
Package ‘connectapi’
January 16, 2026

Type Package

Title Utilities for Interacting with the 'Posit Connect' Server API

Version 0.10.0

Description Provides a helpful 'R6' class and methods for interacting with
the 'Posit Connect' Server API along with some meaningful utility functions
for regular tasks. API documentation varies by 'Posit Connect' installation
and version, but the latest documentation is also hosted publicly at
<https://docs.posit.co/connect/api/>.

License MIT + file LICENSE

URL https://posit-dev.github.io/connectapi/,

https://github.com/posit-dev/connectapi

BugReports https://github.com/posit-dev/connectapi/issues

Imports bit64, fs, glue, httr, mime, jsonlite, lifecycle, magrittr,
purrr, R6, rlang (>= 0.4.2), tibble, uuid, vctrs (>= 0.3.0),
base64enc

Suggests covr, dbplyr, dplyr, ggplot2, gridExtra, httptest, knitr,
lubridate, progress, rmarkdown, rprojroot, rsconnect, spelling,
testthat, tidyr, webshot2, withr

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Config/testthat/edition 3

Collate 'audits.R' 'browse.R' 'connect.R' 'connectapi-package.R'
'connectapi.R' 'content.R' 'deploy.R' 'get.R' 'git.R'
'groups.R' 'integrations.R' 'lazy.R' 'page.R' 'parse.R'
'promote.R' 'ptype.R' 'remote.R' 'runtime-caches.R'
'schedule.R' 'tags.R' 'utils.R' 'thumbnail.R' 'user.R'
'utils-pipe.R' 'variant.R'

NeedsCompilation no

1

https://docs.posit.co/connect/api/
https://posit-dev.github.io/connectapi/
https://github.com/posit-dev/connectapi
https://github.com/posit-dev/connectapi/issues

2 Contents

Author Kara Woo [aut, cre],
Toph Allen [aut],
Neal Richardson [aut],
Sean Lopp [aut],
Cole Arendt [aut],
Posit, PBC [cph, fnd]

Maintainer Kara Woo <kara.woo@posit.co>

Repository CRAN

Date/Publication 2026-01-16 11:50:02 UTC

Contents
as.data.frame.connect_content_list . 4
as.data.frame.connect_integration_list . 5
as.data.frame.connect_list_hits . 5
as_integration . 6
as_tibble.connect_content_list . 6
as_tibble.connect_integration_list . 7
as_tibble.connect_list_hits . 7
audit_access_open . 8
audit_runas . 8
audit_r_versions . 9
browse_solo . 9
Bundle . 10
bundle_dir . 11
bundle_path . 11
bundle_static . 12
connect . 13
Content . 14
ContentTask . 20
content_delete . 22
content_item . 22
content_list_by_tag . 23
content_list_with_permissions . 24
content_render . 25
content_restart . 25
content_title . 26
content_update . 27
create_integration . 28
create_random_name . 29
dashboard_url . 30
delete_integration . 30
delete_runtime_cache . 31
delete_thumbnail . 32
delete_vanity_url . 33
deploy . 34
deploy_repo . 35

Contents 3

download_bundle . 36
Environment . 37
get_associations . 39
get_audit_logs . 40
get_aws_content_credentials . 41
get_aws_credentials . 43
get_bundles . 44
get_content . 45
get_content_packages . 48
get_environment . 49
get_groups . 50
get_group_content . 51
get_group_members . 52
get_image . 53
get_integration . 54
get_integrations . 55
get_jobs . 57
get_log . 59
get_oauth_content_credentials . 60
get_oauth_credentials . 61
get_packages . 63
get_procs . 64
get_runtimes . 64
get_runtime_caches . 65
get_tags . 66
get_thumbnail . 67
get_timezones . 68
get_usage . 69
get_usage_shiny . 70
get_usage_static . 72
get_users . 74
get_vanity_url . 75
get_vanity_urls . 76
get_variants . 77
get_variant_renderings . 77
get_variant_schedule . 78
git . 79
groups_create_remote . 80
has_thumbnail . 80
lock_content . 81
page_cursor . 82
permissions . 83
poll_task . 84
PositConnect . 85
promote . 99
search_content . 99
set_image_path . 101
set_integrations . 102

4 as.data.frame.connect_content_list

set_run_as . 103
set_schedule . 104
set_thumbnail . 107
set_vanity_url . 108
swap_vanity_urls . 109
Task . 109
tbl_connect . 111
terminate_jobs . 111
update_integration . 112
users_create_remote . 114
user_guid_from_username . 115
Vanity . 115
vanity_is_available . 117
Variant . 117
VariantSchedule . 120
VariantTask . 123
verify_content_name . 124

Index 126

as.data.frame.connect_content_list

Convert content list to a data frame

Description

Converts a list returned by search_content() into a data frame.

Usage

S3 method for class 'connect_content_list'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x A connect_content_list object (from search_content()).

row.names Passed to base::as.data.frame().

optional Passed to base::as.data.frame().

... Passed to base::as.data.frame().

Value

A data.frame with one row per content item.

as.data.frame.connect_integration_list 5

as.data.frame.connect_integration_list

Convert integrations list to a data frame

Description

Converts a list returned by get_integrations() into a data frame.

Usage

S3 method for class 'connect_integration_list'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x A connect_integration_list object (from get_integrations()).
row.names Passed to base::as.data.frame().
optional Passed to base::as.data.frame().
... Passed to base::as.data.frame().

Value

A data.frame with one row per integration.

as.data.frame.connect_list_hits

Convert usage data to a data frame

Description

Converts an object returned by get_usage() into a data frame with parsed column types. By
default, extracts path and user_agent from the data field, if available.

Usage

S3 method for class 'connect_list_hits'
as.data.frame(x, row.names = NULL, optional = FALSE, ..., unnest = TRUE)

Arguments

x A connect_list_hits object (from get_usage()).
row.names Passed to base::as.data.frame().
optional Passed to base::as.data.frame().
... Passed to base::as.data.frame().
unnest Logical; if TRUE (default), extracts nested fields using tidyr. Set to FALSE to

skip unnesting.

6 as_tibble.connect_content_list

Value

A data.frame with one row per usage record.

as_integration Convert objects to integration class

Description

Convert objects to integration class

Usage

as_integration(x, client)

Arguments

x An object to convert to an integration.

client The Connect client object where the integration comes from.

Value

An integration object. The object has all the fields from the integrations endpoint (see get_integrations())
and a Connect client as a client attribute (attr(x, "client"))

as_tibble.connect_content_list

Convert integration list to a tibble

Description

Converts a list returned by search_content() to a tibble.

Usage

S3 method for class 'connect_content_list'
as_tibble(x, ...)

Arguments

x A connect_content_list object.

... Unused.

Value

A tibble with one row per content item.

as_tibble.connect_integration_list 7

as_tibble.connect_integration_list

Convert integration list to a tibble

Description

Converts a list returned by get_integrations() to a tibble.

Usage

S3 method for class 'connect_integration_list'
as_tibble(x, ...)

Arguments

x A connect_integration_list object.

... Unused.

Value

A tibble with one row per integration.

as_tibble.connect_list_hits

Convert usage data to a tibble

Description

Converts an object returned by get_usage() to a tibble via as.data.frame.connect_list_hits().

Usage

S3 method for class 'connect_list_hits'
as_tibble(x, ...)

Arguments

x A connect_list_hits object.

... Passed to as.data.frame().

Value

A tibble with one row per usage record.

8 audit_runas

audit_access_open Audit Access Controls

Description

[Experimental]

Usage

audit_access_open(content, type = "all")

Arguments

content data.frame of content information, as from get_content()

type One of "all" or "logged_in". If "all", return a list of apps whose access control
is set to "Everyone". If "logged_in", return a list of apps whose access control
is set to "All logged in users"

See Also

Other audit functions: audit_r_versions(), audit_runas(), vanity_is_available()

audit_runas Audit Run As Settings

Description

[Experimental]

Usage

audit_runas(content)

Arguments

content data.frame of content information, as from get_content()

Value

A data frame with the app name and the Run As user if the Run As user is not the default

See Also

Other audit functions: audit_access_open(), audit_r_versions(), vanity_is_available()

audit_r_versions 9

audit_r_versions Audit R Versions

Description

[Experimental]

Usage

audit_r_versions(content)

Arguments

content data.frame of content information, as from get_content()

Value

A plot that shows the R version used by content over time and in aggregate.

See Also

Other audit functions: audit_access_open(), audit_runas(), vanity_is_available()

browse_solo Browse

Description

Browse to different locations on Connect via utils::browseURL

Usage

browse_solo(content)

browse_dashboard(content)

browse_api_docs(connect)

browse_connect(connect)

Arguments

content A R6 Content object
connect A R6 Connect object

Value

The url that is opened in the browser

10 Bundle

Bundle Bundle

Description

Bundle

Bundle

Details

An R6 class that represents a bundle

Public fields

path The bundle path on disk.
size The size of the bundle.

Methods

Public methods:
• Bundle$new()

• Bundle$print()

• Bundle$clone()

Method new(): Initialize this content bundle.
Usage:
Bundle$new(path)

Arguments:
path The bundle path on disk.

Method print(): Print this object.
Usage:
Bundle$print(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Bundle$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 classes: Content, ContentTask, Environment, PositConnect, Task, Vanity, Variant,
VariantSchedule, VariantTask

bundle_dir 11

bundle_dir Define a bundle from a Directory

Description

Creates a bundle from a target directory.

Usage

bundle_dir(
path = ".",
filename = fs::file_temp(pattern = "bundle", ext = ".tar.gz")

)

Arguments

path The path to the directory to be bundled

filename The output bundle path

Value

Bundle A bundle object

See Also

Other deployment functions: bundle_path(), bundle_static(), deploy(), download_bundle(),
poll_task()

Examples

bundle_dir(system.file("tests/testthat/examples/shiny/", package = "connectapi"))

bundle_path Define a bundle from a path (a path directly to a tar.gz file)

Description

Define a bundle from a path (a path directly to a tar.gz file)

Usage

bundle_path(path)

12 bundle_static

Arguments

path The path to a .tar.gz file

Value

Bundle A bundle object

See Also

Other deployment functions: bundle_dir(), bundle_static(), deploy(), download_bundle(),
poll_task()

Examples

bundle_path(system.file("tests/testthat/examples/static.tar.gz", package = "connectapi"))

bundle_static Define a bundle from a static file (or files)

Description

Defines a bundle from static files. It copies all files to a temporary directory, generates a basic
manifest file (using the first file as the "primary"), and bundles the directory.

Usage

bundle_static(
path,
filename = fs::file_temp(pattern = "bundle", ext = ".tar.gz")

)

Arguments

path The path to a file (or files) that will be used for the static bundle

filename The output bundle path

Details

NOTE: the rsconnect package is required for this function to work properly.

Value

Bundle A bundle object

connect 13

See Also

Other deployment functions: bundle_dir(), bundle_path(), deploy(), download_bundle(),
poll_task()

Examples

bundle_static(system.file("logo.png", package = "connectapi"))

connect Create a connection to Posit Connect

Description

Creates a connection to Posit Connect using the server URL and an API key. Validates the connec-
tion and checks that the version of the server is compatible with the current version of the package.

Usage

connect(
server = Sys.getenv("CONNECT_SERVER"),
api_key = Sys.getenv("CONNECT_API_KEY"),
token,
token_local_testing_key = api_key,
audience = NULL,
...,
.check_is_fatal = TRUE

)

Arguments

server The URL for accessing Posit Connect. Defaults to environment variable CON-
NECT_SERVER

api_key The API Key to authenticate to Posit Connect with. Defaults to environment
variable CONNECT_API_KEY

token Optional. A user session token. When running on a Connect server, creates
a client using the content visitor’s account. Running locally, the created client
uses the provided API key.

token_local_testing_key

Optional. Only used when not running on Connect and a token is provided.
By default, the function returns a Connect object using the api_key. By pro-
viding a different key here you can test a visitor client with differently-scoped
permissions.

audience Optional. The GUID of a Connect API integration associated with this piece of
content.

14 Content

... Additional arguments. Not used at present

.check_is_fatal

Whether to fail if "check" requests fail. Useful in rare cases where more http
request customization is needed for requests to succeed.

Details

When running on Connect, the client’s environment will contain default CONNECT_SERVER and
CONNECT_API_KEY variables. The API key’s permissions are scoped to the publishing user’s ac-
count.

To create a client with permissions scoped to the content visitor’s account, call connect() passing
a user session token from content session headers to the token argument. To do this, you must first
add a Connect API integration in your published content’s Access sidebar.

Value

A Posit Connect R6 object that can be passed along to methods

Examples

Not run:
client <- connect()

Running in Connect, create a client using the content visitor's account.
This example assumes code is being executed in a Shiny app's `server`
function with a `session` object available.
token <- session$request$HTTP_POSIT_CONNECT_USER_SESSION_TOKEN
client <- connect(token = token)

Test locally with an API key using a different role.
fallback_key <- Sys.getenv("VIEWER_ROLE_API_KEY")
client <- connect(token = token, token_local_testing_key = fallback_key)

End(Not run)

default is to read CONNECT_SERVER and CONNECT_API_KEY environment variables
connect()

Content Content

Description

Content

Content

Content 15

Details

An R6 class that represents content.

Public fields

connect An R6 Connect object.

content The content details from Posit Connect. Properties are described in get_content().

Active bindings

default_variant The default variant for this object.

is_rendered TRUE if this is a rendered content type, otherwise FALSE.

is_interactive TRUE if this is a rendered content type, otherwise FALSE.

Methods

Public methods:
• Content$new()

• Content$get_content_remote()

• Content$get_bundles()

• Content$bundle_download()

• Content$bundle_delete()

• Content$update()

• Content$danger_delete()

• Content$get_url()

• Content$get_dashboard_url()

• Content$jobs()

• Content$register_job_kill_order()

• Content$variants()

• Content$tag_set()

• Content$tag_delete()

• Content$tags()

• Content$permissions_add()

• Content$permissions_update()

• Content$permissions_delete()

• Content$permissions()

• Content$environment()

• Content$environment_set()

• Content$environment_all()

• Content$deploy()

• Content$repository()

• Content$repo_enable()

• Content$repo_set()

16 Content

• Content$packages()

• Content$print()

• Content$clone()

Method new(): Initialize this content.

Usage:
Content$new(connect, content)

Arguments:
connect The Connect instance.
content The content data.

Method get_content_remote(): Obtain the content data from the Connect server.

Usage:
Content$get_content_remote()

Method get_bundles(): Return the set of content bundles.

Usage:
Content$get_bundles()

Method bundle_download(): Download the source archive for a content bundle.

Usage:
Content$bundle_download(
bundle_id,
filename = tempfile(pattern = "bundle", fileext = ".tar.gz"),
overwrite = FALSE

)

Arguments:
bundle_id The bundle identifer.
filename Where to write the result.
overwrite Overwrite an existing filename.

Method bundle_delete(): Delete a content bundle.

Usage:
Content$bundle_delete(bundle_id)

Arguments:
bundle_id The bundle identifer.

Method update(): Update this content item.

Usage:
Content$update(...)

Arguments:
... Content fields.

Method danger_delete(): Delete this content item.

Content 17

Usage:
Content$danger_delete()

Method get_url(): Return the URL for this content.

Usage:
Content$get_url()

Method get_dashboard_url(): Return the URL for this content in the Posit Connect dash-
board.

Usage:
Content$get_dashboard_url(pane = "")

Arguments:

pane The pane in the dashboard to link to.

Method jobs(): Return the jobs for this content

Usage:
Content$jobs()

Method register_job_kill_order(): Terminate a single job for this content item.

Usage:
Content$register_job_kill_order(key)

Arguments:

key The job key.

Method variants(): Return the variants for this content.

Usage:
Content$variants()

Method tag_set(): Set a tag for this content.

Usage:
Content$tag_set(tag_id)

Arguments:

tag_id The tag identifier.

Method tag_delete(): Remove a tag for this content.

Usage:
Content$tag_delete(tag_id)

Arguments:

tag_id The tag identifier.

Method tags(): The tags for this content.

Usage:
Content$tags()

18 Content

Method permissions_add(): Add a principal to the ACL for this content.

Usage:
Content$permissions_add(principal_guid, principal_type, role)

Arguments:
principal_guid GUID for the target user or group.
principal_type Acting on user or group.
role The kind of content access.

Method permissions_update(): Alter a principal in the ACL for this content.

