Package ‘checkmate’

February 3, 2026

Type Package
Title Fast and Versatile Argument Checks

Description Tests and assertions to perform frequent argument checks. A
substantial part of the package was written in C to minimize any worries
about execution time overhead.

Version 2.3.4

URL https://mllg.github.io/checkmate/,
https://github.com/mllg/checkmate
URLNote https://github.com/mllg/checkmate

BugReports https://github.com/mllg/checkmate/issues
NeedsCompilation yes

ByteCompile yes

Encoding UTF-8

Depends R (>=3.0.0)

Imports backports (>= 1.1.0), utils

Suggests RO, fastmatch, data.table (>= 1.9.8), devtools, ggplot2,

knitr, magrittr, microbenchmark, rmarkdown, testthat (>=
3.0.4), tinytest (>= 1.1.0), tibble

License BSD_3_clause + file LICENSE
VignetteBuilder knitr
RoxygenNote 7.3.3

Collate 'AssertCollection.R' 'allMissing.R' 'anyInfinite.R'
'anyMissing.R' 'anyNaN.R' 'asInteger.R' 'assert.R' 'helper.R'
'makeExpectation.R' 'makeTest.R' 'makeAssertion.R’
'checkAccess.R' 'checkArray.R' 'checkAtomic.R'
'checkAtomicVector.R' 'checkCharacter.R' 'checkChoice.R'
'checkClass.R' 'checkComplex.R' 'checkCount.R'
'checkDataFrame.R' 'checkDataTable.R' 'checkDate.R'
'checkDirectoryExists.R' '‘checkDisjunct.R' 'checkDouble.R'
'checkEnvironment.R' 'checkFALSE.R' 'checkFactor.R'

https://mllg.github.io/checkmate/
https://github.com/mllg/checkmate
https://github.com/mllg/checkmate/issues

'checkFileExists.R' 'checkFlag.R' 'checkFormula.R'
‘checkFunction.R' 'checkInt.R' 'checkInteger.R'
'checkIntegerish.R' 'checkList.R' 'checkLogical.R'
'checkMatrix.R' 'checkMultiClass.R' 'checkNamed.R'
'checkNames.R' 'checkNull.R' 'checkNumber.R' 'checkNumeric.R'
'checkOS.R' 'checkPOSIXct.R' 'checkPathForOutput.R'
'checkPermutation.R' 'checkR6.R' '‘checkRaw.R' 'checkScalar.R'
‘checkScalarNA.R' 'checkSetEqual.R' 'checkString.R'
'checkSubset.R' 'checkTRUE.R' 'checkTibble.R' 'checkVector.R'
'coalesce.R' 'isIntegerish.R' 'matchArg.R' 'qassert.R’

'qassertr.R' 'vname.R' 'wfwl.R' 'zzz.R'

Author Michel Lang [cre, aut] (ORCID: <https://orcid.org/0000-0001-9754-0393>),
Bernd Bischl [ctb],
Dénes Toth [ctb] (ORCID: <https://orcid.org/0000-0003-4262-3217>)

Maintainer Michel Lang <michellang@gmail.com>
Repository CRAN
Date/Publication 2026-02-03 08:40:02 UTC

Contents

checkmate-package
allMisSIng e
anylnfinite
anyNaN 0oL
aslnteger L.
ASSEIT e e e e e e e e e e e
AssertCollection e e e
CheCKACCESS e e e e e e
checkArray
checkAtomic e e e e e e e
checkAtomicVector
checkCharacter e
checkChoice e
checkClass e
checkComplex e
checkCount e e
checkDataFrame
checkDataTable e
checkDate e e e e
checkDirectoryExists L
checkDisjunct
checkDouble e
checkEnvironment e
checkFactor e
checkFALSE e
checkFileExists e

Contents

https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-4262-3217

Contents

Index

3

checkFlag e e 68
checkFormula e 70
checkFunction 71
checkInt e 73
checkInteger e e 76
checkIntegerish 80
checkList e e e 85
checkLogical 89
checkMatrixX L e e e e 92
checkMultiClass e e e e e e e e 97
checkNamed e e 98
checkNames e e e 99
checkINull e 103
checkNumber e e e e 104
checkNumeric e e e 107
checkOS L e 111
checkPathForOutput 112
checkPermutation e e 114
checkPOSIXct. e e e e 116
checkRO e e 119
checkRaw e e 122
checkScalar e e 125
checkScalarNA L e 127
checkSetEqual 128
checkString 130
checkSubset e e 133
checkTibble e 136
checkTRUE e e e 140
checkVector e e e 141
MakeASSEItiON o e e e e e e e e e e e e e e e 144
makeExpectation L 145
makeTest e e e e e 147
matchArg 148
ASSEIT . v v v v e e e e e e e e e e e e e e e e 149
ASSEITT .+ v v v v o e e e e e e e e e e e e e e e e e e e 151
register_test_backend 152
172 T21 141 153
WE e e 153
Do77% . . . e e e e e e e e e e 154
155

checkmate-package

checkmate-package

checkmate: Fast and Versatile Argument Checks

Description

Tests and assertions to perform frequent argument checks. A substantial part of the package was
written in C to minimize any worries about execution time overhead.

Check scalars

checkFlag
checkCount
checkNumber
checkInt
checkString
checkScalar
checkScalarNA

Check vectors

checkLogical
checkNumeric
checkDouble
checkInteger
checkIntegerish
checkCharacter
checkComplex
checkFactor
checkList
checkPOSIXct
checkVector

checkAtomic

checkAtomicVector

checkRaw

Check attributes

checkClass
checkMultiClass

checkNames

checkNamed (deprecated)

checkmate-package

Check compound types

* checkArray
e checkDataFrame

e checkMatrix

Check other built-in R types

* checkDate

* checkEnvironment
* checkFunction

e checkFormula

e checkNull

Check sets

e checkChoice
* checkSubset
* checkSetEqual
e checkDisjunct

e checkPermutation

File 10

* checkFileExists
e checkDirectoryExists
¢ checkPathForOutput

e checkAccess

Popular data types of third party packages

e checkDataTable
e checkR6
e checkTibble

Safe coercion to integer

e asCount
e asInt

* aslnteger

Quick argument checks using a DSL

e gassert

e gassertr

6 allMissing

Misc
* checkOS (check operating system)
* assert (combine multiple checks into an assertion)
* anyMissing
* allMissing
* anyNaN
e wf (which.first and which.last)

Author(s)
Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Other contributors:

¢ Bernd Bischl <bernd_bischl@gmx.net> [contributor]

¢ Dénes Téth <toth.denes@kogentum.hu> (ORCID) [contributor]

See Also
Useful links:
e https://mllg.github.io/checkmate/

e https://github.com/mllg/checkmate
* Report bugs at https://github.com/mllg/checkmate/issues

allMissing Check if an object contains missing values

Description

anyMissing checks for the presence of at least one missing value, allMissing checks for the
presence of at least one non-missing value. Supported are atomic types (see is.atomic), lists and
data frames. Missingness is defined as NA or NaN for atomic types and data frame columns, NULL is
defined as missing for lists.

allMissing applied to a data.frame returns TRUE if at least one column has only non-missing
values. If you want to perform the less frequent check that there is at least a single non-missing
observation present in the data. frame, use all(sapply(df, allMissing)) instead.

Usage
allMissing(x)

anyMissing(x)

https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-4262-3217
https://mllg.github.io/checkmate/
https://github.com/mllg/checkmate
https://github.com/mllg/checkmate/issues

anylInfinite 7

Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any (anyMissing) or all (allMissing) elements of x are missing
(see details), FALSE otherwise.

Examples

allMissing(1:2)

allMissing(c(1, NA))

allMissing(c(NA, NA))

x = data.frame(a = 1:2, b = NA)

Note how allMissing combines the results for data frames:
allMissing(x)

all(sapply(x, allMissing))

anyMissing(c(1, 1))

anyMissing(c(1, NA))

anyMissing(list(1, NULL))

X = iris

x[, "Species"] = NA
anyMissing(x)
allMissing(x)

anyInfinite Check if an object contains infinite values

Description

Supported are atomic types (see is.atomic), lists and data frames.

Usage
anyInfinite(x)
Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any element is -Inf or Inf.

Examples

anyInfinite(1:10)
anyInfinite(c(1:10, Inf))
iris[3, 3] = Inf
anyInfinite(iris)

asInteger

anyNaN Check if an object contains NaN values

Description

Supported are atomic types (see is.atomic), lists and data frames.

Usage
anyNaN(x)
Arguments
X [any]
Object to check.
Value

[Logical(1)] Returns TRUE if any element is NaN.

Examples

anyNaN(1:19)
anyNaN(c(1:10, NaN))
iris[3, 3] = NaN
anyNaN(iris)

asInteger Convert an argument to an integer

Description

asInteger is intended to be used for vectors while asInt is a specialization for scalar integers and
asCount for scalar non-negative integers. Convertible are (a) atomic vectors with all elements NA

and (b) double vectors with all elements being within tol range of an integer.

Note that these functions may be deprecated in the future. Instead, it is advised to use assertCount,

assertInt or assertIntegerish with argument coerce set to TRUE instead.

asInteger 9

Usage

asInteger(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
.var.name = vname(x)

)

asCount(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
.var.name = vname(x)

)

asInt(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
.var.name = vname(x)

)
Arguments

X [any]
Object to convert.

tol [double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]

Upper value all elements of x must be lower than or equal to.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

10 asInteger

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

na.ok [logical(1)]
Are missing values allowed? Default is FALSE.

positive [logical(1)]
Must x be positive (>= 1)? Default is FALSE.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Converted x.

Examples

asInteger(c(1, 2, 3))
asCount (1)
asInt(1)

assert 11

assert Combine multiple checks into one assertion

Description

You can call this function with an arbitrary number of of check* functions, i.e. functions provided
by this package or your own functions which return TRUE on success and the error message as
character (1) otherwise. The resulting assertion is successful, if combine is “or” (default) and at
least one check evaluates to TRUE or combine is “and” and all checks evaluate to TRUE. Otherwise,
assert throws an informative error message.

Usage
assert(..., combine = "or"”, .var.name = NULL, add = NULL)
Arguments
[any]
List of calls to check functions.
combine [character(1)]
“or” or “and” to combine the check functions with an OR or AND, respectively.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
Value

Throws an error (or pushes the error message to an AssertCollection if add is not NULL) if the
checks fail and invisibly returns TRUE otherwise.

Examples

x =1:10

assert(checkNull(x), checkInteger(x, any.missing = FALSE))

collection <- makeAssertCollection()

assert(checkChoice(x, c("a", "b")), checkDataFrame(x), add = collection)
collection$getMessages()

12 AssertCollection

AssertCollection Collect multiple assertions

Description

The function makeAssertCollection() returns a simple stack-like closure you can pass to all func-
tions of the assert*-family. All messages get collected and can be reported with reportAssertions().
Alternatively, you can easily write your own report function or customize the the output of the re-
port function to a certain degree. See the example on how to push custom messages or retrieve all
stored messages.

Usage

makeAssertCollection()

reportAssertions(collection)

Arguments
collection [AssertCollection]
Object of type “AssertCollection” (constructed via makeAssertCollection).
Value

makeAssertCollection() returns an object of class “AssertCollection” and reportCollection
returns invisibly TRUE if no error is thrown (i.e., no message was collected).

Examples

nan

x = "a
coll = makeAssertCollection()

print(coll$isEmpty())

assertNumeric(x, add = coll)

coll$isEmpty()

coll$push(”Custom error message")

coll$getMessages()

Not run:
reportAssertions(coll)

End(Not run)

checkAccess 13

checkAccess Check file system access rights

Description

Check file system access rights

Usage
checkAccess(x, access = "")
check_access(x, access = "")

assertAccess(x, access = .var.name = vname(x), add = NULL)

assert_access(x, access = "", .var.name = vname(x), add = NULL)
testAccess(x, access = "")
test_access(x, access = "")
expect_access(x, access = "", info = NULL, label = vname(x))
Arguments
X [any]
Object to check.
access [character(1)]

Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

14 checkArray

Value

Depending on the function prefix: If the check is successful, the functions assertAccess/assert_access

return x invisibly, whereas checkAccess/check_access and testAccess/test_access return TRUE.

If the check is not successful, assertAccess/assert_access throws an error message, testAccess/test_access
returns FALSE, and checkAccess/check_access return a string with the error message. The func-

tion expect_access always returns an expectation.

See Also

Other filesystem: checkDirectoryExists(), checkFileExists(), checkPathForOutput()

Examples

Is R's home directory readable?
testAccess(R.home(), "r")

Is R's home directory writeable?
testAccess(R.home(), "w")

checkArray Check if an argument is an array

Description

Check if an argument is an array

Usage

checkArray(
X,
mode = NULL,
any.missing = TRUE,
d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE

check_array(
X,
mode = NULL,
any.missing = TRUE,
d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE

checkArray
assertArray(
X ’
mode = NULL,

)

any.missing = TRUE,

d = NULL,

min.d = NULL,

max.d = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_array(

)

X,

mode = NULL,
any.missing = TRUE,

d = NULL,

min.d = NULL,

max.d = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

testArray(

)

X,

mode = NULL,
any.missing = TRUE,
d = NULL,

min.d = NULL,

max.d = NULL,
null.ok = FALSE

test_array(

)

X,

mode = NULL,
any.missing = TRUE,
d = NULL,

min.d = NULL,

max.d = NULL,
null.ok = FALSE

expect_array(

X)
mode = NULL,

15

16 checkArray

any.missing = TRUE,

d = NULL,
min.d = NULL,
max.d = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
mode [character(1)]

Storage mode of the array. Arrays can hold vectors, i.e. “logical”, “integer”,
“integerish”, “double”, “numeric”, “complex”, “character” and “list”. You can
also specify “atomic” here to explicitly prohibit lists. Default is NULL (no check).

If all values of x are missing, this check is skipped.
any.missing [logical(1)]
Are missing values allowed? Default is TRUE.
d [integer(1)]
Exact number of dimensions of array x. Default is NULL (no check).

min.d [integer(1)]

Minimum number of dimensions of array x. Default is NULL (no check).
max.d [integer(1)]

Maximum number of dimensions of array x. Default is NULL (no check).
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertArray/assert_array
return x invisibly, whereas checkArray/check_array and testArray/test_array return TRUE. If
the check is not successful, assertArray/assert_array throws an error message, testArray/test_array

checkAtomic 17

returns FALSE, and checkArray/check_array return a string with the error message. The function
expect_array always returns an expectation.

See Also

Other basetypes: checkAtomic(), checkAtomicVector (), checkCharacter(), checkComplex(),
checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other compound: checkDataFrame(), checkDataTable(), checkMatrix(), checkTibble()

Examples

checkArray(array(1:27, dim = c(3, 3, 3)), d = 3)

checkAtomic Check that an argument is an atomic vector

Description

For the definition of “atomic”, see is.atomic.

