
Package ‘dat’
January 30, 2026

Type Package

Title Tools for Data Manipulation

Version 0.7.0

BugReports https://github.com/wahani/dat/issues

Description An implementation of common higher order functions with syntactic
sugar for anonymous function. Provides also a link to 'dplyr' and
'data.table' for common transformations on data frames to work around non
standard evaluation by default.

License MIT + file LICENSE

Depends methods

Imports data.table, Formula, magrittr, progress, aoos

Suggests dplyr, knitr, rbenchmark, nycflights13, rlang, rmarkdown,
testthat, tibble, tidyselect

VignetteBuilder knitr

Encoding UTF-8

ByteCompile TRUE

RoxygenNote 7.1.0

Collate 'NAMESPACE.R' 'FormulaList.R' 'helper.R' 'DataFrame.R'
'as.function.R' 'bindRows.R' 'dataTableBackend.R' 'deparse.R'
'extract.R' 'map.R' 'mutar.R' 'pipeExport.R' 'replace.R'
'useDplyr.R' 'verboseApply.R'

NeedsCompilation no

Author Sebastian Warnholz [aut, cre]

Maintainer Sebastian Warnholz <wahani@gmail.com>

Repository CRAN

Date/Publication 2026-01-30 11:00:19 UTC

1

https://github.com/wahani/dat/issues

2 as.function.formula

Contents

as.function.formula . 2
bindRows . 3
DataFrame . 3
extract . 4
FL . 6
map . 7
mutar . 9
replace . 11
verboseApply . 12

Index 13

as.function.formula Coerce a formula into a function

Description

Convert a formula into a function. See map and extract for examples.

Usage

S3 method for class 'formula'
as.function(x, ...)

Arguments

x (formula) see examples

... not used

Value

An object inheriting from class function.

Examples

as.function(~ .)(1)
as.function(x ~ x)(1)
as.function(f(x, y) ~ c(x, y))(1, 2)
as.function(numeric : x ~ x)(1) # check for class
as.function(numeric(1) : x ~ x)(1) # check for class + length

bindRows 3

bindRows Bind rows

Description

This is a wrapper around rbindlist to preserve the input class.

Usage

bindRows(x, id = NULL, useNames = TRUE, fill = TRUE)

Arguments

x (list) a list of data frames
id, useNames, fill

passed to rbindlist

Value

If the first element of x inherits from data.frame the type that first element.

x else.

DataFrame DataFrame and methods

Description

This is a ’data.table’ like implementation of a data.frame. Either dplyr or data.table is used as
backend. The only purpose is to have R CMD check friendly syntax.

Usage

DataFrame(...)

as.DataFrame(x, ...)

Default S3 method:
as.DataFrame(x, ...)

S3 method for class 'data.frame'
as.DataFrame(x, ...)

S3 method for class 'DataFrame'
x[i, j, ..., by, sby, drop]

4 extract

Arguments

... arbitrary number of args
in [(TwoSidedFormulas)
in constructor see tibble

x (DataFrame | data.frame)

i (logical | numeric | integer | OneSidedFormula | TwoSidedFormula | FormulaL-
ist) see the examples.

j (logical | character | TwoSidedFormula | FormulaList | function) character be-
ginning with ’^’ are interpreted as regular expression

by, sby (character) variables to group by. by will be used to do transformations within
groups. sby will collapse each group to one row.

drop (ignored) never drops the class.

Details

OneSidedFormula is always used for subsetting rows.

TwoSidedFormula is used instead of name-value expressions in summarise and mutate.

See Also

mutar, FL

Examples

data("airquality")
dat <- as.DataFrame(airquality)
dat[~ Month > 4,][meanWind ~ mean(Wind), sby = "Month"]["meanWind"]
dat[FL(.n ~ mean(.n), .n = c("Wind", "Temp")), sby = "Month"]

extract Extract elements from a vector

Description

Extract elements from an object as S4 generic function. See the examples.

Usage

extract(x, ind, ...)

S4 method for signature 'list,`function`'
extract(x, ind, ...)

S4 method for signature 'atomic,`function`'
extract(x, ind, ...)

extract 5

S4 method for signature 'ANY,formula'
extract(x, ind, ...)

S4 method for signature 'atomicORlist,numericORintegerORlogical'
extract(x, ind, ...)