Usage:
Content$permissions_update(id, principal_guid, principal_type, role)

Arguments:
id The target identifier.
principal_guid GUID for the target user or group.
principal_type Acting on user or group.
role The kind of content access.

Method permissions_delete(): Remove an entry from the ACL for this content.

Usage:
Content$permissions_delete(id)

Arguments:
id The target identifier.

Method permissions(): Obtain some or all of the ACL for this content.

Usage:
Content$permissions(id = NULL, add_owner = FALSE)

Arguments:
id The target identifier.
add_owner Include the content owner in the result set.

Method environment(): Return the environment variables set for this content.

Usage:
Content$environment()

Method environment_set(): Adjust the environment variables set for this content.

Usage:
Content$environment_set(...)

Arguments:
... Environment variable names and values. Use NA as the value to unset variables.

Method environment_all(): Overwrite the environment variables set for this content.

Usage:
Content$environment_all(...)

Content 19

Arguments:
... Environment variable names and values.

Method deploy(): Deploy this content

Usage:
Content$deploy(bundle_id = NULL)

Arguments:
bundle_id Target bundle identifier.

Method repository(): Get Git repository details

Usage:
Content$repository()

Returns: NULL if no repo is set, otherwise a list with fields:
• repository
• branch
• directory
• polling
• last_error
• last_known_commit

Method repo_enable(): Adjust Git polling.

Usage:
Content$repo_enable(polling = TRUE)

Arguments:
polling Polling enabled.

Method repo_set(): Adjust Git repository

Usage:
Content$repo_set(repository, branch = "main", directory = ".", polling = FALSE)

Arguments:
repository Git repository URL
branch Git repository branch
directory Git repository directory
polling Whether to check for updates

Method packages(): Get package dependencies

Usage:
Content$packages()

Method print(): Print this object.

Usage:
Content$print(...)

Arguments:

20 ContentTask

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Content$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, ContentTask, Environment, PositConnect, Task, Vanity, Variant,
VariantSchedule, VariantTask

ContentTask ContentTask

Description

ContentTask

ContentTask

Details

An R6 class that represents a Task for a piece of Content

Super class

connectapi::Content -> ContentTask

Public fields

task The task.

data The task data.

Methods

Public methods:
• ContentTask$new()

• ContentTask$get_task()

• ContentTask$add_data()

• ContentTask$get_data()

• ContentTask$print()

• ContentTask$clone()

Method new(): Initialize this task.

ContentTask 21

Usage:

ContentTask$new(connect, content, task)

Arguments:

connect The Connect instance.
content The Content instance.
task The task data.

Method get_task(): Return the underlying task.

Usage:

ContentTask$get_task()

Method add_data(): Set the data.

Usage:

ContentTask$add_data(data)

Arguments:

data The data.

Method get_data(): Get the data.

Usage:

ContentTask$get_data()

Method print(): Print this object.

Usage:

ContentTask$print(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ContentTask$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, Environment, PositConnect, Task, Vanity, Variant, VariantSchedule,
VariantTask

22 content_item

content_delete Delete Content

Description

Delete a content item. WARNING: This action deletes all history, configuration, logs, and resources
about a content item. It cannot be undone.

Usage

content_delete(content, force = FALSE)

Arguments

content an R6 content item

force Optional. A boolean that determines whether we should prompt in interactive
sessions

Value

The R6 Content item. The item is deleted, but information about it is cached locally

See Also

Other content functions: content_item(), content_title(), content_update(), create_random_name(),
dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

content_item Get Content Item

Description

Returns a single content item based on guid

Usage

content_item(connect, guid)

Arguments

connect A Connect object

guid The GUID for the content item to be retrieved

content_list_by_tag 23

Value

A Content object for use with other content endpoints

See Also

Other content functions: content_delete(), content_title(), content_update(), create_random_name(),
dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
connect() %>%

content_item("some-guid") %>%
content_update_access_type("all")

End(Not run)

content_list_by_tag Content List

Description

[Experimental] Get a content list

Usage

content_list_by_tag(src, tag)

Arguments

src An R6 Connect object

tag A connect_tag_tree object or tag ID

Details

content_list_by_tag() retrieves a content list by tag

24 content_list_with_permissions

content_list_with_permissions

Get Content List with Permissions

Description

[Experimental] These functions are experimental placeholders until the API supports this behavior.

Usage

content_list_with_permissions(src, ..., .p = NULL)

content_list_guid_has_access(content_list, guid)

Arguments

src A Connect R6 object

... Extra arguments. Currently not used

.p Optional. A predicate function, passed as-is to purrr::keep(). See get_content()
for more details. Can greatly help performance by reducing how many items to
get permissions for

content_list A "content list with permissions" as returned by content_list_with_permissions()

guid A user or group GUID to filter the content list by whether they have access

Details

content_list_with_permissions loops through content and retrieves permissions for each item
(with a progress bar). This can take a long time for lots of content! Make sure to use the optional
.p argument as a predicate function that filters the content list before it is transformed.

content_list_guid_has_access works with a content_list_with_permissions dataset by
checking whether a given GUID (either user or group) has access to the content by:

• checking if the content has access_type == "all"

• checking if the content has access_type == "logged_in"

• checking if the provided guid is the content owner

• checking if the provided guid is in the list of content permissions (in the "permissions" column)

content_render 25

content_render Render a content item.

Description

Submit a request to render a content item. Once submitted, the server runs an asynchronous process
to render the content. This might be useful if content needs to be updated after its source data has
changed, especially if this doesn’t happen on a regular schedule.

Only valid for rendered content (e.g., most Quarto documents, Jupyter notebooks, R Markdown
reports).

Usage

content_render(content, variant_key = NULL)

Arguments

content The content item you wish to render.
variant_key If a variant key is provided, render that variant. Otherwise, render the default

variant.

Value

A VariantTask object that can be used to track completion of the render.

Examples

Not run:
client <- connect()
item <- content_item(client, "951bf3ad-82d0-4bca-bba8-9b27e35c49fa")
task <- content_render(item)
poll_task(task)

End(Not run)

content_restart Restart a content item.

Description

Submit a request to restart a content item. Once submitted, the server performs an asynchronous
request to kill all processes associated with the content item, starting new processes as needed. This
might be useful if the application relies on data that is loaded at startup, or if its memory usage has
grown over time.

Note that users interacting with certain types of applications may have their workflows interrupted.

Only valid for interactive content (e.g., applications, APIs).

26 content_title

Usage

content_restart(content)

Arguments

content The content item you wish to restart.

Examples

Not run:
client <- connect()
item <- content_item(client, "8f37d6e0-3395-4a2c-aa6a-d7f2fe1babd0")
content_restart(item)

End(Not run)

content_title Get Content Title

Description

Return content title for a piece of content. If the content is missing (deleted) or not visible, then
returns the default

Usage

content_title(connect, guid, default = "Unknown Content")

Arguments

connect A Connect object

guid The GUID for the content item to be retrieved

default The default value returned for missing or not visible content

Value

character. The title of the requested content

See Also

Other content functions: content_delete(), content_item(), content_update(), create_random_name(),
dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

content_update 27

content_update Update Content

Description

Update settings for a content item. For a list of all settings, see the latest documentation or the
documentation for your server via connectapi::browse_api_docs().

Usage

content_update(content, ...)

content_update_access_type(content, access_type = c("all", "logged_in", "acl"))

content_update_owner(content, owner_guid)

Arguments

content An R6 content item

... Settings up update that are passed along to Posit Connect

access_type One of "all", "logged_in", or "acl"

owner_guid The GUID of a user who is a publisher, so that they can become the new owner
of the content

Details

Popular selections are content_update(access_type="all"), content_update(access_type="logged_in")
or content_update(access_type="acl"), process settings, title, description, etc.

• content_update_access_type() is a helper to make it easier to change access_type

• content_update_owner() is a helper to make it easier to change owner

Value

An R6 content item

See Also

Other content functions: content_delete(), content_item(), content_title(), create_random_name(),
dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

https://docs.posit.co/connect/api/#patch-/v1/content/{guid}

28 create_integration

create_integration Create an OAuth integration

Description

Creates a new OAuth integration on the Posit Connect server. OAuth integrations allow content to
access external resources using OAuth credentials.

You must have administrator privileges to perform this action.

See the Posit Connect documentation on OAuth integrations for more information.

Usage

create_integration(client, name, description = NULL, template, config)

Arguments

client A Connect R6 client object.

name A descriptive name to identify the integration.

description Optional, default NULL. A brief description of the integration.

template The template to use to configure this integration (e.g., "custom", "github", "google",
"connect").

config A list containing the configuration for the integration. The required fields vary
depending on the template selected.

Value

A connect_integration object representing the newly created integration. See get_integration()
for details on the returned object.

See Also

get_integrations(), get_integration(), update_integration(), delete_integration()

Other oauth integration functions: delete_integration(), get_associations(), get_integration(),
get_integrations(), set_integrations(), update_integration()

Examples

Not run:
client <- connect()

Create a GitHub OAuth integration
github_integration <- create_integration(

client,
name = "GitHub Integration",
description = "Integration with GitHub for OAuth access",
template = "github",

https://docs.posit.co/connect/admin/integrations/oauth-integrations/

create_random_name 29

config = list(
client_id = "your-client-id",
client_secret = "your-client-secret"

)
)

Create a custom OAuth integration
custom_integration <- create_integration(

client,
name = "Custom API Integration",
description = "Integration with our custom API",
template = "custom",
config = list(

auth_mode = "Confidential",
auth_type = "Viewer",
authorization_uri = "https://api.example.com/oauth/authorize",
client_id = "your-client-id",
client_secret = "your-client-secret",
token_uri = "https://api.example.com/oauth/token"

)
)

End(Not run)

create_random_name Create Random Name

Description

Creates a random name from the LETTERS dataset

Usage

create_random_name(length = 25)

Arguments

length Optional. The length of the random name. Defaults to 25

Value

The randomly generated name

See Also

connectapi::verify_content_name

Other content functions: content_delete(), content_item(), content_title(), content_update(),
dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),

30 delete_integration

get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

dashboard_url Build a Dashboard URL from a Content Item

Description

Returns the URL for the content dashboard (opened to the selected pane).

Usage

dashboard_url(content, pane = "")

Arguments

content Content A Content object

pane character The pane in the dashboard to link to

Value

character The dashboard URL for the content provided

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), delete_thumbnail(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

delete_integration Delete an OAuth integration

Description

Deletes an OAuth integration from the Posit Connect server. This permanently removes the integra-
tion and any associated content associations.

You must have administrator privileges to perform this action.

See the Posit Connect documentation on OAuth integrations for more information.

https://docs.posit.co/connect/admin/integrations/oauth-integrations/

delete_runtime_cache 31

Usage

delete_integration(integration)

Arguments

integration A connect_integration object (as returned by get_integrations(), get_integration(),
or create_integration()).

Value

Returns NULL invisibly if successful.

See Also

get_integrations(), get_integration(), create_integration(), update_integration()

Other oauth integration functions: create_integration(), get_associations(), get_integration(),
get_integrations(), set_integrations(), update_integration()

Examples

Not run:
client <- connect()

Get an integration to delete
integration <- get_integration(client, "your-integration-guid")

Delete the integration
delete_integration(integration)

End(Not run)

delete_runtime_cache Delete a runtime cache

Description

Delete a runtime cache from a Connect server. Requires Administrator privileges.

Usage

delete_runtime_cache(
client,
language,
version,
image_name = "Local",
dry_run = FALSE

)

32 delete_thumbnail

Arguments

client A Connect object.

language The language of the cache, either "R" or "Python".

version The version of the cache, e.g. "4.3.3".

image_name Optional. The name of the off-host execution image for the cache, or "Local"
(the default) for native execution caches.

dry_run Optional, default FALSE. If true, perform a dry run of the deletion.

Value

A Task object representing the deletion task. If dry_run is TRUE, returns NULL or throws an error if
the deletion would fail.

See Also

get_runtime_caches()

Other server management functions: get_runtime_caches()

Examples

Not run:
client <- connect()
task <- delete_runtime_cache(client, "R", "4.3.3")
poll_task(task)

End(Not run)

delete_thumbnail Delete content item thumbnail

Description

Delete the thumbnail from a content item on Connect.

Usage

delete_thumbnail(content)

Arguments

content A content item.

Value

The content item (invisibly).

delete_vanity_url 33

See Also

Other thumbnail functions: get_thumbnail(), has_thumbnail(), set_thumbnail()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_vanity_url(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()
item <- content_item(client, "8f37d6e0-3395-4a2c-aa6a-d7f2fe1babd0")
thumbnail <- get_thumbnail(item)

End(Not run)

delete_vanity_url Delete the Vanity URL

Description

Delete the vanity URL for a piece of content.

Usage

delete_vanity_url(content)

Arguments

content A Content object

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), deploy_repo(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

34 deploy

deploy Deploy a bundle

Description

Deploys a bundle (tarball) to an Posit Connect server. If not provided, name (a unique identifier)
will be an auto-generated alphabetic string. If deploying to an existing endpoint, you can set name
or guid to the desired content.

Usage

deploy(
connect,
bundle,
name = create_random_name(),
title = name,
guid = NULL,
...,
.pre_deploy = {
}

)

deploy_current(content)

Arguments

connect A Connect object

bundle A Bundle object

name The unique name for the content on the server

title optional The title to be used for the content on the server

guid optional The GUID if the content already exists on the server

... Additional arguments passed along to the content creation

.pre_deploy An expression to execute before deploying the new bundle. The variables content
and bundle_id are supplied

content A Content object

Details

This function accepts the same arguments as connectapi::content_update().

deploy_current() is a helper to easily redeploy the currently active bundle for an existing content
item.

Value

Task A task object

deploy_repo 35

See Also

connectapi::content_update

Other deployment functions: bundle_dir(), bundle_path(), bundle_static(), download_bundle(),
poll_task()

Examples

Not run:
client <- connect()

beware bundling big directories, like `renv/`, `data/`, etc.
bnd <- bundle_dir(".")

deploy(client, bnd)

End(Not run)

client <- connect()
bnd <- bundle_path(system.file("tests/testthat/examples/static.tar.gz", package = "connectapi"))
deploy(client, bnd)

deploy_repo Deploy a Git Repository

Description

[Experimental] Deploy a git repository directly to Posit Connect, using Posit Connect’s "pull-
based" "git-polling" method of deployment.

Usage

deploy_repo(
client,
repository,
branch,
subdirectory,
name = create_random_name(),
title = name,
...

)

deploy_repo_enable(content, enabled = TRUE)

deploy_repo_update(content)

36 download_bundle

Arguments

client A Connect R6 object

repository The git repository to deploy

branch The git branch to deploy

subdirectory The subdirectory to deploy (must contain a manifest.json)

name The "name" / unique identifier for the content. Defaults to a random character
string

title The "title" of the content

... Additional options for defining / specifying content attributes

content An R6 Content object (i.e. the result of content_item())

enabled Whether Connect will enable automatic polling for repository updates

Details

• deploy_repo_enable() enables (or disables) Posit Connect’s git polling for a piece of con-
tent

• deploy_repo_update() triggers an update of the content from its git repository, if any are
present

Value

A ContentTask object, for use with poll_task() (if you want to follow the logs)

See Also

connectapi::poll_task, connectapi::repo_check_branches, connectapi::repo_check_manifest_dirs

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), get_associations(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

download_bundle Download a Bundle from Deployed Connect Content

Description

Downloads a Content item’s active bundle, or (optionally) one of its other bundles.

Environment 37

Usage

download_bundle(
content,
filename = fs::file_temp(pattern = "bundle", ext = ".tar.gz"),
bundle_id = NULL,
overwrite = FALSE

)

Arguments

content A Content object

filename Optional. The output bundle path

bundle_id Optional. A string representing the bundle_id to download. If NULL, will use
the currently active bundle.

overwrite Optional. Default FALSE. Whether to overwrite the target location if it already
exists

Value

Bundle A bundle object

See Also

Other deployment functions: bundle_dir(), bundle_path(), bundle_static(), deploy(), poll_task()

Environment Environment

Description

Environment

Environment

Details

An R6 class that represents a Content’s Environment Variables

Super class

connectapi::Content -> Environment

Public fields

env_raw The (raw) set of environment variables.

env_vars The set of environment variables.

38 Environment

Methods

Public methods:
• Environment$new()

• Environment$environment()

• Environment$environment_set()

• Environment$environment_all()

• Environment$env_refresh()

• Environment$print()

• Environment$clone()

Method new(): Initialize this set of environment variables.