Note that ‘NULL* is recognized as a valid atomic value, as in R versions up to version 4.3.x. For
details, see https://stat.ethz.ch/pipermail/r-devel/2023-September/082892.html

Usage

checkAtomic(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

check_atomic(
X,
any.missing
all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

TRUE,
TRUE,

https://stat.ethz.ch/pipermail/r-devel/2023-September/082892.html

18

assertAtomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
.var.name = vname(x),
add = NULL

assert_atomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
.var.name = vname(x),
add = NULL

testAtomic(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

test_atomic(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

checkAtomic

checkAtomic

expect_atomic(

19

X ’
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.
len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.
label [character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

20

Value

checkAtomic Vector

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomicVector(), checkCharacter(), checkComplex(),
checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other atomicvector: checkAtomicVector (), checkVector()

Examples

testAtomic(letters, min.len = 1L, any.missing = FALSE)

checkAtomicVector

Check that an argument is an atomic vector

Description

An atomic vector is defined slightly different from specifications in is.atomic and is.vector:
An atomic vector is either logical, integer, numeric, complex, character or raw and can have
any attributes except a dimension attribute (like matrices). lL.e., a factor is an atomic vector, but a
matrix or NULL are not. In short, this is basically equivalent to is.atomic(x) && !'is.null(x) &&
is.null(dim(x)).

Usage

checkAtomicVector(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

check_atomic_vector(

X)
any.missing = TRUE,
all.missing = TRUE,

checkAtomic Vector

len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

assertAtomicVector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
.var.name = vname(x),
add = NULL

)

assert_atomic_vector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
.var.name = vname(x),
add = NULL

)

testAtomicVector(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL

)

test_atomic_vector(
X,
any.missing
all.missing

TRUE,
TRUE,

22 checkAtomic Vector
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL
)
expect_atomic_vector(
X)
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]
Are vectors with only missing values allowed? Default is TRUE.
len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

checkCharacter 23

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomicVector/assert_atomic_vector
return x invisibly, whereas checkAtomicVector/check_atomic_vector and testAtomicVector/test_atomic_vector
return TRUE. If the check is not successful, assertAtomicVector/assert_atomic_vector throws

an error message, testAtomicVector/test_atomic_vector returns FALSE, and checkAtomicVector/check_atomic_vect:
return a string with the error message. The function expect_atomic_vector always returns an

expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkCharacter(), checkComplex(), checkDataFrame(),
checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(), checkFunction(),
checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(),
checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other atomicvector: checkAtomic(), checkVector()

Examples

testAtomicVector(letters, min.len = 1L, any.missing = FALSE)

checkCharacter Check if an argument is a vector of type character

Description

To check for scalar strings, see checkString.

Usage

checkCharacter(
X,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,

24

)

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

check_character(

)

X,

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

assertCharacter(

X,

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,

fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

checkCharacter

checkCharacter

assert_character(
X,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testCharacter(
X’

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

test_character(
X!
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,

26

pattern
fixed =

= NULL,
NULL,

ignore.case = FALSE,

any.missing

TRUE,

all.missing = TRUE,
len = NULL,

min.len
max.len

unique =
sorted =

names =

= NULL,

= NULL,
FALSE,
FALSE,

NULL,

typed.missing = FALSE,

null.ok
)

= FALSE

expect_character(

X’
n.chars

= NULL,

min.chars = NULL,
max.chars = NULL,

pattern
fixed =

= NULL,
NULL,

ignore.case = FALSE,

any.missing

TRUE,

all.missing = TRUE,
len = NULL,

min.len
max.len
unique

sorted =

names =

= NULL,

= NULL,
FALSE,
FALSE,

NULL,

typed.missing = FALSE,

null.ok = FALSE,
info = NULL,
label = vname(x)

Arguments

X

n.chars

min.chars

max.chars

[any]
Object to check.

[integer(1)]
Exact number of characters for each element of x.

[integer(1)]

Minimum number of characters for each element of x.

[integer(1)]

Maximum number of characters for each element of x.

checkCharacter

checkCharacter

pattern

fixed

ignore.case

any.missing

all.missing

len

min.len

max.len

unique

sorted

names

typed.missing

null.ok

.var.name

add

info

label

27

[character(1)]

Regular expression as used in grepl. All non-missing elements of x must com-
ply to this pattern.

[character(1)]

Substring to detect in x. Will be used as pattern in grepl with option fixed
set to TRUE. All non-missing elements of x must contain this substring.
[logical(1)]

See grepl. Default is FALSE.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

28 checkChoice

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertCharacter/assert_character
return x invisibly, whereas checkCharacter/check_character and testCharacter/test_character

return TRUE. If the check is not successful, assertCharacter/assert_character throws an error

message, testCharacter/test_character returns FALSE, and checkCharacter/check_character

return a string with the error message. The function expect_character always returns an expectation.

See Also

Other basetypes: checkArray (), checkAtomic(), checkAtomicVector(), checkComplex(), checkDataFrame(),
checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(), checkFunction(),
checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(),
checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testCharacter(letters, min.len = 1, any.missing = FALSE)

testCharacter(letters, min.chars = 2)
testCharacter("example”, pattern = "xa")
checkChoice Check if an object is an element of a given set

Description

Check if an object is an element of a given set

Usage

checkChoice(x, choices, null.ok = FALSE, fmatch = FALSE)
check_choice(x, choices, null.ok = FALSE, fmatch = FALSE)

assertChoice(
X,
choices,
null.ok = FALSE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

checkChoice

assert_choice(
X’
choices,

29

null.ok = FALSE,
fmatch = FALSE,

.var.name =
add = NULL
)

vhame(x),

testChoice(x, choices, null.ok = FALSE, fmatch = FALSE)

test_choice(x, choices, null.ok = FALSE, fmatch = FALSE)

expect_choice(
X)
choices,

null.ok = FALSE,
fmatch = FALSE,

info = NULL,

label = vname(x)

Arguments

X

choices

null.ok

fmatch

.var.name

add

info

label

[any]
Object to check.

[atomic]

Set of possible values.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[logical(1)]

Use the set operations implemented in fmatch in package fastmatch. If fast-

match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

30 checkClass

Value

Depending on the function prefix: If the check is successful, the functions assertChoice/assert_choice

return x invisibly, whereas checkChoice/check_choice and testChoice/test_choice return TRUE.

If the check is not successful, assertChoice/assert_choice throws an error message, testChoice/test_choice
returns FALSE, and checkChoice/check_choice return a string with the error message. The func-

tion expect_choice always returns an expectation.

Note
The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkDisjunct(), checkPermutation(), checkSetEqual(), checkSubset()

Examples

testChoice("x", letters)

x is not converted before the comparison (except for numerics)
testChoice(factor(”a"), "a")

testChoice(1, "1")

testChoice(1, as.integer(1))

checkClass Check the class membership of an argument

Description

Check the class membership of an argument

Usage

checkClass(x, classes, ordered = FALSE, null.ok = FALSE)

check_class(x, classes, ordered = FALSE, null.ok = FALSE)

assertClass(
X,
classes,
ordered = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

checkClass 31

assert_class(
X,
classes,
ordered = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testClass(x, classes, ordered = FALSE, null.ok = FALSE)
test_class(x, classes, ordered = FALSE, null.ok = FALSE)

expect_class(
X,
classes,
ordered = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments

X [any]
Object to check.

classes [character]
Class names to check for inheritance with inherits. x must inherit from all
specified classes.

ordered [logical(1)]
Expect x to be specialized in provided order. Default is FALSE.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

32 checkComplex

Value

Depending on the function prefix: If the check is successful, the functions assertClass/assert_class
return x invisibly, whereas checkClass/check_class and testClass/test_class return TRUE. If

the check is not successful, assertClass/assert_class throws an error message, testClass/test_class
returns FALSE, and checkClass/check_class return a string with the error message. The function
expect_class always returns an expectation.

See Also

Other attributes: checkMultiClass(), checkNamed(), checkNames()
Other classes: checkMultiClass(), checkR6()

Examples

Create an object with classes "foo"” and "bar”
x =1
class(x) = c("foo"”, "bar")

is x of class "foo"?
testClass(x, "foo")

is x of class "foo" and "bar"?
testClass(x, c(”"foo”, "bar"))

is x of class "foo" or "bar"?
Not run:
assert(
checkClass(x, "foo"),
checkClass(x, "bar")
)

End(Not run)
is x most specialized as "bar"?
testClass(x, "bar”, ordered = TRUE)

checkComplex Check if an argument is a vector of type complex

Description

Check if an argument is a vector of type complex

Usage
checkComplex(
X)
any.missing = TRUE,
all.missing = TRUE,

checkComplex

)

len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

check_complex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

assertComplex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_complex(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

33

34

.var.name = vname(x),

add = NULL
)
testComplex(
X’

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_complex(

)

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_complex(

X,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)

Arguments

X

[any]

Object to check.

checkComplex

checkComplex 35

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details
This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertComplex/assert_complex
return x invisibly, whereas checkComplex/check_complex and testComplex/test_complex re-

36 checkCount

turn TRUE. If the check is not successful, assertComplex/assert_complex throws an error mes-
sage, testComplex/test_complex returns FALSE, and checkComplex/check_complex return a string
with the error message. The function expect_complex always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkDataFrame(), checkDate (), checkDouble(), checkEnvironment(), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testComplex (1)
testComplex(1+11i)

checkCount Check if an argument is a count

Description

A count is defined as non-negative integerish value.

Usage

checkCount (
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

check_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

assertCount(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

checkCount

coerce = FALSE,
.var.name = vname(x),
add = NULL

)

assert_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),

add = NULL
)
testCount(
X’

na.ok = FALSE,

positive = FALSE,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)
test_count(
X,
na.ok = FALSE,

positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

expect_count(
X,
na.ok = FALSE,
positive = FALSE,
tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
na.ok [logical(1)]

Are missing values allowed? Default is FALSE.

37

38

positive

tol

null.ok

coerce

.var.name

add

info

label

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_

and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertCount/assert_count

checkCount

[logical(1)]
Must x be positive (>= 1)? Default is FALSE, allowing O.

[double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkCount/check_count and testCount/test_count return TRUE. If

the check is not successful, assertCount/assert_count throws an error message, testCount/test_count

returns FALSE, and checkCount/check_count return a string with the error message. The function
expect_count always returns an expectation.

Note

To perform an assertion and then convert to integer, use asCount. assertCount will not convert
numerics to integer.

See Also

Other scalars: checkFlag(), checkInt(), checkNumber(), checkScalar(), checkScalarNA(),

checkString()

checkDataFrame

Examples

testCount (1)
testCount(-1)

checkDataFrame Check if an argument is a data frame

Description

Check if an argument is a data frame

Usage

checkDataFrame (
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

check_data_frame(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

assertDataFrame(
X,

checkDataFrame

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

assert_data_frame(
X,
types = character(0L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testDataFrame(
X7

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

checkDataFrame

test_data_frame(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_data_frame(

)
Arguments
X [any]
Object to check.
types [character]

any.missing

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
info = NULL,

label = vname(x)

41

Character vector of class names. Each list element must inherit from at least one

of the provided types. The types “logical”, “integer
character”, “factor
matrix”, “list”, “function

9 <

“numeric”,

CEINT3

tor”, “array”,

integerish”, “double”,
atomicvec-
environment” and “null” are sup-

ported. For other types inherits is used as a fallback to check x’s inheritance.

Defaults to character(9) (no check).
[logical(1)]

42

all

min.

max.

min.

max.

.missing

rows

rows

cols

cols

nrows

ncols

row.

col.

names

names

null.ok

.var.name

add

info

label

Value

checkDataFrame

Are missing values allowed? Default is TRUE.

[logical(1)]

Are columns with only missing values allowed? Default is TRUE.

[integer(1)]

Minimum number of rows.

[integer(1)]

Maximum number of rows.

[integer(1)]

Minimum number of columns.

[integer(1)]

Maximum number of columns.

[integer(1)]

Exact number of rows.

[integer(1)]

Exact number of columns.

[character(1)]

Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.

[character(1)]

Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertDataFrame/assert_data_frame
return x invisibly, whereas checkDataFrame/check_data_frame and testDataFrame/test_data_frame

return TRUE. If the check is not successful, assertDataFrame/assert_data_frame throws an error

message, testDataFrame/test_data_frame returns FALSE, and checkDataFrame/check_data_frame

return a string with the error message. The function expect_data_frame always returns an expectation.

checkDataTable 43

See Also

Other compound: checkArray(), checkDataTable(), checkMatrix(), checkTibble()

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDate(), checkDouble(), checkEnvironment (), checkFactor (), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples
testDataFrame(iris)
testDataFrame(iris, types = c("numeric”, "factor”), min.rows = 1, col.names = "named")
checkDataTable Check if an argument is a data table
Description

Check if an argument is a data table

Usage

checkDataTable(
X,
key = NULL,
index = NULL,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)

check_data_table(
X,
key = NULL,
index = NULL,
types = character(0L),
any.missing = TRUE,
all.missing = TRUE,

44

)

min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

assertDataTable(

)

X,

key = NULL,

index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_data_table(

X’
key = NULL,
index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

checkDataTable

checkDataTable

)

add = NULL

testDataTable(

)

X,
key = NULL,

index = NULL,

types = character(0L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,

nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_data_table(

)

X’
key = NULL,
index = NULL,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_data_table(

X)
key = NULL,
index = NULL,

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,

45

46

checkDataTable

min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)

)
Arguments
X [any]
Object to check.
key [character]
Expected primary key(s) of the data table.
index [character]
Expected secondary key(s) of the data table.
types [character]

Character vector of class names. Each list element must inherit from at least one

2%

of the provided types. The types “logical”’, “integer”, “integerish”, “double”,

9 < EEINT3 CLINY3 LLINT3

“numeric”, “complex”, “character”, “factor”, “atomic”, “vector
tOr 2" 13

CEINT3 CEINT3
5

Defaults to character(9) (no check).

any.missing [logical(1)]

Are missing values allowed? Default is TRUE.

all.missing [logical(1)]

Are matrices with only missing values allowed? Default is TRUE.

min.rows [integer(1)]

Minimum number of rows.

max.rows [integer(1)]

Maximum number of rows.

min.cols [integer(1)]

Minimum number of columns.

max.cols [integer(1)]

Maximum number of columns.

nrows [integer(1)]

Exact number of rows.

ncols [integer(1)]

Exact number of columns.

row.names [character(1)]

array”’, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.

Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.

checkDate 47

col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertDataTable/assert_data_table
return x invisibly, whereas checkDataTable/check_data_table and testDataTable/test_data_table

return TRUE. If the check is not successful, assertDataTable/assert_data_table throws an error

message, testDataTable/test_data_table returns FALSE, and checkDataTable/check_data_table

return a string with the error message. The function expect_data_table always returns an expectation.

See Also

Other compound: checkArray(), checkDataFrame(), checkMatrix(), checkTibble()

Examples

library(data.table)

dt = as.data.table(iris)

setkeyv(dt, "Species”)

setkeyv(dt, "Sepal.Length”, physical = FALSE)

testDataTable(dt)

testDataTable(dt, key = "Species”, index = "Sepal.Length”, any.missing = FALSE)

checkDate Check that an argument is a Date

Description

Checks that an object is of class Date.

