALSE,

.var.name =
add = NULL
)

vhame(x),

testChoice(x, choices, null.ok = FALSE, fmatch = FALSE)

test_choice(x, choices, null.ok = FALSE, fmatch = FALSE)

expect_choice(
X)
choices,

null.ok = FALSE,
fmatch = FALSE,

info = NULL,

label = vname(x)

Arguments

X

choices

null.ok

fmatch

.var.name

add

info

label

[any]
Object to check.

[atomic]

Set of possible values.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[logical(1)]

Use the set operations implemented in fmatch in package fastmatch. If fast-

match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertChoice/assert_choice

return x invisibly, whereas checkChoice/check_choice and testChoice/test_choice return TRUE.

If the check is not successful, assertChoice/assert_choice throws an error message, testChoice/test_choice
returns FALSE, and checkChoice/check_choice return a string with the error message. The func-

tion expect_choice always returns an expectation.

Note
The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkDisjunct(), checkPermutation(), checkSetEqual(), checkSubset()

Examples

testChoice("x", letters)

# x is not converted before the comparison (except for numerics)
testChoice(factor(”a"), "a")

testChoice(1, "1")

testChoice(1, as.integer(1))

checkClass Check the class membership of an argument

Description

Check the class membership of an argument

Usage

checkClass(x, classes, ordered = FALSE, null.ok = FALSE)

check_class(x, classes, ordered = FALSE, null.ok = FALSE)

assertClass(
X,
classes,
ordered = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
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assert_class(
X,
classes,
ordered = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testClass(x, classes, ordered = FALSE, null.ok = FALSE)
test_class(x, classes, ordered = FALSE, null.ok = FALSE)

expect_class(
X,
classes,
ordered = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments

X [any]
Object to check.

classes [character]
Class names to check for inheritance with inherits. x must inherit from all
specified classes.

ordered [logical(1)]
Expect x to be specialized in provided order. Default is FALSE.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertClass/assert_class
return x invisibly, whereas checkClass/check_class and testClass/test_class return TRUE. If

the check is not successful, assertClass/assert_class throws an error message, testClass/test_class
returns FALSE, and checkClass/check_class return a string with the error message. The function
expect_class always returns an expectation.

See Also

Other attributes: checkMultiClass(), checkNamed(), checkNames()
Other classes: checkMultiClass(), checkR6()

Examples

# Create an object with classes "foo"” and "bar”
x =1
class(x) = c("foo"”, "bar")

# is x of class "foo"?
testClass(x, "foo")

# is x of class "foo" and "bar"?
testClass(x, c(”"foo”, "bar"))

# is x of class "foo" or "bar"?
## Not run:
assert(
checkClass(x, "foo"),
checkClass(x, "bar")
)

## End(Not run)
# is x most specialized as "bar"?
testClass(x, "bar”, ordered = TRUE)

checkComplex Check if an argument is a vector of type complex

Description

Check if an argument is a vector of type complex

Usage
checkComplex(
X)
any.missing = TRUE,
all.missing = TRUE,
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)

len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

check_complex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

assertComplex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_complex(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

33
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.var.name = vname(x),

add = NULL
)
testComplex(
X’

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_complex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_complex(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)

Arguments

X

[any]

Object to check.

checkComplex



checkComplex 35

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details
This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertComplex/assert_complex
return x invisibly, whereas checkComplex/check_complex and testComplex/test_complex re-
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turn TRUE. If the check is not successful, assertComplex/assert_complex throws an error mes-
sage, testComplex/test_complex returns FALSE, and checkComplex/check_complex return a string
with the error message. The function expect_complex always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkDataFrame(), checkDate (), checkDouble(), checkEnvironment(), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testComplex (1)
testComplex(1+11i)

checkCount Check if an argument is a count

Description

A count is defined as non-negative integerish value.

Usage

checkCount (
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

check_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

assertCount(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,
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coerce = FALSE,
.var.name = vname(x),
add = NULL

)

assert_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),

add = NULL
)
testCount(
X’

na.ok = FALSE,

positive = FALSE,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)
test_count(
X,
na.ok = FALSE,

positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

expect_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
na.ok [logical(1)]

Are missing values allowed? Default is FALSE.

37
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positive

tol

null.ok

coerce

.var.name

add

info

label

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_

and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertCount/assert_count

checkCount

[logical(1)]
Must x be positive (>= 1)? Default is FALSE, allowing O.

[double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkCount/check_count and testCount/test_count return TRUE. If

the check is not successful, assertCount/assert_count throws an error message, testCount/test_count

returns FALSE, and checkCount/check_count return a string with the error message. The function
expect_count always returns an expectation.

Note

To perform an assertion and then convert to integer, use asCount. assertCount will not convert
numerics to integer.

See Also

Other scalars: checkFlag(), checkInt(), checkNumber(), checkScalar(), checkScalarNA(),

checkString()
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Examples

testCount (1)
testCount(-1)

checkDataFrame Check if an argument is a data frame

Description

Check if an argument is a data frame

Usage

checkDataFrame (
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

check_data_frame(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

assertDataFrame(
X,
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types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

assert_data_frame(
X,
types = character(0L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testDataFrame(
X7

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE
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test_data_frame(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_data_frame(

)
Arguments
X [any]
Object to check.
types [character]

any.missing

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
info = NULL,

label = vname(x)

41

Character vector of class names. Each list element must inherit from at least one

of the provided types. The types “logical”, “integer
character”, “factor
matrix”, “list”, “function

9 <

“numeric”,

CEINT3

tor”, “array”,

integerish”, “double”,
atomicvec-
environment” and “null” are sup-

ported. For other types inherits is used as a fallback to check x’s inheritance.

Defaults to character(9) (no check).
[logical(1)]



42

all

min.

max.

min.

max.

.missing

rows

rows

cols

cols

nrows

ncols

row.

col.

names

names

null.ok

.var.name

add

info

label

Value

checkDataFrame

Are missing values allowed? Default is TRUE.

[logical(1)]

Are columns with only missing values allowed? Default is TRUE.

[integer(1)]

Minimum number of rows.

[integer(1)]

Maximum number of rows.

[integer(1)]

Minimum number of columns.

[integer(1)]

Maximum number of columns.

[integer(1)]

Exact number of rows.

[integer(1)]

Exact number of columns.

[character(1)]

Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.

[character(1)]

Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertDataFrame/assert_data_frame
return x invisibly, whereas checkDataFrame/check_data_frame and testDataFrame/test_data_frame

return TRUE. If the check is not successful, assertDataFrame/assert_data_frame throws an error

message, testDataFrame/test_data_frame returns FALSE, and checkDataFrame/check_data_frame

return a string with the error message. The function expect_data_frame always returns an expectation.
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See Also

Other compound: checkArray(), checkDataTable(), checkMatrix(), checkTibble()

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples
testDataFrame(iris)
testDataFrame(iris, types = c("numeric”, "factor”), min.rows = 1, col.names = "named")
checkDataTable Check if an argument is a data table
Description

Check if an argument is a data table

Usage

checkDataTable(
X,
key = NULL,
index = NULL,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

check_data_table(
X,
key = NULL,
index = NULL,
types = character(0L),
any.missing = TRUE,
all.missing = TRUE,
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)

min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

assertDataTable(

)

X,

key = NULL,

index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_data_table(

X’
key = NULL,
index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

checkDataTable
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)

add = NULL

testDataTable(

)

X,
key = NULL,

index = NULL,

types = character(0L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,

nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_data_table(

)

X’
key = NULL,
index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_data_table(

X)
key = NULL,
index = NULL,

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
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min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)

)
Arguments
X [any]
Object to check.
key [character]
Expected primary key(s) of the data table.
index [character]
Expected secondary key(s) of the data table.
types [character]

Character vector of class names. Each list element must inherit from at least one

2%

of the provided types. The types “logical”’, “integer”, “integerish”, “double”,

9 < EEINT3 CLINY3 LLINT3

“numeric”, “complex”, “character”, “factor”, “atomic”, “vector
tOr 2" 13

CEINT3 CEINT3
5

Defaults to character(9) (no check).

any.missing [logical(1)]

Are missing values allowed? Default is TRUE.

all.missing [logical(1)]

Are matrices with only missing values allowed? Default is TRUE.

min.rows [integer(1)]

Minimum number of rows.

max.rows [integer(1)]

Maximum number of rows.

min.cols [integer(1)]

Minimum number of columns.

max.cols [integer(1)]

Maximum number of columns.

nrows [integer(1)]

Exact number of rows.

ncols [integer(1)]

Exact number of columns.

row.names [character(1)]

array”’, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.

Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.
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col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertDataTable/assert_data_table
return x invisibly, whereas checkDataTable/check_data_table and testDataTable/test_data_table

return TRUE. If the check is not successful, assertDataTable/assert_data_table throws an error

message, testDataTable/test_data_table returns FALSE, and checkDataTable/check_data_table

return a string with the error message. The function expect_data_table always returns an expectation.

See Also

Other compound: checkArray(), checkDataFrame(), checkMatrix(), checkTibble()

Examples

library(data.table)

dt = as.data.table(iris)

setkeyv(dt, "Species”)

setkeyv(dt, "Sepal.Length”, physical = FALSE)

testDataTable(dt)

testDataTable(dt, key = "Species”, index = "Sepal.Length”, any.missing = FALSE)

checkDate Check that an argument is a Date

Description

Checks that an object is of class Date.



48
Usage
checkDate(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

check_date(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

)

assertDate(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

assert_date(

X)
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,

checkDate
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)

len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

testDate(

X,

lower = NULL,

upper NULL,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

)

test_date(
X)
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

expect_date(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)
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)
Arguments

X [any]
Object to check.

lower [Date]
All non-missing dates in x must be >= this date. Comparison is done via
Ops.Date.

upper [Date]
All non-missing dates in x must be before <= this date. Comparison is done via
Ops.Date.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.
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See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix (), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector ()

checkDirectoryExists  Check for existence and access rights of directories

Description

Check for existence and access rights of directories

Usage
checkDirectoryExists(x, access = "")
check_directory_exists(x, access = "")
assertDirectoryExists(x, access = "", .var.name = vname(x), add = NULL)
assert_directory_exists(x, access = "", .var.name = vname(x), add = NULL)
testDirectoryExists(x, access = "")
test_directory_exists(x, access = "")
expect_directory_exists(x, access = "", info = NULL, label = vname(x))
checkDirectory(x, access = "")
assertDirectory(x, access = "", .var.name = vname(x), add = NULL)
assert_directory(x, access = "", .var.name = vname(x), add = NULL)
testDirectory(x, access = "")
test_directory(x, access = "")
expect_directory(x, access = "", info = NULL, label = vname(x))
Arguments
X [any]

Object to check.
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access

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertDirectoryExists/assert_directory_ex:
return x invisibly, whereas checkDirectoryExists/check_directory_existsand testDirectoryExists/test_directo

checkDirectoryEXxists

[character(1)]

Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return TRUE. If the check is not successful, assertDirectoryExists/assert_directory_exists
throws an error message, testDirectoryExists/test_directory_exists returns FALSE, and
checkDirectoryExists/check_directory_exists return a string with the error message. The
function expect_directory_exists always returns an expectation.

Note

The functions without the suffix “exists” are deprecated and will be removed from the package in a
future version due to name clashes.

See Also

Other filesystem: checkAccess(), checkFileExists(), checkPathForOutput()

Examples

# Is R's home directory readable?
testDirectory(R.home(), "r")

# Is R's home directory readable and writable?
testDirectory(R.home(), "rw"
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checkDisjunct Check if an argument is disjunct from a given set

Description

Check if an argument is disjunct from a given set

Usage

checkDisjunct(x, y, fmatch = FALSE)

check_disjunct(x, y, fmatch = FALSE)

assertDisjunct(x, y, fmatch = FALSE, .var.name = vname(x), add = NULL)
assert_disjunct(x, y, fmatch = FALSE, .var.name = vname(x), add = NULL)
testDisjunct(x, y, fmatch = FALSE)

test_disjunct(x, y, fmatch = FALSE)

expect_disjunct(x, y, fmatch = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

y [atomic]
Other Set.

fmatch [logical(1)]
Use the set operations implemented in fmatch in package fastmatch. If fast-
match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertDisjunct/assert_disjunct
return x invisibly, whereas checkDisjunct/check_disjunct and testDisjunct/test_disjunct

return TRUE. If the check is not successful, assertDisjunct/assert_disjunct throws an error

message, testDisjunct/test_disjunct returns FALSE, and checkDisjunct/check_disjunct re-

turn a string with the error message. The function expect_disjunct always returns an expectation.

Note
The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also
Other set: checkChoice(), checkPermutation(), checkSetEqual(), checkSubset()

Examples

testDisjunct(1L, letters)
testDisjunct(c("a", "z"), letters)

# x is not converted before the comparison (except for numerics)
testDisjunct(factor(”a"), "a")

testDisjunct(1, "1")

testDisjunct(1, as.integer(1))

checkDouble Check that an argument is a vector of type double

Description

Check that an argument is a vector of type double

Usage
checkDouble(
X)
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
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)

typed.missing = FALSE,
null.ok = FALSE

check_double(

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertDouble(
X’
lower = -Inf,
upper = Inf,

)

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_double(

X,
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
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)

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

testDouble(

)

X!

lower = -Inf,

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_double(

)

X,
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_double(

X)
lower = -Inf,

checkDouble
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upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.
upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.
finite [logical(1)]

Check for only finite values? Default is FALSE.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.
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typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertDouble/assert_double

return x invisibly, whereas checkDouble/check_double and testDouble/test_double return TRUE.

If the check is not successful, assertDouble/assert_double throws an error message, testDouble/test_double
returns FALSE, and checkDouble/check_double return a string with the error message. The func-

tion expect_double always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkEnvironment(), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testDouble(1)
testDouble(1L)
testDouble(1, min.len = 1, lower = 0)
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checkEnvironment Check if an argument is an environment

Description

Check if an argument is an environment

Usage

checkEnvironment(x, contains = character(@L), null.ok = FALSE)
check_environment(x, contains = character(@OL), null.ok = FALSE)

assertEnvironment(
X,
contains = character(oL),
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

assert_environment(
X,
contains = character(QL),
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testEnvironment(x, contains = character(@L), null.ok = FALSE)
test_environment(x, contains = character(@L), null.ok = FALSE)
expect_environment(

X,

contains = character(QL),
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
contains [character]

Vector of object names expected in the environment. Defaults to character(0).
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null.ok

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertEnvironment/assert_environment
return x invisibly, whereas checkEnvironment/check_environment and testEnvironment/test_environment

checkFactor

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return TRUE. If the check is not successful, assertEnvironment/assert_environment throws an

error message, testEnvironment/test_environment returns FALSE, and checkEnvironment/check_environment

return a string with the error message. The function expect_environment always returns an

expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),

checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),

checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

ee = as.environment(list(a = 1))

testEnvironment(ee)
testEnvironment(ee, contains = "a")
checkFactor Check if an argument is a factor
Description

Check if an argument is a factor
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Usage

checkFactor(

)

X,

levels = NULL,
ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

check_factor(

)

X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

assertFactor(

X,

levels = NULL,

ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,

max.len = NULL,
n.levels = NULL,
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)

min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_factor(

)

X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

testFactor(

)

X)

levels = NULL,
ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

test_factor(

checkFactor
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X’
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,

max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,
null.ok = FALSE
)
expect_factor(
X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
levels [character]
Vector of allowed factor levels.
ordered [logical(1)]

Check for an ordered factor? If FALSE or TRUE, checks explicitly for an un-
ordered or ordered factor, respectively. Default is NA which does not perform
any additional check.
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empty.levels.ok

any.missing

all.missing

len

min.len

max.len

n.levels

min.levels

max.levels

unique

names

null.ok

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertFactor/assert_factor

checkFactor

[logical(1)]

Are empty levels allowed? Default is TRUE.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[integer(1)]

Exact number of factor levels. Default is NULL (no check).

[integer(1)]

Minimum number of factor levels. Default is NULL (no check).

[integer(1)]

Maximum number of factor levels. Default is NULL (no check).

[logical(1)]

Must all values be unique? Default is FALSE.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkFactor/check_factor and testFactor/test_factor return TRUE.
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If the check is not successful, assertFactor/assert_factor throws an error message, testFactor/test_factor
returns FALSE, and checkFactor/check_factor return a string with the error message. The func-
tion expect_factor always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

x = factor(”"a", levels = c("a", "b"))
testFactor(x)
testFactor(x, empty.levels.ok = FALSE)

checkFALSE Check if an argument is FALSE

Description

Simply checks if an argument is FALSE.

Usage
checkFALSE(x, na.ok = FALSE)

check_false(x, na.ok = FALSE)
assertFALSE(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
assert_false(x, na.ok = FALSE, .var.name = vname(x), add = NULL)

testFALSE(x, na.ok = FALSE)

test_false(x, na.ok = FALSE)

Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
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Value

Depending on the function prefix: If the check is successful, the functions assertFALSE ./assert_false.

return x invisibly, whereas checkFALSE./check_false. and testFALSE./test_false. return TRUE.

If the check is not successful, assertFALSE./assert_false. throws an error message, testFALSE./test_false.
returns FALSE, and checkFALSE./check_false. return a string with the error message. The func-

tion expect_false. always returns an expectation.