Usage:
Environment$new(connect, content)

Arguments:

connect The Connect instance.
content The Content instance.

Method environment(): Fetch the set of environment variables.

Usage:
Environment$environment()

Method environment_set(): Update the set of environment variables.

Usage:
Environment$environment_set(...)

Arguments:

... Environment variable names and values.

Method environment_all(): Overwrite the set of environment variables.

Usage:
Environment$environment_all(...)

Arguments:

... Environment variable names and values.

Method env_refresh(): Fetch the set o environment variables.

Usage:
Environment$env_refresh()

Method print(): Print this object.

Usage:
Environment$print(...)

Arguments:

... Unused.

get_associations 39

Method clone(): The objects of this class are cloneable with this method.

Usage:
Environment$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, PositConnect, Task, Vanity, Variant, VariantSchedule,
VariantTask

get_associations Get OAuth associations for a piece of content

Description

Given a Content object, retrieves a list of its OAuth associations. An association contains a content
GUID and an association GUID, and indicates that the integration can be used by the content when
it runs.

Usage

get_associations(x)

Arguments

x A Content object

Value

A list of OAuth integration associations. Each association includes details such as:

• app_guid: The content item’s GUID (deprecated, use content_guid instead).

• content_guid: The content item’s GUID.

• oauth_integration_guid: The GUID of the OAuth integration.

• oauth_integration_name: The name of the OAuth integration.

• oauth_integration_description: A description of the OAuth integration.

• oauth_integration_template: The template used for this OAuth integration.

• oauth_integration_auth_type: The authentication type (e.g., "Viewer" or "Service Ac-
count").

• created_time: The timestamp when the association was created.

40 get_audit_logs

See Also

set_integrations(), get_integrations(), get_integration()

Other oauth integration functions: create_integration(), delete_integration(), get_integration(),
get_integrations(), set_integrations(), update_integration()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_bundles(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()

Get OAuth associations for an app.
my_app <- content_item(client, "12345678-90ab-cdef-1234-567890abcdef")
my_app_associations <- get_associations(my_app)

Given those associations, retrieve the integrations themselves.
my_app_integrations <- purrr::map(

my_app_associations,
~ get_integration(client, .x$oauth_integration_guid)

)

End(Not run)

get_audit_logs Get Audit Logs from Posit Connect Server

Description

Get Audit Logs from Posit Connect Server

Usage

get_audit_logs(src, limit = 500, previous = NULL, nxt = NULL, asc_order = TRUE)

Arguments

src The source object
limit The number of records to return.
previous Retrieve the previous page of Shiny application usage logs relative to the pro-

vided value. This value corresponds to an internal reference within the server
and should be sourced from the appropriate attribute within the paging object of
a previous response.

get_aws_content_credentials 41

nxt Retrieve the next page of Shiny application usage logs relative to the provided
value. This value corresponds to an internal reference within the server and
should be sourced from the appropriate attribute within the paging object of a
previous response.

asc_order Defaults to TRUE; Determines if the response records should be listed in as-
cending or descending order within the response. Ordering is by the started
timestamp field.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/audit_logs for more information.

Value

A tibble with the following columns:

• id: ID of the audit action

• time: Timestamp in RFC3339 format when action was taken

• user_id: User ID of the actor who made the audit action

• user_description: Description of the actor

• action: Audit action taken

• event_description: Description of action

Examples

Not run:
library(connectapi)
client <- connect()

get the last 20 audit logs
get_audit_logs(client, limit = 20, asc_order = FALSE)

End(Not run)

get_aws_content_credentials

Obtain AWS credentials for your content.

Description

Obtain AWS credentials for your content.

42 get_aws_content_credentials

Usage

get_aws_content_credentials(
connect,
content_session_token = NULL,
audience = NULL

)

Arguments

connect A Connect R6 object.
content_session_token

Optional. The content session token. This token can only be obtained when the
content is running on a Connect server. The token identifies the service account
integration previously configured by the publisher on the Connect server. De-
faults to the value from the environment variable: CONNECT_CONTENT_SESSION_TOKEN

audience Optional. The GUID of an OAuth integration associated with this piece of con-
tent.

Details

Please see https://docs.posit.co/connect/user/oauth-integrations/#obtaining-service-account-aws-credentials
for more information. See the example below of using this function with paws to access S3. Any
library that allows you to pass AWS credentials will be able to utilize the credentials returned from
this function call.

Value

The AWS credentials as a list with fields named access_key_id, secret_access_key, session_token,
and expiration.

Examples

Not run:
library(connectapi)
library(paws)

client <- connect()
Pulls the content session token from the environment
when deployed into Connect.
aws_credentials <- get_aws_content_credentials(client)

Create S3 client with AWS credentials from Connect
svc <- paws::s3(

credentials = list(
creds = list(

access_key_id = aws_credentials$access_key_id,
secret_access_key = aws_credentials$secret_access_key,
session_token = aws_credentials$session_token

)
)

get_aws_credentials 43

)

Get object from S3
obj <- svc$get_object(

Bucket = "my-bucket",
Key = "my-data.csv"

)

End(Not run)

get_aws_credentials Obtain a visitor’s AWS credentials

Description

Obtain a visitor’s AWS credentials

Usage

get_aws_credentials(connect, user_session_token, audience = NULL)

Arguments

connect A Connect R6 object.

user_session_token

The content visitor’s session token. This token can only be obtained when the
content is running on a Connect server. The token identifies the user who is
viewing the content interactively on the Connect server. Read this value from
the HTTP header: Posit-Connect-User-Session-Token

audience Optional. The GUID of an OAuth integration associated with this piece of con-
tent.

Details

Please see https://docs.posit.co/connect/user/oauth-integrations/#obtaining-service-account-aws-credentials
for more information. See the example below of using this function in a Plumber API with paws to
access S3. Any library that allows you to pass AWS credentials will be able to utilize the credentials
returned from this function call.

Value

The AWS credentials as a list with fields named access_key_id, secret_access_key, session_token,
and expiration.

44 get_bundles

Examples

Not run:
library(connectapi)
library(plumber)
library(paws)
client <- connect()

#* @get /do
function(req) {

user_session_token <- req$HTTP_POSIT_CONNECT_USER_SESSION_TOKEN
aws_credentials <- get_aws_credentials(client, user_session_token)

Create S3 client with AWS credentials from Connect
svc <- paws::s3(
credentials = list(

creds = list(
access_key_id = aws_credentials$access_key_id,
secret_access_key = aws_credentials$secret_access_key,
session_token = aws_credentials$session_token

)
)

)

Get object from S3
obj <- svc$get_object(

Bucket = "my-bucket",
Key = "my-data.csv"

)

"done"
}

End(Not run)

get_bundles Get Bundles

Description

Lists bundles for a content item

Usage

get_bundles(content)

delete_bundle(content, bundle_id)

get_content 45

Arguments

content A R6 Content item, as returned by content_item()

bundle_id A specific bundle ID for a content item

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_environment(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

get_content Get information about content on the Posit Connect server

Description

Get information about content on the Posit Connect server

Usage

get_content(src, guid = NULL, owner_guid = NULL, name = NULL, ..., .p = NULL)

Arguments

src A Connect object

guid The guid for a particular content item

owner_guid The unique identifier of the user who owns the content

name The content name specified when the content was created

... Extra arguments. Currently not used.

.p Optional. A predicate function, passed as-is to purrr::keep() before turning
the response into a tibble. Can be useful for performance.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/content for more information.

46 get_content

Value

A tibble with the following columns:

• guid: The unique identifier of this content item.

• name: A simple, URL-friendly identifier. Allows alpha-numeric characters, hyphens ("-"), and
underscores ("_").

• title: The title of this content.

• description: A rich description of this content

• access_type: Access type describes how this content manages its viewers. It may have
a value of all, logged_in or acl. The value all is the most permissive; any visitor to
Posit Connect will be able to view this content. The value logged_in indicates that all Posit
Connect accounts may view the content. The acl value lets specifically enumerated users and
groups view the content. Users configured as collaborators may always view content.

• connection_timeout: Maximum number of seconds allowed without data sent or received
across a client connection. A value of 0 means connections will never time-out (not recom-
mended). When null, the default Scheduler.ConnectionTimeout is used. Applies only to
content types that are executed on demand.

• read_timeout: Maximum number of seconds allowed without data received from a client
connection. A value of 0 means a lack of client (browser) interaction never causes the con-
nection to close. When null, the default Scheduler.ReadTimeout is used. Applies only to
content types that are executed on demand.

• init_timeout: The maximum number of seconds allowed for an interactive application to
start. Posit Connect must be able to connect to a newly launched Shiny application, for ex-
ample, before this threshold has elapsed. When null, the default Scheduler.InitTimeout is
used. Applies only to content types that are executed on demand.

• idle_timeout: The maximum number of seconds a worker process for an interactive ap-
plication to remain alive after it goes idle (no active connections). When null, the default
Scheduler.IdleTimeout is used. Applies only to content types that are executed on demand.

• max_processes: Specifies the total number of concurrent processes allowed for a single inter-
active application. When null, the default Scheduler.MaxProcesses setting is used. Applies
only to content types that are executed on demand.

• min_processes: Specifies the minimum number of concurrent processes allowed for a single
interactive application. When null, the default Scheduler.MinProcesses is used. Applies
only to content types that are executed on demand.

• max_conns_per_process: Specifies the maximum number of client connections allowed to
an individual process. Incoming connections which will exceed this limit are routed to a
new process or rejected. When null, the default Scheduler.MaxConnsPerProcess is used.
Applies only to content types that are executed on demand.

• load_factor: Controls how aggressively new processes are spawned. When null, the default
Scheduler.LoadFactor is used. Applies only to content types that are executed on demand.

• created_time: The timestamp (RFC3339) indicating when this content was created.

• last_deployed_time: The timestamp (RFC3339) indicating when this content last had a
successful bundle deployment performed.

get_content 47

• bundle_id: The identifier for the active deployment bundle. Automatically assigned upon the
successful deployment of that bundle.

• app_mode: The runtime model for this content. Has a value of unknown before data is deployed
to this item. Automatically assigned upon the first successful bundle deployment. Allowed:
api, jupyter-static, python-api, python-bokeh, python-dash, python-streamlit, rmd-shiny,
rmd-static, shiny, static, tensorflow-saved-model, unknown.

• content_category: Describes the specialization of the content runtime model. Automati-
cally assigned upon the first successful bundle deployment.

• parameterized: True when R Markdown rendered content allows parameter configuration.
Automatically assigned upon the first successful bundle deployment. Applies only to content
with an app_mode of rmd-static.

• r_version: The version of the R interpreter associated with this content. The value null
represents that an R interpreter is not used by this content or that the R package environment
has not been successfully restored. Automatically assigned upon the successful deployment
of a bundle.

• py_version: The version of the Python interpreter associated with this content. The value
null represents that a Python interpreter is not used by this content or that the Python package
environment has not been successfully restored. Automatically assigned upon the successful
deployment of a bundle.

• run_as: The UNIX user that executes this content. When null, the default Applications.RunAs
is used. Applies only to executable content types - not static.

• run_as_current_user: Indicates if this content is allowed to execute as the logged-in user
when using PAM authentication. Applies only to executable content types - not static.

• owner_guid: The unique identifier for the owner

• content_url: The URL associated with this content. Computed from the GUID for this
content.

• dashboard_url: The URL within the Connect dashboard where this content can be config-
ured. Computed from the GUID for this content.

• role: The relationship of the accessing user to this content. A value of owner is returned for
the content owner. editor indicates a collaborator. The viewer value is given to users who are
permitted to view the content. A none role is returned for administrators who cannot view the
content but are permitted to view its configuration. Computed at the time of the request.

• vanity_url: The vanity URL associated with this content item.

• id: The internal numeric identifier of this content item.

• tags: Tags associated with this content item. Each entry is a list with the following fields:

– id: The identifier for the tag.
– name: The name of the tag.
– parent_id: The identifier for the parent tag. Null if the tag is a top-level tag.
– created_time: The timestamp (RFC3339) indicating when the tag was created.
– updated_time: The timestamp (RFC3339) indicating when the tag was last updated.

• owner: Basic details about the owner of this content item. Each entry is a list with the follow-
ing fields:

– guid: The user’s GUID, or unique identifier, in UUID RFC4122 format.

48 get_content_packages

– username: The user’s username.
– first_name: The user’s first name.
– last_name: The user’s last name.

Examples

Not run:
library(connectapi)
client <- connect()

get_content(client)

End(Not run)

get_content_packages Package dependencies for a content item

Description

Get a data frame of package dependencies used by a content item.

Usage

get_content_packages(content)

Arguments

content A content item

Value

A data frame with the following columns:

• language : Language ecosystem the package belongs to (r or python)

• name: The package name

• version: The package version

• hash: For R packages, the package DESCRIPTION hash

See Also

Other packages functions: get_packages()

get_environment 49

Examples

Not run:
client <- connect()
item <- content_item(client, "951bf3ad-82d0-4bca-bba8-9b27e35c49fa")
packages <- get_content_packages(item)

End(Not run)

get_environment Manage Environment Variables

Description

Manage Environment Variables for a piece of content.

Usage

get_environment(content)

set_environment_new(env, ...)

set_environment_remove(env, ...)

set_environment_all(env, ...)

Arguments

content An R6 Content object as returned by content_item()

env An R6 Environment object as returned by get_environment()

... name = value pairs of environment variable names and values

Details

get_environment() returns an Environment object for use with "setter" methods

set_environment_new() updates environment values (either creating new values or updating ex-
isting). Set NA as the value to remove a variable.

set_environment_remove() is a wrapper on set_environment_new() that allows removing named
/ listed variables quickly

set_environment_all() sets all environment variable values (will remove variables not specified)

50 get_groups

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_image(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

get_groups Get group information from the Posit Connect server

Description

Get group information from the Posit Connect server

Usage

get_groups(src, page_size = 500, prefix = NULL, limit = Inf)

Arguments

src The source object.

page_size The number of records to return per page (max 500).

prefix Filters groups by prefix (group name). The filter is case insensitive.

limit The number of groups to retrieve before paging stops. Default is to return all
results; however, for Connect server versions older than 2025.04.0, limit is
capped at 500 when prefix is provided.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/groups for more information.

Value

A tibble with the following columns:

• guid: The unique identifier of the group

• name: The group name

• owner_guid: The group owner’s unique identifier. When using LDAP or Proxied authentica-
tion with group provisioning enabled this property will always be null.

See Also

Other groups functions: get_group_content(), get_group_members()

get_group_content 51

Examples

Not run:
library(connectapi)
client <- connect()

get all groups
get_groups(client, limit = Inf)

End(Not run)

get_group_content Get content access permissions for a group or groups

Description

Get content access permissions for a group or groups

Usage

get_group_content(src, guids)

Arguments

src A Connect client object

guids A character vector of group guids

Value

A tibble with the following columns:

• group_guid: The group’s GUID

• group_name: The group’s name

• content_guid: The content item’s GUID

• content_name: The content item’s name

• content_title: The content item’s title

• access_type: The access type of the content item ("all", "logged_in", or "acl")

• role: The access type that members of the group have to the content item, "publisher" or
"viewer".

See Also

Other groups functions: get_group_members(), get_groups()

52 get_group_members

Examples

Not run:
library(connectapi)
client <- connect()

Get a data frame of groups
groups <- get_groups(client)

Get permissions for a single group by passing in the corresponding row.
get_group_content(client, groups[1, "guid"])
dplyr::filter(groups, name = "research_scientists") %>%

dplyr::pull(guid) %>%
get_group_content(client, .)

Get permissions for all groups by passing in all group guids.
get_group_content(client, groups$guid)

End(Not run)

get_group_members Get users within a specific group

Description

Get users within a specific group

Usage

get_group_members(src, guid)

Arguments

src A Connect client object

guid A group GUID identifier

Details

Please see https://docs.posit.co/connect/api/#get-/v1/groups/-group_guid-/members for more infor-
mation.

Value

A tibble with the following columns:

• email: The user’s email

• username: The user’s username

• first_name: The user’s first name

get_image 53

• last_name: The user’s last name

• user_role: The user’s role. It may have a value of administrator, publisher or viewer.

• created_time: The timestamp (in RFC3339 format) when the user was created in the Posit
Connect server

• updated_time: The timestamp (in RFC3339 format) when the user was last updated in the
Posit Connect server

• active_time: The timestamp (in RFC3339 format) when the user was last active on the Posit
Connect server

• confirmed: When false, the created user must confirm their account through an email. This
feature is unique to password authentication.

