Package ‘ggiraph’

February 4, 2026

Type Package

Title Make 'ggplot2' Graphics Interactive

Version 0.9.4

Description Create interactive 'ggplot2' graphics using 'htmlwidgets'.
License GPL-3

URL https://davidgohel.github.io/ggiraph/

BugReports https://github.com/davidgohel/ggiraph/issues

Imports cli, dplyr, gdtools (>= 0.4.4), ggplot2 (>= 4.0.0), grid,
htmltools, htmlwidgets (>= 1.5), purrr, Rcpp (>= 1.1.0), rlang,
S7 (>=0.2.0), stats, systemfonts (>= 1.3.1), vctrs

Suggests ggbeeswarm, ggrepel (>= 0.9.1), hexbin, knitr, maps,
quantreg, rmarkdown, sf (>= 1.0), shiny, tinytest, xml2 (>=
1.0)

LinkingTo Rcpp, systemfonts
VignetteBuilder knitr

Copyright See file COPYRIGHTS.
Encoding UTF-8

RoxygenNote 7.3.3
SystemRequirements libpng

Collate 'RcppExports.R' 'ipar.R' 'utils_ggplot2_performance.R'
'utils_ggplot2.R' 'utils.R' 'annotate_interactive.R'
'annotation_raster_interactive.R' 'utils_css.R' 'fonts.R'
'girafe_options.R' 'default.R' 'dsvg.R' 'dsvg_view.R'
'element_interactive.R' 'facet_interactive.R'
'geom_abline_interactive.R' 'geom_path_interactive.R'
'geom_polygon_interactive.R' 'geom_rect_interactive.R'
'geom_bar_interactive.R' 'geom_bin_2d_interactive.R'
'geom_boxplot_interactive.R' 'geom_col_interactive.R'
'geom_contour_interactive.R' 'geom_count_interactive.R'
'geom_crossbar_interactive.R' 'geom_curve_interactive.R'
'geom_density_2d_interactive.R' 'geom_density_interactive.R'

1

https://davidgohel.github.io/ggiraph/
https://github.com/davidgohel/ggiraph/issues

2 Contents

'geom_dotplot_interactive.R' 'geom_errorbar_interactive.R'
'geom_errorbarh_interactive.R' 'geom_freqpoly_interactive.R'
'geom_hex_interactive.R' 'geom_histogram_interactive.R'
'seom_hline_interactive.R' 'geom_jitter_interactive.R'
'geom_label_interactive.R' 'geom_linerange_interactive.R'
'geom_map_interactive.R' 'geom_point_interactive.R'
'geom_pointrange_interactive.R' 'geom_quantile_interactive.R'
'geom_quasirandom_interactive.R' 'geom_raster_interactive.R'
'geom_ribbon_interactive.R' 'geom_segment_interactive.R'
'geom_sf_interactive.R' 'geom_smooth_interactive.R'
'geom_spoke_interactive.R' 'geom_text_interactive.R'
'geom_text_repel_interactive.R' 'geom_tile_interactive.R'
'geom_violin_interactive.R' 'geom_vline_interactive.R'
'ggiraph.R' 'girafe.R' 'grob_interactive.R'
'guide_bins_interactive.R' 'guide_colourbar_interactive.R'
'guide_coloursteps_interactive.R' 'guide_interactive.R'
'guide_legend_interactive.R' 'interactive_circle_grob.R’
'interactive_curve_grob.R' 'interactive_path_grob.R’
'interactive_points_grob.R' 'interactive_polygon_grob.R'
'interactive_polyline_grob.R' 'interactive_raster_grob.R'
'interactive_rect_grob.R' 'interactive_roundrect_grob.R'
'interactive_segments_grob.R' 'interactive_text_grob.R'
'labeller_interactive.R' 'layer_interactive.R'
'scale_alpha_interactive.R' 'scale_brewer_interactive.R'
'scale_colour_interactive.R' 'scale_gradient_interactive.R'
'scale_interactive.R' 'scale_linetype_interactive.R'
'scale_manual_interactive.R' 'scale_shape_interactive.R'
'scale_size_interactive.R' 'scale_steps_interactive.R'
'scale_viridis_interactive.R' 'tracers.R' 'utils_data.r'

NeedsCompilation yes

Author David Gohel [aut, cre],
Panagiotis Skintzos [aut],
Mike Bostock [cph] (d3.js),
Speros Kokenes [cph] (d3-lasso),
Eric Shull [cph] (saveSvgAsPng js library),
Lee Thomason [cph] (TinyXML2),
Vladimir Agafonkin [cph] (Flatbush),
Eric Book [ctb] (hline and vline geoms)

Maintainer David Gohel <david.gohel@ardata.fr>
Repository CRAN
Date/Publication 2026-02-04 12:10:10 UTC

Contents

annotate_INtEractive o o o e e e e e e e e e e e 4
annotation_raster_Interactivet e e e e e e e e e e 6

Contents

3
dSVE . o e e 7
dsvg view . . .o e 8
element_interactive e e e 9
facet_grid_interactive 11
facet_wrap_interactive 12
geom_abline_interactive L. e 13
geom_bar_interactive L Lo 16
geom_bin_2d_interactive L e 18
geom_boxplot_interactive Lo 19
geOM_CONtour_interactive it e e 21
geOM_COount_interactiveo e 22
geom_crossbar_interactive oL e e 23
gEOM_CUIVe_INteractivet e 25
geom_density_2d_interactive L. Lo 27
geom_density_interactiveo e e e e 29
geom_dotplot_interactive L. oL e e e 30
geom_errorbarh_interactive oL oL 32
geom_freqpoly_interactive L. 33
geom_hex_interactive e e e 34
geom_jitter_interactive e e 35
geom_label_interactiveol 36
gEOM_MAap_interactive it e e e e e e e e e e 38
geom_path_interactive e 40
geom_point_interactiveo e e e 43
geom_polygon_interactiveo e e e e 45
geom_quantile_interactive L. Lo e e 48
geom_quasirandom_interactive 49
geom_raster_interactiveo e e e e 51
GEOM_TECt_INteractive o v i i s e e e e e e e e e e 52
geom_ribbon_interactiveo 55
geom_sf_interactive 56
geom_smooth_interactive e e 58
geom_spoke_interactive e 59
geom_text_repel_interactive oo 61
geom_violin_interactiveol e 62
girafe . . . L. e 64
girafeOutput e 67
girafe_CsS 67
girafe_css_bicolor 68
girafe_defaults 69
girafe_options e 70
guide_bins_interactive Lo 71
guide_colourbar_interactive oL 74
guide_coloursteps_interactiveo 78
guide_legend_interactive 80
init_girafe_defaults 85
interactive_circle_grob 86

interactive_curve_grob Lo 87

Index

annotate_interactive

INteractive_parameters v v v v i e e e e e e e e e e e e e e 87
interactive_path_grob L. 90
interactive_points_grob oL L e e 90
interactive_polygon_grob 91
interactive_polyline_grob 92
interactive_raster_grob L e 92
interactive_rect_grob e e e e 93
interactive_roundrect_grob L. 94
interactive_segments_grob L. Lo 94
interactive_text_grob L. e 95
labeller_interactive i e e e e e e e e e e e 96
label_interactive e e e e e e e e e 99
match_family 100
opts_hover. 101
opts_selection L. e e e e 102
OPES_SIZING o e e e e e e e e 104
opts_toolbar L. 105
opts_tooltip 107
OPES_ZOOMM .« . v v v v e et e e e e e e e e e e 109
renderGirafe L 110
run_girafe_example L e 110
scale_alpha_interactive e e 111
scale_colour_brewer_interactive oo 112
scale_colour_interactive e e e e e 114
scale_colour_steps_interactiveo i e e e e e e 116
scale_gradient_interactiveo e e 117
scale_linetype_interactive L. 121
scale_manual_interactive e 123
scale_shape_interactive e e e e 127
scale_size_interactive e e e e e 128
scale_viridis_interactive e e e e e e e e e 130
set_girafe_defaults 133
validated_fonts L. e e 135

137

annotate_interactive Create interactive annotations

Description

The layer is based on ggplot2::annotate(). See the documentation for that function for more
details.

Usage

annotate_interactive(...)

annotate_interactive 5

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for annotate_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe(), interactive_parameters, annotation_raster_interactive()

Examples

add interactive annotation to a ggplot -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()
gg <- ggplot(mtcars, aes(x = disp, y = gsec)) +

geom_point(size = 2) +
annotate_interactive(

"rect”,
xmin = 100,
Xmax = 400,
fill = "red",
data_id = "an_id",
tooltip = "a tooltip”,
ymin = 18,
ymax = 20,
alpha = .5
) +
theme_minimal(base_family = "Liberation Sans”, base_size = 11)
girafe(
ggobj = gg,

width_svg = 5,
height_svg = 4,
dependencies = list(
liberationsansHtmlDependency ()
)
)

6 annotation_raster_interactive

annotation_raster_interactive
Create interactive raster annotations

Description

The layer is based on ggplot2::annotation_raster(). See the documentation for that function
for more details.

Usage

annotation_raster_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for annotate_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

Examples

add interactive raster annotation to a ggplot -------
library(ggplot2)
library(ggiraph)

Generate data
rainbow <- matrix(hcl(seq(@, 360, length.out = 50 * 50), 80, 70), nrow = 50)
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
annotation_raster_interactive(
rainbow,
15,
20,
3,
4,
tooltip = "I am an image!”
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

dsvg 7

To fill up whole plot
p <- ggplot(mtcars, aes(mpg, wt)) +
annotation_raster_interactive(
rainbow,
-Inf,
Inf,
-Inf,
Inf,
tooltip = "I am an image too!”
) +
geom_point()
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

dsvg SVG Graphics Driver

Description

This function produces SVG files (compliant to the current w3 svg XML standard) where elements
can be made interactive.

In order to generate the output, used fonts must be available on the computer used to create the svg,
used fonts must also be available on the computer used to render the svg.

Usage
dsvg(
file = "Rplots.svg”,
width = 6,
height = 6,
bg = "white”,

pointsize = 12,
standalone = TRUE,
setdims = TRUE,

canvas_id = "svg_1",
title = NULL,
desc = NULL,
fonts = list()
)
Arguments
file the file where output will appear.

height,width Height and width in inches.
bg Default background color for the plot (defaults to "white").

8 dsvg_view

pointsize default point size.

standalone Produce a stand alone svg file? If FALSE, omits xml header and default names-
pace.

setdims If TRUE (the default), the svg node will have attributes width & height set.

canvas_id svg id within HTML page.

title A label for accessibility purposes (aria-label/aria-labelledby). Be aware that

when using this, the browser will use it as a tooltip for the whole svg and it may
class with the interactive elements’ tooltip.

desc A longer description for accessibility purposes (aria-description/aria-describedby).

fonts Named list of font names to be aliased with fonts installed on your system. If

non

unspecified, the R default families "sans", "serif", "mono" and "symbol" are
aliased to the family returned by match_family().

If fonts are available, the default mapping will use these values:

R family Font on Windows Font on Unix Font on Mac OS

sans Arial DejaVu Sans Helvetica
serif Times New Roman DejaVu serif =~ Times
mono Courier DejaVu mono Courier
symbol Symbol DejaVu Sans Symbol

As an example, using fonts = list(sans = "Roboto") would make the default
font "Roboto" as many ggplot theme are using theme_minimal (base_family="")
or theme_minimal (base_family="sans").

You can also use theme_minimal(base_family="Roboto").

See Also

Devices

Examples

fileout <- tempfile(fileext = ".svg")

dsvg(file = fileout)

plot(rnorm(10), main="Simple Example”, xlab = "", ylab = "")
dev.off()

dsvg_view Run plotting code and view svg in RStudio Viewer or web broswer.

Description

This is useful primarily for testing. Requires the htmltools package.

element_interactive 9

Usage
dsvg_view(code, ...)
Arguments
code Plotting code to execute.
Other arguments passed on to dsvg().
Examples

dsvg_view(plot(1:10))
dsvg_view(hist(rnorm(100)))

element_interactive Create interactive theme elements

Description

With these functions the user can add interactivity to various ggplot2: : theme() elements.