Examples

testFALSE (FALSE)
testFALSE(TRUE)

checkFileExists Check existence and access rights of files

Description

Check existence and access rights of files

Usage

nn

checkFileExists(x, access = , extension = NULL)

check_file_exists(x, access = "", extension = NULL)

assertFileExists(
X,
access = "",
extension = NULL,
.var.name = vname(x),
add = NULL

assert_file_exists(
X,
access = "",
extension = NULL,
.var.name = vname(x),
add = NULL

nn

testFileExists(x, access = , extension = NULL)

nn

test_file_exists(x, access = , extension = NULL)

expect_file_exists(
X,
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nn

access = "",
extension = NULL,
info = NULL,
label = vname(x)
)
checkFile(x, access = "", extension = NULL)
assertFile(x, access = "", extension = NULL, .var.name = vname(x), add = NULL)
assert_file(x, access = "", extension = NULL, .var.name = vname(x), add = NULL)
testFile(x, access = "", extension = NULL)
expect_file(x, access = "", extension = NULL, info = NULL, label = vname(x))
Arguments
X [any]
Object to check.
access [character(1)]
Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.
extension [character]
Vector of allowed file extensions, matched case insensitive.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertFileExists/assert_file_exists
return x invisibly, whereas checkFileExists/check_file_exists and testFileExists/test_file_exists
return TRUE. If the check is not successful, assertFileExists/assert_file_exists throws an er-

ror message, testFileExists/test_file_exists returns FALSE, and checkFileExists/check_file_exists
return a string with the error message. The function expect_file_exists always returns an

expectation.
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Note
The functions without the suffix “exists” are deprecated and will be removed from the package in a
future version due to name clashes. test_file has been unexported already.

See Also

Other filesystem: checkAccess(), checkDirectoryExists(), checkPathForOutput()

Examples

# Check if R's COPYING file is readable
testFileExists(file.path(R.home(), "COPYING"), access = "r")

# Check if R's COPYING file is readable and writable
testFileExists(file.path(R.home(), "COPYING"), access = "rw")

checkFlag Check if an argument is a flag

Description

A flag is defined as single logical value.

Usage

checkFlag(x, na.ok = FALSE, null.ok = FALSE)

check_flag(x, na.ok = FALSE, null.ok = FALSE)

assertFlag(x, na.ok = FALSE, null.ok = FALSE, .var.name = vname(x), add = NULL)

assert_flag(
X,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testFlag(x, na.ok = FALSE, null.ok = FALSE)
test_flag(x, na.ok = FALSE, null.ok = FALSE)

expect_flag(x, na.ok = FALSE, null.ok = FALSE, info = NULL, label = vname(x))
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Arguments

x [any]
Object to check.

na.ok [logical(1)]
Are missing values allowed? Default is FALSE.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertFlag/assert_flag
return x invisibly, whereas checkFlag/check_flag and testFlag/test_flag return TRUE. If the
check is not successful, assertFlag/assert_flag throws an error message, testFlag/test_flag
returns FALSE, and checkFlag/check_flag return a string with the error message. The function
expect_flag always returns an expectation.

See Also

Other scalars: checkCount (), checkInt(), checkNumber (), checkScalar(), checkScalarNA(),
checkString()

Examples

testFlag(TRUE)
testFlag(1)
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checkFormula Check if an argument is a formula

Description

Check if an argument is a formula

Usage

checkFormula(x, null.ok = FALSE)

FALSE)

check_formula(x, null.ok

assertFormula(x, null.ok = FALSE, .var.name = vname(x), add = NULL)

assert_formula(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
testFormula(x, null.ok = FALSE)
test_formula(x, null.ok = FALSE)

expect_formula(x, null.ok = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertFormula/assert_formula
return x invisibly, whereas checkFormula/check_formula and testFormula/test_formula re-

turn TRUE. If the check is not successful, assertFormula/assert_formula throws an error mes-

sage, testFormula/test_formula returns FALSE, and checkFormula/check_formula return a string

with the error message. The function expect_formula always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

f = Species ~ Sepal.Length + Sepal.Width
checkFormula(f)

checkFunction Check if an argument is a function

Description

Check if an argument is a function

Usage

checkFunction(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)
check_function(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)

assertFunction(
X,
args = NULL,
ordered = FALSE,
nargs = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
assert_function(
X!
args = NULL,

ordered = FALSE,
nargs = NULL,
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null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testFunction(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)
test_function(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)

expect_function(

X,
args = NULL,
ordered = FALSE,
nargs = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
args [character]

Expected formal arguments. Checks that a function has no arguments if set to
character(0). Default is NULL (no check).

ordered [logical(1)]
Flag whether the arguments provided in args must be the first length(args)
arguments of the function in the specified order. Default is FALSE.

nargs [integer(1)]
Required number of arguments, without . . .. Default is NULL (no check).
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertFunction/assert_function
return x invisibly, whereas checkFunction/check_function and testFunction/test_function

return TRUE. If the check is not successful, assertFunction/assert_function throws an error

message, testFunction/test_function returns FALSE, and checkFunction/check_function re-

turn a string with the error message. The function expect_function always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (),
checkFormula(), checkInteger (), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples
testFunction(mean)
testFunction(mean, args = "x")
checkInt Check if an argument is a single integerish value
Description

Check if an argument is a single integerish value

Usage
checkInt(
X)
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

check_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

assertInt(
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X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

coerce = FALSE,

.var.name = vname(x),

add = NULL

)

assert_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

coerce = FALSE,

.var.name = vname(x),

add = NULL

)

testInt(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

test_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

expect_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

checklInt
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info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.
upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.
tol [double(1)]

Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

coerce [logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertInt/assert_int
return x invisibly, whereas checkInt/check_int and testInt/test_int return TRUE. If the check
is not successful, assertInt/assert_int throws an error message, testInt/test_int returns
FALSE, and checkInt/check_int return a string with the error message. The function expect_int
always returns an expectation.
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Note
To perform an assertion and then convert to integer, use asInt. assertInt will not convert numer-
ics to integer.

See Also
Other scalars: checkCount (), checkFlag(), checkNumber (), checkScalar (), checkScalarNA(),
checkString()

Examples

testInt(1)
testInt(-1, lower = Q)

checkInteger Check if an argument is vector of type integer

Description

Check if an argument is vector of type integer

Usage
checkInteger(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)
check_integer(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,



checklInteger

max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,

typed.missing =

null.ok = FALSE
)

assertInteger(
X,
lower = -Inf,
upper = Inf,

FALSE,

any.missing = TRUE,

all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing =
null.ok = FALSE,

TRUE,

FALSE,

.var.name = vname(x),

add = NULL
)

assert_integer(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,

all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing =
null.ok = FALSE,

TRUE,

FALSE,

.var.name = vname(x),

add = NULL
)

testInteger(
X,
lower
upper

-Inf,
Inf,
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)

any.missing
all.missing
len = NULL,
min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

TRUE,
TRUE,

test_integer(

)

X,
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_integer(

X,
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)

checklInteger
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Arguments

X

lower

upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

names

typed.missing

null.ok

.var.name

add

info

label
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[any]

Object to check.

[numeric(1)]

Lower value all elements of x must be greater than or equal to.

[numeric(1)]

Upper value all elements of x must be lower than or equal to.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA, NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertInteger/assert_integer
return x invisibly, whereas checkInteger/check_integer and testInteger/test_integer re-

turn TRUE. If the check is not successful, assertInteger/assert_integer throws an error mes-

sage, testInteger/test_integer returns FALSE, and checkInteger/check_integer return a string

with the error message. The function expect_integer always returns an expectation.

See Also

asInteger

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testInteger(1L)
testInteger(1.)
testInteger(1:2, lower = 1, upper = 2, any.missing = FALSE)

checkIntegerish Check if an object is an integerish vector

Description

An integerish value is defined as value safely convertible to integer. This includes integers and
numeric values which sufficiently close to an integer w.r.t. a numeric tolerance ‘tol‘.

Usage

checkIntegerish(
X!
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
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sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

check_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertlntegerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),
add = NULL

)

assert_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,

81



82

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),

add = NULL
)
testIntegerish(
X’

tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

test_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

checklIntegerish
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expect_integerish(

tol = sqrt(.Machine$double.eps),

X,
lower = -Inf,
upper = Inf,

any.missing
all.missing
len = NULL,

TRUE,
TRUE,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

info = NULL,

label = vname(x)

Arguments

X

tol

lower

upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

[any]
Object to check.

[double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

[numeric(1)]
Lower value all elements of x must be greater than or equal to.