• locked: Whether or not the user is locked

• guid: The user’s GUID, or unique identifier, in UUID RFC4122 format

See Also

Other groups functions: get_group_content(), get_groups()

Examples

Not run:
library(connectapi)
client <- connect()

get the first 20 groups
groups <- get_groups(client)

group_guid <- groups$guid[1]

get_group_members(client, guid = group_guid)

End(Not run)

get_image Get the Content Image

Description

[Deprecated]

Please use get_thumbnail, delete_thumbnail, and has_thumbnail instead.

get_image saves the content image to the given path (default: temp file). delete_image removes
the image (optionally saving to the given path) has_image returns whether the content has an image

54 get_integration

Usage

get_image(content, path = NULL)

delete_image(content, path = NULL)

has_image(content)

Arguments

content A content object

path optional. The path to the image on disk

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_jobs(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

get_integration Get the details of an OAuth integration

Description

Given the GUID of an OAuth integration available on a Connect server, retrieve its details. You
must have administrator or publisher privileges to perform this action.

Usage

get_integration(client, guid)

Arguments

client A Connect R6 client object.

guid The GUID of an integration available on the Connect server.

Value

A connect_integration object representing an OAuth integration, which has the following fields:

• id: The internal identifier of this OAuth integration.

• guid: The GUID of this OAuth integration.

• created_time: The timestamp (RFC3339) indicating when this integration was created.

• updated_time: The timestamp (RFC3339) indicating when this integration was last updated

get_integrations 55

• name: A descriptive name to identify the OAuth integration.

• description: A brief text to describe the OAuth integration.

• template: The template used to configure this OAuth integration.

• auth_type: The authentication type indicates which OAuth flow is used by this integration.

• config: A list with the OAuth integration configuration. Fields differ between integrations.

See Also

get_integrations(), get_associations(), set_integrations()

Other oauth integration functions: create_integration(), delete_integration(), get_associations(),
get_integrations(), set_integrations(), update_integration()

Examples

Not run:
client <- connect()
x <- get_integration(client, guid)

End(Not run)

get_integrations Get OAuth integrations

Description

Retrieve OAuth integrations either from the Connect server or associated with a specific content
item.

If x is a Connect object, this function lists all OAuth integrations on the server. If x is a Content
object, it returns the integrations associated with that content item.

You must have administrator or publisher privileges to use this function.

Usage

get_integrations(x)

Arguments

x A Connect or Content R6 object.

56 get_integrations

Value

A list of class connect_integration_list, where each element is a connect_integration ob-
ject with the following fields. (Raw API fields are character strings unless noted otherwise):

• id: The internal identifier of this OAuth integration.

• guid: The GUID of this OAuth integration.

• created_time: Timestamp (RFC3339) when the integration was created.

• updated_time: Timestamp (RFC3339) when the integration was last updated.

• name: A descriptive name.

• description: A brief description.

• template: The template used to configure the integration.

• auth_type: The OAuth flow used.

• config: A list with integration-specific config fields.

Use as.data.frame() or tibble::as_tibble() to convert the result to a data frame with parsed
types.

See Also

get_integration(), set_integrations(), get_associations()

Other oauth integration functions: create_integration(), delete_integration(), get_associations(),
get_integration(), set_integrations(), update_integration()

Examples

Not run:
From a Connect client
client <- connect()
integrations <- get_integrations(client)

Filter or update specific ones
github_integration <- purrr::keep(integrations, \(x) x$template == "github")[[1]]

json_payload <- jsonlite::toJSON(list(
description = "Updated Description",
config = list(client_secret = "new-secret")

), auto_unbox = TRUE)

client$PATCH(
paste0("v1/oauth/integrations/", github_integration$guid),
body = json_payload

)

From a Content item
content <- content_item(client, "12345678-90ab-cdef-1234-567890abcdef")
content_integrations <- get_integrations(content)

Filter content integrations

get_jobs 57

snowflake_integrations <- purrr::keep(content_integrations, ~ .x$template == "snowflake")

End(Not run)

get_jobs Get Jobs

Description

Retrieve details about server processes associated with a content_item, such as a FastAPI app or
a Quarto render.

Usage

get_jobs(content)

get_job_list(content)

Arguments

content A Content object, as returned by content_item()

Details

Note that Connect versions below 2022.10.0 use a legacy endpoint, and will not return the complete
set of information provided by newer versions.

get_jobs() returns job data as a data frame, whereas get_jobs_list() returns job data in a list.

You might get job data as a data frame if you want to perform some calculations about job data (e.g.
counting server processes over time), or if you want to filter jobs to find a specific key.

The objects in list returned by get_jobs_list() are useful if you want to take an action on a job,
such as getting its process log with get_log().

Value

• get_jobs(): A data frame with a row representing each job.

• get_job_list(): A list with each element representing a job.

Jobs contain the following fields:

• id: The job identifier.

• ppid: The job’s parent process identifier (see Note 1).

• pid: The job’s process identifier.

• key: The job’s unique key identifier.

• remote_id: The job’s identifier for off-host execution configurations (see Note 1).

• app_id: The job’s parent content identifier; deprecated in favor of content_id.

58 get_jobs

• app_guid: The job’s parent content GUID; deprecated in favor of content_guid.

• content_id: The job’s parent content identifier.

• content_guid: The job’s parent content GUID.

• variant_id: The identifier of the variant owning this job.

• bundle_id: The identifier of a content bundle linked to this job.

• start_time: The timestamp (RFC3339) indicating when this job started.

• end_time: The timestamp (RFC3339) indicating when this job finished.

• last_heartbeat_time: The timestamp (RFC3339) indicating the last time this job was ob-
served to be running (see Note 1).

• queued_time: The timestamp (RFC3339) indicating when this job was added to the queue to
be processed. Only scheduled reports will present a value for this field (see Note 1).

• queue_name: The name of the queue which processes the job. Only scheduled reports will
present a value for this field (see Note 1).

• tag: A tag to identify the nature of the job.

• exit_code: The job’s exit code. Present only when job is finished.

• status: The current status of the job. On Connect 2022.10.0 and newer, one of Active: 0,
Finished: 1, Finalized: 2; on earlier versions, Active: 0, otherwise NA.

• hostname: The name of the node which processes the job.

• cluster: The location where this content runs. Content running on the same server as Con-
nect will have either a null value or the string Local. Gives the name of the cluster when run
external to the Connect host (see Note 1).

• image: The location where this content runs. Content running on the same server as Connect
will have either a null value or the string Local. References the name of the target image when
content runs in a clustered environment such as Kubernetes (see Note 1).

• run_as: The UNIX user that executed this job.

Note

1. On Connect instances earlier than 2022.10.0, these fields will contain NA values.

See Also

Other job functions: get_log(), terminate_jobs()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_log(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

get_log 59

Examples

Not run:
client <- connect()
item <- content_item(client, "951bf3ad-82d0-4bca-bba8-9b27e35c49fa")
jobs <- get_jobs(item)
job_list <- get_job_list(item)

End(Not run)

get_log Get Job Log

Description

Get the log output for a job. Requires Connect 2022.10.0 or newer.

Usage

get_log(job, max_log_lines = NULL)

Arguments

job A job, represented by an element from the list returned by get_job_list().
max_log_lines Optional. An integer indicating the maximum number of log lines to return. If

NULL (default), Connect returns a maximum of 5000 lines.

Details

Note: The output of get_jobs() cannot be used with get_log(). Please use an object from the
list returned by get_job_list().

Value

A data frame with the requested log. Each row represents an entry.

• source: stdout or stderr
• timestamp: The time of the entry.
• data: The logged text.

See Also

Other job functions: get_jobs(), terminate_jobs()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_thumbnail(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

60 get_oauth_content_credentials

Examples

Not run:
client <- connect()
item <- content_item(client, "951bf3ad-82d0-4bca-bba8-9b27e35c49fa")
jobs <- get_job_list(item)
log <- get_log(jobs[[1]])

End(Not run)

get_oauth_content_credentials

Perform an OAuth credential exchange to obtain a content-specific
OAuth access token.

Description

Perform an OAuth credential exchange to obtain a content-specific OAuth access token.

Usage

get_oauth_content_credentials(
connect,
content_session_token = NULL,
requested_token_type = NULL,
audience = NULL

)

Arguments

connect A Connect R6 object.

content_session_token

Optional. The content session token. This token can only be obtained when the
content is running on a Connect server. The token identifies the service account
integration previously configured by the publisher on the Connect server. De-
faults to the value from the environment variable: CONNECT_CONTENT_SESSION_TOKEN

requested_token_type

Optional. The requested token type. If unset, will default to urn:ietf:params:oauth:token-type:access_token.
Otherwise, this can be set to urn:ietf:params:aws:token-type:credentials
for AWS integrations or urn:posit:connect:api-key for Connect API Key
integrations.

audience Optional. The GUID of an OAuth integration associated with this piece of con-
tent.

get_oauth_credentials 61

Details

Please see https://docs.posit.co/connect/user/oauth-integrations/#obtaining-a-service-account-oauth-
access-token for more information.

Value

The OAuth credential exchange response.

See Also

get_integrations(), get_oauth_credentials()

Examples

Not run:
library(connectapi)
library(plumber)
client <- connect()

#* @get /do
function(req) {

credentials <- get_oauth_content_credentials(client)

... do something with `credentials$access_token` ...

"done"
}

End(Not run)

get_oauth_credentials Perform an OAuth credential exchange to obtain a visitor’s OAuth ac-
cess token.

Description

Perform an OAuth credential exchange to obtain a visitor’s OAuth access token.

Usage

get_oauth_credentials(
connect,
user_session_token,
requested_token_type = NULL,
audience = NULL

)

62 get_oauth_credentials

Arguments

connect A Connect R6 object.
user_session_token

The content visitor’s session token. This token can only be obtained when the
content is running on a Connect server. The token identifies the user who is
viewing the content interactively on the Connect server. Read this value from
the HTTP header: Posit-Connect-User-Session-Token

requested_token_type

Optional. The requested token type. If unset, will default to urn:ietf:params:oauth:token-type:access_token.
Otherwise, this can be set to urn:ietf:params:aws:token-type:credentials
for AWS integrations or urn:posit:connect:api-key for Connect API Key
integrations.

audience Optional. The GUID of an OAuth integration associated with this piece of con-
tent.

Details

Please see https://docs.posit.co/connect/user/oauth-integrations/#obtaining-a-viewer-oauth-access-
token for more information.

Value

The OAuth credential exchange response.

See Also

get_integrations(), get_oauth_content_credentials()

Examples

Not run:
library(connectapi)
library(plumber)
client <- connect()

#* @get /do
function(req) {

user_session_token <- req$HTTP_POSIT_CONNECT_USER_SESSION_TOKEN
credentials <- get_oauth_credentials(client, user_session_token)

... do something with `credentials$access_token` ...

"done"
}

End(Not run)

get_packages 63

get_packages All package dependencies on the server

Description

Get a data frame of package dependencies used by all content items on the server.

Usage

get_packages(src, name = NULL, page_size = 100000, limit = Inf)

Arguments

src A Connect client object.

name Optional package name to filter by. Python package are normalized during
matching; R package names must match exactly.

page_size Optional. Integer specifying page size for API paging.

limit Optional. Specify the maximum number of records after which to cease paging.

Value

A data frame with the following columns:

• language: Language ecosystem the package belongs to (r or python)

• language_version: Version of R or Python used by the content

• name: Package name

• version: Package version

• hash: Package description hash for R packages

• bundle_id: Identifier for the bundle that depends on this package

• content_id: Numeric identifier for the content that depends on this package

• content_guid: The unique identifier of the content item that depends on this package

See Also

Other packages functions: get_content_packages()

Examples

Not run:
client <- connect()
packages <- get_packages(client)

End(Not run)

64 get_runtimes

get_procs Get Real-Time Process Data

Description

[Experimental] This returns real-time process data from the Posit Connect API. It requires admin-
istrator privileges to use. NOTE that this only returns data for the server that responds to the request
(i.e. in a Highly Available cluster)

Usage

get_procs(src)

Arguments

src The source object

Value

A tibble with the following columns:

• pid: The PID of the current process

• appId: The application ID

• appGuid: The application GUID

• appName: The application name

• appUrl: The application URL

• appRunAs: The application RunAs user

• type: The type of process

• cpuCurrent: The current CPU usage

• cpuTotal: The total CPU usage

• ram: The current RAM usage

get_runtimes Get available runtimes on server

Description

Get a table showing available versions of R, Python, Quarto, and Tensorflow on the Connect server.

Usage

get_runtimes(client, runtimes = NULL)

get_runtime_caches 65

Arguments

client A Connect object.

runtimes Optional. A character vector of runtimes to include. Must be some combination
of "r", "python", "quarto", and "tensorflow". Quarto is only supported
on Connect >= 2021.08.0, and Tensorflow is only supported on Connect >=
2024.03.0.

Value

A tibble with columns for runtime, version, and cluster_name and image_name. Cluster name
and image name are only meaningful on Connect instances running off-host execution.

Examples

Not run:
library(connectapi)
client <- connect()
get_runtimes(client, runtimes = c("r", "python", "tensorflow"))

End(Not run)

get_runtime_caches Get runtime caches

Description

View the runtime caches on a Connect server. Requires Administrator privileges.

Usage

get_runtime_caches(client)

Arguments

client A Connect object.

Value

A tibble of runtime caches on the server, showing language, version and image_name. For Con-
nect servers not using off-host execution, image_name is "Local".

See Also

delete_runtime_cache()

Other server management functions: delete_runtime_cache()

66 get_tags

Examples

Not run:
client <- connect()
get_runtime_caches(client)

End(Not run)

get_tags Get all Tags on the server

Description

Tag manipulation and assignment functions

Usage

get_tags(src)

get_tag_data(src)

create_tag(src, name, parent = NULL)

create_tag_tree(src, ...)

delete_tag(src, tag)

get_content_tags(content)

set_content_tag_tree(content, ...)

set_content_tags(content, ...)

filter_tag_tree_id(tags, ids)

filter_tag_tree_chr(tags, pattern)

Arguments

src The source object

name The name of the tag to create

parent optional. A connect_tag_tree object (as returned by get_tags()) pointed at
the parent tag

... Additional arguments
Manage tags (requires Administrator role):

• get_tags() - returns a "tag tree" object that can be traversed with tag_tree$tag1$childtag

get_thumbnail 67

• get_tag_data() - returns a tibble of tag data
• create_tag() - create a tag by specifying the Parent directly
• create_tag_tree() - create tag(s) by specifying the "desired" tag tree hi-

erarchy
• delete_tag() - delete a tag (and its children). WARNING: will disassoci-

ate any content automatically

Manage content tags:

• get_content_tags() - return a connect_tag_tree object corresponding
to the tags for a piece of content.

• set_content_tag_tree() - attach a tag to content by specifying the de-
sired tag tree

• set_content_tags() - Set multiple tags at once by providing connect_tag_tree
objects

Search a tag tree:

• filter_tag_tree_chr() - filters a tag tree based on a regex
• filter_tag_tree_id() - filters a tag tree based on an id

tag A connect_tag_tree object (as returned by get_tags())

content An R6 Content object, as returned by content_item()

tags A connect_tag_tree object (as returned by get_tags())

ids A list of ids to filter the tag tree by

pattern A regex to filter the tag tree by (it is passed to grepl)

get_thumbnail Get content item thumbnail

Description

Download the thumbnail for a content item on Connect to a file on your computer.

Usage

get_thumbnail(content, path = NULL)

Arguments

content A content item.

path Optional. A path to a file used to write the thumbnail image. If no path is
provided, a temporary file with the correct file extension is created.

Value

The path to the downloaded image file, if content has a thumbnail; otherwise NA.

68 get_timezones

See Also

Other thumbnail functions: delete_thumbnail(), has_thumbnail(), set_thumbnail()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_vanity_url(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()
item <- content_item(client, "8f37d6e0-3395-4a2c-aa6a-d7f2fe1babd0")
thumbnail <- get_thumbnail(item)

End(Not run)

get_timezones Get TimeZones

Description

Get the available timezones from the server.

Usage

get_timezones(connect)

Arguments

connect An R6 Connect object

Value

A TimeZone vector to be used for setting time zones

See Also

Other schedule functions: get_variant_schedule(), set_schedule()

get_usage 69

get_usage Get usage information for deployed content

Description

Retrieve content hits for all available content on the server. Available content depends on the user
whose API key is in use. Administrator accounts will receive data for all content on the server.
Publishers will receive data for all content they own or collaborate on.

