Package ‘doRNG’

February 5, 2026

Type Package

Title Generic Reproducible Parallel Backend for 'foreach' Loops
Version 1.8.6.3

Date 2026-02-05

Encoding UTF-8

Description Provides functions to perform
reproducible parallel foreach loops, using independent
random streams as generated by L'Ecuyer's combined
multiple-recursive generator [L'Ecuyer (1999), <DOI:10.1287/opre.47.1.159>].
It enables to easily convert standard '%dopar%' loops into
fully reproducible loops, independently of the number
of workers, the task scheduling strategy, or the chosen
parallel environment and associated foreach backend.

License GPL (>=2)
LazyLoad yes

URL https://github.com/emilioluissaenzguillen/doRNG

BugReports https://github.com/emilioluissaenzguillen/doRNG/issues
Depends R (>= 3.0.0), foreach, rngtools (>= 1.5)
Imports stats, utils, iterators

Suggests doParallel, doMPI, doRedis, rbenchmark, knitr, rbibutils (>=
1.3), testthat, covr

RoxygenNote 7.3.3
NeedsCompilation no

Author Renaud Gaujoux [aut],
Emilio L. Sdenz Guillén [cre]

Maintainer Emilio L. Sdenz Guillén <Emilio.Saenz-Guillen@citystgeorges.ac.uk>
Repository CRAN
Date/Publication 2026-02-05 15:50:03 UTC

https://doi.org/10.1287/opre.47.1.159
https://github.com/emilioluissaenzguillen/doRNG
https://github.com/emilioluissaenzguillen/doRNG/issues

2 doRNG-package

Contents
doRNG-package e 2
doRNGVErsion oo ittt e 3
registerDORNG e 4
Godorng%o e 6

Index 9

doRNG-package Generic Reproducible Parallel Backend for foreach Loops
Description

The doRNG package provides functions to perform reproducible parallel foreach loops, using inde-
pendent random streams as generated by L’Ecuyer’s combined multiple-recursive generator [L’Ecuyer
(1999)]. It enables to easily convert standard independently of the number of workers, the task
scheduling strategy, or the chosen parallel environment and associated foreach backend. It has been
tested with the following foreach backend: doMC, doSNOW, doMPI.

References

L’Ecuyer, P. (1999). Good Parameters and Implementations for Combined Multiple Recursive Ran-
dom Number Generators. Operations Research, 47(1), 159—164. doi:10.1287/opre.47.1.159

See Also

doRNG, RNGseq

Examples

Register a parallel backend (suggested package)
local({
if (requireNamespace("doParallel”, quietly = TRUE)) {
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
on.exit(parallel::stopCluster(cl), add = TRUE)

standard %dopar% loops are not reproducible
set.seed(123)

r1 <- foreach(i = 1:4) %dopar% { runif(1) }
set.seed(123)

r2 <- foreach(i = 1:4) %dopar% { runif(1) }
identical(r1, r2)

%dorng% loops _are_ reproducible
set.seed(123)

d1 <- foreach(i = 1:4) %dorng% { runif(1) }
set.seed(123)

https://doi.org/10.1287/opre.47.1.159

doRNGversion 3

d2 <- foreach(i = 1:4) %dorng% { runif(1) }
identical(dl, d2)

alternative way of seeding

al <- foreach(i = 1:4, .options.RNG = 123) %dorng% { runif(1) }
a2 <- foreach(i = 1:4, .options.RNG = 123) %dorng% { runif(1) }
identical(al, a2) && identical(al, d1)

sequences of %dorng% loops _are_ reproducible
set.seed(123)

s1 <- foreach(i = 1:4) %dorng% { runif(1) }

s2 <- foreach(i = 1:4) %dorng% { runif(1) }
identical(s1, d1) && !identical(s1, s2)

set.seed(123)

s1.2 <- foreach(i = 1:4) %dorng% { runif(1) 3}
s2.2 <- foreach(i = 1:4) %dorng% { runif(1) }
identical(s1, s1.2) && identical(s2, s2.2)

Non-invasive way of converting %dopar% loops into reproducible loops
registerDoRNG(123)

s3 <- foreach(i = 1:4) %dopar% { runif(1) }

s4 <- foreach(i = 1:4) %dopar% { runif(1) }

identical(s3, s1) && identical(s4, s2)

} else {
message("Package 'doParallel' is not installed; skipping parallel examples.")
}
»
doRNGversion Back Compatibility Option for doRNG
Description

Sets the behaviour of given version number.