[numeric(1)]

Upper value all elements of x must be lower than or equal to.
[logical(1)]

Are vectors with missing values allowed? Default is TRUE.
[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
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names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

coerce [logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertIntegerish/assert_integerish
return x invisibly, whereas checkIntegerish/check_integerish and testIntegerish/test_integerish

return TRUE. If the check is not successful, assertIntegerish/assert_integerish throws an er-

ror message, testIntegerish/test_integerishreturns FALSE, and checkIntegerish/check_integerish
return a string with the error message. The function expect_integerish always returns an expectation.

Note

To convert from integerish to integer, use asInteger.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()
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Examples

testIntegerish(1L)
testIntegerish(1.)
testIntegerish(1:2, lower = 1L, upper = 2L, any.missing = FALSE)

checkList Check if an argument is a list

Description

Check if an argument is a list

Usage

checkList(
X,
types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

check_list(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

assertlList(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
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)

max.len = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_list(

X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testList(

X’

)

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE

test_list(

X)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE

checkList
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expect_list(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,
info = NULL,

label = vname(x)
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)
Arguments
X [any]
Object to check.
types [character]

Character vector of class names. Each list element must inherit from at least one
of the provided types. The types “logical”, “integer”, “integerish”, “double”,
“numeric”, “complex”, “character”, “factor”, “atomic”, “vector” ‘“atomicvec-
tor”, “array”, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.
Defaults to character (@) (no check).

LEINT3

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.
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.var.name

add

info

label

Value

checkList

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertList/assert_list
return x invisibly, whereas checkList/check_list and testList/test_list return TRUE. If the

check is not successful, assertList/assert_list throws an error message, testList/test_list

returns FALSE, and checkList/check_list return a string with the error message. The function

expect_list always returns an expectation.

Note

Contrary to R’s is.1ist, objects of type data.frame and pairlist are not recognized as list.

Missingness is defined here as elements of the list being NULL, analogously to anyMissing.

The test for uniqueness does differentiate between the different NA types which are built-in in R.
This is required to be consistent with unique while checking scalar missing values. Also see the

example.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkLogical(),
checkMatrix (), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testList(list())

testList(as.list(iris), types = c("numeric”, "factor"))

# Missingness

testList(list(1, NA), any.missing = FALSE)
testList(list(1, NULL), any.missing = FALSE)

# Uniqueness differentiates between different NA types:
testList(list(NA, NA), unique = TRUE)
testList(list(NA, NA_real_), unique = TRUE)
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checkLogical Check if an argument is a vector of type logical

Description

Check if an argument is a vector of type logical

Usage

checkLogical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

check_logical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertlLogical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
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)

add = NULL

assert_logical(

X,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testLogical(
X7

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_logical(

)

X)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_logical(

X,
any.missing = TRUE,
all.missing = TRUE,

checkLogical
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len = NULL,
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min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,

typed.missing = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X

any.missing

all.missing

len

min.len

max.len

unique

names

typed.missing

null.ok

.var.name

add

[any]

Object to check.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]
Exact expected length of x.

[integer(1)]
Minimal length of x.

[integer(1)]
Maximal length of x.

[logical(1)]
Must all values be unique? Default is FALSE.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.
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info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertLogical/assert_logical
return x invisibly, whereas checkLogical/check_logical and testLogical/test_logical re-

turn TRUE. If the check is not successful, assertLogical/assert_logical throws an error mes-

sage, testLogical/test_logical returns FALSE, and checkLogical/check_logical return a string

with the error message. The function expect_logical always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testLogical (TRUE)
testLogical (TRUE, min.len = 1)

checkMatrix Check if an argument is a matrix

Description

Check if an argument is a matrix

Usage
checkMatrix(
X,
mode = NULL,

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
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)

min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

check_matrix(

X,

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)
assertMatrix(
X,
mode = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_matrix(

X!

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,

93
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min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,

row.names = NULL,
col.names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)
testMatrix(
X)
mode = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_matrix(

)

X)

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_matrix(

X)
mode = NULL,

checkMatrix
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any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
mode [character(1)]

Storage mode of the array. Arrays can hold vectors, i.e. “logical”, “integer”,
“integerish”, “double”, “numeric”, “complex”, “character” and “list”. You can
also specify “atomic” here to explicitly prohibit lists. Default is NULL (no check).

If all values of x are missing, this check is skipped.

any.missing [logical(1)]
Are missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are matrices with only missing values allowed? Default is TRUE.

min.rows [integer(1)]
Minimum number of rows.

max.rows [integer(1)]
Maximum number of rows.

min.cols [integer(1)]
Minimum number of columns.

max.cols [integer(1)]
Maximum number of columns.

nrows [integer(1)]
Exact number of rows.

ncols [integer(1)]
Exact number of columns.

row.names [character(1)]
Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.
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col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertMatrix/assert_matrix

return x invisibly, whereas checkMatrix/check_matrix and testMatrix/test_matrix return TRUE.

If the check is not successful, assertMatrix/assert_matrix throws an error message, testMatrix/test_matrix
returns FALSE, and checkMatrix/check_matrix return a string with the error message. The func-

tion expect_matrix always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other compound: checkArray (), checkDataFrame(), checkDataTable(), checkTibble()

Examples

X = matrix(1:9, 3)
colnames(x) = letters[1:3]
testMatrix(x, nrows = 3, min.cols = 1, col.names = "named")
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checkMultiClass Check the class membership of an argument

Description

Check the class membership of an argument

Usage

checkMultiClass(x, classes, null.ok = FALSE)
check_multi_class(x, classes, null.ok = FALSE)
assertMultiClass(x, classes, null.ok = FALSE, .var.name = vname(x), add = NULL)
assert_multi_class(
X’
classes,
null.ok = FALSE,

.var.name = vname(x),
add = NULL

)

testMultiClass(x, classes, null.ok = FALSE)
test_multi_class(x, classes, null.ok = FALSE)

expect_multi_class(x, classes, null.ok = FALSE, info = NULL, label = vname(x))

Arguments
X [any]
Object to check.
classes [character]

Class names to check for inheritance with inherits. x must inherit from any of
the specified classes.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
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info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertMultiClass/assert_multi_class
return x invisibly, whereas checkMultiClass/check_multi_class and testMultiClass/test_multi_class
return TRUE. If the check is not successful, assertMultiClass/assert_multi_class throws an er-

ror message, testMultiClass/test_multi_class returns FALSE, and checkMultiClass/check_multi_class
return a string with the error message. The function expect_multi_class always returns an

expectation.

See Also

Other attributes: checkClass(), checkNamed(), checkNames ()
Other classes: checkClass(), checkR6()

Examples

x =1

class(x) = "bar"

checkMultiClass(x, c("foo”, "bar"))
checkMultiClass(x, c("foo", "foobar"))

checkNamed Check if an argument is named

Description

Check if an argument is named

Usage

checkNamed(x, type = "named")

check_named(x, type = "named")
assertNamed(x, type = "named”, .var.name = vname(x), add = NULL)
assert_named(x, type = "named"”, .var.name = vname(x), add = NULL)

testNamed(x, type = "named”)

test_named(x, type = "named")
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Arguments
X [any]
Object to check.
type [character(1)]
Select the check(s) to perform. “unnamed” checks x to be unnamed. ‘“named”
(default) checks x to be named which excludes names to be NA or empty ("").
“unique” additionally tests for non-duplicated names. “strict” checks for unique
names which comply to R’s variable name restrictions. Note that for zero-length
x every name check evaluates to TRUE.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
Value

Depending on the function prefix: If the check is successful, the functions assertNamed/assert_named
return x invisibly, whereas checkNamed/check_named and testNamed/test_named return TRUE. If

the check is not successful, assertNamed/assert_named throws an error message, testNamed/test_named
returns FALSE, and checkNamed/check_named return a string with the error message. The function
expect_named always returns an expectation.

Note

These function are deprecated and will be removed in a future version. Please use checkNames
instead.

See Also

Other attributes: checkClass(), checkMultiClass(), checkNames()

Examples

x =1:3

testNamed(x, "unnamed”)
names(x) = letters[1:3]
testNamed(x, "unique™)

checkNames Check names to comply to specific rules

Description

Performs various checks on character vectors, usually names.
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Usage

checkNames (

)

X!

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

check_names (

X,

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”
assertNames(
X,

)

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,
.var.name = vname(x),
add = NULL

assert_names(

X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,
.var.name = vname(x),
add = NULL

checkNames
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testNames(
X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

)

test_names(
X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

)

expect_names(
X)
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,

info = NULL,

label = vname(x)
)

Arguments
X [character I NULL]
Names to check using rules defined via type.

type [character(1)]

Type of formal check(s) to perform on the names.

unnamed: Checks x to be NULL.
named: Checks x for regular names which excludes names to be NA or empty
(II II).

unique: Performs checks like with “named” and additionally tests for non-
duplicated names.
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strict: Performs checks like with “unique” and additionally fails for names with
UTEF-8 characters and names which do not comply to R’s variable name re-
strictions. As regular expression, this is “A[.]*[a-zA-Z]+[a-zA-Z0-9._]*$".

ids: Same as “strict”, but does not enforce uniqueness.