If no date-times are provided, all usage data will be returned.

Usage

get_usage(client, from = NULL, to = NULL)

Arguments

client A Connect R6 client object.

from Optional date-time (POSIXct or POSIXlt). Only records after this time are re-
turned. If not provided, records are returned back to the first record available.

to Optional date-time (POSIXct or POSIXlt). Only records before this time are
returned. If not provided, all records up to the most recent are returned.

Details

The data returned by get_usage() includes all content types. For Shiny content, the timestamp
indicates the start of the Shiny session. Additional fields for Shiny and non-Shiny are available
respectively from get_usage_shiny() and get_usage_static(). get_usage_shiny() includes
a field for the session end time; get_usage_static() includes variant, rendering, and bundle iden-
tifiers for the visited content.

When possible, however, we recommend using get_usage() over get_usage_static() or get_usage_shiny(),
as it is faster and more efficient.

Value

A list of usage records. Each record is a list with all elements as character strings unless otherwise
specified.

• id: An integer identifier for the hit.

• user_guid: The user GUID if the visitor is logged-in, NULL for anonymous hits.

• content_guid: The GUID of the visited content.

• timestamp: The time of the hit in RFC3339 format.

• data: A nested list with optional fields:

– path: The request path (if recorded).
– user_agent: The user agent string (if available).

70 get_usage_shiny

Use as.data.frame() or tibble::as_tibble() to convert to a flat table with parsed types. In
the resulting data frame:

• timestamp is parsed to POSIXct.

• path and user_agent are extracted from the nested data field.

By default, as.data.frame() attempts to extract the nested fields using the tidyr package. If tidyr
is not available, or if you want to skip unnesting, call as.data.frame(x, unnest = FALSE) to leave
data as a list-column.

See Also

as.data.frame.connect_list_hits(), as_tibble.connect_list_hits()

Examples

Not run:
client <- connect()

Fetch the last 2 days of hits
usage <- get_usage(client, from = Sys.Date() - 2, to = Sys.Date())

Fetch usage after a specified date and convert to a data frame.
usage <- get_usage(

client,
from = as.POSIXct("2025-05-02 12:40:00", tz = "UTC")

)

Fetch all usage
usage <- get_usage(client)

Convert to tibble or data frame
usage_df <- tibble::as_tibble(usage)

Skip unnesting if tidyr is not installed
usage_df <- as.data.frame(usage, unnest = FALSE)

End(Not run)

get_usage_shiny Get usage information for deployed shiny applications

Description

Get usage information for deployed shiny applications

get_usage_shiny 71

Usage

get_usage_shiny(
src,
content_guid = NULL,
min_data_version = NULL,
from = NULL,
to = NULL,
limit = 500,
previous = NULL,
nxt = NULL,
asc_order = TRUE

)

Arguments

src the source object

content_guid Filter results by content GUID
min_data_version

Filter by data version. Records with a data version lower than the given value
will be excluded from the set of results.

from The timestamp that starts the time window of interest. Any usage information
that ends prior to this timestamp will not be returned. Individual records may
contain a starting time that is before this if they end after it or have not finished.
Must be of class Date or POSIX

to The timestamp that ends the time window of interest. Any usage information
that starts after this timestamp will not be returned. Individual records may
contain an ending time that is after this (or no ending time) if they start before
it. Must be of class Date or POSIX

limit The number of records to return.

previous Retrieve the previous page of Shiny application usage logs relative to the pro-
vided value. This value corresponds to an internal reference within the server
and should be sourced from the appropriate attribute within the paging object of
a previous response.

nxt Retrieve the next page of Shiny application usage logs relative to the provided
value. This value corresponds to an internal reference within the server and
should be sourced from the appropriate attribute within the paging object of a
previous response.

asc_order Defaults to TRUE; Determines if the response records should be listed in as-
cending or descending order within the response. Ordering is by the started
timestamp field.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/instrumentation/shiny/usage for more infor-
mation.

72 get_usage_static

Value

A tibble with the following columns:

• content_guid: The GUID, in RFC4122 format, of the Shiny application this information
pertains to.

• user_guid: The GUID, in RFC4122 format, of the user that visited the application.

• started: The timestamp, in RFC3339 format, when the user opened the application.

• ended: The timestamp, in RFC3339 format, when the user left the application.

• data_version: The data version the record was recorded with. The Shiny Application Events
section of the Posit Connect Admin Guide explains how to interpret data_version values.

Examples

Not run:
library(connectapi)
client <- connect()

from <- Sys.Date() - lubridate::days(5)
get_usage_shiny(client, limit = 20, from = from)

End(Not run)

get_usage_static Get usage information from deployed static content

Description

This function retrieves usage information from static content on the Posit Connect server (e.g.
Rmarkdown, Jupyter Notebooks)

Usage

get_usage_static(
src,
content_guid = NULL,
min_data_version = NULL,
from = NULL,
to = NULL,
limit = 500,
previous = NULL,
nxt = NULL,
asc_order = TRUE

)

get_usage_static 73

Arguments

src the source object
content_guid Filter results by content GUID
min_data_version

Filter by data version. Records with a data version lower than the given value
will be excluded from the set of results.

from The timestamp that starts the time window of interest. Any usage information
that ends prior to this timestamp will not be returned. Individual records may
contain a starting time that is before this if they end after it or have not finished.
Must be of class Date or POSIX

to The timestamp that ends the time window of interest. Any usage information
that starts after this timestamp will not be returned. Individual records may
contain an ending time that is after this (or no ending time) if they start before
it. Must be of class Date or POSIX

limit The number of records to return.
previous Retrieve the previous page of Shiny application usage logs relative to the pro-

vided value. This value corresponds to an internal reference within the server
and should be sourced from the appropriate attribute within the paging object of
a previous response.

nxt Retrieve the next page of Shiny application usage logs relative to the provided
value. This value corresponds to an internal reference within the server and
should be sourced from the appropriate attribute within the paging object of a
previous response.

asc_order Defaults to TRUE; Determines if the response records should be listed in as-
cending or descending order within the response. Ordering is by the started
timestamp field.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/instrumentation/content/visits for more infor-
mation.

Value

A tibble with the following columns:

• content_guid: The GUID, in RFC4122 format, of the Shiny application this information
pertains to.

• user_guid: The GUID, in RFC4122 format, of the user that visited the application.
• variant_key: The key of the variant the user visited. This will be null for static content.
• time: The timestamp, in RFC3339 format, when the user visited the content.
• rendering_id: The ID of the rendering the user visited. This will be null for static content.
• bundle_id: The ID of the particular bundle used.
• data_version: The data version the record was recorded with. The Rendered and Static

Content Visit Events section of the Posit Connect Admin Guide explains how to interpret
data_version values.

74 get_users

Examples

Not run:
library(connectapi)
client <- connect()

from <- Sys.Date() - lubridate::days(5)
get_usage_static(client, limit = 20, from = from)

End(Not run)

get_users Get user information from the Posit Connect server

Description

Get user information from the Posit Connect server

Usage

get_users(
src,
page_size = 500,
prefix = NULL,
limit = Inf,
user_role = NULL,
account_status = NULL

)

Arguments

src The source object

page_size the number of records to return per page (max 500)

prefix Filters users by prefix (username, first name, or last name). The filter is case
insensitive.

limit The max number of records to return

user_role Optionally filter by user role ("administrator", "publisher", "viewer"). Pass in
a vector of multiple roles to match any value (boolean OR). When NULL (the
default), results are not filtered.

account_status Optionally filter by account status ("locked", "licensed", "inactive"). Pass a vec-
tor of multiple statuses to match any value (boolean OR). When NULL (the de-
fault), results are not filtered.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/users for more information.

get_vanity_url 75

Value

A tibble with the following columns:

• email: The user’s email

• username: The user’s username

• first_name: The user’s first name

• last_name: The user’s last name

• user_role: The user’s role. It may have a value of administrator, publisher or viewer.

• created_time: The timestamp (in RFC3339 format) when the user was created in the Posit
Connect server

• updated_time: The timestamp (in RFC3339 format) when the user was last updated in the
Posit Connect server

• active_time: The timestamp (in RFC3339 format) when the user was last active on the Posit
Connect server

• confirmed: When false, the created user must confirm their account through an email. This
feature is unique to password authentication.

• locked: Whether or not the user is locked

• guid: The user’s GUID, or unique identifier, in UUID RFC4122 format

Examples

Not run:
library(connectapi)
client <- connect()

Get all users
get_users(client)

Get all licensed users
get_users(client, account_status = "licensed")

Get all users who are administrators or publishers
get_users(client, user_role = c("administrator", "publisher"))

End(Not run)

get_vanity_url Get the Vanity URL

Description

Get the vanity URL for a piece of content.

76 get_vanity_urls

Usage

get_vanity_url(content)

Arguments

content A Content object

Value

A character string (or NULL if not defined)

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), git, has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

get_vanity_urls Get all vanity URLs

Description

Get a table of all vanity URLs on the server. Requires administrator privileges.

Usage

get_vanity_urls(client)

Arguments

client A Connect object.

Value

A tibble with columns for content_guid, path, and created_time.

Examples

Not run:
library(connectapi)
client <- connect()
get_vanity_urls(client)

End(Not run)

get_variants 77

get_variants Get Variant

Description

[Experimental] Work with variants

Usage

get_variants(content)

get_variant(content, key)

get_variant_default(content)

Arguments

content An R6 Content object. Returned from content_item()

key The Variant key for a specific variant

Details

• get_variants() returns a tibble with variant data for a content_item

• get_variant_default() returns the default variant for a content_item

• get_variant() returns a specific variant for a content_item (specified by key)

See Also

Other variant functions: get_variant_renderings()

Other variant functions: get_variant_renderings()

Other variant functions: get_variant_renderings()

get_variant_renderings

Render a Variant

Description

[Experimental] Get details about renderings (i.e. render history) or execute a variant on demand

Usage

get_variant_renderings(variant)

variant_render(variant)

78 get_variant_schedule

Arguments

variant An R6 Variant object. As returned by get_variant() or get_variant_default()

Details

• get_variant_renderings() returns all renderings / content for a particular variant. Returns
a tibble

• variant_render() executes a variant on demand. Returns a VariantTask object

See Also

Other variant functions: get_variants()

get_variant_schedule Get a Variant Schedule

Description

[Experimental] Gets the schedule associated with a Variant.

Usage

get_variant_schedule(variant)

Arguments

variant A Variant object, as returned by get_variant() or get_variant_default()

Value

A VariantSchedule object

See Also

Other schedule functions: get_timezones(), set_schedule()

git 79

git Git Repository Helpers

Description

[Experimental] These functions help use Posit Connect’s configured authorization to query avail-
able branches and subdirectories for deployment using deploy_repo()

Usage

repo_check_account(client, host)

repo_check_branches(client, repository)

repo_check_branches_ref(client, repository)

repo_check_manifest_dirs(client, repository, branch)

Arguments

client A Connect R6 object

host The git repository host (with schema). For example, "https://github.com"

repository The git repository to explore or consider deploying

branch The git branch to explore for subdirectories

Details

• repo_check_account() messages whether an account is in use, and then returns that account

• repo_check_branches() retrieves which branches are available, returning in a named list

• repo_check_manifest_dirs() retrieves which directories contain a manifest.json, return-
ing in a named list

See Also

connectapi::deploy_repo

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), has_thumbnail(), lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

80 has_thumbnail

groups_create_remote Create a Remote Group

Description

Create a Remote Group

Usage

groups_create_remote(connect, prefix, expect = 1, check = TRUE, exact = FALSE)

Arguments

connect An R6 Connect object.

prefix character. The prefix of the user name to search for.

expect number. Optional. The number of responses to expect for this search.

check boolean. Optional. Whether to check for local existence first.

exact boolean. Optional. Whether to only create groups whose name exactly matches
the provided prefix.

Value

The results of creating the groups.

has_thumbnail Check content item thumbnail

Description

Check whether a content item has a thumbnail.

Usage

has_thumbnail(content)

Arguments

content A content item.

Value

TRUE if the content item has a thumbnail, otherwise FALSE. Throws an error if you do not have
permission to view the thumbnail.

lock_content 81

See Also

Other thumbnail functions: delete_thumbnail(), get_thumbnail(), set_thumbnail()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, lock_content(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()
item <- content_item(client, "8f37d6e0-3395-4a2c-aa6a-d7f2fe1babd0")
has_thumbnail(item)

End(Not run)

lock_content Lock or Unlock Content

Description

Lock or unlock a content item. When content is locked, all processes are terminated, rendering is
disabled, and new bundles cannot be deployed.

Usage

lock_content(content, locked_message = "")

unlock_content(content)

Arguments

content An R6 content item

locked_message Optional. A custom message that is displayed by the content item when locked.
It is possible to format this message using Markdown.

Details

lock_content() locks a content item with an optional message displayed to visitors (supports
Markdown).

unlock_content() unlocks a content item, reverting the effects of locking.

Value

An R6 content item

82 page_cursor

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), permissions, search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
Lock content with a message
client <- connect()
content <- content_item(client, "content-guid")
content <- lock_content(content, locked_message = "Ah ah ah! You didn't say the magic word!")

Lock content without a message
content <- lock_content(content)

Unlock content
content <- unlock_content(content)

End(Not run)

page_cursor Paging

Description

Helper functions that make paging easier in the Posit Connect Server API.

Helper functions that make paging easier in the Posit Connect Server API.

Usage

page_cursor(client, req, limit = Inf)

page_offset(client, req, limit = Inf)

Arguments

client A Connect client object
req The request that needs to be paged
limit A row limit

Value

The aggregated results from all requests

The aggregated results from all requests

permissions 83

permissions Content permissions

Description

Get or set content permissions for a content item

Usage

content_add_user(content, guid, role = c("viewer", "owner"))

content_add_group(content, guid, role = c("viewer", "owner"))

content_delete_user(content, guid)

content_delete_group(content, guid)

get_user_permission(content, guid, add_owner = TRUE)

get_my_permission(content, add_owner = TRUE)

get_group_permission(content, guid)

get_content_permissions(content, add_owner = TRUE)

Arguments

content An R6 content object

guid The guid associated with either a user (for content_add_user) or group (for
content_add_group)

role The role to assign to a user. Either "viewer" or "owner." Defaults to "viewer"

add_owner Optional. Whether to include the owner in returned permission sets. Default is
TRUE. The owner will have an NA_character_ permission "id"

Details

Permission modification:

• content_add_* adds a permission to the content
• content_delete_* removes a permission from the content

Permission retrieval:

• get_content_permissions() lists permissions

• get_my_permission() gets the permission associated with the caller.

• get_user_permission() gets the permissions associated with a given user. It does not eval-
uate group memberships

84 poll_task

• get_group_permission() gets the permissions associated with a given group.

NOTE: by default, the owner is injected with an "NA_character_" permission id. This makes it
easier to find / isolate this record.

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), search_content(),
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

poll_task Poll Task

Description

Polls a task, waiting for information about a deployment. If the task has results, the output will be
a modified "Task" object with task$get_data() available to retrieve the results.

Usage

poll_task(task, wait = 1, callback = message)

Arguments

task A Task object

wait The interval to wait between polling

callback A function to be called for each message received. Set to NULL for no callback

Details

For a simple way to silence messages, set callback = NULL

Value

Task The Task object that was input

See Also

Other deployment functions: bundle_dir(), bundle_path(), bundle_static(), deploy(), download_bundle()

PositConnect 85

PositConnect Class representing a Connect API client

Description

Class representing a Connect API client

Class representing a Connect API client

Usage

client <- Connect$new(server = 'connect.example.com',
api_key = 'mysecretkey')

get_content(client)
client$get_tags()

Details

This class allows a user to interact with a Connect server via the Connect API. Authentication is
done by providing an API key.

Public fields

server The base URL of your Posit Connect server.

api_key Your Posit Connect API key.

tags The initial set of tags.

tag_map The initial tag map.

httr_additions An initial set of httr configuration added to each HTTP call.

using_auth Indicates that the API key is added to each HTTP call.

Active bindings

version The server version.

timezones The server timezones.

