
Package ‘cpp11’
January 20, 2026

Title A C++11 Interface for R's C Interface

Version 0.5.3

Description Provides a header only, C++11 interface to R's C
interface. Compared to other approaches 'cpp11' strives to be safe
against long jumps from the C API as well as C++ exceptions, conform
to normal R function semantics and supports interaction with 'ALTREP'
vectors.

License MIT + file LICENSE

URL https://cpp11.r-lib.org, https://github.com/r-lib/cpp11

BugReports https://github.com/r-lib/cpp11/issues

Depends R (>= 4.0.0)

Suggests bench, brio, callr, cli, covr, decor, desc, ggplot2, glue,
knitr, lobstr, mockery, progress, rmarkdown, scales, Rcpp,
testthat (>= 3.2.0), tibble, utils, vctrs, withr

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/Needs/cpp11/cpp_register brio, cli, decor, desc, glue, tibble,
vctrs

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Davis Vaughan [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4777-038X>),

Jim Hester [aut] (ORCID: <https://orcid.org/0000-0002-2739-7082>),
Romain François [aut] (ORCID: <https://orcid.org/0000-0002-2444-4226>),
Benjamin Kietzman [ctb],
Posit Software, PBC [cph, fnd]

Maintainer Davis Vaughan <davis@posit.co>

Repository CRAN

Date/Publication 2026-01-20 15:20:02 UTC

1

https://cpp11.r-lib.org
https://github.com/r-lib/cpp11
https://github.com/r-lib/cpp11/issues
https://orcid.org/0000-0003-4777-038X
https://orcid.org/0000-0002-2739-7082
https://orcid.org/0000-0002-2444-4226

2 cpp_register

Contents

cpp_register . 2
cpp_source . 3
cpp_vendor . 5

Index 7

cpp_register Generates wrappers for registered C++ functions

Description

Functions decorated with [[cpp11::register]] in files ending in .cc, .cpp, .h or .hpp will be
wrapped in generated code and registered to be called from R.

Usage

cpp_register(
path = ".",
quiet = !is_interactive(),
extension = c(".cpp", ".cc")

)

Arguments

path The path to the package root directory

quiet If TRUE suppresses output from this function

extension The file extension to use for the generated src/cpp11 file. .cpp by default, but
.cc is also supported.

Details

Note registered functions will not be exported from your package unless you also add a @export
roxygen2 directive for them.

In order to use cpp_register() the cli, decor, desc, glue, tibble and vctrs packages must
also be installed.

Value

The paths to the generated R and C++ source files (in that order).

cpp_source 3

Examples

create a minimal package
dir <- tempfile()
dir.create(dir)

writeLines("Package: testPkg", file.path(dir, "DESCRIPTION"))
writeLines("useDynLib(testPkg, .registration = TRUE)", file.path(dir, "NAMESPACE"))

create a C++ file with a decorated function
dir.create(file.path(dir, "src"))
writeLines("[[cpp11::register]] int one() { return 1; }", file.path(dir, "src", "one.cpp"))

register the functions in the package
cpp_register(dir)

Files generated by registration
file.exists(file.path(dir, "R", "cpp11.R"))
file.exists(file.path(dir, "src", "cpp11.cpp"))

cleanup
unlink(dir, recursive = TRUE)

cpp_source Compile C++ code

Description

cpp_source() compiles and loads a single C++ file for use in R. cpp_function() compiles and
loads a single function for use in R. cpp_eval() evaluates a single C++ expression and returns the
result.

Usage

cpp_source(
file,
code = NULL,
env = parent.frame(),
clean = TRUE,
quiet = TRUE,
cxx_std = Sys.getenv("CXX_STD", "CXX11"),
dir = tempfile()

)

cpp_function(
code,
env = parent.frame(),
clean = TRUE,
quiet = TRUE,

4 cpp_source

cxx_std = Sys.getenv("CXX_STD", "CXX11")
)

cpp_eval(
code,
env = parent.frame(),
clean = TRUE,
quiet = TRUE,
cxx_std = Sys.getenv("CXX_STD", "CXX11")

)

Arguments

file A file containing C++ code to compile

code If non-null, the C++ code to compile

env The R environment where the R wrapping functions should be defined.

clean If TRUE, cleanup the files after sourcing

quiet If ’TRUE‘, do not show compiler output

cxx_std The C++ standard to use, the CXX_STD make macro is set to this value. The
default value queries the CXX_STD environment variable, or uses ’CXX11’ if
unset.

dir The directory to store the generated source files. tempfile() is used by default.
The directory will be removed if clean is TRUE.

Details

Within C++ code you can use [[cpp11::linking_to("pkgxyz")]] to link to external packages.
This is equivalent to putting those packages in the LinkingTo field in a package DESCRIPTION.

Value

For cpp_source() and [cpp_function()] the results of dyn.load() (invisibly). For [cpp_eval()]
the results of the evaluated expression.

Examples

cpp_source(
code = '#include "cpp11/integers.hpp"

[[cpp11::register]]
int num_odd(cpp11::integers x) {

int total = 0;
for (int val : x) {

if ((val % 2) == 1) {
++total;

}
}
return total;

}

cpp_vendor 5

')

num_odd(as.integer(c(1:10, 15, 23)))

if (interactive() && require("progress")) {

cpp_source(
code = '

#include <cpp11/R.hpp>
#include <RProgress.h>

[[cpp11::linking_to("progress")]]

[[cpp11::register]] void
show_progress() {

RProgress::RProgress pb("Processing [:bar] ETA: :eta");

pb.tick(0);
for (int i = 0; i < 100; i++) {
usleep(2.0 / 100 * 1000000);
pb.tick();

}
}
')

show_progress()
}

cpp_vendor Vendor the cpp11 dependency

Description

Vendoring is the act of making your own copy of the 3rd party packages your project is using. It is
often used in the go language community.

Usage

cpp_vendor(path = ".")

Arguments

path The path to the package root directory

Details

This function vendors cpp11 into your package by copying the cpp11 headers into the inst/include
folder of your package and adding ’cpp11 version: XYZ’ to the top of the files, where XYZ is the
version of cpp11 currently installed on your machine.

6 cpp_vendor

If you choose to vendor the headers you should remove LinkingTo: cpp11 from your DESCRIP-
TION.

Note: vendoring places the responsibility of updating the code on you. Bugfixes and new features
in cpp11 will not be available for your code until you run cpp_vendor() again.

Value

The file path to the vendored code (invisibly).

Examples

create a new directory
dir <- tempfile()
dir.create(dir)

vendor the cpp11 headers into the directory
cpp_vendor(dir)

list.files(file.path(dir, "inst", "include", "cpp11"))

cleanup
unlink(dir, recursive = TRUE)

Index

cpp_eval (cpp_source), 3
cpp_eval(), 3
cpp_function (cpp_source), 3
cpp_function(), 3
cpp_register, 2
cpp_source, 3
cpp_source(), 3, 4
cpp_vendor, 5

dyn.load(), 4

7

	cpp_register
	cpp_source
	cpp_vendor
	Index