They are based on ggplot2: :element_rect(), ggplot2::element_line() and ggplot2::element_text()
See the documentation for those functions for more details.

Usage

element_line_interactive(...)
element_rect_interactive(...)

element_text_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for element_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant function and they should be
scalar values.

For theme text elements (element_text_interactive()), the interactive parameters can also be
supplied while setting a label value, via the ggplot2::1labs() family of functions or when set-
ting a scale/guide title or key label. Instead of setting a character value for the element, function
label_interactive() can be used to define interactive parameters to go along with the label.
When the parameters are supplied that way, they override the default values that are set at the theme
via element_text_interactive() or via the guide’s theme parameters.

10 element_interactive

See Also

girafe()

Examples

add interactive theme elements -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

dataset <- structure(
list(
gsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22),
disp = c(160, 160, 108, 258, 360, 225),
carname = c(
"Mazda RX4",
"Mazda RX4 Wag",
"Datsun 710",
"Hornet 4 Drive",
"Hornet Sportabout”,
"Valiant”
),
wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)
),
row.names = c(
"Mazda RX4",
"Mazda RX4 Wag",
"Datsun 710",
"Hornet 4 Drive",
"Hornet Sportabout”,

"Valiant"
)Y
class = "data.frame”
)
plots

gg_point = ggplot(data = dataset) +
geom_point_interactive(aes(
X = wt,
y = gsec,
color = disp,
tooltip = carname,
data_id = carname
)+
theme_minimal(base_family = "Liberation Sans”, base_size = 11) +
theme(
plot.title = element_text_interactive(
data_id = "plot.title”,
tooltip = "plot title”,
hover_css = "fill:red;stroke:none;font-size:12pt”

facet_grid_interactive 11

),

plot.subtitle = element_text_interactive(
data_id = "plot.subtitle”,
tooltip = "plot subtitle”,

hover_css = "fill:none;"

),

axis.title.x = element_text_interactive(
data_id = "axis.title.x",
tooltip = "Description for x axis”,
hover_css = "fill:red;stroke:none;"

),

axis.title.y = element_text_interactive(
data_id = "axis.title.y",
tooltip = "Description for y axis”,
hover_css = "fill:red;stroke:none;"
),
panel.grid.major = element_line_interactive(
data_id = "panel.grid”,
tooltip = "Major grid lines”,
hover_css = "fill:none;stroke:red;"
)
) +
labs(
title = "Interactive points example!”,
subtitle = label_interactive(
"by ggiraph”,
tooltip = "Click me!”,
onclick = "window.open(\"https://davidgohel.github.io/ggiraph/\")",
hover_css = "fill:magenta;cursor:pointer;"”
)
)

x <- girafe(
ggobj = gg_point,
dependencies = list(
liberationsansHtmlDependency ()
)
)
if (interactive()) {
print(x)
3

facet_grid_interactive
Create interactive grid facets

Description

These facets are based on ggplot2::facet_grid().

To make a facet interactive, it is mandatory to use labeller_interactive() for argument labeller.

12 facet_wrap_interactive

Usage

facet_grid_interactive(..., interactive_on = "text")

Arguments

arguments passed to base function and labeller_interactive() for argument
labeller.

interactive_on one of ’text’ (only strip text are made interactive), ‘rect’ (only strip rectangles
are made interactive) or "both’ (strip text and rectangles are made interactive).

Value

An interactive facetting object.

See Also

girafe()

facet_wrap_interactive
Create interactive wraped facets

Description

These facets are based on ggplot2::facet_wrap().

To make a facet interactive, it is mandatory to use labeller_interactive() for argument labeller.

Usage

facet_wrap_interactive(..., interactive_on = "text")

Arguments

arguments passed to base function and labeller_interactive() for argument
labeller.

interactive_on one of 'text’ (only strip text are made interactive), 'rect’ (only strip rectangles
are made interactive) or ’both’ (strip text and rectangles are made interactive).

Value

An interactive facetting object.

See Also
girafe()

geom_abline_interactive 13

geom_abline_interactive
Create interactive reference lines

Description

These geometries are based on ggplot2: :geom_abline(), ggplot2: :geom_hline() and ggplot2::geom_vline().

Usage

geom_abline_interactive(...)
geom_hline_interactive(...)

geom_vline_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:
* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()
girafe()
girafe()

Examples

add diagonal interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
g <- p + geom_abline_interactive(intercept = 20, tooltip = 20)
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
3

14

geom_abline_interactive

1 <- coef(Im(mpg ~ wt, data = mtcars))
g <-p+
geom_abline_interactive(
intercept = 1[[111],
slope = 1[[2]],
tooltip = paste(”intercept:”, 1[[1]1], "\nslope:", 1[[2]1]),
data_id = "abline”
)
x <- girafe(ggobj = g)
x <- girafe_options(
X = X,
opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;")
)
if (interactive()) {
print(x)
}
add horizontal interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)

if (requireNamespace("dplyr”, quietly = TRUE)) {
gl <- ggplot(economics, aes(x = date, y = unemploy)) +
geom_point() +
geom_line()

gg_hlinel <- gl +
geom_hline_interactive(
aes(yintercept = mean(unemploy), tooltip = round(mean(unemploy), 2)),
linewidth = 3
)
x <- girafe(ggobj = gg_hlinel)
if (interactive()) print(x)
3

dataset <- data.frame(

x =c(1, 2, 5, 6, 8),

y =c(3, 6, 2, 8, 7),

vx = c(1, 1.5, 0.8, 0.5, 1.3),

vy = c(0.2, 1.3, 1.7, 0.8, 1.4),

year = c(2014, 2015, 2016, 2017, 2018)
)

dataset$clickjs <- rep(paste@("alert(\""”, mean(dataset$y), "\")"), 5)

g2 <- ggplot(dataset, aes(x = year, y = y)) +
geom_point() +
geom_line()

gg_hline2 <- g2 +
geom_hline_interactive(
aes(
yintercept = mean(y),

geom_abline_interactive

tooltip = round(mean(y), 2),
data_id =y,
onclick = clickjs

)
)

x <- girafe(ggobj = gg_hline2)
if (interactive()) {
print(x)
}
add vertical interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)

if (requireNamespace("dplyr”, quietly = TRUE)) {
gl <- ggplot(diamonds, aes(carat)) +
geom_histogram()

gg_vlinel <- gl +
geom_vline_interactive(
aes(
xintercept = mean(carat),
tooltip = round(mean(carat), 2),
data_id = carat
),
size = 3
)
x <- girafe(ggobj = gg_vlinel)
if (interactive()) print(x)
3

dataset <- data.frame(x = rnorm(100))

dataset$clickjs <- rep(
paste@("alert(\"", round(mean(dataset$x), 2), "\")"),
100

g2 <- ggplot(dataset, aes(x)) +
geom_density(fill = "#000000", alpha = 0.7)
gg_vline2 <- g2 +
geom_vline_interactive(
aes(
xintercept = mean(x),
tooltip = round(mean(x), 2),

data_id = x,
onclick = clickjs
),
color = "white"

)

x <- girafe(ggobj = gg_vline2)
x <- girafe_options(

16 geom_bar_interactive

X = X,
opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;")

)

if (interactive()) {
print(x)

3

geom_bar_interactive Create interactive bars

Description

The geometries are based on ggplot2::geom_bar() and ggplot2::geom_col(). See the docu-
mentation for those functions for more details.

Usage

geom_bar_interactive(...)

geom_col_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.
See Also

girafe()

Examples

add interactive bar -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

p <- ggplot(mpg, aes(x = class, tooltip = class, data_id = class)) +
geom_bar_interactive() +

geom_bar_interactive

theme_minimal(base_family = "Liberation Sans”, base_size = 11)

x <- girafe(
ggobj = p,
dependencies = list(
liberationsansHtmlDependency ()

)

)

if (interactive()) {
print(x)

3

dat <- data.frame(
name = c("David”, "Constance"”, "Leonie"),
gender = c("Male”, "Female"”, "Female"),
height = c(172, 159, 71)

p <- ggplot(dat, aes(x = name, y = height, tooltip = gender, data_id = name)) +
geom_col_interactive() +
theme_minimal (base_family = "Liberation Sans”, base_size = 11)

x <- girafe(
ggobj = p,
dependencies = list(
liberationsansHtmlDependency ()
)
)
if (interactive()) {
print(x)
3

an example with interactive guide ----

dat <- data.frame(
name = c("Guy"”, "Ginette", "David"”, "Cedric"”, "Frederic"),
gender = c("Male”, "Female"”, "Male"”, "Male"”, "Male"),
height = c(169, 160, 171, 172, 171)

p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +
geom_bar_interactive(stat = "identity") +
scale_fill_manual_interactive(

values = c(Male = "#0072B2", Female = "#@Q9E73"),
data_id = c(Female = "Female”, Male = "Male"),
tooltip = c(Male = "Male”, Female = "Female")
) +
theme_minimal(base_family = "Liberation Sans"”, base_size = 11)

x <- girafe(
ggobj = p,
dependencies = list(

liberationsansHtmlDependency ()
)

)
if (interactive()) {
print(x)

18 geom_bin_2d_interactive

geom_bin_2d_interactive
Create interactive heatmaps of 2d bin counts

Description
The geometry is based on ggplot2::geom_bin_2d(). See the documentation for those functions
for more details.

Usage

geom_bin_2d_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.
See Also

girafe()

Examples

add interactive bin2d heatmap to a ggplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(diamonds, aes(x, y, fill = cut)) +
xlim(4, 10) +
ylim(4, 10) +
geom_bin2d_interactive(aes(tooltip

cut), bins = 30)

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

geom_boxplot_interactive 19

geom_boxplot_interactive
Create interactive boxplot

Description
The geometry is based on ggplot2: : geom_boxplot (). See the documentation for that function for
more details.

Usage

geom_boxplot_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details

You can supply interactive parameters for the outlier points by prefixing them with outlier.
prefix. For example: aes(outlier.tooltip = ’bla’, outlier.data_id = "blabla’).

IMPORTANT: when supplying outlier interactive parameters, the correct group aesthetic must be
also supplied. Otherwise the default group calculation will be incorrect, which will result in an
incorrect plot.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive boxplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mpg, aes(x = class, y = hwy, tooltip = class)) +
geom_boxplot_interactive()

x <- girafe(ggobj = p)

20

if (interactive()) {
print(x)
3

p <- ggplot(mpg) +
geom_boxplot_interactive(

aes(
X = drv,
y = hwy,
fill = class,

data_id = class,
tooltip = after_stat({

pasted(
"class: ",
.data$fill,
"\nQ1: ",
prettyNum(.data$lower),
"\nQ3: ",
prettyNum(.data$upper),
"\nmedian: ",
prettyNum(.data$middle)
)
D
),
outlier.colour = "red"
) +
guides(fill = "none") +

theme_minimal()

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

p <- ggplot(mpg) +
geom_boxplot_interactive(

aes(
X = drv,
y = hwy,
fill = class,

group = paste(drv, class),

data_id = class,

tooltip = after_stat({

pasted(

"class: ",
.datas$fill,
"\nQ1: ",
prettyNum(.data$lower),
"\nQ3: ",
prettyNum(.data$upper),
"\nmedian: ",
prettyNum(.data$middle)

geom_boxplot_interactive

geom_contour_interactive 21

)

})!

outlier.tooltip = paste(
"I am an outlier!\nhwy:",

hwy,
"\ndrv:",
drv,
"\nclass:",
class
)
),
outlier.colour = "red”
) +
guides(fill = "none”) +

theme_minimal ()

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

geom_contour_interactive
Create interactive 2d contours of a 3d surface

Description

These geometries are based on ggplot2: :geom_contour () and ggplot2: :geom_contour_filled().
See the documentation for those functions for more details.