48
Usage
checkDate(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

check_date(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

)

assertDate(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

assert_date(

X)
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,

checkDate

checkDate

)

len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

testDate(

X,

lower = NULL,

upper NULL,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

)

test_date(
X)
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE

expect_date(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)

49

50 checkDate

)
Arguments

X [any]
Object to check.

lower [Date]
All non-missing dates in x must be >= this date. Comparison is done via
Ops.Date.

upper [Date]
All non-missing dates in x must be before <= this date. Comparison is done via
Ops.Date.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.

checkDirectoryExists 51

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix (), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector ()

checkDirectoryExists Check for existence and access rights of directories

Description

Check for existence and access rights of directories

Usage
checkDirectoryExists(x, access = "")
check_directory_exists(x, access = "")
assertDirectoryExists(x, access = "", .var.name = vname(x), add = NULL)
assert_directory_exists(x, access = "", .var.name = vname(x), add = NULL)
testDirectoryExists(x, access = "")
test_directory_exists(x, access = "")
expect_directory_exists(x, access = "", info = NULL, label = vname(x))
checkDirectory(x, access = "")
assertDirectory(x, access = "", .var.name = vname(x), add = NULL)
assert_directory(x, access = "", .var.name = vname(x), add = NULL)
testDirectory(x, access = "")
test_directory(x, access = "")
expect_directory(x, access = "", info = NULL, label = vname(x))
Arguments
X [any]

Object to check.

52

access

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertDirectoryExists/assert_directory_ex:
return x invisibly, whereas checkDirectoryExists/check_directory_existsand testDirectoryExists/test_directo

checkDirectoryEXxists

[character(1)]

Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return TRUE. If the check is not successful, assertDirectoryExists/assert_directory_exists
throws an error message, testDirectoryExists/test_directory_exists returns FALSE, and
checkDirectoryExists/check_directory_exists return a string with the error message. The
function expect_directory_exists always returns an expectation.

Note

The functions without the suffix “exists” are deprecated and will be removed from the package in a
future version due to name clashes.

See Also

Other filesystem: checkAccess(), checkFileExists(), checkPathForOutput()

Examples

Is R's home directory readable?
testDirectory(R.home(), "r")

Is R's home directory readable and writable?
testDirectory(R.home(), "rw"

checkDisjunct 53

checkDisjunct Check if an argument is disjunct from a given set

Description

Check if an argument is disjunct from a given set

Usage

checkDisjunct(x, y, fmatch = FALSE)

check_disjunct(x, y, fmatch = FALSE)

assertDisjunct(x, y, fmatch = FALSE, .var.name = vname(x), add = NULL)
assert_disjunct(x, y, fmatch = FALSE, .var.name = vname(x), add = NULL)
testDisjunct(x, y, fmatch = FALSE)

test_disjunct(x, y, fmatch = FALSE)

expect_disjunct(x, y, fmatch = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

y [atomic]
Other Set.

fmatch [logical(1)]
Use the set operations implemented in fmatch in package fastmatch. If fast-
match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

54 checkDouble

Value

Depending on the function prefix: If the check is successful, the functions assertDisjunct/assert_disjunct
return x invisibly, whereas checkDisjunct/check_disjunct and testDisjunct/test_disjunct

return TRUE. If the check is not successful, assertDisjunct/assert_disjunct throws an error

message, testDisjunct/test_disjunct returns FALSE, and checkDisjunct/check_disjunct re-

turn a string with the error message. The function expect_disjunct always returns an expectation.

Note
The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also
Other set: checkChoice(), checkPermutation(), checkSetEqual(), checkSubset()

Examples

testDisjunct(1L, letters)
testDisjunct(c("a", "z"), letters)

x is not converted before the comparison (except for numerics)
testDisjunct(factor(”a"), "a")

testDisjunct(1, "1")

testDisjunct(1, as.integer(1))

checkDouble Check that an argument is a vector of type double

Description

Check that an argument is a vector of type double

Usage
checkDouble(
X)
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

checkDouble

)

typed.missing = FALSE,
null.ok = FALSE

check_double(

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertDouble(
X’
lower = -Inf,
upper = Inf,

)

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_double(

X,
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

55

56

)

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

testDouble(

)

X!

lower = -Inf,

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_double(

)

X,
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_double(

X)
lower = -Inf,

checkDouble

checkDouble 57

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.
upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.
finite [logical(1)]

Check for only finite values? Default is FALSE.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

58 checkDouble

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertDouble/assert_double

return x invisibly, whereas checkDouble/check_double and testDouble/test_double return TRUE.

If the check is not successful, assertDouble/assert_double throws an error message, testDouble/test_double
returns FALSE, and checkDouble/check_double return a string with the error message. The func-

tion expect_double always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkEnvironment(), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testDouble(1)
testDouble(1L)
testDouble(1, min.len = 1, lower = 0)

checkEnvironment 59

checkEnvironment Check if an argument is an environment

Description

Check if an argument is an environment

Usage

checkEnvironment(x, contains = character(@L), null.ok = FALSE)
check_environment(x, contains = character(@OL), null.ok = FALSE)

assertEnvironment(
X,
contains = character(oL),
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

assert_environment(
X,
contains = character(QL),
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testEnvironment(x, contains = character(@L), null.ok = FALSE)
test_environment(x, contains = character(@L), null.ok = FALSE)
expect_environment(

X,

contains = character(QL),
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
contains [character]

Vector of object names expected in the environment. Defaults to character(0).

60

null.ok

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertEnvironment/assert_environment
return x invisibly, whereas checkEnvironment/check_environment and testEnvironment/test_environment

checkFactor

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return TRUE. If the check is not successful, assertEnvironment/assert_environment throws an

error message, testEnvironment/test_environment returns FALSE, and checkEnvironment/check_environment

return a string with the error message. The function expect_environment always returns an

expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),

checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkFactor(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),

checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

ee = as.environment(list(a = 1))

testEnvironment(ee)
testEnvironment(ee, contains = "a")
checkFactor Check if an argument is a factor
Description

Check if an argument is a factor

checkFactor

Usage

checkFactor(

)

X,

levels = NULL,
ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

check_factor(

)

X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

assertFactor(

X,

levels = NULL,

ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,

max.len = NULL,
n.levels = NULL,

61

62

)

min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_factor(

)

X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

testFactor(

)

X)

levels = NULL,
ordered = NA,
empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

test_factor(

checkFactor

checkFactor 63

X’
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,

max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,

names = NULL,
null.ok = FALSE
)
expect_factor(
X,
levels = NULL,
ordered = NA,

empty.levels.ok = TRUE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
n.levels = NULL,
min.levels = NULL,
max.levels = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
levels [character]
Vector of allowed factor levels.
ordered [logical(1)]

Check for an ordered factor? If FALSE or TRUE, checks explicitly for an un-
ordered or ordered factor, respectively. Default is NA which does not perform
any additional check.

64

empty.levels.ok

any.missing

all.missing

len

min.len

max.len

n.levels

min.levels

max.levels

unique

names

null.ok

.var.name

add

info

label

Value

Depending on the function prefix: If the check is successful, the functions assertFactor/assert_factor

checkFactor

[logical(1)]

Are empty levels allowed? Default is TRUE.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[integer(1)]

Exact number of factor levels. Default is NULL (no check).

[integer(1)]

Minimum number of factor levels. Default is NULL (no check).

[integer(1)]

Maximum number of factor levels. Default is NULL (no check).

[logical(1)]

Must all values be unique? Default is FALSE.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkFactor/check_factor and testFactor/test_factor return TRUE.

checkFALSE 65

If the check is not successful, assertFactor/assert_factor throws an error message, testFactor/test_factor
returns FALSE, and checkFactor/check_factor return a string with the error message. The func-
tion expect_factor always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFormula(),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

x = factor(”"a", levels = c("a", "b"))
testFactor(x)
testFactor(x, empty.levels.ok = FALSE)

checkFALSE Check if an argument is FALSE

Description

Simply checks if an argument is FALSE.

Usage
checkFALSE(x, na.ok = FALSE)

check_false(x, na.ok = FALSE)
assertFALSE(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
assert_false(x, na.ok = FALSE, .var.name = vname(x), add = NULL)

testFALSE(x, na.ok = FALSE)

test_false(x, na.ok = FALSE)

Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

66 checkFileExists

Value

Depending on the function prefix: If the check is successful, the functions assertFALSE ./assert_false.

return x invisibly, whereas checkFALSE./check_false. and testFALSE./test_false. return TRUE.

If the check is not successful, assertFALSE./assert_false. throws an error message, testFALSE./test_false.
returns FALSE, and checkFALSE./check_false. return a string with the error message. The func-

tion expect_false. always returns an expectation.

Examples

testFALSE (FALSE)
testFALSE(TRUE)

checkFileExists Check existence and access rights of files

Description

Check existence and access rights of files

Usage

nn

checkFileExists(x, access = , extension = NULL)

check_file_exists(x, access = "", extension = NULL)

assertFileExists(
X,
access = "",
extension = NULL,
.var.name = vname(x),
add = NULL

assert_file_exists(
X,
access = "",
extension = NULL,
.var.name = vname(x),
add = NULL

nn

testFileExists(x, access = , extension = NULL)

nn

test_file_exists(x, access = , extension = NULL)

expect_file_exists(
X,

checkFileExists 67

nn

access = "",
extension = NULL,
info = NULL,
label = vname(x)
)
checkFile(x, access = "", extension = NULL)
assertFile(x, access = "", extension = NULL, .var.name = vname(x), add = NULL)
assert_file(x, access = "", extension = NULL, .var.name = vname(x), add = NULL)
testFile(x, access = "", extension = NULL)
expect_file(x, access = "", extension = NULL, info = NULL, label = vname(x))
Arguments
X [any]
Object to check.
access [character(1)]
Single string containing possible characters ‘r’, ‘w’ and ‘x’ to force a check for
read, write or execute access rights, respectively. Write and executable rights
are not checked on Windows.
extension [character]
Vector of allowed file extensions, matched case insensitive.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertFileExists/assert_file_exists
return x invisibly, whereas checkFileExists/check_file_exists and testFileExists/test_file_exists
return TRUE. If the check is not successful, assertFileExists/assert_file_exists throws an er-

ror message, testFileExists/test_file_exists returns FALSE, and checkFileExists/check_file_exists
return a string with the error message. The function expect_file_exists always returns an

expectation.

68 checkFlag

Note
The functions without the suffix “exists” are deprecated and will be removed from the package in a
future version due to name clashes. test_file has been unexported already.

See Also

Other filesystem: checkAccess(), checkDirectoryExists(), checkPathForOutput()

Examples

Check if R's COPYING file is readable
testFileExists(file.path(R.home(), "COPYING"), access = "r")

Check if R's COPYING file is readable and writable
testFileExists(file.path(R.home(), "COPYING"), access = "rw")

checkFlag Check if an argument is a flag

Description

A flag is defined as single logical value.

Usage

checkFlag(x, na.ok = FALSE, null.ok = FALSE)

check_flag(x, na.ok = FALSE, null.ok = FALSE)

assertFlag(x, na.ok = FALSE, null.ok = FALSE, .var.name = vname(x), add = NULL)

assert_flag(
X,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testFlag(x, na.ok = FALSE, null.ok = FALSE)
test_flag(x, na.ok = FALSE, null.ok = FALSE)

expect_flag(x, na.ok = FALSE, null.ok = FALSE, info = NULL, label = vname(x))

checkFlag 69

Arguments

x [any]
Object to check.

na.ok [logical(1)]
Are missing values allowed? Default is FALSE.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertFlag/assert_flag
return x invisibly, whereas checkFlag/check_flag and testFlag/test_flag return TRUE. If the
check is not successful, assertFlag/assert_flag throws an error message, testFlag/test_flag
returns FALSE, and checkFlag/check_flag return a string with the error message. The function
expect_flag always returns an expectation.

See Also

Other scalars: checkCount (), checkInt(), checkNumber (), checkScalar(), checkScalarNA(),
checkString()

Examples

testFlag(TRUE)
testFlag(1)

70 checkFormula

checkFormula Check if an argument is a formula

Description

Check if an argument is a formula

Usage

checkFormula(x, null.ok = FALSE)

FALSE)

check_formula(x, null.ok

assertFormula(x, null.ok = FALSE, .var.name = vname(x), add = NULL)

assert_formula(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
testFormula(x, null.ok = FALSE)
test_formula(x, null.ok = FALSE)

expect_formula(x, null.ok = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

checkFunction 71

Value

Depending on the function prefix: If the check is successful, the functions assertFormula/assert_formula
return x invisibly, whereas checkFormula/check_formula and testFormula/test_formula re-

turn TRUE. If the check is not successful, assertFormula/assert_formula throws an error mes-

sage, testFormula/test_formula returns FALSE, and checkFormula/check_formula return a string

with the error message. The function expect_formula always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (),
checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

f = Species ~ Sepal.Length + Sepal.Width
checkFormula(f)

checkFunction Check if an argument is a function

Description

Check if an argument is a function

Usage

checkFunction(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)
check_function(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)

assertFunction(
X,
args = NULL,
ordered = FALSE,
nargs = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
assert_function(
X!
args = NULL,

ordered = FALSE,
nargs = NULL,

72 checkFunction

null.ok = FALSE,
.var.name = vname(x),
add = NULL

)

testFunction(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)
test_function(x, args = NULL, ordered = FALSE, nargs = NULL, null.ok = FALSE)

expect_function(

X,
args = NULL,
ordered = FALSE,
nargs = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
args [character]

Expected formal arguments. Checks that a function has no arguments if set to
character(0). Default is NULL (no check).

ordered [logical(1)]
Flag whether the arguments provided in args must be the first length(args)
arguments of the function in the specified order. Default is FALSE.

nargs [integer(1)]
Required number of arguments, without Default is NULL (no check).
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

checklInt 73

Value

Depending on the function prefix: If the check is successful, the functions assertFunction/assert_function
return x invisibly, whereas checkFunction/check_function and testFunction/test_function

return TRUE. If the check is not successful, assertFunction/assert_function throws an error

message, testFunction/test_function returns FALSE, and checkFunction/check_function re-

turn a string with the error message. The function expect_function always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor (),
checkFormula(), checkInteger (), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples
testFunction(mean)
testFunction(mean, args = "x")
checkInt Check if an argument is a single integerish value
Description

Check if an argument is a single integerish value

Usage
checkInt(
X)
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

check_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE
)

assertInt(

74

X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

coerce = FALSE,

.var.name = vname(x),

add = NULL

)

assert_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

coerce = FALSE,

.var.name = vname(x),

add = NULL

)

testInt(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

test_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE

)

expect_int(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

tol = sqrt(.Machine$double.eps),
null.ok = FALSE,

checklInt

checklInt 75

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.
upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.
tol [double(1)]

Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

coerce [logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertInt/assert_int
return x invisibly, whereas checkInt/check_int and testInt/test_int return TRUE. If the check
is not successful, assertInt/assert_int throws an error message, testInt/test_int returns
FALSE, and checkInt/check_int return a string with the error message. The function expect_int
always returns an expectation.

76 checklInteger

Note
To perform an assertion and then convert to integer, use asInt. assertInt will not convert numer-
ics to integer.