Usage

doRNGversion(x)

Arguments

X version number to switch to, or missing to get the currently active version num-
ber, or NULL to reset to the default behaviour, i.e. of the latest version.

Value

registerDoRNG

a character string If x is missing this function returns the version number from the current behaviour.
If x is specified, the function returns the old value of the version number (invisible).

Behaviour changes in versions

1.4 The behaviour of doRNGseed, and therefore of * L’Ecuyer-CMRG. Using set.seed before a
non-seeded loop used not to be identical to seeding via .options.RNG. Another bug was that

non-seeded loops would share most of their RNG seed!

1.7.4 Prior to this version, in the case where the RNG had not been called yet, the first seeded *
subsequent loops despite using the same seed (see https://github.com/renozao/doRNG/

issues/12).

This has been fixed in version 1.7.4, where the RNG is called once (sample(NA)), whenever

the .Random.seed is not found in global environment.

Examples

Seeding when current RNG is L'Ecuyer-CMRG
RNGkind("L'Ecuyer™)

doRNGversion("1.4")

in version >= 1.4 seeding behaviour changed to fix a bug
set.seed(123)

res <- foreach(i=1:3) %dorng% runif(1)

res2 <- foreach(i=1:3) %dorng% runif(1)

stopifnot(!identical(attr(res, 'rng')[2:3], attr(res2, 'rng')[1:2]))
res3 <- foreach(i=1:3, .options.RNG=123) %dorng% runif(1)

stopifnot(identical(res, res3))

buggy behaviour in version < 1.4

doRNGversion("”1.3")

res <- foreach(i=1:3) %dorng% runif(1)

res2 <- foreach(i=1:3) %dorng% runif(1)

stopifnot(identical(attr(res, 'rng')[2:3], attr(res2, 'rng')[1:2]))
res3 <- foreach(i=1:3, .options.RNG=123) %dorng% runif (1)

stopifnot(!identical(res, res3))

restore default RNG
RNGkind("default")

restore to current doRNG version
doRNGversion(NULL)

registerDoRNG Registering doRNG for Persistent Reproducible Parallel Foreach

Loops

https://github.com/renozao/doRNG/issues/12
https://github.com/renozao/doRNG/issues/12

registerDoRNG 5

Description

registerDoRNG registers the doRNG foreach backend. Subsequent ‘ registered foreach backend,
but are internally performed as [making them fully reproducible.

Usage
registerDoRNG(seed = NULL, once = TRUE)

Arguments
seed a numerical seed to use (as a single or 6-length numerical value)
once a logical to indicate if the RNG sequence should be seeded at the beginning of
each loop or only at the first loop.
Details

Briefly, the RNG is set, before each iteration, with seeds for L"Ecuyer’s CMRG that overall generate
a reproducible sequence of statistically independent random streams.

Note that (re-)registering a foreach backend other than doRNG, after a call to registerDoRNG
disables doRNG — which then needs to be registered.

Value

The value returned by [foreach::setDoPar]

See Also
[

Examples

if (requireNamespace("doParallel”, quietly = TRUE)) {
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)

tryCatch({
One can make reproducible loops using the %dorng% operator
r1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }

or convert %dopar% loops using registerDoRNG
registerDoRNG(1234)

r2 <- foreach(i=1:4) %dopar% { runif(1) }
identical(rl, r2)

Registering another foreach backend disables doRNG
doParallel::registerDoParallel(cl)

set.seed(1234)

s1 <- foreach(i=1:4) %dopar% { runif(1) }
set.seed(1234)

s2 <- foreach(i=1:4) %dopar% { runif(1) }

6 %dorng %

identical(s1, s2)

doRNG is re-enabled by re-registering it
registerDoRNG()

set.seed(1234)

r3 <- foreach(i=1:4) %dopar% { runif(1) }
identical(r2, r3)

argument ~once=FALSE" reseeds doRNG's seed at the beginning of each loop
registerDoRNG(1234, once=FALSE)

al <- foreach(i=1:4) %dopar% { runif(1) }

a2 <- foreach(i=1:4) %dopar% { runif(1) }

identical(al, a2)