S4 method for signature 'ANY,character'
extract(x, ind, ...)

S4 method for signature 'data.frame,character'
extract(x, ind, ...)

extract2(x, ind, ...)

S4 method for signature 'atomicORlist,numericORinteger'
extract2(x, ind, ...)

S4 method for signature 'ANY,formula'
extract2(x, ind, ...)

S4 method for signature 'atomicORlist,`function`'
extract2(x, ind, ...)

S4 method for signature 'ANY,character'
extract2(x, ind, ...)

Arguments

x (atomic | list) a vector.

ind (function | formula | character | numeric | integer | logical) a formula is coerced
into a function. For lists the function is applied to each element (and has to
return a logical of length 1). For atomics a vectorized function is expected. If
you supply an atomic it is used for subsetting. A character of length 1 beginning
with "^" is interpreted as regular expression.

... arguments passed to ind.

Examples

extract(1:15, ~ 15 %% . == 0)
extract(list(xy = 1, zy = 2), "^z")
extract(list(x = 1, z = 2), 1)
extract(list(x = 1, y = ""), is.character)

Example: even numbers:
is.even <- function(x) (x %% 2) == 0
sum((1:10)[is.even(1:10)])
extract(1:10, ~ . %% 2 == 0) %>% sum
extract(1:10, is.even) %>% sum

6 FL

Example: factors of 15
extract(1:15, ~ 15 %% . == 0)

Example: relative prime numbers
gcd <- function(a, b) {

.gcd <- function(a, b) if (b == 0) a else Recall(b, a %% b)
flatmap(a ~ b, .gcd)

}

extract(1:10, x ~ gcd(x, 10) == 1)

Example: real prime numbers
isPrime <- function(n) {

.isPrime <- function(n) {
iter <- function(i) {

if (i * i > n) TRUE
else if (n %% i == 0 || n %% (i + 2) == 0) FALSE
else Recall(i + 6)

}
if (n <= 1) FALSE
else if (n <= 3) TRUE
else if (n %% 2 == 0 || n %% 3 == 0) FALSE
else iter(5)

}
flatmap(n, x ~ .isPrime(x))

}

extract(1:10, isPrime)

FL Dynamically generate formulas

Description

Function to dynamically generate formulas - (F)ormula (L)ist - to be used in mutar.

Usage

FL(..., .n = NULL, pattern = "\\.n")

makeFormulas(..., .n, pattern = "\\.n")

S3 method for class 'FormulaList'
update(object, data, ...)

Arguments

... (formulas)

map 7

.n names to be used in formulas. Can be any object which can be used by extract
to select columns. NULL is interpreted to use the formulas without change.

pattern (character) pattern to be replaced in formulas

object (FormulaList)

data (data.frame)

See Also

mutar

Examples

FL(.n ~ mean(.n), .n = "variable")
as(makeFormulas(.n ~ mean(.n), .n = "variable"), "FormulaList")

map An implementation of map

Description

An implementation of map and flatmap. They support the use of formulas as syntactic sugar for
anonymous functions.

Usage

map(x, f, ...)

S4 method for signature 'ANY,formula'
map(x, f, ...)

S4 method for signature 'atomic,`function`'
map(x, f, ...)

S4 method for signature 'list,`function`'
map(x, f, p = function(x) TRUE, ...)

S4 method for signature 'list,numericORcharacteORlogical'
map(x, f, ...)

S4 method for signature 'MList,`function`'
map(x, f, ..., simplify = FALSE)

S4 method for signature 'formula,`function`'
map(x, f, ...)

flatmap(x, f, ..., flatten = unlist)

8 map

S4 method for signature 'ANY,formula'
flatmap(x, f, ..., flatten = unlist)

sac(x, f, by, ..., combine = bindRows)

S4 method for signature 'data.frame,`function`'
sac(x, f, by, ..., combine = bindRows)

S4 method for signature 'ANY,formula'
sac(x, f, by, ..., combine = bindRows)

vmap(x, f, ..., .mc = min(length(x), detectCores()), .bar = "bar")

Arguments

x (vector | data.frame | formula) if x inherits from data.frame, a data.frame is re-
turned. Use as.list if this is not what you want. When x is a formula it is
interpreted to trigger a multivariate map.

f (function | formula | character | logical | numeric) something which can be inter-
preted as a function. formula objects are coerced to a function. atomics are used
for subsetting in each element of x. See the examples.