Methods

Public methods:
• Connect$new()

• Connect$httr_config()

• Connect$print()

• Connect$raise_error()

• Connect$add_auth()

• Connect$api_url()

86 PositConnect

• Connect$server_url()

• Connect$request()

• Connect$GET()

• Connect$PUT()

• Connect$HEAD()

• Connect$DELETE()

• Connect$PATCH()

• Connect$POST()

• Connect$me()

• Connect$get_dashboard_url()

• Connect$get_tags()

• Connect$get_tag_id()

• Connect$get_tag_tree()

• Connect$tag_create_safe()

• Connect$tag_create()

• Connect$tag()

• Connect$tag_delete()

• Connect$get_schedule()

• Connect$content_create()

• Connect$content_upload()

• Connect$content_deploy()

• Connect$content()

• Connect$task()

• Connect$set_content_tag()

• Connect$remove_content_tag()

• Connect$user()

• Connect$users()

• Connect$users_remote()

• Connect$users_create()

• Connect$users_create_remote()

• Connect$users_lock()

• Connect$users_unlock()

• Connect$users_update()

• Connect$groups()

• Connect$group_members()

• Connect$group_member_add()

• Connect$group_member_remove()

• Connect$groups_create()

• Connect$groups_create_remote()

• Connect$groups_remote()

• Connect$group_content()

• Connect$inst_content_visits()

PositConnect 87

• Connect$inst_shiny_usage()

• Connect$procs()

• Connect$repo_account()

• Connect$repo_branches()

• Connect$repo_manifest_dirs()

• Connect$schedules()

• Connect$packages()

• Connect$docs()

• Connect$audit_logs()

• Connect$vanities()

• Connect$server_settings_r()

• Connect$server_settings()

• Connect$clone()

Method new(): Initialize a new connect.

Usage:
Connect$new(server, api_key)

Arguments:

server The base URL of your Posit Connect server.
api_key Your Posit Connect API key.

Method httr_config(): Set additional httr configuration that is added to each HTTP call.

Usage:
Connect$httr_config(...)

Arguments:

... Set of httr configurations.

Method print(): Print details about this instance.

Usage:
Connect$print(...)

Arguments:

... Ignored.

Method raise_error(): Raise an error when the HTTP result is an HTTP error.

Usage:
Connect$raise_error(res)

Arguments:

res HTTP result.

Method add_auth(): Returns HTTP authorization headers, or NULL when none are used.

Usage:
Connect$add_auth()

88 PositConnect

Method api_url(): Build a URL relative to the API root

Usage:
Connect$api_url(...)

Arguments:

... path segments

Method server_url(): Build a URL relative to the server root

Usage:
Connect$server_url(...)

Arguments:

... path segments

Method request(): General wrapper around httr verbs

Usage:
Connect$request(method, url, ..., parser = "parsed")

Arguments:

method HTTP request method
url URL to request
... Additional arguments passed to the request function
parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,

the argument is forwarded to httr::content(res, as = parser).

Method GET(): Perform an HTTP GET request of the named API path.

Usage:
Connect$GET(path, ..., url = self$api_url(path), parser = "parsed")

Arguments:

path API path relative to the server’s /__api__ root.
... Arguments to httr::GET()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__

parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,
the argument is forwarded to httr::content(res, as = parser).

Method PUT(): Perform an HTTP PUT request of the named API path.

Usage:
Connect$PUT(
path,
body = "{}",
...,
url = self$api_url(path),
encode = "json",
parser = "parsed"

)

PositConnect 89

Arguments:
path API path relative to the server’s /__api__ root.
body The HTTP payload.
... Arguments to httr::PUT()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__

encode How the payload is encoded.
parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,

the argument is forwarded to httr::content(res, as = parser).

Method HEAD(): Perform an HTTP HEAD request of the named API path.

Usage:
Connect$HEAD(path, ..., url = self$api_url(path))

Arguments:
path API path relative to the server’s /__api__ root.
... Arguments to httr::HEAD()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__ httr::content(res, as = parser).

Method DELETE(): Perform an HTTP DELETE request of the named API path. Returns the
HTTP response object.

Usage:
Connect$DELETE(path, ..., url = self$api_url(path), parser = NULL)

Arguments:
path API path relative to the server’s /__api__ root.
... Arguments to httr::DELETE()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__

parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,
the argument is forwarded to httr::content(res, as = parser).

Method PATCH(): Perform an HTTP PATCH request of the named API path.

Usage:
Connect$PATCH(
path,
body = "{}",
...,
url = self$api_url(path),
encode = "json",
parser = "parsed"

)

Arguments:
path API path relative to the server’s /__api__ root.
body The HTTP payload.

90 PositConnect

... Arguments to httr::PATCH()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__

encode How the payload is encoded.
parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,

the argument is forwarded to httr::content(res, as = parser).

Method POST(): Perform an HTTP POST request of the named API path.

Usage:
Connect$POST(
path,
body = "{}",
...,
url = self$api_url(path),
encode = "json",
parser = "parsed"

)

Arguments:

path API path relative to the server’s /__api__ root.
body The HTTP payload.
... Arguments to httr::POST()

url Target URL. Default uses path, but provide url to request a server resource that is not
under /__api__

encode How the payload is encoded.
parser How the response is parsed. If NULL, the httr_response will be returned. Otherwise,

the argument is forwarded to httr::content(res, as = parser).

Method me(): Perform an HTTP GET request of the "me" server endpoint.

Usage:
Connect$me()

Method get_dashboard_url(): Return the base URL of the Connect server.

Usage:
Connect$get_dashboard_url()

Method get_tags(): Return all tags.

Usage:
Connect$get_tags(use_cache = FALSE)

Arguments:

use_cache Indicates that a cached set of tags is used.

Method get_tag_id(): Get the identifier for the named tag.

Usage:
Connect$get_tag_id(tagname)

PositConnect 91

Arguments:
tagname The name of the tag.

Method get_tag_tree(): Get the tag tree.

Usage:
Connect$get_tag_tree()

Method tag_create_safe(): Create a tag.

Usage:
Connect$tag_create_safe(name, parent_id = NULL)

Arguments:
name The tag name.
parent_id The parent identifier.

Method tag_create(): Create a tag.

Usage:
Connect$tag_create(name, parent_id = NULL)

Arguments:
name The tag name.
parent_id The parent identifier.

Method tag(): Get a tag.

Usage:
Connect$tag(id = NULL)

Arguments:
id The tag identifier.

Method tag_delete(): Delete a tag.

Usage:
Connect$tag_delete(id)

Arguments:
id The tag identifier.

Method get_schedule(): Get a schedule.

Usage:
Connect$get_schedule(schedule_id)

Arguments:
schedule_id The schedule identifier.

Method content_create(): Create content.

Usage:
Connect$content_create(name, title = name, ...)

Arguments:

92 PositConnect

name The content name.
title The content title.
... Other content fields.

Method content_upload(): Upload a content bundle.

Usage:
Connect$content_upload(bundle_path, guid)

Arguments:

bundle_path The path to the bundle archive.
guid The content GUID.

Method content_deploy(): Deploy a content bundle.

Usage:
Connect$content_deploy(guid, bundle_id)

Arguments:

guid The content GUID.
bundle_id The bundle identifier.

Method content(): Get a content item.

Usage:
Connect$content(
guid = NULL,
owner_guid = NULL,
name = NULL,
include = "tags,owner"

)

Arguments:

guid The content GUID.
owner_guid The target content owner.
name The target name.
include Additional response fields.

Method task(): Get a task.

Usage:
Connect$task(task_id, first = 0, wait = 5)

Arguments:

task_id The task identifier.
first The initial status position.
wait Maximum time to wait for update.

Method set_content_tag(): Set a tag for a content item.

Usage:
Connect$set_content_tag(content_id, tag_id)

PositConnect 93

Arguments:

content_id The content identifier.
tag_id The tag identifier.

Method remove_content_tag(): Remove a tag from a content item.

Usage:
Connect$remove_content_tag(content_id, tag_id)

Arguments:

content_id The content identifier.
tag_id The tag identifier.

Method user(): Get user details.

Usage:
Connect$user(guid)

Arguments:

guid The user GUID.

Method users(): Get users.

Usage:
Connect$users(
page_number = 1,
prefix = NULL,
page_size = 500,
user_role = NULL,
account_status = NULL

)

Arguments:

page_number The page number.
prefix The search term.
page_size The page size.
user_role Filter by user role.
account_status Filter by account status.

Method users_remote(): Get remote users.

Usage:
Connect$users_remote(prefix)

Arguments:

prefix The search term.

Method users_create(): Create a user.

Usage:

94 PositConnect

Connect$users_create(
username,
email,
first_name = NULL,
last_name = NULL,
password = NULL,
user_must_set_password = NULL,
user_role = NULL,
unique_id = NULL

)

Arguments:

username The username.
email Email address.
first_name First name.
last_name Last name.
password The password.
user_must_set_password Indicates that user sets password on first login.
user_role Role for user.
unique_id Identifier for user.

Method users_create_remote(): Create a remote user.

Usage:
Connect$users_create_remote(temp_ticket)

Arguments:

temp_ticket Ticket identifying target remote user.

Method users_lock(): Lock a user.

Usage:
Connect$users_lock(user_guid)

Arguments:

user_guid User GUID.

Method users_unlock(): Unlock a user.

Usage:
Connect$users_unlock(user_guid)

Arguments:

user_guid User GUID.

Method users_update(): Update a user.

Usage:
Connect$users_update(user_guid, ...)

Arguments:

user_guid User GUID.

PositConnect 95

... User fields.

Method groups(): Get groups.

Usage:
Connect$groups(page_number = 1, prefix = NULL, page_size = 500)

Arguments:
page_number The page number.
prefix The search term.
page_size The page size.

Method group_members(): Get group members.

Usage:
Connect$group_members(guid)

Arguments:
guid The group GUID.

Method group_member_add(): Add a group member.

Usage:
Connect$group_member_add(group_guid, user_guid)

Arguments:
group_guid The group GUID.
user_guid The user GUID.

Method group_member_remove(): Remove a group member.

Usage:
Connect$group_member_remove(group_guid, user_guid)

Arguments:
group_guid The group GUID.
user_guid The user GUID.

Method groups_create(): Create a group.

Usage:
Connect$groups_create(name)

Arguments:
name The group name.

Method groups_create_remote(): Create a remote group.

Usage:
Connect$groups_create_remote(temp_ticket)

Arguments:
temp_ticket Ticket identifying target remote group.

Method groups_remote(): Get remote groups.

96 PositConnect

Usage:
Connect$groups_remote(prefix = NULL, limit = 500)

Arguments:
prefix The search term.
limit The maximal result set size.

Method group_content(): Get content to which a group has access
Usage:
Connect$group_content(guid)

Arguments:
guid The group GUID.

Method inst_content_visits(): Get (non-interactive) content visits.
Usage:
Connect$inst_content_visits(
content_guid = NULL,
min_data_version = NULL,
from = NULL,
to = NULL,
limit = 500,
previous = NULL,
nxt = NULL,
asc_order = TRUE

)

Arguments:
content_guid Content GUID.
min_data_version Data version for request.
from Start of range.
to End of range.
limit Result set size.
previous Previous item.
nxt Next item.
asc_order Indicates ascending result order.

Method inst_shiny_usage(): Get interactive content visits.
Get (non-interactive) content visits.

Usage:
Connect$inst_shiny_usage(
content_guid = NULL,
min_data_version = NULL,
from = NULL,
to = NULL,
limit = 500,
previous = NULL,
nxt = NULL,
asc_order = TRUE

)

PositConnect 97

Arguments:
content_guid Content GUID.
min_data_version Data version for request.
from Start of range.
to End of range.
limit Result set size.
previous Previous item.
nxt Next item.
asc_order Indicates ascending result order.

Method procs(): Get running processes.

Usage:
Connect$procs()

Method repo_account(): Determine if Git repository is associated with authorization.

Usage:
Connect$repo_account(host)

Arguments:
host Repository URL.

Method repo_branches(): Get Git repository branches.

Usage:
Connect$repo_branches(repo)

Arguments:
repo Repository URL.

Method repo_manifest_dirs(): Get Git repository directories.

Usage:
Connect$repo_manifest_dirs(repo, branch)

Arguments:
repo Repository URL.
branch Repository branch.

Method schedules(): Get schedules.

Usage:
Connect$schedules(
start = Sys.time(),
end = Sys.time() + 60 * 60 * 24 * 7,
detailed = FALSE

)

Arguments:
start Starting time.
end Ending time.

98 PositConnect

detailed Indicates detailed schedule information.

Method packages(): Get packages. This endpoint is paginated.
Usage:
Connect$packages(name = NULL, page_number = 1, page_size = 1e+05)

Arguments:
name The package name to filter by.
page_number Page number.
page_size Page size, default 100000.

Method docs(): Get documentation.
Usage:
Connect$docs(docs = "api", browse = TRUE)

Arguments:
docs Named document.
browse Open a browser.

Method audit_logs(): Get auditing.
Usage:
Connect$audit_logs(limit = 500, previous = NULL, nxt = NULL, asc_order = TRUE)

Arguments:
limit Result set size.
previous Previous item.
nxt Next item.
asc_order Indicates ascending result order.

Method vanities(): Get all vanity URLs
Usage:
Connect$vanities()

Method server_settings_r(): Get R installations.
Usage:
Connect$server_settings_r()

Method server_settings(): Get server settings.
Usage:
Connect$server_settings()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Connect$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, Task, Vanity, Variant, VariantSchedule,
VariantTask

promote 99

promote Promote content from one Connect server to another

Description

Promote content from one Connect server to another

Usage

promote(from, to, to_key, from_key, name)

Arguments

from The url for the server containing the content (the originating server)
to The url for the server where the content will be deployed (the destination server)
to_key An API key on the destination "to" server. If the destination content is going to

be updated, the API key must belong to a user with collaborator access on the
content that will be updated. If the destination content is to be created new, the
API key must belong to a user with publisher privileges.

from_key An API key on the originating "from" server. The API key must belong to a user
with collaborator access to the content to be promoted.

name The name of the content on the originating "from" server. If content with the
same name is found on the destination server, the content will be updated. If no
content on the destination server has a matching name, a new endpoint will be
created.

Value

The URL for the content on the destination "to" server

search_content Search for content on the Connect server

Description

Search for content on the Connect server

Usage

search_content(
client,
q = NULL,
include = "owner,vanity_url",
page_size = 500,
limit = Inf,
...

)

100 search_content

Arguments

client A Connect object

q The search query, using the syntax described in the Connect documentation on
content search terms

include Comma-separated character string of values indicating additional details to in-
clude in the response. Values can be owner and vanity_url; both are included
by default.

page_size The number of items to fetch per page. Maximum is 500.

limit Maximum number of items to return overall. Defaults to Inf (all items).

... Additional query parameters passed to the API for future expansion. Note: If
you pass page_number here, it will affect the starting page for pagination, but
all subsequent pages will still be fetched. This is usually not what you want.

Details

Please see https://docs.posit.co/connect/api/#get-/v1/search/content for more information.

Value

A list of Content objects, of class "connect_content_list"

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
set_image_path(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
library(connectapi)
client <- connect()

my_content <- search_content(client, q = "owner:@me")

shiny_content <- purrr::keep(my_content, function(x) {
x$content$app_mode == "rmd-shiny"

})

purrr::map(shiny_content, lock_content)

End(Not run)

https://docs.posit.co/connect/user/viewing-content/#searching-content

set_image_path 101

set_image_path Set the Content Image

Description

[Deprecated]

Please use set_thumbnail instead.

Set the Content Image using a variety of methods.

Usage

set_image_path(content, path)

set_image_url(content, url)

set_image_webshot(content, ...)

Arguments

content A content object

path The path to an image on disk

url The url for an image

... Additional arguments passed on to webshot2::webshot()

Details

NOTE: set_image_webshot() requires webshot2::webshot(), but currently skips and warns for
any content that requires authentication until the webshot2 package supports authentication.

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_integrations(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

102 set_integrations

set_integrations Set all OAuth integrations for a content item

Description

Removes all existing OAuth integrations associated with a content item, and creates associations
with the integrations provided. You must have administrator or publisher privileges to perform this
action.

Usage

set_integrations(content, integrations)

Arguments

content A Content R6 object representing the content item to modify.

integrations The complete set of integrations to be associated with the content. May be a
single connect_integration object, a list of connect_integration objects,
or NULL. Passing in an empty list or explicitly passing NULL will remove all
associated integrations from the content.

Value

Invisibly returns NULL.