Usage

geom_contour_interactive(...)

geom_contour_filled_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:
* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

22 geom_count_interactive

See Also

girafe()

Examples

add interactive contours to a ggplot -------
library(ggplot2)
library(ggiraph)

v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
p<-v+
geom_contour_interactive(aes(
colour = after_stat(level),
tooltip = paste(”Level:", after_stat(level))
D)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

if (packageVersion(”grid”) >= numeric_version("3.6")) {
p<-v+
geom_contour_filled_interactive(aes(
colour = after_stat(level),
fill = after_stat(level),
tooltip = paste("Level:", after_stat(level))
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
3

geom_count_interactive
Create interactive point counts

Description
The geometry is based on ggplot2: :geom_bin2d (). See the documentation for those functions for
more details.

Usage

geom_count_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

geom_crossbar_interactive 23

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive point counts to a ggplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mpg, aes(cty, hwy)) +
geom_count_interactive(aes(tooltip = after_stat(n)))
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

p2 <- ggplot(diamonds, aes(x = cut, y = clarity)) +
geom_count_interactive(aes(
size = after_stat(prop),
tooltip = after_stat(round(prop, 3)),
group = 1
)+
scale_size_area(max_size = 10)
x <- girafe(ggobj = p2)
if (interactive()) {
print(x)
3

geom_crossbhar_interactive
Create interactive vertical intervals: lines, crossbars & errorbars

Description

These geometries are based on ggplot2: :geom_crossbar(), ggplot2: :geom_errorbar(), ggplot2
and ggplot2: :geom_pointrange(). See the documentation for those functions for more details.

::geom_linerange()

24 geom_crossbar_interactive

Usage

geom_crosshar_interactive(...)
geom_errorbar_interactive(...)
geom_linerange_interactive(...)

geom_pointrange_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive intervals -------
library(ggplot2)
library(ggiraph)

Create a simple example dataset
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4)

group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)

p <- ggplot(df, aes(trt, resp, colour = group))

g<-p+
geom_linerange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
3

geom_curve_interactive 25

g<-p+t
geom_pointrange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
3

g <-p+
geom_crossbar_interactive(
aes(ymin = lower, ymax = upper, tooltip = group),
width = 0.2
)
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
}

g<-p+t
geom_errorbar_interactive(
aes(ymin = lower, ymax = upper, tooltip = group),
width = 0.2
)
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
3

geom_curve_interactive
Create interactive line segments and curves

Description
The geometries are based on ggplot2::geom_segment() and ggplot2::geom_curve(). See the
documentation for those functions for more details.

Usage

geom_curve_interactive(...)

geom_segment_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

26 geom_curve_interactive

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive segments and curves to a ggplot -------
library(ggplot2)
library(ggiraph)

counts <- as.data.frame(table(x = rpois(100, 5)))
counts$x <- as.numeric(as.character(counts$x))
counts$xlab <- paste@("bar”, as.character(counts$x))

gg_segment_1 <- ggplot(
data = counts,
aes(x = x, y = Freq, yend = @, xend = x, tooltip = xlab)
)+
geom_segment_interactive(size = I(10))
x <- girafe(ggobj = gg_segment_1)
if (interactive()) {
print(x)
3

dataset = data.frame(
x =c(1, 2, 5, 6, 8),
y =c¢c(3, 6, 2, 8, 7),
vx = c(1, 1.5, 0.8, 0.5, 1.3),
vy = c(0.2, 1.3, 1.7, 0.8, 1.4),
labs = paste@("Lab", 1:5)
)
dataset$clickjs = paste@(”alert(\"", dataset$labs, "\")")

gg_segment_2 = ggplot() +
geom_segment_interactive(

data = dataset,

mapping = aes(
X = X,
y =Y,
xend = x + VX,
yend =y + vy,
tooltip = labs,
onclick = clickjs

geom_density_2d_interactive 27

arrow = grid::arrow(length = grid::unit(@.03, "npc")),
size = 2,
color = "blue”
) +
geom_point(
data = dataset,
mapping = aes(x = x, y = vy),

size = 4,
shape = 21,
fill = "white”

)

x <- girafe(ggobj = gg_segment_2)
if (interactive()) {

print(x)
}

df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)

p <- ggplot(df, aes(x = x1, y = y1, xend = x2, yend = y2)) +
geom_curve_interactive(aes(colour = "curve”, tooltip = I("curve"))) +
geom_segment_interactive(aes(colour = "segment”, tooltip = I("segment”)))

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

geom_density_2d_interactive
Create interactive contours of a 2d density estimate

Description
The geometries are based on ggplot2: :geom_density_2d() and ggplot2::geom_density_2d_filled().
See the documentation for those functions for more details.

Usage

geom_density_2d_interactive(...)

geom_density_2d_filled_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

28 geom_density_2d_interactive

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive contours to a ggplot -------
library(ggplot2)
library(ggiraph)

m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point_interactive(aes(
tooltip = paste("Waiting:", waiting, "\neruptions:", eruptions)
D)+
x1im(0.5, 6) +
ylim(40, 110)
p<-m+
geom_density_2d_interactive(aes(tooltip = paste(”Level:", after_stat(level))))
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
d <- ggplot(dsmall, aes(x, y))

p<-d+

geom_density_2d_interactive(aes(colour = cut, tooltip = cut, data_id = cut))
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))
if (interactive()) {

print(x)
3

p<-d+
geom_density_2d_filled_interactive(
aes(colour = cut, tooltip = cut, data_id = cut),
contour_var = "count”
) +
facet_wrap(vars(cut))
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))

geom_density_interactive 29

if (interactive()) {

print(x)
3
p<-d+
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste(”"nlevel:”, after_stat(nlevel))
),
geom = "interactive_polygon”
) +
facet_grid(. ~ cut) +
scale_fill_viridis_c_interactive(tooltip = "nlevel”)

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

}

geom_density_interactive
Create interactive smoothed density estimates

Description
The geometry is based on ggplot2::geom_density(). See the documentation for those functions
for more details.

Usage

geom_density_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also
girafe()

30 geom_dotplot_interactive

Examples

add interactive bar -------
library(ggplot2)
library(ggiraph)

p <- ggplot(diamonds, aes(carat)) +
geom_density_interactive(tooltip = "density”, data_id = "density")
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))
if (interactive()) {
print(x)
3

p <- ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density_interactive(aes(tooltip = cut, data_id = cut), alpha = 0.1) +
x1im(55, 70)

x <- girafe(ggobj = p)

x <- girafe_options(

X = X,
opts_hover(css = "stroke:yellow;stroke-width:3px;fill-opacity:0.8;")

)

if (interactive()) {
print(x)

3

p <- ggplot(diamonds, aes(carat, fill = cut)) +
geom_density_interactive(
aes(tooltip = cut, data_id = cut),
position = "stack”
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

p <- ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +
geom_density_interactive(aes(tooltip = cut, data_id = cut), position = "fill")
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

geom_dotplot_interactive
Create interactive dot plots

Description

This geometry is based on ggplot2: :geom_dotplot(). See the documentation for those functions
for more details.

geom_dotplot_interactive

Usage

geom_dotplot_interactive(...)

Arguments

31

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be

mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function.

scalar value.

See Also

girafe()

Examples

add interactive dot plots to a ggplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot_interactive(
aes(tooltip = row.names(mtcars)),
stackgroups = TRUE,
binwidth = 1,
method = "histodot”
)

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

gg_point = ggplot(
data = mtcars,
mapping = aes(
x = factor(vs),
fill = factor(cyl),

y = mpg,
tooltip = row.names(mtcars)
)
)+
geom_dotplot_interactive(
binaxis = "y",

stackdir = "center”,

In this way they can be set to a

32 geom_errorbarh_interactive

position = "dodge"

)

x <- girafe(ggobj = gg_point)

if (interactive()) {
print(x)

}

geom_errorbarh_interactive
Create interactive horizontal error bars

Description
This geometry is based on ggplot2::geom_errorbarh(). See the documentation for those func-
tions for more details.

Usage

geom_errorbarh_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also
girafe()

Examples

add horizontal error bars -------
library(ggplot2)
library(ggiraph)

df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
se = c(0.1, 0.3, 0.3, 0.2)

geom_fregpoly_interactive 33

)

Define the top and bottom of the errorbars

p <- ggplot(df, aes(resp, trt, colour = group))
g<-p+t
geom_point() +
geom_errorbarh_interactive(aes(
Xmax = resp + se,
xmin = resp - se,
tooltip = group
D)
x <- girafe(ggobj = g)
if (interactive()) {
print(x)
}

geom_freqpoly_interactive
Create interactive histograms and frequency polygons

Description

The geometries are based on ggplot2::geom_histogram() and ggplot2::geom_freqpoly().
See the documentation for those functions for more details.

This interactive version is only providing a single tooltip per group of data (same for data_id). It
means it is only possible to associate a single tooltip to a set of bins.
Usage

geom_freqpoly_interactive(...)

geom_histogram_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:
* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

34 geom_hex_interactive

See Also

girafe()

Examples

add interactive histogram -------
library(ggplot2)
library(ggiraph)

p <- ggplot(diamonds, aes(carat)) +
geom_histogram_interactive(
bins = 30,
aes(tooltip = after_stat(count), group = 1L)
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

p <- ggplot(diamonds, aes(price, colour = cut, tooltip = cut, data_id = cut)) +
geom_fregpoly_interactive(binwidth = 500)

x <- girafe(ggobj = p)

x <- girafe_options(x = x, opts_hover(css = "stroke-width:3px;"))

if (interactive()) {
print(x)

3

geom_hex_interactive Create interactive hexagonal heatmaps

Description
The geometry is based on ggplot2: :geom_hex(). See the documentation for those functions for
more details.

Usage

geom_hex_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

geom_jitter_interactive 35

See Also

girafe()

Examples

add interactive hexagonal heatmaps to a ggplot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(diamonds, aes(carat, price)) +
geom_hex_interactive(aes(tooltip = after_stat(count)), bins = 10)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

geom_jitter_interactive
Create interactive jittered points

Description
The geometry is based on ggplot2::geom_jitter(). See the documentation for those functions
for more details.

Usage

geom_jitter_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

36 geom_label_interactive

Examples

add interactive paths to a ggplot -------
library(ggplot2)
library(ggiraph)

gg_jitter <- ggplot(

mpg,

aes(cyl, hwy, tooltip = paste(manufacturer, model, year, trans, sep = "\n"))
) +

geom_jitter_interactive()

x <- girafe(ggobj = gg_jitter)
if (interactive()) {

print(x)
3

geom_label_interactive
Create interactive textual annotations

Description
The geometries are based on ggplot2: :geom_text() and ggplot2: :geom_label(). See the doc-
umentation for those functions for more details.

Usage

geom_label_interactive(...)

geom_text_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

geom_label_interactive

Examples

add interactive labels to a ggplot -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
geom_label_interactive(

aes(
tooltip = paste(rownames(mtcars), mpg, sep = "\n")

)!

family = "Liberation Sans”
) +
theme_minimal (base_family = "Liberation Sans”, base_size = 11)

x <- girafe(

ggobj = p,

dependencies = list(
liberationsansHtmlDependency ()
)
)
if (interactive()) {
print(x)
3

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
geom_label_interactive(
aes(fill = factor(cyl), tooltip = paste(rownames(mtcars), mpg, sep = "\n")),

colour = "white",
fontface = "bold",
family = "Liberation Sans”
) +
theme_minimal(base_family = "Liberation Sans"”, base_size = 11)
x <- girafe(
ggobj = p,

dependencies = list(
liberationsansHtmlDependency ()
)
)
if (interactive()) {
print(x)
3
add interactive texts to a ggplot -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

the data

37

38

dataset = mtcars
dataset$label = row.names(mtcars)

dataset$tooltip = pasted(
"cyl: ",
dataset$cyl,
Il
ll s
"gear: ",
dataset$gear,
u
u ,

"carb: ",
dataset$carb

the plot
gg_text = ggplot(
dataset,
aes(
X = mpg,
y = wt,
label = label,
color = gsec,
tooltip = tooltip,
data_id = label
)
) +

geom_map_interactive

geom_text_interactive(check_overlap = TRUE, family = "Liberation Sans") +

coord_cartesian(xlim = c(@, 50)) +
theme_minimal (base_family = "Liberation Sans”, base_size

display the plot
x <- girafe(
ggobj = gg_text,
dependencies = list(
liberationsansHtmlDependency ()
)
)

x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;font-style:italic;"))

if (interactive()) {
print(x)
3

geom_map_interactive Create interactive polygons from a reference map

Description

The geometry is based on ggplot2::geom_map(). See the documentation for those functions for

more details.

geom_map_interactive 39

Usage

geom_map_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive maps to a ggplot -------
library(ggplot2)
library(ggiraph)

crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)

create tooltips and onclick events
states_ <- sprintf("<p>%s</p>", as.character(crimes$state))
table_ <- paste@(

"<table><tr><td>UrbanPop</td>",

sprintf("<td>%.0f</td>", crimes$UrbanPop),

"</tr><tr>",

"<td>Assault</td>",

sprintf("<td>%.0f</td>", crimes$Assault),

"</tr></table>"

)

onclick <- sprintf(
"window.open(\"%s%s\")",
"http://en.wikipedia.org/wiki/",
as.character(crimes$state)

)
crimes$labs <- paste@(states_, table_)
crimes$onclick = onclick

if (require("maps")) {
states_map <- map_data("state")

40 geom_path_interactive

gg_map <- ggplot(crimes, aes(map_id = state))
gg_map <- gg_map +
geom_map_interactive(
aes(
fill = Murder,
tooltip = labs,
data_id = state,
onclick = onclick
),
map = states_map
) +
expand_limits(x = states_map$long, y = states_map$lat)
x <- girafe(ggobj = gg_map)
if (interactive()) print(x)
3

geom_path_interactive Create interactive observations connections

Description
These geometries are based on ggplot2: :geom_path(), ggplot2::geom_line() and ggplot2: :geom_step().
See the documentation for those functions for more details.