Once doRNG is registered the seed can also be passed as an option to %dopar%
b1 <- foreach(i=1:4, .options.RNG=456) %dopar% { runif(1) }

b2 <- foreach(i=1:4, .options.RNG=456) %dopar% { runif(1) }

identical(b1, b2) && !identical(b1, r1)

}, finally = {
foreach: :registerDoSEQ()
parallel::stopCluster(cl)
1))
} else {
message("Package 'doParallel' is not installed; skipping this example.")

3

%dorng% Reproducible Parallel Foreach Backend

Description

33

Usage

obj %dorng% ex

Arguments
obj a foreach object as returned by a call to foreach.
ex the R expression to evaluate.

Value

¢ The whole sequence of RNG seeds is stored in the result object as an attribute. Use attr(res,
'rng') to retrieve it.

%dorng % 7

Global options

These options are for advanced users that develop ‘foreach backends:

**doRNG.rng_change_warning_skip’: if set to a single logical ‘FALSE/TRUE®, it indicates whether
a warning should be thrown if the RNG seed is changed by the registered parallel backend (de-
fault=FALSE). Set it to “TRUE" if you know that running your backend will change the RNG state
and want to disable the warning. This option can also be set to a character vector that specifies the
name(s) of the backend(s) for which the warning should be skipped.

See Also

foreach, doParallel, registerDoParallel, doMPI

Examples

if (requireNamespace("doParallel”, quietly = TRUE)) {
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
on.exit(parallel::stopCluster(cl), add = TRUE)

standard %dopar% loops are _not_ reproducible
set.seed(1234)

s1 <- foreach(i=1:4) %dopar% { runif(1) }
set.seed(1234)

s2 <- foreach(i=1:4) %dopar% { runif(1) }
identical(s1, s2)

single %dorng% loops are reproducible
r1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
r2 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
identical(rl, r2)
the sequence of RNG seeds is stored as an attribute
attr(rl, "rng")
} else {
message("Package 'doParallel' is not installed; skipping this example.")

}

More examples can be found in demo ~doRNG™
Not run:
demo('doRNG")

End(Not run)

Some features of the %dorng% foreach operator
if (requireNamespace("doParallel”, quietly = TRUE)) {
Fork backend on Unix
if (.Platform$0S.type == "unix") {
doParallel::registerDoParallel(2)

r1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
r2 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
identical(r1, r2)

%dorng %

attr(r1l, "rng")

set.seed(1234)

s1 <- foreach(i=1:4) %dorng% { runif(1) }
s2 <- foreach(i=1:4) %dorng% { runif(1) }
identical(s1, s2)

set.seed(1234)

s1.2 <- foreach(i=1:4) %dorng% { runif(1) }
s2.2 <- foreach(i=1:4) %dorng% { runif(1) }
identical(s1, s1.2) && identical(s2, s2.2)
identical(r1, s1)

}

PSOCK cluster (works everywhere)

cl <- parallel::makeCluster(2)

doParallel: :registerDoParallel(cl)
on.exit(parallel::stopCluster(cl), add = TRUE)

s1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
s2 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
identical(s1, s2)

registerDoSEQ()
} else {
message("Package 'doParallel' is not installed; skipping these examples.")

3

Not run:

MPI cluster (requires a working MPI + Rmpi setup)
library(doMPI)

cl <- startMPIcluster(2)

registerDoMPI(cl)

s1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
s2 <~ foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
identical(s1, s2)

closeCluster(cl)
registerDoSEQ()

End(Not run)

Index

* package
doRNG-package, 2
%dorng, 6

doMPI, 7
doParallel, 7
doRNG, 2
doRNG-package, 2
doRNGversion, 3

foreach, 6, 7

registerDoParallel, 7
registerDoRNG, 4
RNGseq, 2

	doRNG-package
	doRNGversion
	registerDoRNG
	dorng
	Index