See Also

get_integrations(), get_integration(), get_associations(), content_item()

Other oauth integration functions: create_integration(), delete_integration(), get_associations(),
get_integration(), get_integrations(), update_integration()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_run_as(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()

content <- content_item(client, "12345678-90ab-cdef-1234-567890abcdef")

integrations <- get_integrations(client)

Associate a single integration

set_run_as 103

github_integration <- purrr::keep(integrations, \(x) x$template == "github")[[1]]
set_integrations(content, github_integration)

Associate multiple integrations at once
selected_integrations <- integrations[1:2]
set_integrations(content, selected_integrations)

Unset integrations
set_integrations(content, NULL)

End(Not run)

set_run_as Set RunAs User

Description

Set the RunAs user for a piece of content. The run_as_current_user flag only does anything if:

Usage

set_run_as(content, run_as, run_as_current_user = FALSE)

Arguments

content an R6 Content item

run_as The RunAs user to use for this content
run_as_current_user

Whether to run this content as the viewer of the application

Details

• PAM is the authentication method

• Applications.RunAsCurrentUser is enabled on the server

Also worth noting that the run_as user must exist on the Posit Connect server (as a linux user) and
have appropriate group memberships, or you will get a 400: Bad Request. Set to NULL to use the
default RunAs user / unset any current configuration.

To "read" the current RunAs user, use the Content object or get_content() function.

Value

a Content object, updated with new details

104 set_schedule

See Also

connectapi::content_update

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_thumbnail(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

set_schedule Set a Schedule

Description

[Experimental] Sets the schedule for a given Variant. Requires a Schedule object (as returned by
get_variant_schedule())

Usage

set_schedule(.schedule, ...)

set_schedule_minute(
.schedule,
n = 30,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_hour(
.schedule,
n = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_day(
.schedule,
n = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

set_schedule 105

)

set_schedule_weekday(
.schedule,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_week(
.schedule,
n = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_dayofweek(
.schedule,
days,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_semimonth(
.schedule,
first = TRUE,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_dayofmonth(
.schedule,
n = 1,
day = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_dayweekofmonth(

106 set_schedule

.schedule,
n = 1,
day = 1,
week = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_year(
.schedule,
n = 1,
start_time = Sys.time(),
activate = TRUE,
email = FALSE,
timezone = Sys.timezone()

)

set_schedule_remove(.schedule)

schedule_describe(.schedule)

Arguments

.schedule A schedule object. As returned by get_variant_schedule()

... Scheduling parameters

n The "number of" iterations

start_time The start time of the schedule

activate Whether to publish the output of this schedule

email Whether to send emails on this schedule

timezone The timezone to use for setting the schedule. Defaults to Sys.timezone()

days The days of the week (0-6)

first logical Whether to execute on the 1st and 15th (TRUE) or 14th and last (FALSE)

day The day of the week (0-6) or day of the month (0-31)

week The week of the month (0-5)

schedule A JSON blob (as a string) describing the schedule. See "More Details"

Details

• set_schedule() is a raw interface to Posit Connect’s schedule API
• set_schedule_*() functions provide handy wrappers around set_schedule()

• set_schedule_remove() removes a schedule / un-schedules a variant

Beware, using set_schedule() currently uses the Posit Connect schedule API directly, and so
can be a little clunky. Using the set_schedule_*() is generally recommended.

set_thumbnail 107

Value

An updated Schedule object

See Also

Other schedule functions: get_timezones(), get_variant_schedule()

set_thumbnail Set content item thumbnail

Description

Set the thumbnail for a content item.

Usage

set_thumbnail(content, path)

Arguments

content A content item.

path Either a path to a local file or a URL to an image available over HTTP/HTTPS.
If path is an HTTP or HTTPS URL, the image will first be downloaded.

Value

The content item (invisibly).

See Also

Other thumbnail functions: delete_thumbnail(), get_thumbnail(), has_thumbnail()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_run_as(), set_vanity_url(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
client <- connect()
item <- content_item(client, "8f37d6e0-3395-4a2c-aa6a-d7f2fe1babd0")
set_thumbnail(item, "resources/image.png")

End(Not run)

108 set_vanity_url

set_vanity_url Set the Vanity URL

Description

Set the vanity URL for a piece of content.

Usage

set_vanity_url(content, url, force = FALSE)

Arguments

content A Content object

url The path component of the URL

force optional. Default FALSE. Whether to force-reassign a vanity URL that already
exists

Value

An updated Content object

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_run_as(), set_thumbnail(),
swap_vanity_urls(), terminate_jobs(), verify_content_name()

Examples

Not run:
bnd <- bundle_dir("~/my/directory")
connect() %>%

deploy(bnd) %>%
set_vanity_url("a/vanity/url")

End(Not run)

swap_vanity_urls 109

swap_vanity_urls Swap Vanity URLs

Description

Swap the vanity URLs of two pieces of content.

Usage

swap_vanity_urls(content_a, content_b)

Arguments

content_a A Content object

content_b A Content object

Value

A list of the new vanity URLs for content_a and content_b

See Also

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_run_as(), set_thumbnail(),
set_vanity_url(), terminate_jobs(), verify_content_name()

Task Task

Description

Task

Task

Details

An R6 class that represents a Task

Public fields

connect The Connect instance.

task The task.

data The task data.

110 Task

Methods

Public methods:
• Task$new()

• Task$get_task()

• Task$add_data()

• Task$get_data()

• Task$print()

• Task$clone()

Method new(): Initialize this task.
Usage:
Task$new(connect, task)

Arguments:
connect The Connect instance.
task The task data.

Method get_task(): Return the underlying task.
Usage:
Task$get_task()

Method add_data(): Set the data.
Usage:
Task$add_data(data)

Arguments:
data The data.

Method get_data(): Get the data.
Usage:
Task$get_data()

Method print(): Print this object.
Usage:
Task$print(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Task$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, PositConnect, Vanity, Variant,
VariantSchedule, VariantTask

tbl_connect 111

tbl_connect Connect Tibble

Description

[Experimental] A lazy tibble that automatically pages through API requests when collected.

Usage

tbl_connect(
src,
from = c("users", "groups", "content", "usage_shiny", "usage_static", "audit_logs"),
...

)

Arguments

src The source object

from The type of tibble

... Additional arguments that are not yet implemented

Value

A tbl_connect object

terminate_jobs Terminate Jobs

Description

Register a job kill order for one or more jobs associated with a content item. Requires Connect
2022.10.0 or newer.

Usage

terminate_jobs(content, keys = NULL)

Arguments

content A Content object, as returned by content_item()

keys Optional. One or more job keys, which can be obtained using get_jobs(content).
If no keys are provided, will terminate all active jobs for the provided content
item.

112 update_integration

Value

A data frame with the status of each termination request.

• app_id: The content item’s identifier.

• app_guid: The content item’s GUID.

• job_key: The job key.

• job_id: The job’s identifier.

• result: The result string returned by Connect.

• code: An error code, NA if the request was successful.

• error: An error message, NA if the result was successful.

Note that app_id, app_guid, job_id, and result are NA if the request returns an error.

See Also

Other job functions: get_jobs(), get_log()

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_run_as(), set_thumbnail(),
set_vanity_url(), swap_vanity_urls(), verify_content_name()

Examples

Not run:
client <- connect()
item <- content_item(client, "951bf3ad-82d0-4bca-bba8-9b27e35c49fa")
result <- terminate_jobs(item)

End(Not run)

update_integration Update an OAuth integration

Description

Updates an existing OAuth integration. All fields except integration are optional, and are un-
changed if not provided.

You must have administrator privileges to perform this action.

See the Posit Connect documentation on OAuth integrations for more information.

https://docs.posit.co/connect/admin/integrations/oauth-integrations/

update_integration 113

Usage

update_integration(
integration,
name = NULL,
description = NULL,
template = NULL,
config = NULL

)

Arguments

integration A connect_integration object (as returned by get_integrations(), get_integration(),
or create_integration()).

name A new name for the integration.

description A new description for the integration.

template The template to use (generally not changed after creation).

config A list with updated OAuth integration configuration. If NULL (default), the con-
figuration remains unchanged. You can update individual configuration fields
without affecting others.

Value

A connect_integration object representing the updated OAuth integration. See get_integration()
for details on the returned object.

See Also

get_integrations(), get_integration(), create_integration(), delete_integration()

Other oauth integration functions: create_integration(), delete_integration(), get_associations(),
get_integration(), get_integrations(), set_integrations()

Examples

Not run:
client <- connect()

Get an existing integration
integration <- get_integration(client, "your-integration-guid")

Update the integration's name and description
updated_integration <- update_integration(

integration,
name = "Updated GitHub Integration",
description = "A more descriptive description."

)

Update only the client secret in the configuration
updated_integration <- update_integration(

integration,

114 users_create_remote

config = list(
client_secret = "your-new-client-secret"

)
)

End(Not run)

users_create_remote Create a Remote User

Description

The remote user creation workflow involves authentication providers like LDAP that involve a
queryable identity store. This helper wraps the API calls necessary to retrieve information about
and then create such a user. It functions with a "fuzzy match" prefix by default, but if you want to
instantiate users directly, you should set exact = TRUE.

Usage

users_create_remote(connect, prefix, expect = 1, check = TRUE, exact = FALSE)

Arguments

connect An R6 Connect object.

prefix character. The prefix of the user name to search for.

expect number. Optional. The number of responses to expect for this search.

check boolean. Optional. Whether to check for local existence first.

exact boolean. Optional. Whether to only create users whose username exactly matches
the provided prefix.

Details

NOTE: there can be problems with usernames that are not unique. Please open an issue if you run
into any problems.

Value

The results of creating the users.

user_guid_from_username 115

user_guid_from_username

User

Description

Get user details

Usage

user_guid_from_username(client, username)

Arguments

client A Connect R6 object

username The user’s username

Details

user_guid_from_username() is a helper to retrieve a user GUID, given the user’s username. It is
useful in Shiny applications for using session$user

Vanity Vanity

Description

Vanity

Vanity

Details

An R6 class that represents a Vanity URL

Super class

connectapi::Content -> Vanity

Public fields

vanity The vanity.

116 Vanity

Methods

Public methods:

• Vanity$new()

• Vanity$get_vanity()

• Vanity$print()

• Vanity$clone()

Method new(): Initialize this vanity.

Usage:

Vanity$new(connect, content, vanity)

Arguments:

connect The Connect instance.

content The Content instance.

vanity The vanity data.

Method get_vanity(): Return the underlying vanity.

Usage:

Vanity$get_vanity()

Method print(): Print this object.

Usage:

Vanity$print(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Vanity$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, PositConnect, Task, Variant,
VariantSchedule, VariantTask

vanity_is_available 117

vanity_is_available Check to see if a vanity URL is currently in use

Description

[Experimental]

Usage

vanity_is_available(connect, vanity)

Arguments

connect A Connect R6 object

vanity string of the vanity URL to check

Value

logical indicating if the vanity URL is available.

See Also

Other audit functions: audit_access_open(), audit_r_versions(), audit_runas()

Variant Variant

Description

Variant

Variant

Details

An R6 class that represents a Variant

Super class

connectapi::Content -> Variant

Public fields

key The variant key.

variant The variant.

118 Variant

Methods

Public methods:
• Variant$get_variant_remote()

• Variant$new()

• Variant$send_mail()

• Variant$get_schedule()

• Variant$get_schedule_remote()

• Variant$get_subscribers()

• Variant$remove_subscriber()

• Variant$add_subscribers()

• Variant$render()

• Variant$renderings()

• Variant$update_variant()

• Variant$jobs()

• Variant$get_url()

• Variant$get_url_rev()

• Variant$get_dashboard_url()

• Variant$print()

• Variant$clone()

Method get_variant_remote(): Get the underlying variant data.
Get and store the (remote) variant data.

Usage:
Variant$get_variant_remote()

Method new(): Initialize this variant.

Usage:
Variant$new(connect, content, key)

Arguments:

connect The Connect instance.
content The Content instance.
key The variant key.

Method send_mail(): Mail previously rendered content.

Usage:
Variant$send_mail(to = c("me", "collaborators", "collaborators_viewers"))

Arguments:

to Targeting.

Method get_schedule(): Get the (remote) schedule data.

Usage:
Variant$get_schedule()

Variant 119

Method get_schedule_remote(): Get the (remote) schedule data.

Usage:
Variant$get_schedule_remote()

Method get_subscribers(): Get the subscribers.

Usage:
Variant$get_subscribers()

Method remove_subscriber(): Remove a named subscriber.

Usage:
Variant$remove_subscriber(guid)

Arguments:
guid User GUID.

Method add_subscribers(): Add named subscribers.

Usage:
Variant$add_subscribers(guids)

Arguments:
guids User GUIDs.

Method render(): Render this variant.

Usage:
Variant$render()

Method renderings(): List the renderings of this variant.

Usage:
Variant$renderings()

Method update_variant(): Update this variant.

Usage:
Variant$update_variant(...)

Arguments:
... Target fields and values.

Method jobs(): Jobs for this variant.

Usage:
Variant$jobs()

Method get_url(): Return the URL for this variant.

Usage:
Variant$get_url()

Method get_url_rev(): Return the URL associated with one rendering for this variant.

Usage:

120 VariantSchedule

Variant$get_url_rev(rev)

Arguments:

rev Rendering identifier.

Method get_dashboard_url(): Return the URL for this variant in the Posit Connect dash-
board.

Usage:
Variant$get_dashboard_url(pane = "access")

Arguments:

pane The pane in the dashboard to link to.

Method print(): Print this object.

Usage:
Variant$print(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Variant$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, PositConnect, Task, Vanity,
VariantSchedule, VariantTask

VariantSchedule VariantSchedule

Description

VariantSchedule

VariantSchedule

Details

An R6 class that represents a Schedule

Super classes

connectapi::Content -> connectapi::Variant -> VariantSchedule

VariantSchedule 121

Public fields

schedule_data The schedule data.

Methods

Public methods:
• VariantSchedule$new()

• VariantSchedule$GET()

• VariantSchedule$POST()

• VariantSchedule$DELETE()

• VariantSchedule$set_schedule()

• VariantSchedule$is_empty()

• VariantSchedule$print()

• VariantSchedule$get_schedule()

• VariantSchedule$get_schedule_remote()

• VariantSchedule$describe_schedule()

• VariantSchedule$clone()

Method new(): Initialize this schedule.

Usage:
VariantSchedule$new(connect, content, key, schedule)

Arguments:
connect The Connect instance.
content The Content instance.
key The variant key.
schedule The schedule data.

Method GET(): Perform an HTTP GET request of the named API path. Returns an object parsed
from the HTTP response.

Usage:
VariantSchedule$GET(path)

Arguments:
path API path.

Method POST(): Perform an HTTP POST request of the named API path. Returns an object
parsed from the HTTP response.

Usage:
VariantSchedule$POST(path, body)

Arguments:
path API path.
body The HTTP payload.

Method DELETE(): Perform an HTTP DELETE request of the named API path. Returns the
HTTP response object.

122 VariantSchedule

Usage:
VariantSchedule$DELETE(path)

Arguments:
path API path.

Method set_schedule(): Set the schedule for this variant

Usage:
VariantSchedule$set_schedule(...)

Arguments:
... Schedule fields.

Method is_empty(): Return if this variant has a schedule.

Usage:
VariantSchedule$is_empty()

Method print(): Print this object.

Usage:
VariantSchedule$print(...)

Arguments:
... Unused.

Method get_schedule(): Get the schedule data.

Usage:
VariantSchedule$get_schedule()

Method get_schedule_remote(): Get and store the (remote) schedule data.

Usage:
VariantSchedule$get_schedule_remote()

Method describe_schedule(): Description of the associated schedule.

Usage:
VariantSchedule$describe_schedule()

Method clone(): The objects of this class are cloneable with this method.

Usage:
VariantSchedule$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, PositConnect, Task, Vanity,
Variant, VariantTask

VariantTask 123

VariantTask VariantTask

Description

VariantTask

VariantTask

Details

An R6 class that represents a Variant Task

Super classes

connectapi::Content -> connectapi::Variant -> VariantTask

Public fields

task The task.

data The variant data.

Methods

Public methods:

• VariantTask$new()

• VariantTask$get_task()

• VariantTask$add_data()

• VariantTask$get_data()

• VariantTask$print()

• VariantTask$clone()

Method new(): Initialize this variant task.

Usage:
VariantTask$new(connect, content, key, task)

Arguments:

connect The Connect instance.
content The Content instance.
key The variant key.
task The task data.

Method get_task(): Return the underlying task.

Usage:
VariantTask$get_task()

124 verify_content_name

Method add_data(): Set the data.

Usage:
VariantTask$add_data(data)

Arguments:

data The data.

Method get_data(): Get the data.