Usage

geom_path_interactive(...)
geom_line_interactive(...)

geom_step_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

geom_path_interactive

Examples

add interactive paths to a ggplot -------
library(ggplot2)
library(ggiraph)

geom_line_interactive example -----
if (requireNamespace("dplyr”, quietly = TRUE)) {
gg <- ggplot(
economics_long,
aes(
date,
valueo1,
colour = variable,
tooltip = variable,
data_id = variable,
hover_css = "fill:none;"
)
) +
geom_line_interactive(size = .75)
x <- girafe(ggobj = gg)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;fill:orange"))
if (interactive()) print(x)

geom_step_interactive example -----
if (requireNamespace("dplyr”, quietly = TRUE)) {
recent <- economics[economics$date > as.Date("2013-01-01"),]
gg = ggplot(recent, aes(date, unemploy)) +
geom_step_interactive(aes(
tooltip = "Unemployement stairstep line”,
data_id = 1
))
x <- girafe(ggobj = gg)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;"))
if (interactive()) print(x)
3

create datasets -----
id = paste@(”id", 1:10)
data = expand.grid(list(
variable = c("2000", "2005", "2010", "2015"),
id = id
))
groups = sample(LETTERS[1:3], size = length(id), replace = TRUE)
datas$group = groups[match(data$id, id)]
data$value = runif(n = nrow(data))
datas$tooltip = paste@('line ', data$id)
datas$onclick = paste@("alert(\"", data$id, "\")")

cols = c("orange”, "orangel”, "orange2", "navajowhite4”, "navy")
dataset2 <- data.frame(
x = rep(1:20, 5),

41

42

y = rnorm(100, 5, .2) + rep(1:5, each = 20),
z = rep(1:20, 5),
grp = factor(rep(1:5, each = 20)),
color = factor(rep(1:5, each = 20)),
label = rep(paste@(”id ", 1:5), each = 20),
onclick = paste@(
"alert(\"",
sample(letters, 100, replace = TRUE),
oy

)
)

plots ---
gg_path_1 = ggplot(
data,
aes(
variable,
value,
group = id,
colour = group,
tooltip = tooltip,
onclick = onclick,
data_id = id

)
) +
geom_path_interactive(alpha = 0.5)

gg_path_2 = ggplot(

data,

aes(variable, value, group = id, data_id = id, tooltip = tooltip)
) +

geom_path_interactive(alpha = 0.5) +

facet_wrap(~group)

gg_path_3 = ggplot(dataset2) +
geom_path_interactive(
aes(
X,
Y,
group = grp,
data_id = label,
color = color,
tooltip = label,
onclick = onclick
),
size =1

)

ggiraph widgets ---

x <- girafe(ggobj = gg_path_1)

x <- girafe_options(x = x, opts_hover(css = "stroke-width:3px;"))
if (interactive()) {

geom_path_interactive

geom_point_interactive 43

print(x)
3

x <- girafe(ggobj = gg_path_2)
x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))
if (interactive()) {
print(x)
3

x <- girafe(ggobj = gg_path_3)
x <- girafe_options(x = x, opts_hover(css = "stroke-width:10px;"))
if (interactive()) {
print(x)
3

m <- ggplot(economics, aes(unemploy / pop, psavert))
p <- m + geom_path_interactive(aes(colour = as.numeric(date), tooltip = date))
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

geom_point_interactive
Create interactive points

Description

The geometry is based on ggplot2: :geom_point(). See the documentation for those functions for
more details.

Usage

geom_point_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:
* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

44

Note

geom_point_interactive

The following shapes id 3, 4 and 7 to 14 are composite symbols and should not be used.

See Also

girafe()

Examples

add interactive points to a ggplot -------
library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

dataset <- structure(
list(
gsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22),
disp = c(160, 160, 108, 258, 360, 225),
carname = c(
"Mazda RX4",
"Mazda RX4 Wag",
"Datsun 710",
"Hornet 4 Drive",
"Hornet Sportabout”,
"Valiant”
),
wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)
),
row.names = c(
"Mazda RX4",
"Mazda RX4 Wag",
"Datsun 710",
"Hornet 4 Drive",
"Hornet Sportabout”,

"Valiant"
),
class = "data.frame"
)
dataset
plots

gg_point = ggplot(data = dataset) +
geom_point_interactive(aes(
X = wt,
y = gsec,
color = disp,
tooltip = carname,
data_id = carname
Nt

theme_minimal (base_family = "Liberation Sans”, base_size

11)

geom_polygon_interactive 45

x <- girafe(
ggobj = gg_point,
dependencies = list(
liberationsansHtmlDependency ()
)
)
if (interactive()) {
print(x)
}

geom_polygon_interactive
Create interactive polygons

Description
The geometry is based on ggplot2::geom_polygon(). See the documentation for those functions
for more details.

Usage

geom_polygon_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.
See Also

girafe()

Examples

add interactive polygons to a ggplot -------
library(ggplot2)
library(ggiraph)

create data
ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

geom_polygon_interactive

46

values <- data.frame(

id = ids,

c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

value

)

positions <- data.frame(

4,

rep(ids, each

id =

~
o

— N

M — N +— N — MmO N NON~NNLW OmM

I N r+— — N — 00 AN — N0 r—Nrm—m— N —Q & —

x

Te 1

[Tel

— N~

O N — I~ — N

O —mM O OO — — OO — N rm—r— — NN — N ™M

geom_polygon_interactive

w w N NN
N W N =

)
)

datapoly <- merge(values, positions, by = c("id"))
datapoly$oc = "alert(this.getAttribute(\"data-id\"))"

create a ggplot -—---
gg_poly_1 <- ggplot(datapoly, aes(x = x, y =y)) +
geom_polygon_interactive(aes(
fill = value,
group = id,
tooltip = value,
data_id = value,
onclick = oc

)

display ------
x <- girafe(ggobj = gg_poly_1)
if (interactive()) {
print(x)
3

if (packageVersion("grid") >= "3.6") {
As of R version 3.6 geom_polygon() supports polygons with holes
Use the subgroup aesthetic to differentiate holes from the main polygon

holes <- do.call(
rbind,
lapply(split(datapoly, datapoly$id), function(df) {
df$x <- df$x + 0.5 * (mean(df$x) - df$x)
df$y <- df$y + 0.5 * (mean(dfs$y) - dfsy)
df
»
)
datapoly$subid <- 1L
holes$subid <- 2L
datapoly <- rbind(datapoly, holes)
p <- ggplot(datapoly, aes(x = x, y =y)) +
geom_polygon_interactive(aes(
fill = value,
group = id,
subgroup = subid,
tooltip = value,
data_id = value,
onclick = oc
)
x <- girafe(ggobj = p)

47

48 geom_quantile_interactive

if (interactive()) print(x)
3

geom_quantile_interactive
Create interactive quantile regression

Description

The geometry is based on ggplot2: :geom_quantile(). See the documentation for those functions
for more details.

Usage

geom_quantile_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive quantiles to a ggplot -------
library(ggplot2)
library(ggiraph)

if (requireNamespace(”quantreg”, quietly = TRUE)) {
m <- ggplot(mpg, aes(displ, 1 / hwy)) + geom_point()
p<-m+
geom_quantile_interactive(
aes(
tooltip = after_stat(quantile),
data_id = after_stat(quantile),
colour = after_stat(quantile)
),

formula =y ~ x,

geom_quasirandom_interactive 49

size = 2,
alpha = 0.5
)
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:10px;"))

if (interactive()) print(x)
}

geom_quasirandom_interactive
Create interactive quasirandom geom

Description

The geometry is based on ggbeeswarm: : geom_quasirandom().

Usage

geom_quasirandom_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive repulsive texts to a ggplot -------
library(ggplot2)
library(ggiraph)

geom_text_repel_interactive
if (
requireNamespace("ggbeeswarm”, quietly = TRUE) &&
requireNamespace("dplyr"”, quietly = TRUE)
) A
set.seed(2)

50

geom_quasirandom_interactive

dat <- dplyr::filter(
.data = diamonds,
cut %in% c("Fair”, "Good"),
color %in% c("D", "E", "H")
)
dat <- dplyr::sample_n(tbl = dat, 150)

dodge_width <- .8
position <- position_dodge(width = dodge_width)

gg_qr <- ggplot(dat, aes(x = cut, y =y, fill = color)) +
geom_violin(

alpha = .5,
width = dodge_width
)+

geom_boxplot(position = position, alpha = .5, outliers = FALSE) +
geom_quasirandom_interactive(
aes(tooltip = y, data_id = color),

shape = 21,
size = 2,
dodge.width = dodge_width,
color = "black”,
alpha = .5
)+

theme_minimal()

x <- girafe(ggobj = gg_qr)
x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;"))
if (interactive()) print(x)

dat <- mtcars

dat$name <- row.names(mtcars)
dat$am <- factor(dat$am)
dat$gear <- factor(dat$gear)

dodge_width <- .8
position <- position_dodge(width = dodge_width)

gg_ar <- ggplot(
dat,
aes(x = am, y = disp, fill = gear, group = interaction(am, gear))
) +
geom_quasirandom_interactive(
aes(tooltip = disp, data_id = name),

shape = 21,

size = 2,

dodge.width = dodge_width,
color = "black”

) +

geom_raster_interactive 51

scale_fill_manual_interactive(
name = label_interactive(

"Gearrrrrr”,
tooltip = "Gearrrrrr”,
data_id = "gear”
),
values = c("3" = "#0072B2", "4" = "#@@9E73", "5" = "red"),
data_id = c("3" = "tree", "4" = "tree", "5" = "four"),
tooltip = c("3" = "tree", "4" = "tree", "5" = "four")
)+

theme_minimal ()

x <- girafe(ggobj = gg_qr)
if (interactive()) print(x)

}

geom_raster_interactive
Create interactive raster rectangles

Description

The geometry is based on ggplot2::geom_raster(). See the documentation for those functions
for more details.

Usage

geom_raster_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.
See Also

girafe()
girafe()

52 geom_rect_interactive

Examples

add interactive raster to a ggplot -------
library(ggplot2)
library(ggiraph)

df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))

gg <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive() +
scale_fill_gradient_interactive(

data_id = "coco”,
onclick = "cici”,
tooltip = "cucu”

)

x <- girafe(ggobj = gg)

if (interactive()) {
print(x)

3

geom_rect_interactive Create interactive rectangles

Description
These geometries are based on ggplot2::geom_rect() and ggplot2::geom_tile(). See the
documentation for those functions for more details.