Note that for zero-length x, all these name checks evaluate to TRUE.

subset.of [character]
Names provided in x must be subset of the set subset. of.

must.include [character]
Names provided in x must be a superset of the set must.include.

permutation.of [character]
Names provided in x must be a permutation of the set permutation.of. Du-
plicated names in permutation.of are stripped out and duplicated names in x
thus lead to a failed check. Use this argument instead of identical. to if the
order of the names is not relevant.

identical.to [character]
Names provided in x must be identical to the vector identical.to. Use this
argument instead of permutation.of if the order of the names is relevant.

disjunct.from [character]
Names provided in x must may not be present in the vector disjunct. from.

what [character(1)]
Type of name vector to check, e.g. “names” (default), “colnames” or “row-
names”.

.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertNames/assert_names
return x invisibly, whereas checkNames/check_names and testNames/test_names return TRUE. If

the check is not successful, assertNames/assert_names throws an error message, testNames/test_names
returns FALSE, and checkNames/check_names return a string with the error message. The function
expect_names always returns an expectation.

See Also

Other attributes: checkClass(), checkMultiClass(), checkNamed()
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Examples

x =1:3

testNames(names(x), "unnamed")
names(x) = letters[1:3]
testNames(names(x), "unique")

cn = c("Species”, "Sepal.Length”, "Sepal.Width"”, "Petal.Length”, "Petal.Width")
assertNames(names(iris), permutation.of = cn)

checkNull Check if an argument is NULL

Description

Check if an argument is NULL

Usage
checkNull(x)

check_null(x)

assertNull(x, .var.name = vname(x), add = NULL)
assert_null(x, .var.name = vname(x), add = NULL)
testNull(x)

test_null(x)

Arguments
X [any]
Object to check.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertNull/assert_null
return x invisibly, whereas checkNull/check_null and testNull/test_null return TRUE. If the

check is not successful, assertNull/assert_null throws an error message, testNull/test_null

returns FALSE, and checkNull/check_null return a string with the error message. The function

expect_null always returns an expectation.
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See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testNull(NULL)
testNull(1)

checkNumber Check if an argument is a single numeric value

Description

Check if an argument is a single numeric value

Usage
checkNumber (
X’
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

)

check_number(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

)

assertNumber(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
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)

assert_number(

X7

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL

)

testNumber (
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

)

finite = FALSE,
null.ok = FALSE

test_number(

)

X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

expect_number(

X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
info = NULL,
label = vname(x)

)
Arguments
X [any]
Object to check.
na.ok [logical(1)]

Are missing values allowed? Default is FALSE.
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lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.

finite [logical(1)]
Check for only finite values? Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertNumber/assert_number

return x invisibly, whereas checkNumber/check_number and testNumber/test_number return TRUE.

If the check is not successful, assertNumber/assert_number throws an error message, testNumber/test_number
returns FALSE, and checkNumber/check_number return a string with the error message. The func-

tion expect_number always returns an expectation.

See Also

Other scalars: checkCount(), checkFlag(), checkInt(), checkScalar(), checkScalarNA(),
checkString()

Examples

testNumber (1)
testNumber(1:2)
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checkNumeric Check that an argument is a vector of type numeric

Description

Vectors of storage type “integer” and “double” count as “numeric”, c.f. is.numeric. To explicitly
check for real integer or double vectors, see checkInteger, checkIntegerish or checkDouble

Usage
checkNumeric(
X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)
check_numeric(
X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertNumeric(
X)
lower = -Inf,
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)

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_numeric(

)

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

testNumeric(

X,

lower = -Inf,

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

checkNumeric
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)

typed.missing = FALSE,

null.ok = FALSE

test_numeric(

)

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing = FALSE,

null.ok = FALSE

expect_numeric(

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing = FALSE,

null.ok = FALSE,
info = NULL,
label = vname(x)

Arguments

X

lower

upper

[any]

Object to check.

[numeric(1)]
Lower value all elements of x must be greater than or equal to.

[numeric(1)]
Upper value all elements of x must be lower than or equal to.
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finite [logical(1)]

Check for only finite values? Default is FALSE.
any.missing [logical(1)]

Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]

Exact expected length of x.
min.len [integer(1)]

Minimal length of x.
max.len [integer(1)]

Maximal length of x.
unique [logical(1)]

Must all values be unique? Default is FALSE.
sorted [logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
names [character(1)]

typed.missing

null.ok

.var.name

add

info

label

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.
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Value

Depending on the function prefix: If the check is successful, the functions assertNumeric/assert_numeric
return x invisibly, whereas checkNumeric/check_numeric and testNumeric/test_numeric re-

turn TRUE. If the check is not successful, assertNumeric/assert_numeric throws an error mes-

sage, testNumeric/test_numeric returns FALSE, and checkNumeric/check_numeric return a string

with the error message. The function expect_numeric always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checklLogical(),
checkMatrix(), checkNull(), checkPOSIXct(), checkRaw(), checkVector ()

Examples

testNumeric(1)
testNumeric(1, min.len = 1, lower = Q)

checkOS Check the operating system

Description

Check the operating system

Usage
check0S(os)

check_os(0s)

assert0S(os, add = NULL, .var.name = NULL)
assert_os(os, add = NULL, .var.name = NULL)
test0S(os)

test_os(os)

expect_os(os, info = NULL, label = NULL)

Arguments

0s [character]
Check the operating system to be in a set with possible elements “windows”,
“mac”, “linux” and “‘solaris”.
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add

.var.name

info

label

Value

checkPathForOutput

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertOS/assert_os
return x invisibly, whereas checkOS/check_os and test0S/test_os return TRUE. If the check is not
successful, assert0S/assert_os throws an error message, test0S/test_os returns FALSE, and
check0S/check_os return a string with the error message. The function expect_os always returns

an expectation.

Examples

test0S("linux")

checkPathForOutput Check if a path is suited for creating an output file

Description

Check if a file path can be used safely to create a file and write to it.

This is checked:

¢ Does dirname(x) exist?

* Does no file under path x exist?

e Is dirname(x) writable?

Paths are relative to the current working directory.

Usage

checkPathForQutput(x, overwrite = FALSE, extension = NULL)

check_path_for_output(x, overwrite = FALSE, extension = NULL)

assertPathForOutput(

X,
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overwrite
extension
.var.name =
add = NULL

)
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FALSE,
NULL,
vname (x),

assert_path_for_output(

X,

overwrite
extension
.var.name =
add = NULL

)

FALSE,
NULL,
vhame(x),

testPathForOutput(x, overwrite = FALSE, extension = NULL)

test_path_for_

output(x, overwrite = FALSE, extension = NULL)

expect_path_for_output(

X7

overwrite =
extension =
info = NULL,

FALSE,
NULL,

label = vname(x)

Arguments

X

overwrite

extension

.var.name

add

info

label

[any]
Object to check.

[logical(1)]
If TRUE, an existing file in place is allowed if it it is both readable and writable.
Default is FALSE.

[character(1)]
Extension of the file, e.g. “txt” or “tar.gz”.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertPathForOutput/assert_path_for_outpu
return x invisibly, whereas checkPathForOutput/check_path_for_output and testPathForOutput/test_path_for_out
return TRUE. If the check is not successful, assertPathForOutput/assert_path_for_output throws

an error message, testPathForOutput/test_path_for_output returns FALSE, and checkPathForOutput/check_path_fol
return a string with the error message. The function expect_path_for_output always returns an

expectation.

See Also

Other filesystem: checkAccess(), checkDirectoryExists(), checkFileExists()

Examples

# Can we create a file in the tempdir?
testPathForOutput(file.path(tempdir(), "process.log"))

checkPermutation Check if the arguments are permutations of each other.

Description

In contrast to checkSetEqual, the function tests for a true permutation of the two vectors and also
considers duplicated values. Missing values are being treated as actual values by default. Does not
work on raw values.

Usage

checkPermutation(x, y, na.ok = TRUE)

check_permutation(x, y, na.ok = TRUE)

assertPermutation(x, y, na.ok = TRUE, .var.name = vname(x), add = NULL)
assert_permutation(x, y, na.ok = TRUE, .var.name = vname(x), add = NULL)
testPermutation(x, y, na.ok = TRUE)
test_permutation(x, y, na.ok = TRUE)
expect_permutation(x, y, na.ok = TRUE, info = NULL, label = vname(x))
Arguments

X [any]
Object to check.
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y [atomic]
Vector to compare with. Atomic vector of type other than raw.

na.ok [logical(1)]
Are missing values allowed? Default is TRUE.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertPermutation/assert_permutation
return x invisibly, whereas checkPermutation/check_permutation and testPermutation/test_permutation
return TRUE. If the check is not successful, assertPermutation/assert_permutation throws an

error message, testPermutation/test_permutation returns FALSE, and checkPermutation/check_permutation
return a string with the error message. The function expect_permutation always returns an

expectation.

Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkSetEqual(), checkSubset()

Examples

testPermutation(letters[1:2], letters[2:1])
testPermutation(letters[c(1, 1, 2)]1, letters[1:2])
testPermutation(c(NA, 1, 2), c(1, 2, NA))
testPermutation(c(NA, 1, 2), c(1, 2, NA), na.ok = FALSE)
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checkPOSIXct

Check that an argument is a date/time object in POSIXct format

Description

Checks that an object is of class POSIXct.

Usage
checkPOSIXct(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

check_posixct(

X7
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

)
assertPOSIXct(
X’
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
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)

sorted = FALSE,
null.ok = FALSE,

.var.name = vname(Xx),

add = NULL

assert_posixct(

)

X)
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

testPOSIXct(

)

X,

lower = NULL,

upper = NULL,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

test_posixct(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE
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)

expect_posixct(
X,
lower = NULL,
upper = NULL,
any.missing
all.missing
len = NULL,
min.len
max.len
unique

checkPOSIXct

TRUE,
TRUE,

NULL,
NULL,
FALSE,

sorted = FALSE,
null.ok = FALSE,

[any]

Object to check.

[Date]

All non-missing dates in x must be >= this POSIXct time. Must be provided in
the same timezone as x.

info = NULL,
label = vname(x)
)
Arguments
X
lower
upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

null.ok

[Date]

All non-missing dates in x must be <= this POSIXct time. Must be provided in
the same timezone as x.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.
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.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkRaw(), checkVector()

checkR6 Check if an argument is an R6 class

Description

Check if an argument is an R6 class

Usage
checkR6(
X’
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE
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check_r6(

X,

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,

null.ok = FALSE
)
assertR6(
X?
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
assert_r6(
X)

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testR6(
X7
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,

null.ok = FALSE
)
test_r6(
X,
classes = NULL,
ordered = FALSE,

checkR6
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)

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE

expect_r6(

)
Arguments

X [any]
Object to check.

classes [character]
Class names to check for inheritance with inherits. x must inherit from all
specified classes.

ordered [logical(1)]
Expect x to be specialized in provided order. Default is FALSE.

cloneable [logical(1)]
If TRUE, check that x has a clone method. If FALSE, ensure that x is not clone-
able.

public [character]
Names of expected public slots. This includes active bindings.

private [character]
Names of expected private slots.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]

X,

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)
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Extra information to be included in the message for the testthat reporter. See

expect_that.
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label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertClass/assert_class
return x invisibly, whereas checkClass/check_class and testClass/test_class return TRUE. If

the check is not successful, assertClass/assert_class throws an error message, testClass/test_class
returns FALSE, and checkClass/check_class return a string with the error message. The function
expect_class always returns an expectation.

See Also

Other classes: checkClass(), checkMultiClass()

Examples

library(R6)
generator = R6Class("Bar”,
public = list(a = 5),
private = list(b = 42),
active = list(c = function() 99)
)
x = generator$new()
checkR6(x, "Bar", cloneable = TRUE, public = "a")

checkRaw Check if an argument is a raw vector

Description

Check if an argument is a raw vector

Usage
checkRaw(
X,
len = NULL,

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

check_raw(
X’
len = NULL,
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min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

)
assertRaw(
X)
len = NULL,

)

min.len = NULL,
max.len = NULL,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_raw(

X,

len = NULL,

min.len = NULL,
max.len = NULL,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testRaw(

X,

len = NULL,

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

)
test_raw(
X’
len = NULL,

)

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

expect_raw(

X,
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len = N

ULL,

checkRaw

min.len = NULL,
max.len = NULL,

names =

NULL,

null.ok = FALSE,

info =

NULL,

label = vname(x)

Arguments

X

len

min.len

max.len

names

null.ok

.var.name

add

info

label

Value

[any]
Object to check.

[integer(1)]
Exact expected length of x.

[integer(1)]
Minimal length of x.

[integer(1)]
Maximal length of x.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertRaw/assert_raw
return x invisibly, whereas checkRaw/check_raw and testRaw/test_raw return TRUE. If the check
is not successful, assertRaw/assert_raw throws an error message, testRaw/test_raw returns
FALSE, and checkRaw/check_raw return a string with the error message. The function expect_raw
always returns an expectation.
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See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkVector()

Examples

testRaw(as.raw(2), min.len = 1L)

checkScalar Check if an argument is a single atomic value

Description

Check if an argument is a single atomic value

Usage

checkScalar(x, na.ok = FALSE, null.ok = FALSE)
check_scalar(x, na.ok = FALSE, null.ok = FALSE)

assertScalar(
X,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL

)

assert_scalar(
X)
na.ok = FALSE,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

)
testScalar(x, na.ok = FALSE, null.ok = FALSE)
test_scalar(x, na.ok = FALSE, null.ok = FALSE)

expect_scalar(x, na.ok = FALSE, null.ok = FALSE, info = NULL, label = vname(x))
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Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.
label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
Details
This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.
Value

Depending on the function prefix: If the check is successful, the functions assertScalar/assert_scalar

return x invisibly, whereas checkScalar/check_scalar and testScalar/test_scalar return TRUE.

If the check is not successful, assertScalar/assert_scalar throws an error message, testScalar/test_scalar
returns FALSE, and checkScalar/check_scalar return a string with the error message. The func-

tion expect_scalar always returns an expectation.

See Also

Other scalars: checkCount(), checkFlag(), checkInt(), checkNumber(), checkScalarNA(),
checkString()

Examples

testScalar (1)
testScalar(1:10)
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checkScalarNA Check if an argument is a single missing value

Description

Check if an argument is a single missing value

Usage

checkScalarNA(x, null.ok = FALSE)

check_scalar_na(x, null.ok = FALSE)

assertScalarNA(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
assert_scalar_na(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
testScalarNA(x, null.ok = FALSE)

test_scalar_na(x, null.ok = FALSE)

expect_scalar_na(x, null.ok = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
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Value

Depending on the function prefix: If the check is successful, the functions assertScalarNA/assert_scalar_na
return x invisibly, whereas checkScalarNA/check_scalar_naand testScalarNA/test_scalar_na

return TRUE. If the check is not successful, assertScalarNA/assert_scalar_na throws an error

message, testScalarNA/test_scalar_na returns FALSE, and checkScalarNA/check_scalar_na

return a string with the error message. The function expect_scalar_na always returns an expectation.

See Also

Other scalars: checkCount (), checkFlag(), checkInt(), checkNumber (), checkScalar(), checkString()

Examples

testScalarNA(1)
testScalarNA(NA_real_ )
testScalarNA(rep(NA, 2))

checkSetEqual Check if an argument is equal to a given set

Description

Check if an argument is equal to a given set

Usage
checkSetEqual(x, y, ordered = FALSE, fmatch = FALSE)

check_set_equal(x, y, ordered = FALSE, fmatch = FALSE)

assertSetEqual(
X,
Y,
ordered = FALSE,
fmatch = FALSE,
.var.name = vname(x),

add = NULL
)
assert_set_equal(
X7
Y,

ordered = FALSE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL
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testSetEqual(x, y, ordered = FALSE, fmatch = FALSE)
test_set_equal(x, y, ordered = FALSE, fmatch = FALSE)

expect_set_equal(
X!
Y,
ordered = FALSE,
fmatch = FALSE,
info = NULL,
label = vname(x)

Arguments

X [any]
Object to check.

y [atomic]
Set to compare with.

ordered [logical(1)]
Check x to have the same length and order as y, i.e. check using “==" while
handling NAs nicely. Default is FALSE.

fmatch [logical(1)]
Use the set operations implemented in fmatch in package fastmatch. If fast-
match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertSubset/assert_subset

return x invisibly, whereas checkSubset/check_subset and testSubset/test_subset return TRUE.

If the check is not successful, assertSubset/assert_subset throws an error message, testSubset/test_subset
returns FALSE, and checkSubset/check_subset return a string with the error message. The func-

tion expect_subset always returns an expectation.
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Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkPermutation(), checkSubset ()

Examples

testSetEqual(c(”a”", "b"), c("a", "b"))
testSetEqual(1:3, 1:4)

# x is not converted before the comparison (except for numerics)
testSetEqual(factor(”a”), "a")

testSetEqual(1l, "1")

testSetEqual (1, as.integer(1))

checkString Check if an argument is a string

Description

A string is defined as a scalar character vector. To check for vectors of arbitrary length, see
checkCharacter.