See Also
Other scalars: checkCount (), checkFlag(), checkNumber (), checkScalar (), checkScalarNA(),
checkString()

Examples

testInt(1)
testInt(-1, lower = Q)

checkInteger Check if an argument is vector of type integer

Description

Check if an argument is vector of type integer

Usage
checkInteger(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)
check_integer(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,

checklInteger

max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,

typed.missing =

null.ok = FALSE
)

assertInteger(
X,
lower = -Inf,
upper = Inf,

FALSE,

any.missing = TRUE,

all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing =
null.ok = FALSE,

TRUE,

FALSE,

.var.name = vname(x),

add = NULL
)

assert_integer(
X7
lower = -Inf,
upper = Inf,

any.missing = TRUE,

all.missing
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing =
null.ok = FALSE,

TRUE,

FALSE,

.var.name = vname(x),

add = NULL
)

testInteger(
X,
lower
upper

-Inf,
Inf,

77

78

)

any.missing
all.missing
len = NULL,
min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

TRUE,
TRUE,

test_integer(

)

X,
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_integer(

X,
lower = -Inf,
upper = Inf,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
info = NULL,

label = vname(x)

checklInteger

checklInteger

Arguments

X

lower

upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

names

typed.missing

null.ok

.var.name

add

info

label

79

[any]

Object to check.

[numeric(1)]

Lower value all elements of x must be greater than or equal to.

[numeric(1)]

Upper value all elements of x must be lower than or equal to.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA, NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]

Collection to store assertion messages. See AssertCollection.
[character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]

Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

80 checklIntegerish

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertInteger/assert_integer
return x invisibly, whereas checkInteger/check_integer and testInteger/test_integer re-

turn TRUE. If the check is not successful, assertInteger/assert_integer throws an error mes-

sage, testInteger/test_integer returns FALSE, and checkInteger/check_integer return a string

with the error message. The function expect_integer always returns an expectation.

See Also

asInteger

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testInteger(1L)
testInteger(1.)
testInteger(1:2, lower = 1, upper = 2, any.missing = FALSE)

checkIntegerish Check if an object is an integerish vector

Description

An integerish value is defined as value safely convertible to integer. This includes integers and
numeric values which sufficiently close to an integer w.r.t. a numeric tolerance ‘tol‘.

Usage

checkIntegerish(
X!
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,

checkIntegerish

sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

check_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertlntegerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),
add = NULL

)

assert_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,

81

82

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
coerce = FALSE,
.var.name = vname(x),

add = NULL
)
testIntegerish(
X’

tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

test_integerish(
X,
tol = sqrt(.Machine$double.eps),
lower = -Inf,
upper = Inf,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

checklIntegerish

checkIntegerish

83

expect_integerish(

tol = sqrt(.Machine$double.eps),

X,
lower = -Inf,
upper = Inf,

any.missing
all.missing
len = NULL,

TRUE,
TRUE,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,

info = NULL,

label = vname(x)

Arguments

X

tol

lower

upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

[any]
Object to check.

[double(1)]
Numerical tolerance used to check whether a double or complex can be con-
verted. Default is sqrt(.Machine$double.eps).

[numeric(1)]
Lower value all elements of x must be greater than or equal to.

[numeric(1)]

Upper value all elements of x must be lower than or equal to.
[logical(1)]

Are vectors with missing values allowed? Default is TRUE.
[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.

84 checklIntegerish

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

coerce [logical(1)]
If TRUE, the input x is returned as integer after an successful assertion.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertIntegerish/assert_integerish
return x invisibly, whereas checkIntegerish/check_integerish and testIntegerish/test_integerish

return TRUE. If the check is not successful, assertIntegerish/assert_integerish throws an er-

ror message, testIntegerish/test_integerishreturns FALSE, and checkIntegerish/check_integerish
return a string with the error message. The function expect_integerish always returns an expectation.

Note

To convert from integerish to integer, use asInteger.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkList(), checkLogical(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

checkList

Examples

testIntegerish(1L)
testIntegerish(1.)
testIntegerish(1:2, lower = 1L, upper = 2L, any.missing = FALSE)

checkList Check if an argument is a list

Description

Check if an argument is a list

Usage

checkList(
X,
types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

check_list(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

assertlList(
X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,

86

)

max.len = NULL,
unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_list(

X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testList(

X’

)

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE

test_list(

X)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,

null.ok = FALSE

checkList

checkList

expect_list(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,
info = NULL,

label = vname(x)

87

)
Arguments
X [any]
Object to check.
types [character]

Character vector of class names. Each list element must inherit from at least one
of the provided types. The types “logical”, “integer”, “integerish”, “double”,
“numeric”, “complex”, “character”, “factor”, “atomic”, “vector” ‘“atomicvec-
tor”, “array”, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.
Defaults to character (@) (no check).

LEINT3

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.
min.len [integer(1)]
Minimal length of x.
max.len [integer(1)]
Maximal length of x.
unique [logical(1)]
Must all values be unique? Default is FALSE.
names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

88

.var.name

add

info

label

Value

checkList

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertList/assert_list
return x invisibly, whereas checkList/check_list and testList/test_list return TRUE. If the

check is not successful, assertList/assert_list throws an error message, testList/test_list

returns FALSE, and checkList/check_list return a string with the error message. The function

expect_list always returns an expectation.

Note

Contrary to R’s is.1ist, objects of type data.frame and pairlist are not recognized as list.

Missingness is defined here as elements of the list being NULL, analogously to anyMissing.

The test for uniqueness does differentiate between the different NA types which are built-in in R.
This is required to be consistent with unique while checking scalar missing values. Also see the

example.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkLogical(),
checkMatrix (), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testList(list())

testList(as.list(iris), types = c("numeric”, "factor"))

Missingness

testList(list(1, NA), any.missing = FALSE)
testList(list(1, NULL), any.missing = FALSE)

Uniqueness differentiates between different NA types:
testList(list(NA, NA), unique = TRUE)
testList(list(NA, NA_real_), unique = TRUE)

checkLogical

checkLogical Check if an argument is a vector of type logical

Description

Check if an argument is a vector of type logical

Usage

checkLogical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

check_logical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertlLogical(
X,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),

90

)

add = NULL

assert_logical(

X,
any.missing = TRUE,
all.missing = TRUE,

len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testLogical(
X7

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

test_logical(

)

X)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

unique = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE

expect_logical(

X,
any.missing = TRUE,
all.missing = TRUE,

checkLogical

checkLogical

len = NULL,

91

min.len = NULL,
max.len = NULL,
unique = FALSE,

names = NULL,

typed.missing = FALSE,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X

any.missing

all.missing

len

min.len

max.len

unique

names

typed.missing

null.ok

.var.name

add

[any]

Object to check.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]
Exact expected length of x.

[integer(1)]
Minimal length of x.

[integer(1)]
Maximal length of x.

[logical(1)]
Must all values be unique? Default is FALSE.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.

[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

92 checkMatrix

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertLogical/assert_logical
return x invisibly, whereas checkLogical/check_logical and testLogical/test_logical re-

turn TRUE. If the check is not successful, assertLogical/assert_logical throws an error mes-

sage, testLogical/test_logical returns FALSE, and checkLogical/check_logical return a string

with the error message. The function expect_logical always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkMatrix(),
checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testLogical (TRUE)
testLogical (TRUE, min.len = 1)

checkMatrix Check if an argument is a matrix

Description

Check if an argument is a matrix

Usage
checkMatrix(
X,
mode = NULL,

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,

checkMatrix

)

min.cols = NULL,
max.cols = NULL,
nrows = NULL,
ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

check_matrix(

X,

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

)
assertMatrix(
X,
mode = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_matrix(

X!

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,

93

94

min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,

row.names = NULL,
col.names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)
testMatrix(
X)
mode = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_matrix(

)

X)

mode = NULL,
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_matrix(

X)
mode = NULL,

checkMatrix

checkMatrix 95

any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
mode [character(1)]

Storage mode of the array. Arrays can hold vectors, i.e. “logical”, “integer”,
“integerish”, “double”, “numeric”, “complex”, “character” and “list”. You can
also specify “atomic” here to explicitly prohibit lists. Default is NULL (no check).

If all values of x are missing, this check is skipped.

any.missing [logical(1)]
Are missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are matrices with only missing values allowed? Default is TRUE.

min.rows [integer(1)]
Minimum number of rows.

max.rows [integer(1)]
Maximum number of rows.

min.cols [integer(1)]
Minimum number of columns.

max.cols [integer(1)]
Maximum number of columns.

nrows [integer(1)]
Exact number of rows.

ncols [integer(1)]
Exact number of columns.

row.names [character(1)]
Check for row names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to check for a specific set
of names.

96 checkMatrix

col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertMatrix/assert_matrix

return x invisibly, whereas checkMatrix/check_matrix and testMatrix/test_matrix return TRUE.

If the check is not successful, assertMatrix/assert_matrix throws an error message, testMatrix/test_matrix
returns FALSE, and checkMatrix/check_matrix return a string with the error message. The func-

tion expect_matrix always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkNull (), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Other compound: checkArray (), checkDataFrame(), checkDataTable(), checkTibble()

Examples

X = matrix(1:9, 3)
colnames(x) = letters[1:3]
testMatrix(x, nrows = 3, min.cols = 1, col.names = "named")

checkMultiClass 97

checkMultiClass Check the class membership of an argument

Description

Check the class membership of an argument

Usage

checkMultiClass(x, classes, null.ok = FALSE)
check_multi_class(x, classes, null.ok = FALSE)
assertMultiClass(x, classes, null.ok = FALSE, .var.name = vname(x), add = NULL)
assert_multi_class(
X’
classes,
null.ok = FALSE,

.var.name = vname(x),
add = NULL

)

testMultiClass(x, classes, null.ok = FALSE)
test_multi_class(x, classes, null.ok = FALSE)

expect_multi_class(x, classes, null.ok = FALSE, info = NULL, label = vname(x))

Arguments
X [any]
Object to check.
classes [character]

Class names to check for inheritance with inherits. x must inherit from any of
the specified classes.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

98 checkNamed

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertMultiClass/assert_multi_class
return x invisibly, whereas checkMultiClass/check_multi_class and testMultiClass/test_multi_class
return TRUE. If the check is not successful, assertMultiClass/assert_multi_class throws an er-

ror message, testMultiClass/test_multi_class returns FALSE, and checkMultiClass/check_multi_class
return a string with the error message. The function expect_multi_class always returns an

expectation.

See Also

Other attributes: checkClass(), checkNamed(), checkNames ()
Other classes: checkClass(), checkR6()

Examples

x =1

class(x) = "bar"

checkMultiClass(x, c("foo”, "bar"))
checkMultiClass(x, c("foo", "foobar"))

checkNamed Check if an argument is named

Description

Check if an argument is named

Usage

checkNamed(x, type = "named")

check_named(x, type = "named")
assertNamed(x, type = "named”, .var.name = vname(x), add = NULL)
assert_named(x, type = "named"”, .var.name = vname(x), add = NULL)

testNamed(x, type = "named”)

test_named(x, type = "named")

checkNames 99

Arguments
X [any]
Object to check.
type [character(1)]
Select the check(s) to perform. “unnamed” checks x to be unnamed. ‘“named”
(default) checks x to be named which excludes names to be NA or empty ("").
“unique” additionally tests for non-duplicated names. “strict” checks for unique
names which comply to R’s variable name restrictions. Note that for zero-length
x every name check evaluates to TRUE.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
Value

Depending on the function prefix: If the check is successful, the functions assertNamed/assert_named
return x invisibly, whereas checkNamed/check_named and testNamed/test_named return TRUE. If

the check is not successful, assertNamed/assert_named throws an error message, testNamed/test_named
returns FALSE, and checkNamed/check_named return a string with the error message. The function
expect_named always returns an expectation.

Note

These function are deprecated and will be removed in a future version. Please use checkNames
instead.

See Also

Other attributes: checkClass(), checkMultiClass(), checkNames()

Examples

x =1:3

testNamed(x, "unnamed”)
names(x) = letters[1:3]
testNamed(x, "unique™)

checkNames Check names to comply to specific rules

Description

Performs various checks on character vectors, usually names.

100

Usage

checkNames (

)

X!

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

check_names (

X,

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”
assertNames(
X,

)

type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,
.var.name = vname(x),
add = NULL

assert_names(

X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,
.var.name = vname(x),
add = NULL

checkNames

checkNames 101

testNames(
X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

)

test_names(
X,
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
what = "names”

)

expect_names(
X)
type = "named”,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,

what = "names”,

info = NULL,

label = vname(x)
)

Arguments
X [character I NULL]
Names to check using rules defined via type.

type [character(1)]

Type of formal check(s) to perform on the names.

unnamed: Checks x to be NULL.
named: Checks x for regular names which excludes names to be NA or empty
(II II).

unique: Performs checks like with “named” and additionally tests for non-
duplicated names.

102 checkNames

strict: Performs checks like with “unique” and additionally fails for names with
UTEF-8 characters and names which do not comply to R’s variable name re-
strictions. As regular expression, this is “A[.]*[a-zA-Z]+[a-zA-Z0-9._]*$".

ids: Same as “strict”, but does not enforce uniqueness.

Note that for zero-length x, all these name checks evaluate to TRUE.

subset.of [character]
Names provided in x must be subset of the set subset. of.

must.include [character]
Names provided in x must be a superset of the set must.include.

permutation.of [character]
Names provided in x must be a permutation of the set permutation.of. Du-
plicated names in permutation.of are stripped out and duplicated names in x
thus lead to a failed check. Use this argument instead of identical. to if the
order of the names is not relevant.

identical.to [character]
Names provided in x must be identical to the vector identical.to. Use this
argument instead of permutation.of if the order of the names is relevant.

disjunct.from [character]
Names provided in x must may not be present in the vector disjunct. from.

what [character(1)]
Type of name vector to check, e.g. “names” (default), “colnames” or “row-
names”.

.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertNames/assert_names
return x invisibly, whereas checkNames/check_names and testNames/test_names return TRUE. If

the check is not successful, assertNames/assert_names throws an error message, testNames/test_names
returns FALSE, and checkNames/check_names return a string with the error message. The function
expect_names always returns an expectation.

See Also

Other attributes: checkClass(), checkMultiClass(), checkNamed()

checkNull 103

Examples

x =1:3

testNames(names(x), "unnamed")
names(x) = letters[1:3]
testNames(names(x), "unique")

cn = c("Species”, "Sepal.Length”, "Sepal.Width"”, "Petal.Length”, "Petal.Width")
assertNames(names(iris), permutation.of = cn)

checkNull Check if an argument is NULL

Description

Check if an argument is NULL

Usage
checkNull(x)

check_null(x)

assertNull(x, .var.name = vname(x), add = NULL)
assert_null(x, .var.name = vname(x), add = NULL)
testNull(x)

test_null(x)

Arguments
X [any]
Object to check.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertNull/assert_null
return x invisibly, whereas checkNull/check_null and testNull/test_null return TRUE. If the

check is not successful, assertNull/assert_null throws an error message, testNull/test_null

returns FALSE, and checkNull/check_null return a string with the error message. The function

expect_null always returns an expectation.