Usage

geom_rect_interactive(...)

geom_tile_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:
* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

geom_rect_interactive 53

Note

Converting a raster to svg elements could inflate dramatically the size of the svg and make it unread-
able in a browser. Function geom_tile_interactive should be used with caution, total number of
rectangles should be small.

See Also

girafe()

Examples

add interactive polygons to a ggplot -------
library(ggplot2)
library(ggiraph)

dataset = data.frame(
x1 =c(1, 3, 1, 5, 4),

x2 = c(2, 4, 3, 6, 6),
yl =c(1, 1, 4, 1, 3),
y2 = c(2, 2, 5, 3, 5),

t =c(a', 'a', 'a', 'b", 'b"),

r=c(, 2, 3, 4, 5,

tooltip = c("ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),

uid = ¢("1ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),

oc = rep("alert(this.getAttribute(\"data-id\"))", 5)
)

gg_rect = ggplot() +
scale_x_continuous(name = "x") +
scale_y_continuous(name = "y") +
geom_rect_interactive(

data = dataset,
mapping = aes(

xmin = x1,
xmax = x2,
ymin = y1,
ymax = y2,
fill = t,
tooltip = tooltip,
onclick = oc,
data_id = uid
),
color = "black"”,
alpha = 0.5,
linejoin = "bevel”,
lineend = "round”
) +
geom_text (

data = dataset,
aes(x = x1 + (x2 - x1) / 2, y =yl + (y2 - yl) / 2, label =r),
size = 4

54

geom_rect_interactive

x <- girafe(ggobj = gg_rect)
if (interactive()) {
print(x)
}
add interactive tiles to a ggplot -------
library(ggplot2)
library(ggiraph)

df <- data.frame(
id = rep(c(”a”", "b", "c", "d", "e"), 2),
x = rep(c(2, 5, 7, 9, 12), 2),
rep(c(1, 2), each = 5),
factor(rep(1:5, each = 2)),
rep(diff(c(e, 4, 6, 8, 10, 14)), 2)

y
z
w

p <- ggplot(df, aes(x, y, tooltip = id)) + geom_tile_interactive(aes(fill = z))
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
}

correlation dataset ----
cor_mat <- cor(mtcars)
diag(cor_mat) <- NA
varl <- rep(row.names(cor_mat), ncol(cor_mat))
var2 <- rep(colnames(cor_mat), each = nrow(cor_mat))
cor <- as.numeric(cor_mat)
cor_mat <- data.frame(
varl = varl,
var2 = var2,
cor = cor,
stringsAsFactors = FALSE
)
cor_mat[["tooltip”]] <-
sprintf("<i> %s </i> vs <i> %s~</i>:</br><code>%.03f</code>", varl, var2, cor)

p <- ggplot(data = cor_mat, aes(x = varl, y = var2)) +
geom_tile_interactive(aes(fill = cor, tooltip = tooltip), colour = "white") +
scale_fill_gradient2_interactive(

low = "#BC120A",
mid = "white",
high = "#BC120A",
limits = c(-1, 1),

data_id = "cormat”,
tooltip = "cormat”
) +

coord_equal()
x <- girafe(ggobj = p)
if (interactive()) {
print(x)

geom_ribbon_interactive 55

geom_ribbon_interactive
Create interactive ribbons and area plots

Description
The geometries are based on ggplot2::geom_ribbon() and ggplot2::geom_area(). See the
documentation for those functions for more details.

Usage

geom_ribbon_interactive(...)

geom_area_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also
girafe()

Examples

add interactive bar -------
library(ggplot2)
library(ggiraph)

Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))

g <- h +
geom_ribbon_interactive(
aes(ymin = level - 1, ymax = level + 1),
fill = "grey70",
tooltip = "ribbon1",

56 geom_sf_interactive

data_id = "ribbon1"”,
outline.type = "both",
hover_css = "stroke:red;stroke-width:inherit;"
) +
geom_line_interactive(
aes(y = level),
tooltip = "level”,
data_id = "linel”,
hover_css = "stroke:orange;fill:none;"
)
x <- girafe(ggobj = g)
x <- girafe_options(
X = X,
opts_hover(
css = girafe_css(

css = "stroke:orange;stroke-width:3px;",
area = "fill:blue;"”
)
)
)
if (interactive()) {
print(x)
3
g <- h + geom_area_interactive(aes(y = level), tooltip = "areal")

x <- girafe(ggobj = g)

if (interactive()) {
print(x)

3

geom_sf_interactive Create interactive sf objects

Description

These geometries are based on ggplot2: :geom_sf (), ggplot2: :geom_sf_label() and ggplot2: :geom_sf_text().
See the documentation for those functions for more details.

Usage

geom_sf_interactive(...)
geom_sf_label_interactive(...)

geom_sf_text_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

geom_sf._interactive 57

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive sf objects to a ggplot -------
library(ggplot2)
library(ggiraph)

original code: see section examples of ggplot2::geom_sf help file
if (
requireNamespace(
"sf",
quietly = TRUE,
versionCheck = list(op = ">=", version = "0.7-3")
)
) A
nc <- sf::st_read(system.file("shape/nc.shp”, package = "sf"), quiet = TRUE)
gg <- ggplot(nc) +
geom_sf_interactive(aes(fill = AREA, tooltip = NAME, data_id = NAME))
x <- girafe(ggobj = gg)
if (interactive()) {
print(x)
}

nc_3857 <- sf::st_transform(nc, 3857)

Unfortunately if you plot other types of feature you'll need to use
show.legend to tell ggplot2 what type of legend to use
nc_3857$mid <- sf::st_centroid(nc_3857%geometry)
gg <- ggplot(nc_3857) +
geom_sf(colour = "white") +
geom_sf_interactive(
aes(geometry = mid, size = AREA, tooltip = NAME, data_id = NAME),
show.legend = "point”
)
x <- girafe(ggobj = gg)
if (interactive()) {
print(x)
}

Example with texts.
gg <- ggplot(nc_3857[1:3, 1) +

58 geom_smooth_interactive

geom_sf(aes(fill = AREA)) +

geom_sf_text_interactive(aes(label = NAME, tooltip = NAME), color = "white")
x <- girafe(ggobj = gg)
if (interactive()) {

print(x)
}

Example with labels.
gg <- ggplot(nc_3857[1:3, 1) +
geom_sf(aes(fill = AREA)) +
geom_sf_label_interactive(aes(label = NAME, tooltip = NAME))
x <- girafe(ggobj = gg)
if (interactive()) print(x)

geom_smooth_interactive
Create interactive smoothed conditional means

Description

The geometry is based on ggplot2::geom_smooth(). See the documentation for those functions
for more details.

Usage

geom_smooth_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

geom_spoke_interactive 59

Examples

add interactive bar -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +

geom_smooth_interactive(aes(tooltip = "smoothed line"”, data_id = "smooth"))
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))
if (interactive()) {

print(x)
3

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth_interactive(

method = 1m,
se = FALSE,
tooltip = "smooth”,
data_id = "smooth”

)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

p <- ggplot(

mpg,

aes(displ, hwy, colour = class, tooltip = class, data_id = class)
) +

geom_point_interactive() +

geom_smooth_interactive(se = FALSE, method = 1m)
x <- girafe(ggobj = p)
x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))
if (interactive()) {

print(x)
3

geom_spoke_interactive
Create interactive line segments parameterised by location, direction
and distance

Description

The geometry is based on ggplot2: : geom_spoke (). See the documentation for those functions for
more details.

60 geom_spoke_interactive

Usage

geom_spoke_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive line segments parameterised by location,
direction and distance to a ggplot -------
library(ggplot2)

library(ggiraph)

df <- expand.grid(x = 1:10, y = 1:10)
df$angle <- runif(100, @, 2 * pi)
df$speed <- runif (100, 0, sqrt(0.1 * df$x))

p <- ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke_interactive(
aes(angle = angle, tooltip = round(angle, 2)),
radius = 0.5
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

p2 <- ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke_interactive(aes(
angle = angle,
radius = speed,
tooltip = paste(round(angle, 2), round(speed, 2), sep = "\n")
D)
x2 <- girafe(ggobj = p2)
if (interactive()) {

geom_text_repel_interactive 61

print(x2)
3

geom_text_repel_interactive
Create interactive repulsive textual annotations

Description
The geometries are based on ggrepel: :geom_text_repel() and ggrepel: :geom_label_repel().
See the documentation for those functions for more details.

Usage

geom_text_repel_interactive(...)

geom_label_repel_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions
The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.
Note

The ggrepel package is required for these geometries

See Also

girafe()

Examples

add interactive repulsive texts to a ggplot -------
library(ggplot2)
library(ggiraph)

geom_text_repel_interactive

if (requireNamespace("ggrepel”, quietly = TRUE)) {
dataset = mtcars
dataset$label = row.names(mtcars)

62

dataset$tooltip = pasted(
dataset$label,
"
",
"cyl: ",
dataset$cyl,
"
",
"gear: ",
dataset$gear,
"
",

"carb: ",
dataset$carb

p <- ggplot(dataset, aes(wt, mpg, color = gsec)) +

geom_violin_interactive

geom_point_interactive(aes(tooltip = tooltip, data_id = label))

gg_text = p +
geom_text_repel_interactive(

aes(label = label, tooltip = tooltip, data_id = label),

size = 3

)

x <- girafe(ggobj = gg_text)

x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;"))

if (interactive()) print(x)

geom_label_repel_interactive
if (requireNamespace("ggrepel”, quietly = TRUE)) {
gg_label = p +
geom_label_repel_interactive(

aes(label = label, tooltip = tooltip, data_id = label),

size = 3,
max.overlaps = 12

)

x2 <- girafe(ggobj = gg_label)
x2 <- girafe_options(
X = X2,
opts_hover(
css = ggiraph::girafe_css(

n,n

css = "; ",
area = "fill:#FF4C3B;"
)
)
)
if (interactive()) print(x2)

}

geom_violin_interactive
Create interactive violin plot

geom_violin_interactive 63

Description

The geometry is based on ggplot2::geom_violin(). See the documentation for those functions
for more details.

Usage

geom_violin_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a
scalar value.

See Also

girafe()

Examples

add interactive violin plot -------
library(ggplot2)
library(ggiraph)

p <- ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_violin_interactive(aes(fill = cyl, tooltip = cyl))
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

Show quartiles
p2 <- ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_violin_interactive(
aes(tooltip = after_stat(density)),
draw_quantiles = c(0.25, 0.5, 0.75)
)
x2 <- girafe(ggobj = p2)
if (interactive()) {
print(x2)
3

64 girafe

girafe Create a girafe object

Description

Create an interactive graphic with a ggplot object to be used in a web browser.

Usage
girafe(
ggobj = NULL,
code,
pointsize = 12,
width_svg = NULL,

height_svg = NULL,

options = list(),

dependencies = NULL,
check_fonts_registered = FALSE,
check_fonts_dependencies = FALSE,

Arguments
ggobj ggplot object to print. Argument code will be ignored if this argument is sup-
plied.
code Plotting code to execute
pointsize the default pointsize of plotted text in pixels, default to 12.

width_svg, height_svg
The width and height of the graphics region in inches. The default values are 6
and 5 inches. This will define the aspect ratio of the graphic as it will be used to
define viewbox attribute of the SVG result.
If you use girafe() in an 'R Markdown’ document, we recommend not using
these arguments so that the knitr options fig.width and fig.height are used
instead.

options a list of options for girafe rendering, see opts_tooltip(), opts_hover(),
opts_selection(), ...

dependencies Additional widget HTML dependencies, see htmlwidgets: :createWidget().

check_fonts_registered
whether to check if fonts families found in the ggplot are registered with ’sys-
temfonts’.

check_fonts_dependencies

whether to check if fonts families found in the ggplot are found in the dependencies
list.

arguments passed on to dsvg()

girafe 65

Details

Use geom_zzz_interactive to create interactive graphical elements.
Tooltips can be displayed when mouse is over graphical elements.

If id are associated with points, they get animated when mouse is over and can be selected when
used in shiny apps.

On click actions can be set with javascript instructions. This option should not be used simultane-
ously with selections in Shiny applications as both features are "on click" features.

When a zoom effect is set, "zoom activate", "zoom desactivate" and "zoom init" buttons are available
in a toolbar.