Usage:
VariantTask$get_data()

Method print(): Print this object.

Usage:
VariantTask$print(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
VariantTask$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other R6 classes: Bundle, Content, ContentTask, Environment, PositConnect, Task, Vanity,
Variant, VariantSchedule

verify_content_name Verify Content Name

Description

Ensures that a content name fits the specifications / requirements of Posit Connect. Throws an error
if content name is invalid. Content names (as of the time of writing) must be between 3 and 64
alphanumeric characters, dashes, and underscores

Usage

verify_content_name(name)

Arguments

name The proposed content name

verify_content_name 125

Value

The name (or an error if invalid)

See Also

connectapi::create_random_name

Other content functions: content_delete(), content_item(), content_title(), content_update(),
create_random_name(), dashboard_url(), delete_thumbnail(), delete_vanity_url(), deploy_repo(),
get_associations(), get_bundles(), get_environment(), get_image(), get_jobs(), get_log(),
get_thumbnail(), get_vanity_url(), git, has_thumbnail(), lock_content(), permissions,
search_content(), set_image_path(), set_integrations(), set_run_as(), set_thumbnail(),
set_vanity_url(), swap_vanity_urls(), terminate_jobs()

Index

∗ R6 classes
Bundle, 10
Content, 14
ContentTask, 20
Environment, 37
PositConnect, 85
Task, 109
Vanity, 115
Variant, 117
VariantSchedule, 120
VariantTask, 123

∗ audit functions
audit_access_open, 8
audit_r_versions, 9
audit_runas, 8
vanity_is_available, 117

∗ content functions
content_delete, 22
content_item, 22
content_title, 26
content_update, 27
create_random_name, 29
dashboard_url, 30
delete_thumbnail, 32
delete_vanity_url, 33
deploy_repo, 35
get_associations, 39
get_bundles, 44
get_environment, 49
get_image, 53
get_jobs, 57
get_log, 59
get_thumbnail, 67
get_vanity_url, 75
git, 79
has_thumbnail, 80
lock_content, 81
permissions, 83
search_content, 99

set_image_path, 101
set_integrations, 102
set_run_as, 103
set_thumbnail, 107
set_vanity_url, 108
swap_vanity_urls, 109
terminate_jobs, 111
verify_content_name, 124

∗ deployment functions
bundle_dir, 11
bundle_path, 11
bundle_static, 12
deploy, 34
download_bundle, 36
poll_task, 84

∗ groups functions
get_group_content, 51
get_group_members, 52
get_groups, 50

∗ job functions
get_jobs, 57
get_log, 59
terminate_jobs, 111

∗ oauth integration functions
create_integration, 28
delete_integration, 30
get_associations, 39
get_integration, 54
get_integrations, 55
set_integrations, 102
update_integration, 112

∗ packages functions
get_content_packages, 48
get_packages, 63

∗ schedule functions
get_timezones, 68
get_variant_schedule, 78
set_schedule, 104

∗ server management functions

126

INDEX 127

delete_runtime_cache, 31
get_runtime_caches, 65

∗ thumbnail functions
delete_thumbnail, 32
get_thumbnail, 67
has_thumbnail, 80
set_thumbnail, 107

∗ variant functions
get_variant_renderings, 77
get_variants, 77

as.data.frame(), 7, 56, 70
as.data.frame.connect_content_list, 4
as.data.frame.connect_integration_list,

5
as.data.frame.connect_list_hits, 5
as.data.frame.connect_list_hits(), 7,

70
as_integration, 6
as_tibble.connect_content_list, 6
as_tibble.connect_integration_list, 7
as_tibble.connect_list_hits, 7
as_tibble.connect_list_hits(), 70
audit_access_open, 8, 8, 9, 117
audit_r_versions, 8, 9, 117
audit_runas, 8, 8, 9, 117

base::as.data.frame(), 4, 5
browse_api_docs (browse_solo), 9
browse_connect (browse_solo), 9
browse_dashboard (browse_solo), 9
browse_solo, 9
Bundle, 10, 20, 21, 39, 98, 110, 116, 120, 122,

124
bundle_dir, 11, 12, 13, 35, 37, 84
bundle_path, 11, 11, 13, 35, 37, 84
bundle_static, 11, 12, 12, 35, 37, 84

Connect (PositConnect), 85
connect, 13
connectapi::Content, 20, 37, 115, 117, 120,

123
connectapi::Variant, 120, 123
Content, 10, 14, 21, 30, 39, 98, 100, 110, 116,

120, 122, 124
content_add_group (permissions), 83
content_add_user (permissions), 83
content_delete, 22, 23, 26, 27, 29, 30, 33,

36, 40, 45, 50, 54, 58, 59, 68, 76, 79,

81, 82, 84, 100–102, 104, 107–109,
112, 125

content_delete_group (permissions), 83
content_delete_user (permissions), 83
content_item, 22, 22, 26, 27, 29, 30, 33, 36,

40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

content_item(), 102
content_list_by_tag, 23
content_list_guid_has_access

(content_list_with_permissions),
24

content_list_with_permissions, 24
content_render, 25
content_restart, 25
content_title, 22, 23, 26, 27, 29, 30, 33, 36,

40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

content_update, 22, 23, 26, 27, 29, 30, 33,
36, 40, 45, 50, 54, 58, 59, 68, 76, 79,
81, 82, 84, 100–102, 104, 107–109,
112, 125

content_update_access_type
(content_update), 27

content_update_owner (content_update),
27

ContentTask, 10, 20, 20, 39, 98, 110, 116,
120, 122, 124

create_integration, 28, 31, 40, 55, 56, 102,
113

create_integration(), 31, 113
create_random_name, 22, 23, 26, 27, 29, 30,

33, 36, 40, 45, 50, 54, 58, 59, 68, 76,
79, 81, 82, 84, 100–102, 104,
107–109, 112, 125

create_tag (get_tags), 66
create_tag_tree (get_tags), 66

dashboard_url, 22, 23, 26, 27, 29, 30, 33, 36,
40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

delete_bundle (get_bundles), 44
delete_image (get_image), 53
delete_integration, 28, 30, 40, 55, 56, 102,

113
delete_integration(), 28, 113

128 INDEX

delete_runtime_cache, 31, 65
delete_runtime_cache(), 65
delete_tag (get_tags), 66
delete_thumbnail, 22, 23, 26, 27, 29, 30, 32,

33, 36, 40, 45, 50, 53, 54, 58, 59, 68,
76, 79, 81, 82, 84, 100–102, 104,
107–109, 112, 125

delete_vanity_url, 22, 23, 26, 27, 29, 30,
33, 33, 36, 40, 45, 50, 54, 58, 59, 68,
76, 79, 81, 82, 84, 100–102, 104,
107–109, 112, 125

deploy, 11–13, 34, 37, 84
deploy_current (deploy), 34
deploy_repo, 22, 23, 26, 27, 29, 30, 33, 35,

40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

deploy_repo_enable (deploy_repo), 35
deploy_repo_update (deploy_repo), 35
download_bundle, 11–13, 35, 36, 84

Environment, 10, 20, 21, 37, 98, 110, 116,
120, 122, 124

filter_tag_tree_chr (get_tags), 66
filter_tag_tree_id (get_tags), 66

get_associations, 22, 23, 26–31, 33, 36, 39,
45, 50, 54–56, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
113, 125

get_associations(), 55, 56, 102
get_audit_logs, 40
get_aws_content_credentials, 41
get_aws_credentials, 43
get_bundles, 22, 23, 26, 27, 30, 33, 36, 40,

44, 50, 54, 58, 59, 68, 76, 79, 81, 82,
84, 100–102, 104, 107–109, 112,
125

get_content, 45
get_content(), 8, 9, 15
get_content_packages, 48, 63
get_content_permissions (permissions),

83
get_content_tags (get_tags), 66
get_environment, 22, 23, 26, 27, 30, 33, 36,

40, 45, 49, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

get_group_content, 50, 51, 53
get_group_members, 50, 51, 52
get_group_permission (permissions), 83
get_groups, 50, 51, 53
get_image, 22, 23, 26, 27, 30, 33, 36, 40, 45,

50, 53, 58, 59, 68, 76, 79, 81, 82, 84,
100–102, 104, 107–109, 112, 125

get_integration, 28, 31, 40, 54, 56, 102, 113
get_integration(), 28, 31, 40, 56, 102, 113
get_integrations, 28, 31, 40, 55, 55, 102,

113
get_integrations(), 5–7, 28, 31, 40, 55, 61,

62, 102, 113
get_job_list (get_jobs), 57
get_jobs, 22, 23, 26, 27, 30, 33, 36, 40, 45,

50, 54, 57, 59, 68, 76, 79, 81, 82, 84,
100–102, 104, 107–109, 112, 125

get_log, 22, 23, 26, 27, 30, 33, 36, 40, 45, 50,
54, 58, 59, 68, 76, 79, 81, 82, 84,
100–102, 104, 107–109, 112, 125

get_my_permission (permissions), 83
get_oauth_content_credentials, 60
get_oauth_content_credentials(), 62
get_oauth_credentials, 61
get_oauth_credentials(), 61
get_packages, 48, 63
get_procs, 64
get_runtime_caches, 32, 65
get_runtime_caches(), 32
get_runtimes, 64
get_tag_data (get_tags), 66
get_tags, 66
get_thumbnail, 22, 23, 26, 27, 30, 33, 36, 40,

45, 50, 53, 54, 58, 59, 67, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 112,
125

get_timezones, 68, 78, 107
get_usage, 69
get_usage(), 5, 7
get_usage_shiny, 70
get_usage_shiny(), 69
get_usage_static, 72
get_usage_static(), 69
get_user_permission (permissions), 83
get_users, 74
get_vanity_url, 22, 23, 26, 27, 30, 33, 36,

40, 45, 50, 54, 58, 59, 68, 75, 79, 81,
82, 84, 100–102, 104, 107–109, 112,

INDEX 129

125
get_vanity_urls, 76
get_variant (get_variants), 77
get_variant_default (get_variants), 77
get_variant_renderings, 77, 77
get_variant_schedule, 68, 78, 107
get_variants, 77, 78
git, 22, 23, 26, 27, 30, 33, 36, 40, 45, 50, 54,

58, 59, 68, 76, 79, 81, 82, 84,
100–102, 104, 107–109, 112, 125

groups_create_remote, 80

has_image (get_image), 53
has_thumbnail, 22, 23, 26, 27, 30, 33, 36, 40,

45, 50, 53, 54, 58, 59, 68, 76, 79, 80,
82, 84, 100–102, 104, 107–109, 112,
125

lock_content, 22, 23, 26, 27, 30, 33, 36, 40,
45, 50, 54, 58, 59, 68, 76, 79, 81, 81,
84, 100–102, 104, 107–109, 112,
125

logical, 106

page_cursor, 82
page_offset (page_cursor), 82
permissions, 22, 23, 26, 27, 30, 33, 36, 40,

45, 50, 54, 58, 59, 68, 76, 79, 81, 82,
83, 100–102, 104, 107–109, 112,
125

poll_task, 11–13, 35, 37, 84
PositConnect, 10, 20, 21, 39, 85, 110, 116,

120, 122, 124
promote, 99

repo_check_account (git), 79
repo_check_branches (git), 79
repo_check_branches_ref (git), 79
repo_check_manifest_dirs (git), 79

schedule_describe (set_schedule), 104
search_content, 22, 23, 26, 27, 30, 33, 36,

40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 99, 101, 102, 104, 107–109,
112, 125

search_content(), 4, 6
set_content_tag_tree (get_tags), 66
set_content_tags (get_tags), 66
set_environment_all (get_environment),

49

set_environment_new (get_environment),
49

set_environment_remove
(get_environment), 49

set_image_path, 22, 23, 26, 27, 30, 33, 36,
40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100, 101, 102, 104, 107–109,
112, 125

set_image_url (set_image_path), 101
set_image_webshot (set_image_path), 101
set_integrations, 22, 23, 26–28, 30, 31, 33,

36, 40, 45, 50, 54–56, 58, 59, 68, 76,
79, 81, 82, 84, 100, 101, 102, 104,
107–109, 112, 113, 125

set_integrations(), 40, 55, 56
set_run_as, 22, 23, 26, 27, 30, 33, 36, 40, 45,

50, 54, 58, 59, 68, 76, 79, 81, 82, 84,
100–102, 103, 107–109, 112, 125

set_schedule, 68, 78, 104
set_schedule_day (set_schedule), 104
set_schedule_dayofmonth (set_schedule),

104
set_schedule_dayofweek (set_schedule),

104
set_schedule_dayweekofmonth

(set_schedule), 104
set_schedule_hour (set_schedule), 104
set_schedule_minute (set_schedule), 104
set_schedule_remove (set_schedule), 104
set_schedule_semimonth (set_schedule),

104
set_schedule_week (set_schedule), 104
set_schedule_weekday (set_schedule), 104
set_schedule_year (set_schedule), 104
set_thumbnail, 22, 23, 26, 27, 30, 33, 36, 40,

45, 50, 54, 58, 59, 68, 76, 79, 81, 82,
84, 100–102, 104, 107, 108, 109,
112, 125

set_vanity_url, 22, 23, 26, 27, 30, 33, 36,
40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107, 108, 109,
112, 125

swap_vanity_urls, 22, 23, 26, 27, 30, 33, 36,
40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107, 108, 109,
112, 125

Task, 10, 20, 21, 39, 98, 109, 116, 120, 122,
124

130 INDEX

tbl_connect, 111
terminate_jobs, 22, 23, 26, 27, 30, 33, 36,

40, 45, 50, 54, 58, 59, 68, 76, 79, 81,
82, 84, 100–102, 104, 107–109, 111,
125

tibble::as_tibble(), 56, 70

unlock_content (lock_content), 81
update_integration, 28, 31, 40, 55, 56, 102,

112
update_integration(), 28, 31
user_guid_from_username, 115
users_create_remote, 114

Vanity, 10, 20, 21, 39, 98, 110, 115, 120, 122,
124

vanity_is_available, 8, 9, 117
Variant, 10, 20, 21, 39, 98, 110, 116, 117,

122, 124
variant_render

(get_variant_renderings), 77
VariantSchedule, 10, 20, 21, 39, 98, 110,

116, 120, 120, 124
VariantTask, 10, 20, 21, 25, 39, 98, 110, 116,

120, 122, 123
verify_content_name, 22, 23, 26, 27, 30, 33,

36, 40, 45, 50, 54, 58, 59, 68, 76, 79,
81, 82, 84, 100–102, 104, 107–109,
112, 124

webshot2::webshot(), 101

	as.data.frame.connect_content_list
	as.data.frame.connect_integration_list
	as.data.frame.connect_list_hits
	as_integration
	as_tibble.connect_content_list
	as_tibble.connect_integration_list
	as_tibble.connect_list_hits
	audit_access_open
	audit_runas
	audit_r_versions
	browse_solo
	Bundle
	bundle_dir
	bundle_path
	bundle_static
	connect
	Content
	ContentTask
	content_delete
	content_item
	content_list_by_tag
	content_list_with_permissions
	content_render
	content_restart
	content_title
	content_update
	create_integration
	create_random_name
	dashboard_url
	delete_integration
	delete_runtime_cache
	delete_thumbnail
	delete_vanity_url
	deploy
	deploy_repo
	download_bundle
	Environment
	get_associations
	get_audit_logs
	get_aws_content_credentials
	get_aws_credentials
	get_bundles
	get_content
	get_content_packages
	get_environment
	get_groups
	get_group_content
	get_group_members
	get_image
	get_integration
	get_integrations
	get_jobs
	get_log
	get_oauth_content_credentials
	get_oauth_credentials
	get_packages
	get_procs
	get_runtimes
	get_runtime_caches
	get_tags
	get_thumbnail
	get_timezones
	get_usage
	get_usage_shiny
	get_usage_static
	get_users
	get_vanity_url
	get_vanity_urls
	get_variants
	get_variant_renderings
	get_variant_schedule
	git
	groups_create_remote
	has_thumbnail
	lock_content
	page_cursor
	permissions
	poll_task
	PositConnect
	promote
	search_content
	set_image_path
	set_integrations
	set_run_as
	set_schedule
	set_thumbnail
	set_vanity_url
	swap_vanity_urls
	Task
	tbl_connect
	terminate_jobs
	update_integration
	users_create_remote
	user_guid_from_username
	Vanity
	vanity_is_available
	Variant
	VariantSchedule
	VariantTask
	verify_content_name
	Index