104 checkNumber

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

testNull(NULL)
testNull(1)

checkNumber Check if an argument is a single numeric value

Description

Check if an argument is a single numeric value

Usage
checkNumber (
X’
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

)

check_number(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

)

assertNumber(
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

checkNumber

)

assert_number(

X7

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL

)

testNumber (
X,
na.ok = FALSE,
lower = -Inf,
upper = Inf,

)

finite = FALSE,
null.ok = FALSE

test_number(

)

X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE

expect_number(

X’

na.ok = FALSE,
lower = -Inf,
upper = Inf,

finite = FALSE,
null.ok = FALSE,
info = NULL,
label = vname(x)

)
Arguments
X [any]
Object to check.
na.ok [logical(1)]

Are missing values allowed? Default is FALSE.

105

106 checkNumber

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.

finite [logical(1)]
Check for only finite values? Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertNumber/assert_number

return x invisibly, whereas checkNumber/check_number and testNumber/test_number return TRUE.

If the check is not successful, assertNumber/assert_number throws an error message, testNumber/test_number
returns FALSE, and checkNumber/check_number return a string with the error message. The func-

tion expect_number always returns an expectation.

See Also

Other scalars: checkCount(), checkFlag(), checkInt(), checkScalar(), checkScalarNA(),
checkString()

Examples

testNumber (1)
testNumber(1:2)

checkNumeric 107

checkNumeric Check that an argument is a vector of type numeric

Description

Vectors of storage type “integer” and “double” count as “numeric”, c.f. is.numeric. To explicitly
check for real integer or double vectors, see checkInteger, checkIntegerish or checkDouble

Usage
checkNumeric(
X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)
check_numeric(
X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,
typed.missing = FALSE,
null.ok = FALSE

)

assertNumeric(
X)
lower = -Inf,

108

)

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_numeric(

)

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,

names = NULL,
typed.missing = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

testNumeric(

X,

lower = -Inf,

upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

checkNumeric

checkNumeric

)

typed.missing = FALSE,

null.ok = FALSE

test_numeric(

)

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing = FALSE,

null.ok = FALSE

expect_numeric(

X’
lower = -Inf,
upper = Inf,

finite = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
names = NULL,

typed.missing = FALSE,

null.ok = FALSE,
info = NULL,
label = vname(x)

Arguments

X

lower

upper

[any]

Object to check.

[numeric(1)]
Lower value all elements of x must be greater than or equal to.

[numeric(1)]
Upper value all elements of x must be lower than or equal to.

109

checkNumeric

finite [logical(1)]

Check for only finite values? Default is FALSE.
any.missing [logical(1)]

Are vectors with missing values allowed? Default is TRUE.
all.missing [logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]

Exact expected length of x.
min.len [integer(1)]

Minimal length of x.
max.len [integer(1)]

Maximal length of x.
unique [logical(1)]

Must all values be unique? Default is FALSE.
sorted [logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
names [character(1)]

typed.missing

null.ok

.var.name

add

info

label

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]

If set to FALSE (default), all types of missing values (NA,NA_integer_,NA_real_,
NA_character_ or NA_character_) as well as empty vectors are allowed while
type-checking atomic input. Set to TRUE to enable strict type checking.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.

checkOS 111

Value

Depending on the function prefix: If the check is successful, the functions assertNumeric/assert_numeric
return x invisibly, whereas checkNumeric/check_numeric and testNumeric/test_numeric re-

turn TRUE. If the check is not successful, assertNumeric/assert_numeric throws an error mes-

sage, testNumeric/test_numeric returns FALSE, and checkNumeric/check_numeric return a string

with the error message. The function expect_numeric always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment (), checkFactor(),
checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checklLogical(),
checkMatrix(), checkNull(), checkPOSIXct(), checkRaw(), checkVector ()

Examples

testNumeric(1)
testNumeric(1, min.len = 1, lower = Q)

checkOS Check the operating system

Description

Check the operating system

Usage
check0S(os)

check_os(0s)

assert0S(os, add = NULL, .var.name = NULL)
assert_os(os, add = NULL, .var.name = NULL)
test0S(os)

test_os(os)

expect_os(os, info = NULL, label = NULL)

Arguments

0s [character]
Check the operating system to be in a set with possible elements “windows”,
“mac”, “linux” and “‘solaris”.

112

add

.var.name

info

label

Value

checkPathForOutput

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertOS/assert_os
return x invisibly, whereas checkOS/check_os and test0S/test_os return TRUE. If the check is not
successful, assert0S/assert_os throws an error message, test0S/test_os returns FALSE, and
check0S/check_os return a string with the error message. The function expect_os always returns

an expectation.

Examples

test0S("linux")

checkPathForOutput Check if a path is suited for creating an output file

Description

Check if a file path can be used safely to create a file and write to it.

This is checked:

¢ Does dirname(x) exist?

* Does no file under path x exist?

e Is dirname(x) writable?

Paths are relative to the current working directory.

Usage

checkPathForQutput(x, overwrite = FALSE, extension = NULL)

check_path_for_output(x, overwrite = FALSE, extension = NULL)

assertPathForOutput(

X,

checkPathForOutput

overwrite
extension
.var.name =
add = NULL

)

113

FALSE,
NULL,
vname (x),

assert_path_for_output(

X,

overwrite
extension
.var.name =
add = NULL

)

FALSE,
NULL,
vhame(x),

testPathForOutput(x, overwrite = FALSE, extension = NULL)

test_path_for_

output(x, overwrite = FALSE, extension = NULL)

expect_path_for_output(

X7

overwrite =
extension =
info = NULL,

FALSE,
NULL,

label = vname(x)

Arguments

X

overwrite

extension

.var.name

add

info

label

[any]
Object to check.

[logical(1)]
If TRUE, an existing file in place is allowed if it it is both readable and writable.
Default is FALSE.

[character(1)]
Extension of the file, e.g. “txt” or “tar.gz”.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

114 checkPermutation

Value

Depending on the function prefix: If the check is successful, the functions assertPathForOutput/assert_path_for_outpu
return x invisibly, whereas checkPathForOutput/check_path_for_output and testPathForOutput/test_path_for_out
return TRUE. If the check is not successful, assertPathForOutput/assert_path_for_output throws

an error message, testPathForOutput/test_path_for_output returns FALSE, and checkPathForOutput/check_path_fol
return a string with the error message. The function expect_path_for_output always returns an

expectation.

See Also

Other filesystem: checkAccess(), checkDirectoryExists(), checkFileExists()

Examples

Can we create a file in the tempdir?
testPathForOutput(file.path(tempdir(), "process.log"))

checkPermutation Check if the arguments are permutations of each other.

Description

In contrast to checkSetEqual, the function tests for a true permutation of the two vectors and also
considers duplicated values. Missing values are being treated as actual values by default. Does not
work on raw values.

Usage

checkPermutation(x, y, na.ok = TRUE)

check_permutation(x, y, na.ok = TRUE)

assertPermutation(x, y, na.ok = TRUE, .var.name = vname(x), add = NULL)
assert_permutation(x, y, na.ok = TRUE, .var.name = vname(x), add = NULL)
testPermutation(x, y, na.ok = TRUE)
test_permutation(x, y, na.ok = TRUE)
expect_permutation(x, y, na.ok = TRUE, info = NULL, label = vname(x))
Arguments

X [any]
Object to check.

checkPermutation 115

y [atomic]
Vector to compare with. Atomic vector of type other than raw.

na.ok [logical(1)]
Are missing values allowed? Default is TRUE.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertPermutation/assert_permutation
return x invisibly, whereas checkPermutation/check_permutation and testPermutation/test_permutation
return TRUE. If the check is not successful, assertPermutation/assert_permutation throws an

error message, testPermutation/test_permutation returns FALSE, and checkPermutation/check_permutation
return a string with the error message. The function expect_permutation always returns an

expectation.

Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkSetEqual(), checkSubset()

Examples

testPermutation(letters[1:2], letters[2:1])
testPermutation(letters[c(1, 1, 2)]1, letters[1:2])
testPermutation(c(NA, 1, 2), c(1, 2, NA))
testPermutation(c(NA, 1, 2), c(1, 2, NA), na.ok = FALSE)

116

checkPOSIXct

checkPOSIXct

Check that an argument is a date/time object in POSIXct format

Description

Checks that an object is of class POSIXct.

Usage
checkPOSIXct(
X’
lower = NULL,
upper = NULL,

)

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

check_posixct(

X7
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

)
assertPOSIXct(
X’
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,

checkPOSIXct

)

sorted = FALSE,
null.ok = FALSE,

.var.name = vname(Xx),

add = NULL

assert_posixct(

)

X)
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE,

.var.name = vname(x),

add = NULL

testPOSIXct(

)

X,

lower = NULL,

upper = NULL,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

test_posixct(

X,
lower = NULL,
upper = NULL,

any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
sorted = FALSE,
null.ok = FALSE

117

118

)

expect_posixct(
X,
lower = NULL,
upper = NULL,
any.missing
all.missing
len = NULL,
min.len
max.len
unique

checkPOSIXct

TRUE,
TRUE,

NULL,
NULL,
FALSE,

sorted = FALSE,
null.ok = FALSE,

[any]

Object to check.

[Date]

All non-missing dates in x must be >= this POSIXct time. Must be provided in
the same timezone as x.

info = NULL,
label = vname(x)
)
Arguments
X
lower
upper

any.missing

all.missing

len

min.len

max.len

unique

sorted

null.ok

[Date]

All non-missing dates in x must be <= this POSIXct time. Must be provided in
the same timezone as x.

[logical(1)]

Are vectors with missing values allowed? Default is TRUE.

[logical(1)]

Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

[integer(1)]

Exact expected length of x.

[integer(1)]

Minimal length of x.

[integer(1)]

Maximal length of x.

[logical(1)]

Must all values be unique? Default is FALSE.

[logical(1)]

Elements must be sorted in ascending order. Missing values are ignored.
[logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

checkR6 119

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertAtomic/assert_atomic

return x invisibly, whereas checkAtomic/check_atomic and testAtomic/test_atomic return TRUE.

If the check is not successful, assertAtomic/assert_atomic throws an error message, testAtomic/test_atomic
returns FALSE, and checkAtomic/check_atomic return a string with the error message. The func-

tion expect_atomic always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkRaw(), checkVector()

checkR6 Check if an argument is an R6 class

Description

Check if an argument is an R6 class

Usage
checkR6(
X’
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE

120

check_r6(

X,

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,

null.ok = FALSE
)
assertR6(
X?
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
assert_r6(
X)

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testR6(
X7
classes = NULL,
ordered = FALSE,

cloneable = NULL,
public = NULL,
private = NULL,

null.ok = FALSE
)
test_r6(
X,
classes = NULL,
ordered = FALSE,

checkR6

checkR6

)

cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE

expect_r6(

)
Arguments

X [any]
Object to check.

classes [character]
Class names to check for inheritance with inherits. x must inherit from all
specified classes.

ordered [logical(1)]
Expect x to be specialized in provided order. Default is FALSE.

cloneable [logical(1)]
If TRUE, check that x has a clone method. If FALSE, ensure that x is not clone-
able.

public [character]
Names of expected public slots. This includes active bindings.

private [character]
Names of expected private slots.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]

X,

classes = NULL,
ordered = FALSE,
cloneable = NULL,
public = NULL,
private = NULL,
null.ok = FALSE,
info = NULL,
label = vname(x)

121

Extra information to be included in the message for the testthat reporter. See

expect_that.

122 checkRaw

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertClass/assert_class
return x invisibly, whereas checkClass/check_class and testClass/test_class return TRUE. If

the check is not successful, assertClass/assert_class throws an error message, testClass/test_class
returns FALSE, and checkClass/check_class return a string with the error message. The function
expect_class always returns an expectation.

See Also

Other classes: checkClass(), checkMultiClass()

Examples

library(R6)
generator = R6Class("Bar”,
public = list(a = 5),
private = list(b = 42),
active = list(c = function() 99)
)
x = generator$new()
checkR6(x, "Bar", cloneable = TRUE, public = "a")

checkRaw Check if an argument is a raw vector

Description

Check if an argument is a raw vector

Usage
checkRaw(
X,
len = NULL,

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

check_raw(
X’
len = NULL,

checkRaw

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

)
assertRaw(
X)
len = NULL,

)

min.len = NULL,
max.len = NULL,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_raw(

X,

len = NULL,

min.len = NULL,
max.len = NULL,

names = NULL,

null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testRaw(

X,

len = NULL,

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

)
test_raw(
X’
len = NULL,

)

min.len = NULL,
max.len = NULL,
names = NULL,

null.ok = FALSE

expect_raw(

X,

123

124

len = N

ULL,

checkRaw

min.len = NULL,
max.len = NULL,

names =

NULL,

null.ok = FALSE,

info =

NULL,

label = vname(x)

Arguments

X

len

min.len

max.len

names

null.ok

.var.name

add

info

label

Value

[any]
Object to check.

[integer(1)]
Exact expected length of x.

[integer(1)]
Minimal length of x.

[integer(1)]
Maximal length of x.

[character(1)]

Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Depending on the function prefix: If the check is successful, the functions assertRaw/assert_raw
return x invisibly, whereas checkRaw/check_raw and testRaw/test_raw return TRUE. If the check
is not successful, assertRaw/assert_raw throws an error message, testRaw/test_raw returns
FALSE, and checkRaw/check_raw return a string with the error message. The function expect_raw
always returns an expectation.

checkScalar 125

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),
checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checkLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkVector()

Examples

testRaw(as.raw(2), min.len = 1L)

checkScalar Check if an argument is a single atomic value

Description

Check if an argument is a single atomic value

Usage

checkScalar(x, na.ok = FALSE, null.ok = FALSE)
check_scalar(x, na.ok = FALSE, null.ok = FALSE)

assertScalar(
X,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL

)

assert_scalar(
X)
na.ok = FALSE,

null.ok = FALSE,
.var.name = vname(x),
add = NULL

)
testScalar(x, na.ok = FALSE, null.ok = FALSE)
test_scalar(x, na.ok = FALSE, null.ok = FALSE)

expect_scalar(x, na.ok = FALSE, null.ok = FALSE, info = NULL, label = vname(x))

126 checkScalar

Arguments
X [any]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
add [AssertCollection]
Collection to store assertion messages. See AssertCollection.
info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.
label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
Details
This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_
and NaN.
Value

Depending on the function prefix: If the check is successful, the functions assertScalar/assert_scalar

return x invisibly, whereas checkScalar/check_scalar and testScalar/test_scalar return TRUE.

If the check is not successful, assertScalar/assert_scalar throws an error message, testScalar/test_scalar
returns FALSE, and checkScalar/check_scalar return a string with the error message. The func-

tion expect_scalar always returns an expectation.

See Also

Other scalars: checkCount(), checkFlag(), checkInt(), checkNumber(), checkScalarNA(),
checkString()

Examples

testScalar (1)
testScalar(1:10)

checkScalarNA 127

checkScalarNA Check if an argument is a single missing value

Description

Check if an argument is a single missing value

Usage

checkScalarNA(x, null.ok = FALSE)

check_scalar_na(x, null.ok = FALSE)

assertScalarNA(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
assert_scalar_na(x, null.ok = FALSE, .var.name = vname(x), add = NULL)
testScalarNA(x, null.ok = FALSE)

test_scalar_na(x, null.ok = FALSE)

expect_scalar_na(x, null.ok = FALSE, info = NULL, label = vname(x))

Arguments

X [any]
Object to check.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

128 checkSetEqual

Value

Depending on the function prefix: If the check is successful, the functions assertScalarNA/assert_scalar_na
return x invisibly, whereas checkScalarNA/check_scalar_naand testScalarNA/test_scalar_na

return TRUE. If the check is not successful, assertScalarNA/assert_scalar_na throws an error

message, testScalarNA/test_scalar_na returns FALSE, and checkScalarNA/check_scalar_na

return a string with the error message. The function expect_scalar_na always returns an expectation.