When selection type is set to “multiple’ (in Shiny applications), lasso selection and lasso anti-
selections buttons are available in a toolbar.

Managing Grouping with Interactive Aesthetics

Adding an interactive aesthetic like tooltip can sometimes alter the implicit grouping that ggplot2
performs automatically.

In these cases, you must explicitly specify the group aesthetic to ensure correct graph rendering by
clearly defining the variables that determine the grouping.

mapping = ggplot2::aes(tooltip = .data_tooltip, group = interaction(factor1, factor2, ...))

This precaution is necessary:

* ggplot2 automatically determines grouping based on the provided aesthetics
* Interactive aesthetics added by ggiraph can interfere with this logic

» Explicit group specification prevents unexpected behavior and ensures predictable results

Widget options
girafe animations can be customized with function girafe_options(). Options are available to
customize tooltips, hover effects, zoom effects selection effects and toolbar.

Options passed to girafe() are merged with defaults set via set_girafe_defaults(). This
means you can define global styles once and override only specific parameters per plot. For ex-
ample, if you set a custom tooltip CSS globally, you can still adjust of fx and of fy in a specific
girafe() call without losing your CSS styling.

Widget sizing

girafe graphics are responsive, which mean, they will be resized according to their container. There
are two responsive behavior implementations:

* one for Shiny applications and flexdashboard documents,

« and another one for other documents (i.e. R markdown and saveWidget).

66 girafe

Graphics are created by an R graphic device (i.e pdf, png, svg here) and need arguments width and
height to define a graphic region. Arguments width_svg and height_svg are used as corresponding
values. They are defining the aspect ratio of the graphic. This proportion is always respected when
the graph is displayed.

When a girafe graphic is in a Shiny application, graphic will be resized according to the arguments
width and height of the function girafeOutput. Default values are 100\ outer bounding box of
the graphic (the HTML element that will contain the graphic with an aspect ratio).

When a girafe graphic is in an R markdown document (producing an HTML document), the graphic
will be resized according to the argument width of the function girafe. Its value is beeing used
to define a relative width of the graphic within its HTML container. Its height is automatically
adjusted regarding to the argument width and the aspect ratio.

See Also

girafe_options(), validated_fonts(), dsvg()

Examples

library(ggplot2)
library(ggiraph)
library(gdtools)

register_liberationsans()

dataset <- mtcars
dataset$carname <- row.names(mtcars)

gg_point <- ggplot(
data = dataset,
mapping = aes(
X = wt,
y = gsec,
color = disp,
tooltip = carname,
data_id = carname

)

)+
geom_point_interactive(hover_nearest = TRUE, size = 11 / .pt) +
theme_minimal (base_family = "Liberation Sans”, base_size = 11)

x <- girafe(
ggobj = gg_point,
dependencies = list(
liberationsansHtmlDependency ()
)
)

girafeOutput

67

girafeOutput

Create a girafe output element

Description

Render a girafe within an application page.

Usage

girafeOutput(outputId, width = "100%", height = NULL)

Arguments

outputId
width

height

Size control

output variable to read the girafe from. Do not use special JavaScript characters
such as a period . in the id, this would create a JavaScript error.

widget width, its default value is set so that the graphic can cover the entire
available horizontal space.

widget height, its default value is NULL so that width adaptation is not re-
stricted. The height will then be defined according to the width used and the
aspect ratio. Only use a value for the height if you have a specific reason and
want to strictly control the size.

If you want to control a fixed size, use opts_sizing(rescale = FALSE) and set the chart size with

girafe(width_svg=..., height_svg=...).
If you want the graphic to fit the available width, use opts_sizing(rescale = TRUE) and set the
size of the graphic with girafe(width_svg=..., height_svg=...), this size will define the as-
pect ratio.
girafe_css CSS creation helper
Description

It allows specifying individual styles for various SVG elements.

Usage
girafe_css(

css,

text = NULL,
point = NULL,
line = NULL,
area = NULL,
image = NULL

68 girafe_css_bicolor

Arguments
css The generic css style
text Override style for text elements (svg:text)
point Override style for point elements (svg:circle)
line Override style for line elements (svg:line, svg:polyline)
area Override style for area elements (svg:rect, svg:polygon, svg:path)
image Override style for image elements (svg:image)
Value

css as scalar character

See Also

girafe_css_bicolor(), girafe()

Examples

library(ggiraph)

girafe_css(

css = "fill:orange;stroke:gray;"”,
text = "stroke:none; font-size: larger”,
line = "fill:none”,
area = "stroke-width:3px",
point = "stroke-width:3px",
image = "outline:2px red”
)
girafe_css_bicolor Helper for a ’girafe’ css string
Description

It allows the creation of a css set of individual styles for animation of ’girafe’ elements. The used
model is based on a simple pattern that works most of the time for girafe hover effects and selection
effects.

It sets properties based on a primary and a secondary color.

Usage

girafe_css_bicolor(primary = "orange”, secondary = "gray")

Arguments

primary, secondary

colors used to define animations of fill and stroke properties with text, lines,
areas, points and images in ’girafe’ outputs.

girafe_defaults 69

See Also

girafe_css(), girafe()

Examples

library(ggplot2)
library(ggiraph)

dat <- mtcars

dat$id <- "id"

dat$label <- "a line”

dat <- dat[order(dat$wt), 1]

p <- ggplot(
data = dat,
mapping = aes(
x = wt, y = mpg, data_id = id, tooltip = label)) +
geom_line_interactive(color = "white"”, size = .75,
hover_nearest = TRUE) +
theme_dark() +
theme(plot.background = element_rect(fill="black"),
panel.background = element_rect(fill="black"),

text = element_text(colour = "white"),
axis.text = element_text(colour = "white")
)

x <- girafe(
ggobj = p,
options = list(
opts_hover(
css = girafe_css_bicolor(
primary = "yellow"”, secondary = "black"))

))
if (interactive()) print(x)

girafe_defaults Get girafe defaults formatting properties

Description

The current formatting properties are automatically applied to every girafe you produce. These
default values are returned by this function.

Usage

girafe_defaults(name = NULL)

70 girafe_options

Arguments
name optional, option’s name to return, one of ’fonts’, *opts_sizing’, ’opts_tooltip’,
“opts_hover’, ’opts_hover_key’, *opts_hover_inv’, ’opts_hover_theme’, ’opts_selection’,
“opts_selection_inv’, "opts_selection_key’, *opts_selection_theme’, ’opts_zoom’,
“opts_toolbar’.
Value

a list containing default values or an element selected with argument name.

See Also
Other girafe animation options: girafe_options(), init_girafe_defaults(), opts_hover(),

opts_selection(),opts_sizing(), opts_toolbar(),opts_tooltip(), opts_zoom(), set_girafe_defaults()

Examples

girafe_defaults()

girafe_options Set girafe options

Description

Defines the animation options related to a girafe() object.

Usage
girafe_options(x, ...)
Arguments
X girafe object.
set of options defined by calls to opts_# functions or to sizingPolicy from html-
widgets (this won’t have any effect within a shiny context).
See Also

girafe(), girafe_css(), girafe_css_bicolor()

Other girafe animation options: girafe_defaults(), init_girafe_defaults(), opts_hover(),
opts_selection(),opts_sizing(), opts_toolbar(),opts_tooltip(), opts_zoom(), set_girafe_defaults()

guide_bins_interactive 71

Examples

library(ggplot2)
library(htmlwidgets)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg_point = ggplot(data = dataset,
mapping = aes(x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname)) +
geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg_point)
x <- girafe_options(x = x,
opts_tooltip(opacity = .7),

opts_zoom(min = .5, max = 4),
sizingPolicy(defaultWidth = "100%", defaultHeight = "300px"),
opts_hover(css = "fill:red;stroke:orange;r:5pt;"))
if(interactive()){
print(x)

}

guide_bins_interactive
Create interactive bins guide

Description

The guide is based on ggplot2: :guide_bins(). See the documentation for that function for more
details.

Usage

guide_bins_interactive(...)

Arguments

arguments passed to base function.

Value

An interactive guide object.

72 guide_bins_interactive

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

interactive_parameters, girafe()

Examples

add interactive bins guide to a ggplot -------
library(ggplot2)
library(ggiraph)

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste(”nlevel:”, after_stat(nlevel))
),
geom = "interactive_polygon"
) +
facet_grid(. ~ cut)

add interactive binned scale and guide

guide_bins_interactive

pl <-p +
scale_fill_viridis_b_interactive(
data_id = "nlevel”,
tooltip = "nlevel”,
guide = "bins”
)

x <- girafe(ggobj = p1)

if (interactive()) {
print(x)

}

set the keys separately
p2 <= p +
scale_fill_viridis_b_interactive(
data_id = function(breaks) {
sapply(seg_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm = TRUE),
max(breaks[i], breaks[i + 1], na.rm = TRUE),
sep = "-"
)
} else {
NA_character_
}
1))
1
tooltip = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm
max (breaks[i], breaks[i + 1], na.rm
sep = "-"
)
} else {
NA_character_

TRUE),
TRUE),

3
b))
3,
guide = "bins”
)
x <- girafe(ggobj = p2)
if (interactive()) {
print(x)
3

make the title and labels interactive

#p3 <-p+

scale_fill_viridis_c_interactive(

data_id = function(breaks) {

sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {

73

74

paste(

sep

)
} else {

3
b
}!

paste(

sep

)
} else {

3
»
})

)

print(x)
}

N E T E E T E Y

min(breaks[i], breaks[i + 1], na.rm
max(breaks[i], breaks[i + 1], na.rm = TRUE),

min(breaks[i], breaks[i + 1], na.rm
max(breaks[i], breaks[i + 1], na.rm = TRUE),

guide_colourbar_interactive

TRUE),

n_n

NA_character_

tooltip = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {

TRUE),

n_n

NA_character_

guide = "bins",
name = label_interactive(”nlevel”, data_id = "nlevel”, tooltip = "nlevel"”),
labels = function(breaks) {
label_interactive(
as.character(breaks),

data_id = as.character(breaks),
onclick = paste@(”alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p3)
x <- girafe_options(
X!
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))

if (interactive()) {

guide_colourbar_interactive

Create interactive continuous colour bar guide

Description

The guide is based on ggplot2: :guide_colourbar(). See the documentation for that function for

more details.

guide_colourbar._interactive 75

Usage

guide_colourbar_interactive(...)

guide_colorbar_interactive(...)

Arguments

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

interactive_parameters, girafe()

Examples

add interactive colourbar guide to a ggplot -------
library(ggplot2)
library(ggiraph)

guide_colourbar_interactive

df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))

p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive()

add an interactive scale (guide is colourbar)

pl <-p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
)

x <- girafe(ggobj = p1)
if (interactive()) {

print(x)
3
make the legend title interactive
p2 <-p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
name = label_interactive(
ngn
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
)
)

x <- girafe(ggobj = p2)
x <- girafe_options(

X,
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3
make the legend labels interactive
p3 <-p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
name = label_interactive(
ngh
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

)7

guide_colourbar._interactive

labels = function(breaks) {
lapply(breaks, function(abreak) {
label_interactive(
as.character(abreak),
data_id = paste@("colourbar”, abreak),
onclick = "alert(\"colourbar\")",
tooltip = paste@("colourbar”, abreak)
)
)]
}
)
x <- girafe(ggobj = p3)
x <- girafe_options(
XY
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
}

also via the guide
p4 <-p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
guide = guide_colourbar_interactive(
title.theme = element_text_interactive(

size = 8,
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

),

label.theme = element_text_interactive(
size = 8,
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

)

)

)
x <- girafe(ggobj = p4)
x <- girafe_options(

X,

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {

print(x)
}

make the legend background interactive
p5 <- p4 +
theme(

77

78 guide_coloursteps_interactive

legend.background = element_rect_interactive(

data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

)

)
x <- girafe(ggobj = p5)
x <- girafe_options(

X,

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {

print(x)
3

guide_coloursteps_interactive
Create interactive colorsteps guide

Description
The guide is based on ggplot2::guide_coloursteps(). See the documentation for that function
for more details.

Usage

guide_coloursteps_interactive(...)

guide_colorsteps_interactive(...)