... further arguments passed to the apply function.

p (function | formula) a predicate function indicating which columns in a data.frame
to use in map. This is a filter for the map operation, the full data.frame is re-
turned.

simplify see SIMPLIFY in mapply

flatten (function | formula) a function used to flatten the results.

by (e.g. character) argument is passed to extract to select columns.

combine (function | formula) a function which knows how to combine the list of results.
bindRows is the default.

.mc (integer) the number of cores. Passed down to mclapply or mcmapply.

.bar (character) see verboseApply.

Details

map will dispatch to lapply. When x is a formula this is interpreted as a multivariate map; this is
implemented using mapply. When x is a data.frame map will iterate over columns, however the
return value is a data.frame. p can be used to map over a subset of x.

flatmap will dispatch to map. The result is then wrapped by flatten which is unlist by default.

sac is a naive implementation of split-apply-combine and implemented using flatmap.

vmap is a ’verbose’ version of map and provides a progress bar and a link to parallel map (mclapply).

map, flatmap, and sac can be extended; they are S4 generic functions. You don’t and should not
implement a new method for formulas. This method will coerce a formula into a function and pass
it down to your map(newtype, function) method.

mutar 9

Examples

Sugar for anonymous functions
map(data.frame(y = 1:10, z = 2), x ~ x + 1)
map(data.frame(y = 1:10, z = 2), x ~ x + 1, is.numeric)
map(data.frame(y = 1:10, z = 2), x ~ x + 1, x ~ all(x == 2))
sac(data.frame(y = 1:10, z = 1:2), df ~ data.frame(my = mean(df$y)), "z")

Trigger a multivariate map with a formula
map(1:2 ~ 3:4, f(x, y) ~ x + y)
map(1:2 ~ 3:4, f(x, y) ~ x + y, simplify = TRUE)
map(1:2 ~ 3:4, f(x, y, z) ~ x + y + z, z = 1)

Extracting values from lists
map(list(1:2, 3:4), 2)
map(list(1:3, 2:5), 2:3)
map(list(1:3, 2:5), c(TRUE, FALSE, TRUE))

Some type checking along the way
map(as.numeric(1:2), numeric : x ~ x)
map(1:2, integer(1) : x ~ x)
map(1:2, numeric(1) : x ~ x + 0.5)

mutar Tools for Data Frames

Description

mutar is literally the same function as [.DataFrame and can be used as interface to dplyr or
data.table. Other functions here listed are a convenience to mimic dplyr’s syntax in a R CMD check
friendly way. These functions can also be used with S4 data.frame(s) / data_frame(s) / data.table(s).
They will always try to preserve the input class.

Usage

mutar(x, i, j, ..., by, sby, drop)

filtar(x, i)

sumar(x, ..., by)

withReference(expr)

Arguments

x (DataFrame | data.frame)

i (logical | numeric | integer | OneSidedFormula | TwoSidedFormula | FormulaL-
ist) see the examples.

10 mutar

j (logical | character | TwoSidedFormula | FormulaList | function) character be-
ginning with ’^’ are interpreted as regular expression

... arbitrary number of args
in [(TwoSidedFormulas)
in constructor see tibble

by (character) variables to group by. by will be used to do transformations within
groups. sby will collapse each group to one row.

sby (character) variables to group by. by will be used to do transformations within
groups. sby will collapse each group to one row.

drop (ignored) never drops the class.

expr (expression) any R expression that should be evaluated using data tables refer-
ence semantics on data transformations.

Details

The real workhorse of this interface is mutar. All other functions exist to ease the transition from
dplyr.

OneSidedFormula is always used for subsetting rows.

TwoSidedFormula is used instead of name-value expressions. Instead of writing x = 1 you simply
write x ~ 1.

FormulaList can be used to repeat the same operation on different columns. See more details in
FL.

See Also

extract, DataFrame, FL

Examples

data("airquality")
airquality %>%

filtar(~Month > 4) %>%
mutar(meanWind ~ mean(Wind), by = "Month") %>%
sumar(meanWind ~ mean(Wind), by = "Month") %>%
extract("meanWind")

airquality %>%
sumar(
.n ~ mean(.n) | c("Wind", "Temp"),
by = "Month"

)

Enable data.tables reference semantics with:
withReference({

x <- data.table::data.table(x = 1)
mutar(x, y ~ 2)

})

replace 11

Not run:
Use dplyr as back-end:
options(dat.use.dplyr = TRUE)
x <- data.frame(x = 1)
mutar(x, y ~ dplyr::n())

End(Not run)

replace Replace elements in a vector

Description

This function replaces elements in a vector. It is a link to replace as a generic function.