See Also

Other scalars: checkCount (), checkFlag(), checkInt(), checkNumber (), checkScalar(), checkString()

Examples

testScalarNA(1)
testScalarNA(NA_real_)
testScalarNA(rep(NA, 2))

checkSetEqual Check if an argument is equal to a given set

Description

Check if an argument is equal to a given set

Usage
checkSetEqual(x, y, ordered = FALSE, fmatch = FALSE)

check_set_equal(x, y, ordered = FALSE, fmatch = FALSE)

assertSetEqual(
X,
Y,
ordered = FALSE,
fmatch = FALSE,
.var.name = vname(x),

add = NULL
)
assert_set_equal(
X7
Y,

ordered = FALSE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

checkSetEqual 129

testSetEqual(x, y, ordered = FALSE, fmatch = FALSE)
test_set_equal(x, y, ordered = FALSE, fmatch = FALSE)

expect_set_equal(
X!
Y,
ordered = FALSE,
fmatch = FALSE,
info = NULL,
label = vname(x)

Arguments

X [any]
Object to check.

y [atomic]
Set to compare with.

ordered [logical(1)]
Check x to have the same length and order as y, i.e. check using “==" while
handling NAs nicely. Default is FALSE.

fmatch [logical(1)]
Use the set operations implemented in fmatch in package fastmatch. If fast-
match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertSubset/assert_subset

return x invisibly, whereas checkSubset/check_subset and testSubset/test_subset return TRUE.

If the check is not successful, assertSubset/assert_subset throws an error message, testSubset/test_subset
returns FALSE, and checkSubset/check_subset return a string with the error message. The func-

tion expect_subset always returns an expectation.

130 checkString

Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkPermutation(), checkSubset ()

Examples

testSetEqual(c(”a”", "b"), c("a", "b"))
testSetEqual(1:3, 1:4)

x is not converted before the comparison (except for numerics)
testSetEqual(factor(”a”), "a")

testSetEqual(1l, "1")

testSetEqual (1, as.integer(1))

checkString Check if an argument is a string

Description

A string is defined as a scalar character vector. To check for vectors of arbitrary length, see
checkCharacter.

Usage

checkString(
X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

)

check_string(
X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,

checkString

)

fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

assertString(

)

X,

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_string(

X,
na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,

fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testString(
X,

)

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

test_string(

X)
na.ok = FALSE,

131

132

)

n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE

expect_string(

X,

na.ok = FALSE,
n.chars = NULL,
min.chars = NULL,
max.chars = NULL,
pattern = NULL,
fixed = NULL,
ignore.case = FALSE,
null.ok = FALSE,
info = NULL,
label = vname(x)

checkString

Arguments

X

na.ok

n.chars

min.chars

max.chars

pattern

fixed

[any]

Object to check.

[logical(1)]

Are missing values allowed? Default is FALSE.
[integer(1)]

Exact number of characters for each element of x.
[integer(1)]

Minimum number of characters for each element of x.
[integer(1)]

Maximum number of characters for each element of x.
[character(1)]

Regular expression as used in grepl. All non-missing elements of x must com-
ply to this pattern.

[character(1)]
Substring to detect in x. Will be used as pattern in grepl with option fixed
set to TRUE. All non-missing elements of x must contain this substring.

ignore.case [logical(1)]
See grepl. Default is FALSE.
null.ok [logical(1)]

If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

checkSubset

.var.name

add

info

label

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_NA_character_

and NaN.

Value

Depending on the function prefix: If the check is successful, the functions assertString/assert_string

133

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

[character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

return x invisibly, whereas checkString/check_string and testString/test_stringreturn TRUE.

If the check is not successful, assertString/assert_string throws an error message, testString/test_string

returns FALSE, and checkString/check_string return a string with the error message. The func-
tion expect_string always returns an expectation.

See Also

Other scalars: checkCount (), checkFlag(), checkInt(), checkNumber (), checkScalar(), checkScalarNA()

Examples

testString(”a")

testString(letters)

checkSubset

Check if an argument is a subset of a given set

Description

Check if an argument is a subset of a given set

134 checkSubset

Usage

checkSubset(x, choices, empty.ok = TRUE, fmatch = FALSE)
check_subset(x, choices, empty.ok = TRUE, fmatch = FALSE)

assertSubset(
X7
choices,
empty.ok = TRUE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

)

assert_subset(
X,
choices,
empty.ok = TRUE,
fmatch = FALSE,
.var.name = vname(x),
add = NULL

)
testSubset(x, choices, empty.ok = TRUE, fmatch = FALSE)
test_subset(x, choices, empty.ok = TRUE, fmatch = FALSE)

expect_subset(
X!
choices,
empty.ok = TRUE,
fmatch = FALSE,

info = NULL,
label = vname(x)
)
Arguments
X [any]
Object to check.
choices [atomic]
Set of possible values. May be empty.
empty.ok [logical(1)]
Treat zero-length x as subset of any set choices (this includes NULL)? Default
is TRUE.
fmatch [logical(1)]

Use the set operations implemented in fmatch in package fastmatch. If fast-

checkSubset 135

match is not installed, this silently falls back to match. fmatch modifies y by
reference: A hash table is added as attribute which is used in subsequent calls.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertSubset/assert_subset

return x invisibly, whereas checkSubset/check_subset and testSubset/test_subset return TRUE.

If the check is not successful, assertSubset/assert_subset throws an error message, testSubset/test_subset
returns FALSE, and checkSubset/check_subset return a string with the error message. The func-

tion expect_subset always returns an expectation.

Note

The object x must be of the same type as the set w.r.t. typeof. Integers and doubles are both treated
as numeric.

See Also

Other set: checkChoice(), checkDisjunct(), checkPermutation(), checkSetEqual()

Examples

testSubset(c("a", "z"), letters)
testSubset("ab", letters)
testSubset ("Species”, names(iris))

x is not converted before the comparison (except for numerics)
testSubset(factor(”a”), "a")

testSubset(1, "1")

testSubset(1, as.integer(1))

136

checkTibble

checkTibble

Check if an argument is a tibble

Description

Check if an argument is a tibble

Usage

checkTibble(

)

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

check_tibble(

)

X,

types = character(QL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

assertTibble(

X,

types = character(QL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,

checkTibble

)

max. rows NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL

assert_tibble(

X,

types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,
.var.name = vname(x),

add = NULL
)
testTibble(
X,

)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

test_tibble(

X,

137

138

)

types = character(@L),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,
nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE

expect_tibble(

X,
types = character(oL),
any.missing = TRUE,
all.missing = TRUE,
min.rows = NULL,
max.rows = NULL,
min.cols = NULL,
max.cols = NULL,

nrows = NULL,

ncols = NULL,
row.names = NULL,
col.names = NULL,
null.ok = FALSE,

info = NULL,

label = vname(x)

checkTibble

Arguments

X

types

any.missing

all.missing

[any]
Object to check.

[character]

Character vector of class names. Each list element must inherit from at least one
of the provided types. The types “logical”, “integer”, “integerish”, “double”,
“numeric”, “complex”, “character”, “factor”, “atomic”, “vector” “atomicvec-
tor”, “array”, “matrix”, “list”, “function”, “environment” and “null” are sup-
ported. For other types inherits is used as a fallback to check x’s inheritance.
Defaults to character (@) (no check).

[logical(1)]
Are missing values allowed? Default is TRUE.

[logical(1)]
Are matrices with only missing values allowed? Default is TRUE.

CEINT3

checkTibble 139

min.rows [integer(1)]

Minimum number of rows.
max.rows [integer(1)]

Maximum number of rows.
min.cols [integer(1)]

Minimum number of columns.
max.cols [integer(1)]

Maximum number of columns.
nrows [integer(1)]

Exact number of rows.
ncols [integer(1)]

Exact number of columns.
row.names [character(1)]

Check for row names. Default is “NULL” (no check). See checkNamed for

possible values. Note that you can use checkSubset to check for a specific set
of names.

col.names [character(1)]
Check for column names. Default is “NULL” (no check). See checkNamed for
possible values. Note that you can use checkSubset to test for a specific set of
names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

Depending on the function prefix: If the check is successful, the functions assertTibble/assert_tibble

return x invisibly, whereas checkTibble/check_tibble and testTibble/test_tibble return TRUE.

If the check is not successful, assertTibble/assert_tibble throws an error message, testTibble/test_tibble
returns FALSE, and checkTibble/check_tibble return a string with the error message. The func-

tion expect_tibble always returns an expectation.

See Also
Other compound: checkArray(), checkDataFrame(), checkDataTable(), checkMatrix()

140 checkTRUE

Examples

library(tibble)

x = as_tibble(iris)

testTibble(x)

testTibble(x, nrow = 150, any.missing = FALSE)

checkTRUE Check if an argument is TRUE

Description

Simply checks if an argument is TRUE.

Usage
checkTRUE(x, na.ok = FALSE)

check_true(x, na.ok = FALSE)

assertTRUE(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
assert_true(x, na.ok = FALSE, .var.name = vname(x), add = NULL)
testTRUE(x, na.ok = FALSE)

test_true(x, na.ok = FALSE)

Arguments
X lany]
Object to check.
na.ok [logical(1)]
Are missing values allowed? Default is FALSE.
.var.name [character(1)]

Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertTRUE./assert_true.
return x invisibly, whereas checkTRUE./check_true. and testTRUE./test_true. return TRUE. If

the check is not successful, assertTRUE./assert_true. throws an error message, testTRUE./test_true.
returns FALSE, and checkTRUE./check_true. return a string with the error message. The function
expect_true. always returns an expectation.

check Vector

Examples

testTRUE (TRUE)
testTRUE (FALSE)

141

checkVector

Check if an argument is a vector

Description

Check if an argument is a vector

Usage

checkVector(

)

X,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

check_vector(

)

X,

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

assertVector(

X,

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,

142

unique = FALSE,
names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)

assert_vector(
X)
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,

.var.name = vname(x),

add = NULL
)
testVector(
X’

strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,

min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

)

test_vector(
X,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE

checkVector

checkVector 143

Arguments
X [any]
Object to check.
strict [logical(1)]

May the vector have additional attributes? If TRUE, mimics the behavior of
is.vector. Default is FALSE which allows e.g. factors or data.frames to
be recognized as vectors.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any” which
performs no check at all. Note that you can use checkSubset to check for a
specific set of names.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is per-
formed, all additional checks are disabled.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Depending on the function prefix: If the check is successful, the functions assertVector/assert_vector

return x invisibly, whereas checkVector/check_vector and testVector/test_vector return TRUE.

If the check is not successful, assertVector/assert_vector throws an error message, testVector/test_vector
returns FALSE, and checkVector/check_vector return a string with the error message. The func-

tion expect_vector always returns an expectation.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(),
checkComplex (), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(),

144 makeAssertion

checkFormula(), checkFunction(), checkInteger (), checkIntegerish(), checkList(), checklLogical(),
checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw()

Other atomicvector: checkAtomic(), checkAtomicVector()

Examples

testVector(letters, min.len = 1L, any.missing = FALSE)

makeAssertion Turn a Check into an Assertion

Description

makeAssertion is the internal function used to evaluate the result of a check and throw an exception
if necessary. makeAssertionFunction can be used to automatically create an assertion function
based on a check function (see example).

Usage

makeAssertion(x, res, var.name, collection)

makeAssertionFunction(
check. fun,
c.fun = NULL,
use.namespace = TRUE,
coerce = FALSE,
env = parent.frame()

)
Arguments

X [any]
Object to check.

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

var.name [character(1)]
The custom name for x as passed to any assert* function. Defaults to a heuris-
tic name lookup.

collection [AssertCollection]
If an AssertCollection is provided, the error message is stored in it. If NULL,
an exception is raised if res is not TRUE.

check. fun [function]

Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.

makeEXxpectation

c.fun

use.namespace

coerce

env

Value

145

[character(1)]

If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check. fun is just a simple
wrapper.

[logical(1)]

Call functions of checkmate using its namespace explicitly. Can be set to FALSE
so save some microseconds, but the checkmate package needs to be imported.
Default is TRUE.

[logical(1)]

If TRUE, injects some lines of code to convert numeric values to integer af-
ter an successful assertion. Currently used in assertCount, assertInt and
assertlIntegerish.

[environment]
The environment of the created function. Default is the parent. frame.

makeAssertion invisibly returns the checked object if the check was successful, and an exception
is raised (or its message stored in the collection) otherwise. makeAssertionFunction returns a

function.

See Also

Other CustomConstructors: makeExpectation(), makeTest()

Examples

Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

Create the respective assert function

assertFalse = function(x, .var.name = vname(x), add = NULL) {
res = checkFalse(x)
makeAssertion(x, res, .var.name, add)

}

Alternative: Automatically create such a function
assertFalse = makeAssertionFunction(checkFalse)
print(assertFalse)

makeExpectation

Turn a Check into an Expectation

Description

makeExpectation is the internal function used to evaluate the result of a check and turn it into
an expectation. makeExceptionFunction can be used to automatically create an expectation
function based on a check function (see example).

146 makeExpectation

Usage

makeExpectation(x, res, info, label)

makeExpectationFunction(
check. fun,
c.fun = NULL,
use.namespace = FALSE,
env = parent.frame()

)
Arguments

x [any]
Object to check.

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

info [character(1)]
See expect_that

label [character(1)]
See expect_that

check. fun [function]
Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.

c.fun [character(1)]

If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check.fun is just a simple
wrapper.

use.namespace [logical(1)]
Call functions of checkmate using its namespace explicitly. Can be set to FALSE
so save some microseconds, but the checkmate package needs to be imported.
Default is TRUE.

env [environment]
The environment of the created function. Default is the parent. frame.
Value
makeExpectation invisibly returns the checked object. makeExpectationFunction returns a
function.
See Also

Other CustomConstructors: makeAssertion(), makeTest ()

makeTest 147

Examples

Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

Create the respective expect function

expect_false = function(x, info = NULL, label = vname(x)) {
res = checkFalse(x)
makeExpectation(x, res, info = info, label = label)

}

Alternative: Automatically create such a function
expect_false = makeExpectationFunction(checkFalse)
print(expect_false)

makeTest Turn a Check into a Test

Description

makeTest is the internal function used to evaluate the result of a check and throw an exception if
necessary. This function is currently only a stub and just calls isTRUE. makeTestFunction can be
used to automatically create an assertion function based on a check function (see example).

Usage

makeTest(res)

makeTestFunction(check.fun, c.fun = NULL, env = parent.frame())

Arguments

res [TRUE | character(1)]
The result of a check function: TRUE for successful checks, and an error message
as string otherwise.

check. fun [function]
Function which checks the input. Must return TRUE on success and a string with
the error message otherwise.

c.fun [character(1)]
If not NULL, instead of calling the function check. fun, use .Call to call a C
function “c.fun” with the identical set of parameters. The C function must be
registered as a native symbol, see .Call. Useful if check.fun is just a simple
wrapper.

env [environment]
The environment of the created function. Default is the parent. frame.