Usage

checkString(
X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

)

check_string(
X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
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)

fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

assertString(

)

X,

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_string(

X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,

fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testString(
X,

)

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

test_string(

X)
na.ok = FALSE,
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)

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

expect_string(

X,

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
info = NULL,
label = vname(x)

checkString

Arguments

X

na.ok

n.chars

min.chars

max.chars

pattern

fixed

[any]

Object to check.

[logical(1)]

Are missing values allowed? Default is FALSE.
[integer(1)]

Exact number of characters for each element of x.
[integer(1)]

Minimum number of characters for each element of x.
[integer(1)]

Maximum number of characters for each element of x.
[character(1)]

Regular expression as used in grepl. All non-missing elements of x must com-
ply to this pattern.

[character(1)]
Substring to detect in x. Will be used as pattern in grepl with option fixed
set to TRUE. All non-missing elements of x must contain this substring.

ignore.case [logical(1)]
See grepl. Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.
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.var.name

add

info

label

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_

and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertString/assert_string
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[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkString/check_string and testString/test_stringreturn TRUE.

If the check is not successful, assertString/assert_string throws an error message, testString/test_string

returns FALSE, and checkString/check_string return a string with the error message. The func-
tion expect_string always returns an expectation.

See Also

Other scalars: checkCount (), checkFlag(), checkInt(), checkNumber (), checkScalar(), checkScalarNA()

Examples

testString(”a")

testString(letters)

checkSubset

Check if an argument is a subset of a given set

Description

Check if an argument is a subset of a given set
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Usage

checkSubset(x, choices, empty.ok = TRUE, fmatch = FALSE)
check_subset(x, choices, empty.ok = TRUE, fmatch = FALSE)

assertSubset(
X7
choices,
empty.ok = TRUE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

)

assert_subset(
X,
choices,
empty.ok = TRUE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

)
testSubset(x, choices, empty.ok = TRUE, fmatch = FALSE)
test_subset(x, choices, empty.ok = TRUE, fmatch = FALSE)

expect_subset(
X!
choices,
empty.ok = TRUE,
fmatch = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
choices [atomic]
Set of possible values. May be empty.
empty.ok [logical(1)]
Treat zero-length x as subset of any set choices (this includes NULL)? Default
is TRUE.
fmatch [logical(1)]

Use the set operations implemented in fmatch in package fastmatch. If fast-



checkSubset 135

match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertSubset/assert_subset

return x invisibly, whereas checkSubset/check_subset and testSubset/test_subset return TRUE.

If the check is not successful, assertSubset/assert_subset throws an error message, testSubset/test_subset
returns FALSE, and checkSubset/check_subset return a string with the error message. The func-

tion expect_subset always returns an expectation.

Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkPermutation(), checkSetEqual()

Examples

testSubset(c("a", "z"), letters)
testSubset("ab", letters)
testSubset ("Species”, names(iris))

# x is not converted before the comparison (except for numerics)
testSubset(factor(”a”), "a")

testSubset(1, "1")

testSubset(1, as.integer(1))
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checkTibble

checkTibble

Check if an argument is a tibble

Description

Check if an argument is a tibble

Usage

checkTibble(

)

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

check_tibble(

)

X,

types = character(QL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

assertTibble(

X,

types = character(QL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
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)

max. rows NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_tibble(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testTibble(
X,

)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_tibble(

X,
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)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_tibble(

X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,

nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,

info = NULL,

label = vname(x)

checkTibble

Arguments

X

types

any.missing

all.missing

[any]
Object to check.

[character]

Character vector of class names. Each list element must inherit from at least one
of the provided types. The types “logical”, “integer”, “integerish”, “double”,
“numeric”, “complex”, “character”, “factor”, “atomic”, “vector” “atomicvec-
tor”, “array”, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.
Defaults to character (@) (no check).

[logical(1)]
Are missing values allowed? Default is TRUE.

[logical(1)]
Are matrices with only missing values allowed? Default is TRUE.

CEINT3
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min.rows [integer(1)]

Minimum number of rows.
max.rows [integer(1)]

Maximum number of rows.
min.cols [integer(1)]

Minimum number of columns.
max.cols [integer(1)]

Maximum number of columns.
nrows [integer(1)]

Exact number of rows.
ncols [integer(1)]

Exact number of columns.
row.names [character(1)]

Check for row names. Default is “NULL” (no check). See checkNamed for

possible values. Note that you can use checkSubset to check for a specific set
of names.

col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertTibble/assert_tibble

return x invisibly, whereas checkTibble/check_tibble and testTibble/test_tibble return TRUE.

If the check is not successful, assertTibble/assert_tibble throws an error message, testTibble/test_tibble
returns FALSE, and checkTibble/check_tibble return a string with the error message. The func-

tion expect_tibble always returns an expectation.

See Also
Other compound: checkArray(), checkDataFrame(), checkDataTable(), checkMatrix()
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Examples

library(tibble)

x = as_tibble(iris)

testTibble(x)

testTibble(x, nrow = 150, any.missing = FALSE)

checkTRUE Check if an argument is TRUE

Description

Simply checks if an argument is TRUE.

Usage
checkTRUE(x, na.ok = FALSE)

check_true(x, na.ok = FALSE)

assertTRUE(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
assert_true(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
testTRUE(x, na.ok = FALSE)

test_true(x, na.ok = FALSE)

Arguments
X lany]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertTRUE./assert_true.
return x invisibly, whereas checkTRUE./check_true. and testTRUE./test_true. return TRUE. If

the check is not successful, assertTRUE./assert_true. throws an error message, testTRUE./test_true.
returns FALSE, and checkTRUE./check_true. return a string with the error message. The function
expect_true. always returns an expectation.
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Examples

testTRUE (TRUE)
testTRUE (FALSE)
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checkVector

Check if an argument is a vector

Description

Check if an argument is a vector

Usage

checkVector(

)

X,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

check_vector(

)

X,

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

assertVector(

X,

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
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unique = FALSE,
names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)

assert_vector(
X)
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)
testVector(
X’

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

test_vector(
X,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

checkVector
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Arguments
X [any]
Object to check.
strict [logical(1)]

May the vector have additional attributes? If TRUE, mimics the behavior of
is.vector. Default is FALSE which allows e.g. factors or data.frames to
be recognized as vectors.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertVector/assert_vector

return x invisibly, whereas checkVector/check_vector and testVector/test_vector return TRUE.

If the check is not successful, assertVector/assert_vector throws an error message, testVector/test_vector
returns FALSE, and checkVector/check_vector return a string with the error message. The func-

tion expect_vector always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
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checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checklLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw()

Other atomicvector: checkAtomic(), checkAtomicVector()

Examples

testVector(letters, min.len = 1L, any.missing = FALSE)

makeAssertion Turn a Check into an Assertion

Description

makeAssertion is the internal function used to evaluate the result of a check and throw an exception
if necessary. makeAssertionFunction can be used to automatically create an assertion function
based on a check function (see example).

Usage

makeAssertion(x, res, var.name, collection)

makeAssertionFunction(
check. fun,
c.fun = NULL,
use.namespace = TRUE,
coerce = FALSE,
env = parent.frame()

)
Arguments

X [any]
Object to check.

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

var.name [character(1)]
The custom name for x as passed to any assert* function. Defaults to a heuris-
tic name lookup.

collection [AssertCollection]
If an AssertCollection is provided, the error message is stored in it. If NULL,
an exception is raised if res is not TRUE.

check. fun [function]

Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.
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c.fun

use.namespace

coerce

env

Value
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[character(1)]

If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check. fun is just a simple
wrapper.

[logical(1)]

Call functions of checkmate using its namespace explicitly. Can be set to FALSE
so save some microseconds, but the checkmate package needs to be imported.
Default is TRUE.

[logical(1)]

If TRUE, injects some lines of code to convert numeric values to integer af-
ter an successful assertion. Currently used in assertCount, assertInt and
assertlIntegerish.

[environment]
The environment of the created function. Default is the parent. frame.

makeAssertion invisibly returns the checked object if the check was successful, and an exception
is raised (or its message stored in the collection) otherwise. makeAssertionFunction returns a

function.

See Also

Other CustomConstructors: makeExpectation(), makeTest()

Examples

# Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

# Create the respective assert function

assertFalse = function(x, .var.name = vname(x), add = NULL) {
res = checkFalse(x)
makeAssertion(x, res, .var.name, add)

}

# Alternative: Automatically create such a function
assertFalse = makeAssertionFunction(checkFalse)
print(assertFalse)

makeExpectation

Turn a Check into an Expectation

Description

makeExpectation is the internal function used to evaluate the result of a check and turn it into
an expectation. makeExceptionFunction can be used to automatically create an expectation
function based on a check function (see example).
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Usage

makeExpectation(x, res, info, label)

makeExpectationFunction(
check. fun,
c.fun = NULL,
use.namespace = FALSE,
env = parent.frame()

)
Arguments

x [any]
Object to check.