Arguments

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

guide_coloursteps_interactive 79

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

interactive_parameters, girafe()

Examples

add interactive coloursteps guide to a ggplot -------
library(ggplot2)
library(ggiraph)

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste(”nlevel:”, after_stat(nlevel))
),
geom = "interactive_polygon”
) +
facet_grid(. ~ cut)

add interactive binned scale, by default the guide is colorsteps
pl <-p +
scale_fill_viridis_b_interactive(data_id = "nlevel”, tooltip = "nlevel"”)
x <- girafe(ggobj = p1)
if (interactive()) {
print(x)
3

make the title and labels interactive
p2 <-p +

80

scale_fill_viridis_b_interactive(
data_id = "nlevel”,
tooltip = "nlevel”,

guide_legend_interactive

name = label_interactive(”nlevel”, data_id = "nlevel”, tooltip = "nlevel”),

labels = function(breaks) {
1 <- lapply(breaks, function(br) {
label_interactive(
as.character(br),
data_id = as.character(br),

onclick = paste@("alert(\"", as.character(br), "\")"),

tooltip = as.character(br)

p2)

x <- girafe(ggobj
x <- girafe_options(
X)

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))

)

if (interactive()) {
print(x)

}

guide_legend_interactive
Create interactive legend guide

Description

The guide is based on ggplot2::guide_legend(). See the documentation for that function for

more details.

Usage

guide_legend_interactive(...)

Arguments

arguments passed to base function.

Value

An interactive guide object.

guide_legend_interactive 81

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

interactive_parameters, girafe()

Examples

add interactive discrete legend guide to a ggplot -------
library(ggplot2)
library(ggiraph)

dat <- data.frame(
name = c("Guy"”, "Ginette", "David"”, "Cedric"”, "Frederic"),
gender = c("Male”, "Female”, "Male”, "Male", "Male"),
height = c(169, 160, 171, 172, 171)
)
p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +
geom_bar_interactive(stat = "identity")

add interactive scale (guide is legend)
pl <-p +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#Q@9E73"),
data_id = c(Female = "Female”, Male = "Male"),

tooltip = c(Male = "Male"”, Female = "Female")
)
x <- girafe(ggobj = p1)
if (interactive()) {
print(x)
3

make the title interactive too
p2 <-p +
scale_fill_manual_interactive(
name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#@Q9E73"),
data_id = c(Female = "Female”, Male = "Male"),
tooltip = c(Male = "Male”, Female = "Female")
)
x <- girafe(ggobj = p2)
x <- girafe_options(
X,

guide_legend_interactive

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))

)

if (interactive()) {
print(x)

}

the interactive params can be functions too
p3 <-p +
scale_fill_manual_interactive(
name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#0@Q9E73"),
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)
3,
onclick = function(breaks) {
paste@("alert(\"", as.character(breaks), "\")")
3
)
x <- girafe(ggobj = p3)
x <- girafe_options(
XY

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))

)
if (interactive()) {

guide_legend_interactive

print(x)
3

also via the guide
p4 <- p +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#@Q9E73"),
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)
3,
onclick = function(breaks) {
pasted("alert(\"", as.character(breaks), "\")")
3,
guide = guide_legend_interactive(
title.theme = element_text_interactive(

size = 8,
data_id = "legend.title",
onclick = "alert(\"Gender levels\")",
tooltip = "Gender levels”
),
label.theme = element_text_interactive(
size = 8
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(
X)
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

make the legend labels interactive
p5 <= p +
scale_fill_manual_interactive(
name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#0Q9E73"),
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)
3,

onclick = function(breaks) {

83

84

guide_legend_interactive

paste@("alert(\"", as.character(breaks), "\")")
h
labels = function(breaks) {
lapply(breaks, function(br) {
label_interactive(
as.character(br),
data_id = as.character(br),
onclick = paste@("alert(\"", as.character(br), "\")"),
tooltip = as.character(br)
)
1))
}
)
x <- girafe(ggobj = p5)
x <- girafe_options(

X)

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {

print(x)
3
add interactive continuous legend guide to a ggplot -------
library(ggplot2)
library(ggiraph)

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste(”nlevel:”, after_stat(nlevel))
),
geom = "interactive_polygon”
) +
facet_grid(. ~ cut)

add interactive scale, by default the guide is a colourbar
pl <-p +
scale_fill_viridis_c_interactive(data_id = "nlevel”, tooltip = "nlevel"”)
x <- girafe(ggobj = p1)
if (interactive()) {
print(x)
3

make it legend
p2 <= p +
scale_fill_viridis_c_interactive(
data_id = "nlevel”,
tooltip = "nlevel”,
guide = "legend”
)
x <- girafe(ggobj = p2)

init_girafe_defaults

if (interactive()) {
print(x)
3

set the keys separately
p3 <-p +
scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)
3,
guide = "legend”
)
x <- girafe(ggobj = p3)
if (interactive()) {
print(x)
3

make the title and labels interactive
p4 <-p +
scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
1
tooltip = function(breaks) {
as.character(breaks)

}
guide = "legend”,
name = label_interactive(”nlevel”, data_id = "nlevel”, tooltip = "nlevel”),

labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste@(”alert(\""”, as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p4)
x <- girafe_options(
XY
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
}

86 interactive_circle_grob

init_girafe_defaults Re-init animation defaults options

Description

Re-init all defaults options with the package defaults.

Usage

init_girafe_defaults()

See Also

Other girafe animation options: girafe_defaults(), girafe_options(), opts_hover(), opts_selection(),
opts_sizing(), opts_toolbar(), opts_tooltip(), opts_zoom(), set_girafe_defaults()

interactive_circle_grob
Create interactive circles grob

Description

The grob is based on circleGrob(). See the documentation for that function for more details.

Usage

interactive_circle_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_curve_grob 87

interactive_curve_grob
Create interactive curve grob

Description

The grob is based on curveGrob(). See the documentation for that function for more details.

Usage

interactive_curve_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_parameters
Interactive parameters

Description

Throughout ggiraph there are functions that add interactivity to ggplot plot elements. The user
can control the various aspects of interactivity by supplying a special set of parameters to these
functions.

88

Arguments

tooltip

onclick

hover_css

selected_css

data_id

tooltip_fill

hover_nearest

interactive_parameters

Tooltip text to associate with one or more elements. If this is supplied a tooltip
is shown when the element is hovered. Plain text or html is supported.

To use html markup it is advised to use htmltools: :HTML() function in order
to mark the text as html markup. If the text is not marked as html and no open-
ing/closing tags were detected, then any existing newline characters (\r\n, \r
and \n) are replaced with the
 tag.

Javascript code to associate with one or more elements. This code will be exe-
cuted when the element is clicked.

Individual css style associate with one or more elements. This css style is
applied when the element is hovered and overrides the default style, set via
opts_hover(), opts_hover_key() or opts_hover_theme(). It can also be
constructed with girafe_css(), to give more control over the css for different
element types (see opts_hover () note).

Individual css style associate with one or more elements. This css style is
applied when the element is selected and overrides the default style, set via
opts_selection(), opts_selection_key() oropts_selection_theme(). It
can also be constructed with girafe_css(), to give more control over the css
for different element types (see opts_selection() note).

Identifier to associate with one or more elements. This is mandatory parameter
if hover and selection interactivity is desired. Identifiers are available as reactive
input values in Shiny applications.

Color to use for tooltip background when opts_tooltip() use_fill is TRUE.
Useful for setting the tooltip background color in geom_text_interactive()
or geom_label_interactive(), when the geom text color may be the same as
the tooltip text color.

Set to TRUE to apply the hover effect on the nearest element while moving the
mouse. In this case it is mandatory to also set the data_id parameter

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

* As aesthetics with the mapping argument (via ggplot2::aes()). In this way they can be
mapped to data columns and apply to a set of geometries.

* As plain arguments into the geom_*_interactive function. In this way they can be set to a

scalar value.

Details for annotate_* _interactive functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the

interactive_parameters 89

guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

Details for element_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant function and they should be
scalar values.

For theme text elements (element_text_interactive()), the interactive parameters can also be
supplied while setting a label value, via the ggplot2::1labs() family of functions or when set-
ting a scale/guide title or key label. Instead of setting a character value for the element, function
label_interactive() can be used to define interactive parameters to go along with the label.
When the parameters are supplied that way, they override the default values that are set at the theme
via element_text_interactive() or via the guide’s theme parameters.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

Custom interactive parameters

The argument extra_interactive_params can be passed to any of the *_interactive functions
(geoms, grobs, scales, labeller, labels and theme elements), It should be a character vector of addi-
tional names to be treated as interactive parameters when evaluating the aesthetics. The values will
eventually end up as attributes in the SVG elements of the output.

Intended only for expert use.

90 interactive_points_grob

See Also

girafe_options(), girafe()

interactive_path_grob Create interactive path grob

Description

The grob is based on pathGrob(). See the documentation for that function for more details.

Usage

interactive_path_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also
girafe()

interactive_points_grob
Create interactive points grob

Description

The grob is based on pointsGrob(). See the documentation for that function for more details.

Usage

interactive_points_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

interactive_polygon_grob 91

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_polygon_grob
Create interactive polygon grob

Description

The grob is based on polygonGrob(). See the documentation for that function for more details.

Usage

interactive_polygon_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

92 interactive_raster_grob

interactive_polyline_grob
Create interactive polyline grob

Description

These grobs are based on polylineGrob() and linesGrob(). See the documentation for those
functions for more details.

Usage
interactive_polyline_grob(...)
interactive_lines_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_raster_grob
Create interactive raster grob

Description

The grob is based on rasterGrob(). See the documentation for that function for more details.

Usage

interactive_raster_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

interactive_rect_grob 93

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

interactive_parameters, girafe()

interactive_rect_grob Create interactive rectangle grob

Description

The grob is based on rectGrob(). See the documentation for that function for more details.

Usage

interactive_rect_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

94 interactive_segments_grob

interactive_roundrect_grob
Create interactive rectangle grob

Description

The grob is based on roundrectGrob(). See the documentation for that function for more details.

Usage

interactive_roundrect_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_segments_grob
Create interactive segments grob

Description

The grob is based on segmentsGrob. See the documentation for that function for more details.

Usage

interactive_segments_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

interactive_text_grob 95

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

interactive_text_grob Create interactive text grob

Description

The grob is based on textGrob. See the documentation for that function for more details.

Usage

interactive_text_grob(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be
scalar values or vectors depending on params on base function.

See Also

girafe()

96 labeller_interactive

labeller_interactive Construct interactive labelling specification for facet strips

Description
This function is a wrapper around ggplot2::1labeller() that allows the user to turn facet strip
labels into interactive labels via label_interactive().

It requires that the ggplot2::theme()’s strip.text elements are defined as interactive theme
elements via element_text_interactive(), see details.

Usage
labeller_interactive(.mapping = NULL, ...)
Arguments
.mapping set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_(). It
should provide mappings for any of the interactive_parameters. In addition it
understands a label parameter for creating a new label text.
arguments passed to base function ggplot2::labeller()
Details

The aesthetics set provided via . mapping is evaluated against the data provided by the ggplot2 facet.
This means that the variables for each facet are available for using inside the aesthetic mappings. In
addition the . label variable provides access to the produced label. See the examples.