148 matchArg

Value

makeTest returns TRUE if the check is successful and FALSE otherwise. makeTestFunction returns
a function.

See Also

Other CustomConstructors: makeAssertion(), makeExpectation()

Examples

Simple custom check function
checkFalse = function(x) if (!identical(x, FALSE)) "Must be FALSE"” else TRUE

Create the respective test function
testFalse = function(x) {

res = checkFalse(x)

makeTest(res)

}

Alternative: Automatically create such a function
testFalse = makeTestFunction(checkFalse)
print(testFalse)

matchArg Partial Argument Matching

Description

This is an extensions to match.arg with support for AssertCollection. The behavior is very
similar to match.arg, except that NULL is not a valid value for x.

Usage

matchArg(x, choices, several.ok = FALSE, .var.name = vname(x), add = NULL)

Arguments
X [character]
User provided argument to match.
choices [character]
Candidates to match x with.
several.ok [logical(1)]
If TRUE, multiple matches are allowed, cf. match.arg.
.var.name [character(1)]

Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

add [AssertCollection]
Collection to store assertions. See AssertCollection.

qassert 149

Value

Subset of choices.

Examples

matchArg("k", choices = c("kendall”, "pearson"))

gassert Quick argument checks on (builtin) R types

Description

The provided functions parse rules which allow to express some of the most frequent argument
checks by typing just a few letters.

Usage

gassert(x, rules, .var.name = vname(x))
gtest(x, rules)

gexpect(x, rules, info = NULL, label = vname(x))

Arguments

X [any]
Object the check.

rules [character]
Set of rules. See details.

.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

info [character(1)]

Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.
Details

The rule is specified in up to three parts.

1. Class and missingness check. The first letter is an abbreviation for the class. If it is provided
uppercase, missing values are prohibited. Supported abbreviations:

150

Value

qassert

[bB]1 Bool/logical.
[iI]1 Integer.
[xX] Integerish (numeric convertible to integer, see checkIntegerish).
[rR] Real/double.
[cC] Complex.
[nN] Numeric (integer or double).
[sS] String/ character.
[fF] Factor
[aA]l Atomic.
[vvl Atomic vector (see checkAtomicVector).
[1L] List. Missingness is defined as NULL element.
[mM] Matrix.
[dD] Data.frame. Missingness is checked recursively on columns.
[pP] POSIXct date.
[e] Environment.
[0] NULL.
[*] placeholder to allow any type.

Note that the check for missingness does not distinguish between NaN and NA. Infinite values
are not treated as missing, but can be caught using boundary checks (part 3).

. Length definition. This can be one of

[*] any length,
[?] length of zero or one,
[+] length of at least one, or
[0-9]+ exact length specified as integer.

Preceding the exact length with one of the comparison operators =/==, <, <=, >= or > is also
supported.

. Range check as two numbers separated by a comma, enclosed by square brackets (endpoint

included) or parentheses (endpoint excluded). For example, “[0, 3)” results in all(x >= 0 &
x < 3). The lower and upper bound may be omitted which is the equivalent of a negative or
positive infinite bound, respectively. By definition [@,] contains Inf, while [@,) does not.
The same holds for the left (lower) boundary and -Inf. E.g., the rule “N1()” checks for a
single finite numeric which is not NA, while “N1[)” allows -Inf.

gassert throws an R exception if object x does not comply to at least one of the rules and returns
the tested object invisibly otherwise. qtest behaves the same way but returns FALSE if none of the
rules comply. gexpect is intended to be inside the unit test framework testthat and returns an
expectation.

Note

The functions are inspired by the blog post of Bogumit Kaminski: http://rsnippets.blogspot.
de/2013/06/testing-function-agruments-in-gnu-r.html. The implementation is mostly writ-
ten in C to minimize the overhead.

http://rsnippets.blogspot.de/2013/06/testing-function-agruments-in-gnu-r.html
http://rsnippets.blogspot.de/2013/06/testing-function-agruments-in-gnu-r.html

qassertr 151

See Also

gtestr and gassertr for efficient checks of list elements and data frame columns.

Examples

logical of length 1
gtest(NA, "b1")

logical of length 1, NA not allowed
gtest(NA, "B1")

logical of length @ or 1, NA not allowed
gtest(TRUE, "B?")

numeric with length > @
gtest(runif(10), "n+")

integer with length > @, NAs not allowed, all integers >= @ and < Inf
qtest(1:3, "I+[0,)")

either an emtpy list or a character vector with <=5 elements
qtest(1, c("le", "s<=5"))

data frame with at least one column and no missing value in any column
gtest(iris, "D+")

gassertr Quick recursive arguments checks on lists and data frames

Description

These functions are the tuned counterparts of qtest, gassert and gexpect tailored for recursive
checks of list elements or data frame columns.

Usage

gassertr(x, rules, .var.name = vname(x))
gtestr(x, rules, depth = 1L)

gexpectr(x, rules, info = NULL, label = vname(x))

Arguments
X [list or data. frame]
List or data frame to check for compliance with at least one of rules. See details
of qtest for rule explanation.
rules [character]

Set of rules. See gtest

152 register_test_backend

.var.name [character(1)]
Name of the checked object to print in error messages. Defaults to the heuristic
implemented in vname.

depth [integer(1)]
Maximum recursion depth. Defaults to “1” to directly check list elements or
data frame columns. Set to a higher value to check lists of lists of elements.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

See gassert.

See Also

gtest, gassert

Examples

All list elements are integers with length >= 1?
gtestr(as.list(1:10), "i+")

All list elements (i.e. data frame columns) are numeric?
gtestr(iris, "n")

All list elements are numeric, w/o NAs?
gtestr(list(a = 1:3, b = rnorm(1), c = letters), "N+")

All list elements are numeric OR character
gtestr(list(a = 1:3, b = rnorm(1), c = letters), c("N+", "S+"))

register_test_backend Select Backend for Unit Tests

Description

Allows to explicitly select a backend for the unit tests. Currently supported are "testthat” and
"tinytest”. The respective package must be installed and are loaded (but not attached).

ns

If this function is not explicitly called, defaults to "testthat"” unless the "tinytest"’s namespace
is loaded.

Usage

register_test_backend(name)

vname 153

Arguments
name [character(1)]
"testthat” or "tinytest"”.
Value

NULL (invisibly).

vhame Lookup a variable name

Description

Tries to heuristically determine the variable name of x in the parent frame with a combination of
deparse and substitute. Used for checkmate’s error messages.

Usage
vnhame (Xx)
Arguments
X [any]
Object.
Value

[character(1)] Variable name.

wf Get the index of the first/last TRUE

Description

A quick C implementation for “which.first” (head (which(x), 1)) and “which.last” (tail(which(x),
).

Usage

wf(x, use.names = TRUE)

wl(x, use.names = TRUE)

154 %??%

Arguments
X [logical]
Logical vector.
use.names [logical(1)]
If TRUE and x is named, the result is also named.
Value

[integer (1) | integer(@)]. Returns the index of the first/last TRUE value in x or an empty integer
vector if none is found. NAs are ignored.

Examples

wf (c(FALSE, TRUE))
wl(c(FALSE, FALSE))
wf (NA)

%277% Coalesce operator

Description

Returns the left hand side if not missing nor NULL, and the right hand side otherwise.

Usage
lhs %??% rhs

Arguments
lhs [any]
Left hand side of the operator. Is returned if not missing or NULL.
rhs [any]
Right hand side of the operator. Is returned if 1hs is missing or NULL.
Value

Either 1hs or rhs.

Examples

print(NULL %??% 1 %??% 2)
print(names(iris) %??% letters[seq_len(ncol(iris))])

Index

+x CustomConstructors
makeAssertion, 144
makeExpectation, 145
makeTest, 147

* atomicvector
checkAtomic, 17
checkAtomicVector, 20
checkVector, 141

x attributes
checkClass, 30
checkMultiClass, 97
checkNamed, 98
checkNames, 99

* basetypes
checkArray, 14
checkAtomic, 17
checkAtomicVector, 20
checkCharacter, 23
checkComplex, 32
checkDataFrame, 39
checkDate, 47
checkDouble, 54
checkEnvironment, 59
checkFactor, 60
checkFormula, 70
checkFunction, 71
checkInteger, 76
checkIntegerish, 80
checkList, 85
checkLogical, 89
checkMatrix, 92
checkNull, 103
checkNumeric, 107
checkPOSIXct, 116
checkRaw, 122
checkVector, 141

x classes
checkClass, 30
checkMultiClass, 97

155

checkR6, 119

* compound
checkArray, 14
checkDataFrame, 39
checkDataTable, 43
checkMatrix, 92
checkTibble, 136

x filesystem
checkAccess, 13

checkDirectoryExists, 51

checkFileExists, 66

checkPathForQutput, 112

* scalars
checkCount, 36
checkFlag, 68
checkInt, 73
checkNumber, 104
checkScalar, 125
checkScalarNA, 127
checkString, 130

* set
checkChoice, 28
checkDisjunct, 53
checkPermutation, 114
checkSetEqual, 128
checkSubset, 133

.Call, 145-147

%??%, 154

allMissing, 6,6
anyInfinite, 7
anyMissing, 6, 88
anyMissing (allMissing), 6
anyNaN, 6, 8
asCount, 5, 38

asCount (asInteger), 8
asInt, 5,76

asInt (asInteger), 8
asInteger, 5, 8, 80, 84
assert, 6, 11

156

assert_access (checkAccess), 13
assert_array (checkArray), 14
assert_atomic (checkAtomic), 17
assert_atomic_vector
(checkAtomicVector), 20
assert_character (checkCharacter), 23
assert_choice (checkChoice), 28
assert_class (checkClass), 30
assert_complex (checkComplex), 32
assert_count (checkCount), 36
assert_data_frame (checkDataFrame), 39
assert_data_table (checkDataTable), 43
assert_date (checkDate), 47
assert_directory
(checkDirectoryExists), 51
assert_directory_exists
(checkDirectoryExists), 51
assert_disjunct (checkDisjunct), 53
assert_double (checkDouble), 54
assert_environment (checkEnvironment),
59
assert_factor (checkFactor), 60
assert_false (checkFALSE), 65
assert_file (checkFileExists), 66
assert_file_exists (checkFileExists), 66
assert_flag (checkFlag), 68
assert_formula (checkFormula), 70
assert_function (checkFunction), 71
assert_int (checkInt), 73
assert_integer (checkInteger), 76
assert_integerish (checkIntegerish), 80
assert_list (checkList), 85
assert_logical (checkLogical), 89
assert_matrix (checkMatrix), 92
assert_multi_class (checkMultiClass), 97
assert_named (checkNamed), 98
assert_names (checkNames), 99
assert_null (checkNull), 103
assert_number (checkNumber), 104
assert_numeric (checkNumeric), 107
assert_os (check0S), 111
assert_path_for_output
(checkPathForQutput), 112
assert_permutation (checkPermutation),
114
assert_posixct (checkPOSIXct), 116
assert_r6 (checkR6), 119
assert_raw (checkRaw), 122

INDEX

assert_scalar (checkScalar), 125
assert_scalar_na (checkScalarNA), 127
assert_set_equal (checkSetEqual), 128
assert_string (checkString), 130
assert_subset (checkSubset), 133
assert_tibble (checkTibble), 136
assert_true (checkTRUE), 140
assert_vector (checkVector), 141
assertAccess (checkAccess), 13
assertArray (checkArray), 14
assertAtomic (checkAtomic), 17
assertAtomicVector (checkAtomicVector),
20
assertCharacter (checkCharacter), 23
assertChoice (checkChoice), 28
assertClass (checkClass), 30
AssertCollection, 11,12, 13, 16, 19, 22, 27,
29,31, 35, 38, 42,47, 50, 52, 53, 58,
60, 64, 65,67, 69, 70,72,75,79, 84,
88, 91, 96, 97, 99, 102, 103, 106,
110,112, 113,115,119, 121, 124,
126, 127, 129, 133, 135, 139, 140,
143, 144, 148
assertComplex (checkComplex), 32
assertCount, 8, 145
assertCount (checkCount), 36
assertDataFrame (checkDataFrame), 39
assertDataTable (checkDataTable), 43
assertDate (checkDate), 47
assertDirectory (checkDirectoryExists),
51
assertDirectoryExists
(checkDirectoryExists), 51
assertDisjunct (checkDisjunct), 53
assertDouble (checkDouble), 54
assertEnvironment (checkEnvironment), 59
assertFactor (checkFactor), 60
assertFALSE (checkFALSE), 65
assertFile (checkFileExists), 66
assertFileExists (checkFileExists), 66
assertFlag (checkFlag), 68
assertFormula (checkFormula), 70
assertFunction (checkFunction), 71
assertInt, 8, 145
assertInt (checkInt), 73
assertInteger (checkInteger), 76
assertlIntegerish, 8, 145
assertIntegerish (checkIntegerish), 80

INDEX

assertlList (checkList), 85
assertlogical (checkLogical), 89
assertMatrix (checkMatrix), 92
assertMultiClass (checkMultiClass), 97
assertNamed (checkNamed), 98
assertNames (checkNames), 99
assertNull (checkNull), 103
assertNumber (checkNumber), 104
assertNumeric (checkNumeric), 107
assert0S (check0S), 111
assertPathForOutput
(checkPathForQutput), 112
assertPermutation (checkPermutation),
114
assertPOSIXct (checkPOSIXct), 116
assertR6 (checkR6), 119
assertRaw (checkRaw), 122
assertScalar (checkScalar), 125
assertScalarNA (checkScalarNA), 127
assertSetEqual (checkSetEqual), 128
assertString (checkString), 130
assertSubset (checkSubset), 133
assertTibble (checkTibble), 136
assertTRUE (checkTRUE), 140
assertVector (checkVector), 141

check_access (checkAccess), 13
check_array (checkArray), 14
check_atomic (checkAtomic), 17
check_atomic_vector
(checkAtomicVector), 20
check_character (checkCharacter), 23
check_choice (checkChoice), 28
check_class (checkClass), 30
check_complex (checkComplex), 32
check_count (checkCount), 36
check_data_frame (checkDataFrame), 39
check_data_table (checkDataTable), 43
check_date (checkDate), 47
check_directory_exists
(checkDirectoryExists), 51
check_disjunct (checkDisjunct), 53
check_double (checkDouble), 54
check_environment (checkEnvironment), 59
check_factor (checkFactor), 60
check_false (checkFALSE), 65
check_file_exists (checkFileExists), 66
check_flag (checkFlag), 68
check_formula (checkFormula), 70