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

info [character(1)]
See expect_that

label [character(1)]
See expect_that

check. fun [function]
Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.

c.fun [character(1)]

If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check.fun is just a simple
wrapper.

use.namespace [logical(1)]
Call functions of checkmate using its namespace explicitly. Can be set to FALSE
so save some microseconds, but the checkmate package needs to be imported.
Default is TRUE.

env [environment]
The environment of the created function. Default is the parent. frame.
Value
makeExpectation invisibly returns the checked object. makeExpectationFunction returns a
function.
See Also

Other CustomConstructors: makeAssertion(), makeTest ()
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Examples

# Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

# Create the respective expect function

expect_false = function(x, info = NULL, label = vname(x)) {
res = checkFalse(x)
makeExpectation(x, res, info = info, label = label)

}

# Alternative: Automatically create such a function
expect_false = makeExpectationFunction(checkFalse)
print(expect_false)

makeTest Turn a Check into a Test

Description

makeTest is the internal function used to evaluate the result of a check and throw an exception if
necessary. This function is currently only a stub and just calls isTRUE. makeTestFunction can be
used to automatically create an assertion function based on a check function (see example).

Usage

makeTest(res)

makeTestFunction(check.fun, c.fun = NULL, env = parent.frame())

Arguments

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

check. fun [function]
Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.

c.fun [character(1)]
If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check.fun is just a simple
wrapper.

env [environment]
The environment of the created function. Default is the parent. frame.
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Value

makeTest returns TRUE if the check is successful and FALSE otherwise. makeTestFunction returns
a function.

See Also

Other CustomConstructors: makeAssertion(), makeExpectation()

Examples

# Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

# Create the respective test function
testFalse = function(x) {

res = checkFalse(x)

makeTest(res)

}

# Alternative: Automatically create such a function
testFalse = makeTestFunction(checkFalse)
print(testFalse)

matchArg Partial Argument Matching

Description

This is an extensions to match.arg with support for AssertCollection. The behavior is very
similar to match.arg, except that NULL is not a valid value for x.

Usage

matchArg(x, choices, several.ok = FALSE, .var.name = vname(x), add = NULL)

Arguments
X [character]
User provided argument to match.
choices [character]
Candidates to match x with.
several.ok [logical(1)]
If TRUE, multiple matches are allowed, cf. match.arg.
.var.name [character(1)]

Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

add [AssertCollection]
Collection to store assertions. See AssertCollection.
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Value

Subset of choices.

Examples

matchArg("k", choices = c("kendall”, "pearson"))

gassert Quick argument checks on (builtin) R types

Description

The provided functions parse rules which allow to express some of the most frequent argument
checks by typing just a few letters.

Usage

gassert(x, rules, .var.name = vname(x))
gtest(x, rules)

gexpect(x, rules, info = NULL, label = vname(x))

Arguments

X [any]
Object the check.

rules [character]
Set of rules. See details.

.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
Details

The rule is specified in up to three parts.

1. Class and missingness check. The first letter is an abbreviation for the class. If it is provided
uppercase, missing values are prohibited. Supported abbreviations:
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Value

qassert

[bB]1 Bool/logical.
[iI]1 Integer.
[xX] Integerish (numeric convertible to integer, see checkIntegerish).
[rR] Real/double.
[cC] Complex.
[nN]  Numeric (integer or double).
[sS] String/ character.
[fF] Factor
[aA]l Atomic.
[vvl Atomic vector (see checkAtomicVector).
[1L] List. Missingness is defined as NULL element.
[mM] Matrix.
[dD] Data.frame. Missingness is checked recursively on columns.
[pP] POSIXct date.
[e] Environment.
[0] NULL.
[*] placeholder to allow any type.

Note that the check for missingness does not distinguish between NaN and NA. Infinite values
are not treated as missing, but can be caught using boundary checks (part 3).

. Length definition. This can be one of

[*] any length,
[?] length of zero or one,
[+] length of at least one, or
[0-9]+ exact length specified as integer.

Preceding the exact length with one of the comparison operators =/==, <, <=, >= or > is also
supported.

. Range check as two numbers separated by a comma, enclosed by square brackets (endpoint

included) or parentheses (endpoint excluded). For example, “[0, 3)” results in all(x >= 0 &
x < 3). The lower and upper bound may be omitted which is the equivalent of a negative or
positive infinite bound, respectively. By definition [@,] contains Inf, while [@,) does not.
The same holds for the left (lower) boundary and -Inf. E.g., the rule “N1()” checks for a
single finite numeric which is not NA, while “N1[)” allows -Inf.

gassert throws an R exception if object x does not comply to at least one of the rules and returns
the tested object invisibly otherwise. qtest behaves the same way but returns FALSE if none of the
rules comply. gexpect is intended to be inside the unit test framework testthat and returns an
expectation.

Note

The functions are inspired by the blog post of Bogumit Kaminski: http://rsnippets.blogspot.
de/2013/06/testing-function-agruments-in-gnu-r.html. The implementation is mostly writ-
ten in C to minimize the overhead.


http://rsnippets.blogspot.de/2013/06/testing-function-agruments-in-gnu-r.html
http://rsnippets.blogspot.de/2013/06/testing-function-agruments-in-gnu-r.html
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See Also

gtestr and gassertr for efficient checks of list elements and data frame columns.

Examples

# logical of length 1
gtest(NA, "b1")

# logical of length 1, NA not allowed
gtest(NA, "B1")

# logical of length @ or 1, NA not allowed
gtest(TRUE, "B?")

# numeric with length > @
gtest(runif(10), "n+")

# integer with length > @, NAs not allowed, all integers >= @ and < Inf
qtest(1:3, "I+[0,)")

# either an emtpy list or a character vector with <=5 elements
qtest(1, c("le", "s<=5"))

# data frame with at least one column and no missing value in any column
gtest(iris, "D+")

gassertr Quick recursive arguments checks on lists and data frames

Description

These functions are the tuned counterparts of qtest, gassert and gexpect tailored for recursive
checks of list elements or data frame columns.

Usage

gassertr(x, rules, .var.name = vname(x))
gtestr(x, rules, depth = 1L)

gexpectr(x, rules, info = NULL, label = vname(x))

Arguments
X [list or data. frame]
List or data frame to check for compliance with at least one of rules. See details
of qtest for rule explanation.
rules [character]

Set of rules. See gtest
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.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

depth [integer(1)]
Maximum recursion depth. Defaults to “1” to directly check list elements or
data frame columns. Set to a higher value to check lists of lists of elements.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

See gassert.

See Also

gtest, gassert

Examples

# All list elements are integers with length >= 1?
gtestr(as.list(1:10), "i+")

# All list elements (i.e. data frame columns) are numeric?
gtestr(iris, "n")

# All list elements are numeric, w/o NAs?
gtestr(list(a = 1:3, b = rnorm(1), c = letters), "N+")

# All list elements are numeric OR character
gtestr(list(a = 1:3, b = rnorm(1), c = letters), c("N+", "S+"))

register_test_backend Select Backend for Unit Tests

Description

Allows to explicitly select a backend for the unit tests. Currently supported are "testthat” and
"tinytest”. The respective package must be installed and are loaded (but not attached).

ns

If this function is not explicitly called, defaults to "testthat"” unless the "tinytest"’s namespace
is loaded.

Usage

register_test_backend(name)
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Arguments
name [character(1)]
"testthat” or "tinytest"”.
Value

NULL (invisibly).

vhame Lookup a variable name

Description

Tries to heuristically determine the variable name of x in the parent frame with a combination of
deparse and substitute. Used for checkmate’s error messages.

Usage
vnhame (Xx)
Arguments
X [any]
Object.
Value

[character(1)] Variable name.

wf Get the index of the first/last TRUE

Description

A quick C implementation for “which.first” (head (which(x), 1)) and “which.last” (tail(which(x),
).

Usage

wf(x, use.names = TRUE)

wl(x, use.names = TRUE)
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Arguments
X [logical]
Logical vector.
use.names [logical(1)]
If TRUE and x is named, the result is also named.
Value

[integer (1) | integer(@)]. Returns the index of the first/last TRUE value in x or an empty integer
vector if none is found. NAs are ignored.

Examples

wf (c(FALSE, TRUE))
wl(c(FALSE, FALSE))
wf (NA)

%277% Coalesce operator

Description

Returns the left hand side if not missing nor NULL, and the right hand side otherwise.

Usage
lhs %??% rhs

Arguments
lhs [any]
Left hand side of the operator. Is returned if not missing or NULL.
rhs [any]
Right hand side of the operator. Is returned if 1hs is missing or NULL.
Value

Either 1hs or rhs.

Examples

print(NULL %??% 1 %??% 2)
print(names(iris) %??% letters[seq_len(ncol(iris))])
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