Package ‘collections’

February 5, 2026

Type Package
Title High Performance Container Data Types

Version 0.3.11
Date 2026-02-04

Description Provides high performance container data types such
as queues, stacks, deques, dicts and ordered dicts. Benchmarks
<https://randy3k.github.io/collections/articles/benchmark.html> have
shown that these containers are asymptotically more efficient than
those offered by other packages.

License MIT + file LICENSE

URL https://github.com/randy3k/collections/
Suggests testthat (>=2.3.1)

ByteCompile yes

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.1.0

Author Randy Lai [aut, cre],
Andrea Mazzoleni [cph] (tommy hash table library),
Yann Collet [cph] (xxhash algorithm)

Maintainer Randy Lai <randy.cs.lai@gmail.com>
Repository CRAN
Date/Publication 2026-02-05 06:10:31 UTC

Contents

ClS . e

deque e e

https://randy3k.github.io/collections/articles/benchmark.html
https://github.com/randy3k/collections/

ordered_diCt e e 6
Priority_qUEUE o e e e e e e e e e 7
QUEUE . . . o vttt e e e e e e 8
stack . . . L e e 9
Index 10

collections-package collections: High Performance Container Data Types

Description

Provides high performance container data types such as queues, stacks, deques, dicts and ordered
dicts. Benchmarks <https://randy3k.github.io/collections/articles/benchmark.html> have shown that
these containers are asymptotically more efficient than those offered by other packages.

Author(s)

Maintainer: Randy Lai <randy.cs.lai@gmail.com>

Other contributors:
¢ Andrea Mazzoleni (tommy hash table library) [copyright holder]
* Yann Collet (xxhash algorithm) [copyright holder]
See Also

Useful links:
e https://github.com/randy3k/collections

cls Inspect objects

Description
cls is a replacement for the class function which also works for the collection objects. It falls
back to the ordinary class function for other objects.

Usage
cls(x)

Arguments

X a collection object

Examples

d <- dict(Q)
cls(d)

https://github.com/randy3k/collections

deprecated

deprecated Deprecated Functions

Description

Deprecated Functions

Usage

Deque(...)
Dict(...)
OrderedDict(...)

PriorityQueue(...)

Queue(...)
Stack(...)
Arguments
anything
deque Double Ended Queue
Description

deque creates a double ended queue.

Usage

deque(items = NULL)

Arguments

items a list of items

4 dict

Details

Following methods are exposed:

.$push(item)
.$pushleft(item)
-$pop ()
.$popleft()

. $peek ()

. $peekleft()
.$extend(q)
.$extendleft(q)
.$remove(item)
.$clear()
.$size()
.$as_list()
.$print()

e item: any R object

* g: adeque object

See Also

queue and stack

Examples

g <- deque()
g$push("foo")
g$push("bar™)
g$pushleft("baz")
q$pop() # bar
g$popleft() # baz

g <- deque(list(”foo"”, "bar"))
g$push("baz")$pushleft(”"bla")

dict Dictionary

Description

dict creates an ordinary (unordered) dictionary (a.k.a. hash).

Usage

dict(items = NULL, keys = NULL)

dict

Arguments

items a list of items

keys a list of keys, use names (items) if NULL
Details

Following methods are exposed:

.$set(key, value)
.$get(key, default)
.$remove(key, silent = FALSE)
.$pop(key, default)
.$has(key)

.$keys()

.$values()
.$update(d)
.$clear()

.$size()
.$as_list()
.$print()

e key: a scalar character, an atomic vector, an enviroment or a function
* value: any R object, value of the item

» default: optional, the default value of an item if the key is not found
* d: adict object

See Also

ordered_dict

Examples

d <- dict(list(apple = 5, orange = 10))
d$set("banana”, 3)

d$get ("apple”)

d$as_list() # unordered

d$pop("orange”)

d$as_list() # "orange” is removed

d$set("orange”, 3)$set("pear”, 7) # chain methods

vector indexing

d$set(c(iL, 2L), 3)$set(LETTERS, 26)
d$get(c(1L, 2L)) # 3

d$get (LETTERS) # 26

object indexing

e <- new.env()
d$set(sum, 1)$set(e, 2)
d$get(sum) # 1
d$get(e) # 2

6 ordered_dict
ordered_dict Ordered Dictionary
Description
ordered_dict creates an ordered dictionary.
Usage
ordered_dict(items = NULL, keys = NULL)
Arguments
items a list of items
keys a list of keys, use names(items) if NULL
Details
Following methods are exposed:
.$set(key, value)
.$get(key, default)
.$remove(key, silent = FALSE)
.$pop(key, default)
.$popitem(last = TRUE)
.$has(key)
.$keys()
.$values()
.$update(d)
.$clear()
.$size()
.$as_list()
.$print()
e key: scalar character, environment or function
* value: any R object, value of the item
» default: optional, the default value of an item if the key is not found
* d: an ordered_dict object
See Also

dict

priority_queue

Examples

d <- ordered_dict(list(apple = 5, orange = 10))
d$set("banana”, 3)

d$get("apple")

d$as_list() # the order the item is preserved
d$pop("orange”)

d$as_list() # "orange" is removed

d$set("orange”, 3)$set("pear”, 7) # chain methods

priority_queue Priority Queue

Description

priority_queue creates a priority queue (a.k.a heap).

Usage

priority_queue(items = NULL, priorities = rep(@, length(items)))

Arguments

items a list of items

priorities a vector of interger valued priorities
Details

Following methods are exposed:

.$push(item, priority = 0)
. $pop()

.$clear ()

.$size()

.$as_list()

.$print()

* item: any R object

* priority: areal number, item with larger priority pops first

Examples

g <- priority_queue()
g$push("not_urgent")

g$push("urgent”, priority = 2)
g$push("not_as_urgent”, priority = 1)
g$pop() # urgent

g$pop() # not_as_urgent

g$pop() # not_urgent

g <- priority_queue(list("not_urgent”, "urgent"”), c(0, 2))

g$push("not_as_urgent”, 1)$push("not_urgent2")

queue

queue Queue

Description

queue creates a queue.

Usage

queue(items = NULL)

Arguments

items a list of items

Details

Following methods are exposed:

.$push(item)
-$pop()
.$peek()
.$clear()
.$size()
.$as_list()
.$print()

* item: any R object

See Also

stack and deque

Examples

g <- queue()
g$push("first")
g$push(”second”)
g$pop() # first
g$pop() # second

g <- queue(list("foo", "bar"))
g$push("baz")$push(”"bla")

stack

stack Stack

Description

stack creates a stack.

Usage
stack(items = NULL)

Arguments

items a list of items

Details

Following methods are exposed:

.$push(item)
-$pop()
.$peek()
.$clear()
.$size()
.$as_list()
.$print()

* item: any R object

See Also

queue and deque

Examples

s <- stack()
s$push("first")
s$push(”second”)
s$pop() # second
s$pop() # first

s <- stack(list("foo", "bar"))
s$push("baz")$push("bla")

Index

cls, 2

collections (collections-package), 2

collections-package, 2

deprecated, 3

Deque (deprecated), 3
deque, 3,8, 9

Dict (deprecated), 3
dict, 4,6

ordered_dict, 5,6
OrderedDict (deprecated), 3

priority_queue, 7
PriorityQueue (deprecated), 3

Queue (deprecated), 3
queue, 4, 8, 9

Stack (deprecated), 3
stack, 4, 8,9

10

	collections-package
	cls
	deprecated
	deque
	dict
	ordered_dict
	priority_queue
	queue
	stack
	Index