157

check_function (checkFunction), 71
check_int (checkInt), 73
check_integer (checkInteger), 76
check_integerish (checkIntegerish), 80
check_list (checkList), 85
check_logical (checkLogical), 89
check_matrix (checkMatrix), 92
check_multi_class (checkMultiClass), 97
check_named (checkNamed), 98
check_names (checkNames), 99
check_null (checkNull), 103
check_number (checkNumber), 104
check_numeric (checkNumeric), 107
check_os (check0S), 111
check_path_for_output
(checkPathForOutput), 112
check_permutation (checkPermutation),
114
check_posixct (checkP0OSIXct), 116
check_r6 (checkR6), 119
check_raw (checkRaw), 122
check_scalar (checkScalar), 125
check_scalar_na (checkScalarNA), 127
check_set_equal (checkSetEqual), 128
check_string (checkString), 130
check_subset (checkSubset), 133
check_tibble (checkTibble), 136
check_true (checkTRUE), 140
check_vector (checkVector), 141
checkAccess, 5, 13, 52, 68, 114
checkArray, 5, 14, 20, 23, 28, 36, 43,47, 51,
58,60, 65,71, 73, 80, 84, 88, 92, 96,
104,111,119, 125, 139, 143
checkAtomic, 4, 17,17, 23, 28, 36, 43, 51, 58,
60, 65,71,73, 80, 84, 88, 92, 96,
104,111,119, 125, 143, 144
checkAtomicVector, 4, 17, 20, 20, 28, 36, 43,
51,58,60,65,71,73,80,84, 88, 92,
96,104,111,119, 125, 143, 144, 150
checkCharacter, 4, 17, 20, 23, 23, 36, 43, 51,
58, 60, 65,71, 73, 80, 84, 88, 92, 96,
104,111,119, 125, 130, 143
checkChoice, 5, 28, 54, 115, 130, 135
checkClass, 4, 30, 98, 99, 102, 122
checkComplex, 4, 17, 20, 23, 28, 32, 43, 51,
58,60, 65,71, 73, 80, 84, 88, 92, 96,
104,111,119, 125, 143
checkCount, 4, 36, 69, 76, 106, 126, 128, 133

158

checkDataFrame, 5, 17, 20, 23, 28, 36, 39, 47,
51,58, 60,65,71,73,80, 84, 88, 92,
96,104,111, 119, 125, 139, 143

checkDataTable, 5, 17, 43, 43, 96, 139

checkDate, 5, 17, 20, 23, 28, 36, 43,47, 58,
60, 65,71,73,80, 84, 88, 92, 96,
104,111,119, 125, 143

checkDirectory (checkDirectoryExists),
51

checkDirectoryExists, 5, 14,51, 68, 114

checkDisjunct, 5, 30, 53, 115, 130, 135

checkDouble, 4, 17, 20, 23, 28, 36, 43, 51, 54,
60, 65,71,73,80, 84, 88, 92, 96,
104, 107,111,119, 125, 143

checkEnvironment, 5, 17, 20, 23, 28, 36, 43,
51,58,59,65,71,73,80, 84, 88, 92,
96,104,111,119, 125, 143

checkFactor, 4, 17, 20, 23, 28, 36, 43, 51, 58,
60, 60, 71,73, 80, 84, 88, 92, 96,
104,111,119, 125, 143

checkFALSE, 65

checkFile (checkFileExists), 66

checkFileExists, 5, 14, 52, 66, 114

checkFlag, 4, 38, 68, 76, 106, 126, 128, 133

checkFormula, 5, 17, 20, 23, 28, 36, 43, 51,
58, 60, 65,70, 73, 80, 84, 88, 92, 96,
104,111,119, 125, 144

checkFunction, 5, 17, 20, 23, 28, 36,43, 51
58, 60, 65,71,71, 80, 84, 88, 92, 96,
104,111,119, 125, 144

checklnt, 4, 38, 69, 73, 106, 126, 128, 133

checkInteger, 4, 17, 20, 23, 28, 36, 43, 51,
58, 60, 65,71,73,76, 84, 88, 92, 96,
104,107,111, 119, 125, 144

checkIntegerish, 4, 17, 20, 23, 28, 36, 43,
51,58, 60,65,71,73,80, 80,88, 92,
96, 104,107,111,119, 125,144, 150

checkList, 4, 17, 20, 23, 28, 36,43, 51, 58,
60, 65,71,73,80, 84, 85, 92, 96,
104,111,119, 125, 144

checklLogical, 4, 17, 20, 23, 28, 36, 43, 51,
58, 60, 65,71, 73, 80, 84, 88, 89, 96,
104,111,119, 125, 144

checkmate (checkmate-package), 4

checkmate-package, 4

checkMatrix, 5, 17, 20, 23, 28, 36, 43,47, 51,
58, 60, 65,71,73, 80,84, 88, 92,92,
104,111,119, 125, 139, 144

INDEX

checkMultiClass, 4, 32,97, 99, 102, 122
checkNamed, 4, 10, 19, 22, 27, 32, 35, 42, 46,
47,57,64,79, 84, 87, 91, 95, 96, 98,
98,102,110, 124, 139, 143
checkNames, 4, 32, 98, 99, 99
checkNull, 5, 17, 20, 23, 28, 36, 43, 51, 58,
60, 65,71,73,80, 84, 88, 92, 96,
103, 111,119, 125, 144
checkNumber, 4, 38, 69, 76, 104, 126, 128, 133
checkNumeric, 4, 17, 20, 23, 28, 36, 43, 51,
58,60, 65,71, 73, 80, 84, 88, 92, 96,
104,107, 119, 125, 144
check0S, 6, 111
checkPathForQutput, 5, 14, 52, 68, 112
checkPermutation, 5, 30, 54, 114, 130, 135
checkPOSIXct, 4, 17, 20, 23, 28, 36, 43, 51,
58, 60, 65,71, 73, 80, 84, 88, 92, 96,
104,111,116, 125, 144
checkR®, 5, 32, 98, 119
checkRaw, 4, 17, 20, 23, 28, 36,43, 51, 58, 60,
65,71,73,80,84, 88, 92, 96, 104,
111,119,122, 144
checkScalar, 4, 38, 69, 76, 106, 125, 128, 133
checkScalarNA, 4, 38, 69, 76, 106, 126, 127,
133
checkSetEqual, 5, 30, 54, 114, 115, 128, 135
checkString, 4, 23, 38, 69, 76, 106, 126, 128,
130
checkSubset, 5, 10, 19, 27, 30, 35, 42, 46, 47,
54,57,64,79,84,87,91, 95, 96,
110,115,124, 130, 133, 139, 143
checkTibble, 5, 17,43,47, 96, 136
checkTRUE, 140
checkVector, 4, 17, 20, 23, 28, 36,43, 51, 58,
60, 65,71,73,80,84, 88, 92, 96,
104,111,119, 125, 141

data.frame, 88
Date, 47, 50, 118
deparse, 153

expect_access (checkAccess), 13
expect_array (checkArray), 14
expect_atomic (checkAtomic), 17
expect_atomic_vector
(checkAtomicVector), 20
expect_character (checkCharacter), 23
expect_choice (checkChoice), 28
expect_class (checkClass), 30

INDEX

expect_complex (checkComplex), 32
expect_count (checkCount), 36
expect_data_frame (checkDataFrame), 39
expect_data_table (checkDataTable), 43
expect_date (checkDate), 47
expect_directory
(checkDirectoryExists), 51
expect_directory_exists
(checkDirectoryExists), 51
expect_disjunct (checkDisjunct), 53
expect_double (checkDouble), 54
expect_environment (checkEnvironment),
59
expect_factor (checkFactor), 60
expect_file (checkFileExists), 66
expect_file_exists (checkFileExists), 66
expect_flag (checkFlag), 68
expect_formula (checkFormula), 70
expect_function (checkFunction), 71
expect_int (checkInt), 73
expect_integer (checkInteger), 76
expect_integerish (checkIntegerish), 80
expect_list (checkList), 85
expect_logical (checkLogical), 89
expect_matrix (checkMatrix), 92
expect_multi_class (checkMultiClass), 97
expect_names (checkNames), 99
expect_number (checkNumber), 104
expect_numeric (checkNumeric), 107
expect_os (check0S), 111
expect_path_for_output
(checkPathForQutput), 112
expect_permutation (checkPermutation),
114
expect_posixct (checkPOSIXct), 116
expect_r6 (checkR6), 119
expect_raw (checkRaw), 122
expect_scalar (checkScalar), 125
expect_scalar_na (checkScalarNA), 127
expect_set_equal (checkSetEqual), 128
expect_string (checkString), 130
expect_subset (checkSubset), 133
expect_that, 13, 16, 19, 22, 27, 29, 31, 35,
38, 42,47, 50, 52, 53, 58, 60, 64, 67,
69, 70,72,75,79, 84, 88, 92, 96, 98,
102,106, 110,112, 113,115, 119,
121,124,126, 127, 129, 133, 135,
139, 146, 149, 152

159

expect_tibble (checkTibble), 136

expectation, 14, 17, 20, 23, 28, 30, 32, 36,
38, 42,47, 50, 52, 54, 58, 60, 65-67,
69,71,73,75,80, 84, 88, 92, 96, 98,
99,102, 103,106, 111, 112, 114,
115,119, 122, 124, 126, 128, 129,
133,135, 139, 140, 143, 145, 150

fmatch, 29, 53, 129, 134, 135
grepl, 27, 132

inherits, 31,41,46,87,97,121, 138
is.atomic, 6-8, 17, 20

is.list, 88

is.numeric, 107

is.vector, 20, 143

isTRUE, 147

makeAssertCollection
(AssertCollection), 12
makeAssertion, 144, 146, 148
makeAssertionFunction (makeAssertion),
144
makeExpectation, 145, 145, 148
makeExpectationFunction
(makeExpectation), 145
makeTest, 145, 146, 147
makeTestFunction (makeTest), 147
match, 29, 53, 129, 135
match.arg, 148
matchArg, 148

Ops.Date, 50

pairlist, 88
parent.frame, 145-147
POSIXct, 116

gassert, 5,149, 151, 152
gassertr, 5, 151, 151
gexpect, 151

gexpect (qassert), 149
gexpectr (gassertr), 151
qtest, 151, 152

qgtest (gassert), 149
qtestr, 151

gtestr (qassertr), 151

register_test_backend, 152

160

reportAssertions (AssertCollection), 12
substitute, /153

test_access (checkAccess), 13
test_array (checkArray), 14
test_atomic (checkAtomic), 17
test_atomic_vector (checkAtomicVector),
20
test_character (checkCharacter), 23
test_choice (checkChoice), 28
test_class (checkClass), 30
test_complex (checkComplex), 32
test_count (checkCount), 36
test_data_frame (checkDataFrame), 39
test_data_table (checkDataTable), 43
test_date (checkDate), 47
test_directory (checkDirectoryExists),
51
test_directory_exists
(checkDirectoryExists), 51
test_disjunct (checkDisjunct), 53
test_double (checkDouble), 54
test_environment (checkEnvironment), 59
test_factor (checkFactor), 60
test_false (checkFALSE), 65
test_file_exists (checkFileExists), 66
test_flag (checkFlag), 68
test_formula (checkFormula), 70
test_function (checkFunction), 71
test_int (checkInt), 73
test_integer (checkInteger), 76
test_integerish (checkIntegerish), 80
test_list (checkList), 85
test_logical (checkLogical), 89
test_matrix (checkMatrix), 92
test_multi_class (checkMultiClass), 97
test_named (checkNamed), 98
test_names (checkNames), 99
test_null (checkNull), 103
test_number (checkNumber), 104
test_numeric (checkNumeric), 107
test_os (check0S), 111
test_path_for_output
(checkPathForQutput), 112
test_permutation (checkPermutation), 114
test_posixct (checkPOSIXct), 116
test_r6 (checkR6), 119
test_raw (checkRaw), 122

INDEX

test_scalar (checkScalar), 125
test_scalar_na (checkScalarNA), 127
test_set_equal (checkSetEqual), 128
test_string (checkString), 130
test_subset (checkSubset), 133
test_tibble (checkTibble), 136
test_true (checkTRUE), 140
test_vector (checkVector), 141
testAccess (checkAccess), 13
testArray (checkArray), 14
testAtomic (checkAtomic), 17
testAtomicVector (checkAtomicVector), 20
testCharacter (checkCharacter), 23
testChoice (checkChoice), 28
testClass (checkClass), 30
testComplex (checkComplex), 32
testCount (checkCount), 36
testDataFrame (checkDataFrame), 39
testDataTable (checkDataTable), 43
testDate (checkDate), 47
testDirectory (checkDirectoryExists), 51
testDirectoryExists
(checkDirectoryExists), 51
testDisjunct (checkDisjunct), 53
testDouble (checkDouble), 54
testEnvironment (checkEnvironment), 59
testFactor (checkFactor), 60
testFALSE (checkFALSE), 65
testFile (checkFileExists), 66
testFileExists (checkFileExists), 66
testFlag (checkFlag), 68
testFormula (checkFormula), 70
testFunction (checkFunction), 71
testInt (checkInt), 73
testInteger (checkInteger), 76
testIntegerish (checkIntegerish), 80
testlList (checkList), 85
testlLogical (checkLogical), 89
testMatrix (checkMatrix), 92
testMultiClass (checkMultiClass), 97
testNamed (checkNamed), 98
testNames (checkNames), 99
testNull (checkNull), 103
testNumber (checkNumber), 104
testNumeric (checkNumeric), 107
testOS (check0S), 111
testPathForQutput (checkPathForQutput),
112

INDEX

testPermutation (checkPermutation), 114
testP0OSIXct (checkPOSIXct), 116
testR6 (checkR6), 119

testRaw (checkRaw), 122
testScalar (checkScalar), 125
testScalarNA (checkScalarNA), 127
testSetEqual (checkSetEqual), 128
testString (checkString), 130
testSubset (checkSubset), 133
testthat, /150

testTibble (checkTibble), 136
testTRUE (checkTRUE), 140
testVector (checkVector), 141
typeof, 30, 54, 115, 130, 135

unique, 88

vname, 10, 11, 13, 16, 19, 22, 23,27, 29, 31,
35, 38,42,47, 50, 52, 53, 58, 60, 64,
65, 67,69, 70,72,75,79, 84,88, 91,
92,96-99, 102, 103, 106, 110, 112,
113,115,119, 121, 122, 124, 126
127,129, 133, 135, 139, 140, 143,
148, 149, 152, 153

wf, 6, 153
wl (wf), 153

161

	checkmate-package
	allMissing
	anyInfinite
	anyNaN
	asInteger
	assert
	AssertCollection
	checkAccess
	checkArray
	checkAtomic
	checkAtomicVector
	checkCharacter
	checkChoice
	checkClass
	checkComplex
	checkCount
	checkDataFrame
	checkDataTable
	checkDate
	checkDirectoryExists
	checkDisjunct
	checkDouble
	checkEnvironment
	checkFactor
	checkFALSE
	checkFileExists
	checkFlag
	checkFormula
	checkFunction
	checkInt
	checkInteger
	checkIntegerish
	checkList
	checkLogical
	checkMatrix
	checkMultiClass
	checkNamed
	checkNames
	checkNull
	checkNumber
	checkNumeric
	checkOS
	checkPathForOutput
	checkPermutation
	checkPOSIXct
	checkR6
	checkRaw
	checkScalar
	checkScalarNA
	checkSetEqual
	checkString
	checkSubset
	checkTibble
	checkTRUE
	checkVector
	makeAssertion
	makeExpectation
	makeTest
	matchArg
	qassert
	qassertr
	register_test_backend
	vname
	wf
	??
	Index