Usage

replace(x, ind, values, ...)

S4 method for signature 'ANY,`function`'
replace(x, ind, values, ...)

S4 method for signature 'ANY,formula'
replace(x, ind, values, ...)

S4 method for signature 'ANY,character'
replace(x, ind, values, ...)

Arguments

x (atomic | list) a vector.

ind used as index for elements to be replaced. See details.

values the values used for replacement.

... arguments passed to ind if it can be interpreted as function. For a regex argu-
ments are passed to grep.

Details

The idea is to provide a more flexible interface for the specification of the index. It can be a
character, numeric, integer or logical which is then simply used in base::replace. It can be a
regular expression in which case x should be named – a character of length 1 and a leading "^" is
interpreted as regex. When ind is a function (or formula) and x is a list then it should be a predicate
function – see the examples. When x is an atomic the function is applied on x and the result is used
for subsetting.

12 verboseApply

Examples

replace(c(1, 2, NA), is.na, 0)
replace(c(1, 2, NA), rep(TRUE, 3), 0)
replace(c(1, 2, NA), 3, 0)
replace(list(x = 1, y = 2), "x", 0)
replace(list(x = 1, y = 2), "^x$", 0)
replace(list(x = 1, y = "a"), is.character, NULL)

verboseApply Verbose apply function

Description

This apply function has a progress bar and enables computations in parallel. By default it is not
verbose. As an interactive version with proper ’verbose’ output by default please use vmap.

Usage

verboseApply(x, f, ..., .mc = 1, .mapper = mclapply, .bar = "none")

Arguments

x (vector)

f (function)

... arguments passed to .mapper and hence f

.mc (integer) the number of processes to start

.mapper (function) the actual apply function used. Should have an argument mc.cores.

.bar (character) one in ’none’, ’.’ or ’bar’

Examples

Not run:
verboseApply(

1:4,
function(...) Sys.sleep(1),
.bar = "bar",
.mc = 2

)

End(Not run)

Index

[.DataFrame (DataFrame), 3

as.DataFrame (DataFrame), 3
as.function.formula, 2
as.list, 8

bindRows, 3, 8

data.frame, 8
DataFrame, 3, 10

extract, 2, 4, 7, 8, 10
extract,ANY,character-method (extract),

4
extract,ANY,formula-method (extract), 4
extract,atomic,function-method

(extract), 4
extract,atomicORlist,numericORintegerORlogical-method

(extract), 4
extract,data.frame,character-method

(extract), 4
extract,list,function-method (extract),

4
extract2 (extract), 4
extract2,ANY,character-method

(extract), 4
extract2,ANY,formula-method (extract), 4
extract2,atomicORlist,function-method

(extract), 4
extract2,atomicORlist,numericORinteger-method

(extract), 4

filtar (mutar), 9
FL, 4, 6, 10
flatmap (map), 7
flatmap,ANY,formula-method (map), 7
formula, 8
function, 8

grep, 11

lapply, 8

makeFormulas (FL), 6
map, 2, 7
map,ANY,formula-method (map), 7
map,atomic,function-method (map), 7
map,formula,function-method (map), 7
map,list,function-method (map), 7
map,list,numericORcharacteORlogical-method

(map), 7
map,MList,function-method (map), 7
mapply, 8
mclapply, 8
mcmapply, 8
mutar, 4, 6, 7, 9

rbindlist, 3
replace, 11, 11
replace,ANY,character-method (replace),

11
replace,ANY,formula-method (replace), 11
replace,ANY,function-method (replace),

11

sac (map), 7
sac,ANY,formula-method (map), 7
sac,data.frame,function-method (map), 7
sumar (mutar), 9

tibble, 4, 10

unlist, 8
update.FormulaList (FL), 6

vector, 8
verboseApply, 8, 12
vmap, 12
vmap (map), 7

withReference (mutar), 9

13

	as.function.formula
	bindRows
	DataFrame
	extract
	FL
	map
	mutar
	replace
	verboseApply
	Index