The plot’s theme is required to have the strip texts as interactive text elements. This involves
strip.textorindividually strip.text.xand strip.text.y: theme(strip.text.x = element_text_interactive())
theme(strip.text.y = element_text_interactive())

See Also

ggplot2::1labeller(), label_interactive(), ggplot2::labellers

Examples

use interactive labeller
library(ggplot2)
library(ggiraph)

pl <- ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point_interactive(aes(tooltip = row.names(mtcars)))

Always remember to set the theme's strip texts as interactive
no need to set any interactive parameters, they'll be assigned from the labels
pl <- p1 +
theme(
strip.text.x = element_text_interactive(),

labeller_interactive

strip.text.y = element_text_interactive()

)

simple facet
p <- pl +
facet_wrap_interactive(
vars(gear),
labeller = labeller_interactive(aes(tooltip = paste("Gear:", gear)))
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

With two vars. When the .multi_line labeller argument is TRUE (default),
supply a different labeller for each var
p <- pl +
facet_wrap_interactive(
vars(gear, vs),
labeller = labeller_interactive(
gear = labeller_interactive(aes(tooltip = paste("Gear:"”, gear))),
vs = labeller_interactive(aes(tooltip = paste("VS:", vs)))
)
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
}

When the .multi_line argument is FALSE, the labels are joined and
the same happens with the data, so we can refer to both variables in the aesthetics!
p <- pl +
facet_wrap_interactive(
vars(gear, vs),
labeller = labeller_interactive(
aes(tooltip = paste@("Gear: ", gear, "\nVS: ", vs)),
.multi_line = FALSE
)
)
x <- girafe(ggobj
if (interactive()) {
print(x)
3

p)

Example with facet_grid:
p <- pl +
facet_grid_interactive(
vs + am ~ gear,
labeller = labeller(
gear = labeller_interactive(aes(
tooltip = paste(”gear:"”, gear),
data_id = paste@("gear_", gear)
),

vs = labeller_interactive(aes(
tooltip = paste("VS:", vs),
data_id = paste@("vs_", vs)
),
am = labeller_interactive(aes(
tooltip = paste("AM:"”, am),
data_id = paste@("am_", am)
D)
)
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

Same with .rows and .cols and .multi_line = FALSE
p <-pl +
facet_grid_interactive(
vs + am ~ gear,
labeller = labeller(
.cols = labeller_interactive(
.mapping = aes(tooltip = paste("gear:", gear))

))

.rows = labeller_interactive(
aes(tooltip = paste@(”"VS: ", vs, "\nAM: " am)),
.multi_line = FALSE

)

)
)
x <- girafe(ggobj = p)
if (interactive()) {
print(x)
3

a more complex example
p2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) +
geom_point_interactive(aes(tooltip = name)) +
theme(
strip.text.x = element_text_interactive(),
strip.text.y = element_text_interactive()

)

character vector as lookup table
conservation_status <- c(

cd = "Conservation Dependent”,
en = "Endangered”,

lc = "Least concern”,

nt = "Near Threatened”,

vu = "Vulnerable”,
domesticated = "Domesticated”

function to capitalize a string

labeller_interactive

label_interactive 99

capitalize <- function(x) {
substr(x, 1, 1) <- toupper(substr(x, 1, 1))
X

}

function to cut a string and append an ellipsis
cut_str <- function(x, width = 10) {
ind <- l!is.na(x) & nchar(x) > width
x[ind] <- paste@(substr(x[ind], 1, width), "...")
X

}

replace_nas <- function(x) {
ifelse(is.na(x), "Not available”, x)

}

in this example we use the '.label' variable to access the produced label
and we set the 'label' aesthetic to modify the label
p <-p2 +
facet_grid_interactive(
vore ~ conservation,
labeller = labeller(
vore = labeller_interactive(
aes(tooltip = paste(”"Vore:", replace_nas(.label))),
.default = capitalize

),
conservation = labeller_interactive(
aes(
tooltip = paste(”Conservation:\n", replace_nas(.label)),
label = cut_str(.label, 3)
),
.default = conservation_status
)

)
)

x <- girafe(ggobj = p)

if (interactive()) {
print(x)

3

label_interactive Create an interactive label

Description

This function returns an object that can be used as a label via the ggplot2::labs() family of
functions or when setting a scale/guide nameltitle or key label. It passes the interactive parameters
to a theme element created via element_text_interactive() or via an interactive guide.

100
Usage
label_interactive(label, ...)
Arguments
label The text for the label (scalar character)
any of the interactive_parameters.
Value

an interactive label object

See Also

interactive_parameters, labeller_interactive()

Examples

library(ggplot2)
library(ggiraph)

gg_jitter <- ggplot(
mpg, aes(cyl, hwy, group = cyl)) +
geom_boxplot() +
labs(title =
label_interactive(
"title",
data_id = "id_title",
onclick = "alert(\"title\")",
tooltip = "title"”)

) +

theme(plot.title = element_text_interactive())

x <- girafe(ggobj = gg_jitter)
if(interactive()) print(x)

match_family

match_family Find best family match with systemfonts

Description

match_family () returns the best font family match.

Usage

match_family(font = "sans”, bold = TRUE, italic = TRUE, debug = NULL)

opts_hover 101

Arguments
font family or face to match.
bold Wheter to match a font featuring a bold face.
italic Wheter to match a font featuring an italic face.
debug deprecated

See Also

Other functions for font management: validated_fonts()

Examples

match_family("sans")
match_family("serif")

opts_hover Hover effect settings

Description

Allows customization of the rendering of graphic elements when the user hovers over them with the
cursor (mouse pointer). Use opts_hover for interactive geometries in panels, opts_hover_key for
interactive scales/guides and opts_hover_theme for interactive theme elements. Use opts_hover_inv
for the effect on the rest of the geometries, while one is hovered (inverted operation).

Usage

opts_hover(css = NULL, reactive = FALSE, nearest_distance = NULL)

opts_hover_inv(css = NULL)

NULL, reactive = FALSE)

opts_hover_key(css

opts_hover_theme(css = NULL, reactive = FALSE)

Arguments
css css to associate with elements when they are hovered. It must be a scalar char-
acter. It can also be constructed with girafe_css(), to give more control over
the css for different element types.
reactive if TRUE, in Shiny context, hovering will set Shiny input values.

nearest_distance
a scalar positive number defining the maximum distance to use when using
the hover_nearest interactive parameter feature. By default (NULL) it’s set
to Infinity which means that there is no distance limit. Setting it to 50, for
example, it will hover the nearest element that has at maximum 50 SVG units
(pixels) distance from the mouse cursor.

102 opts_selection

Note

IMPORTANT: When applying a fill style with the css argument, be aware that the browser’s
CSS engine will apply it also to line elements, if there are any that use the hovering feature. This
will cause an undesired effect.

To overcome this, supply the argument css using girafe_css(), in order to set the fill style only
for the desired elements.

See Also

girafe_css(), girafe_css_bicolor()

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_selection(), opts_sizing(), opts_toolbar(),opts_tooltip(), opts_zoom(), set_girafe_defaults()

Examples

library(ggplot2)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname)) +
geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg)
x <- girafe_options(x,

opts_hover(css = "fill:wheat;stroke:orange;r:5pt;"))
if(interactive()) print(x)

opts_selection Selection effect settings

Description

Allows customization of the rendering of selected graphic elements. Use opts_selection for inter-

active geometries in panels, opts_selection_key for interactive scales/guides and opts_selection_theme
for interactive theme elements. Use opts_selection_inv for the effect on the rest of the geome-

tries, while some are selected (inverted operation).

Usage

opts_selection(
css = NULL,
type = c("multiple”, "single”, "none"),
only_shiny = TRUE,

opts_selection 103

selected = character(0)

)
opts_selection_inv(css = NULL)

opts_selection_key(
css = NULL,
type = c("single”, "multiple”, "none”),
only_shiny = TRUE,
selected = character ()

)

opts_selection_theme(
css = NULL,
type = c("single”, "multiple”, "none"),
only_shiny = TRUE,
selected = character(Q)

)
Arguments
css css to associate with elements when they are selected. It must be a scalar char-
acter. It can also be constructed with girafe_css(), to give more control over
the css for different element types.
type selection mode ("single", "multiple", "none") when widget is in a Shiny appli-
cation.
only_shiny disable selections when not running within a Shiny application. Defaults to TRUE
because selection is primarily designed for Shiny interactivity, where selected
elements can be captured as reactive values. Set to FALSE only to demonstrate
the selection/lasso feature in standalone HTML pages (e.g. in documentation
examples or R Markdown output).
selected character vector, id to be selected when the graph will be initialized.
Note

IMPORTANT: When applying a fill style with the css argument, be aware that the browser’s
CSS engine will apply it also to line elements, if there are any that use the selection feature. This
will cause an undesired effect.

To overcome this, supply the argument css using girafe_css(), in order to set the fill style only
for the desired elements.

See Also

girafe_css(), girafe_css_bicolor()

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover (), opts_sizing(), opts_toolbar(),opts_tooltip(), opts_zoom(), set_girafe_defaults()

104 opts_sizing

Examples

library(ggplot2)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname)) +
geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_selection(type = "multiple”, only_shiny = FALSE,
css = "fill:red;stroke:gray;r:5pt;"))
if(interactive()) print(x)

opts_sizing Girafe sizing settings

Description

Allows customization of the svg style sizing

Usage
opts_sizing(rescale = TRUE, width = 1)

Arguments
rescale If FALSE, graphic will not be resized and the dimensions are exactly those of
the svg. If TRUE the graphic will be resize to fit its container
width widget width ratio (0 < width <= 1).
See Also

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover (), opts_selection(), opts_toolbar(),opts_tooltip(), opts_zoom(), set_girafe_defaults()

Examples
library(ggplot2)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg <- ggplot(
data = dataset,

opts_toolbar

105

mapping = aes(x = wt, y = gsec, color = disp,

tooltip = carname, data_id = carname)) +

geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg)

x <- girafe_options(x,
opts_sizing(rescale = FALSE))

if(interactive()) print(x)

opts_toolbar

Toolbar settings

Description

Allows customization of the toolbar

Usage

opts_toolbar(

position = c("topright”, "top", "bottom”, "topleft”, "bottomleft”, "bottomright"),
saveaspng = TRUE,

pngname = "diagram”,

tooltips = NULL,

hidden = NULL,

fixed = FALSE,

delay_mouseover = 200,

delay_mouseout = 500

Arguments

position

saveaspng
pngname

tooltips

hidden

Position of the toolbar relative to the plot. One of ’top’, ’bottom’, ’topleft’,
"topright’, “bottomleft’, "bottomright’

Show (TRUE) or hide (FALSE) the ’"download png’ button.
The default basename (without .png extension) to use for the png file.
A named list with tooltip labels for the buttons, for adapting to other language.

Passing NULL will use the default tooltips:

list(lasso_select = ’lasso selection’, lasso_deselect = ’lasso deselection’, zoom_on
= ’activate pan/zoom’, zoom_off = ’deactivate pan/zoom’, zoom_rect = ’zoom
with rectangle’, zoom_reset = ’reset pan/zoom’, saveaspng = ’download png’,
fullscreen = "fullscreen’)

A character vector with the names of the buttons or button groups to be hidden
from the toolbar. This allows full customization of which buttons appear.
Valid button groups: ’selection’, zoom’, *misc’

Valid button names: ’lasso_select’, ’lasso_deselect’, ’zoom_onoff’, >zoom_rect’,
’zoom_reset’, ’saveaspng’, "fullscreen’

106 opts_toolbar

fixed if FALSE (default), the toolbar will float above the graphic, if TRUE, the toolbar
will be fixed and always visible.

delay_mouseover
The duration in milliseconds of the transition associated with toolbar display.

delay_mouseout The duration in milliseconds of the transition associated with toolbar end of
display.

Note

saveaspng relies on JavaScript promises, so any browsers that don’t natively support the standard
Promise object will need to have a polyfill (e.g. Internet Explorer with version less than 11 will
need it).

See Also

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover(), opts_selection(),opts_sizing(), opts_tooltip(), opts_zoom(), set_girafe_defaults()

Examples

library(ggiraph)
library(ggplot2)

dataset <- mtcars
dataset$carname <- row.names(mtcars)

gg <- ggplot(
data = dataset,
mapping = aes(
x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname
)
) +
geom_point_interactive() +
theme_minimal()

x <- girafe(
ggobj = gg,
options = list(
opts_zoom(max = 5),
opts_selection(only_shiny = FALSE),
opts_toolbar(position = "top")
)

)
if (interactive()) print(x)

Hide lasso selection tools (useful in Shiny when selections
are controlled by other app interactions)
x <- girafe(

ggobj = gg,

options = list(

opts_tooltip 107

opts_zoom(max = 5),
opts_selection(only_shiny = FALSE),
opts_toolbar(
position = "top”,
hidden = c("lasso_select”, "lasso_deselect"”)
)
)

)
if (interactive()) print(x)

Keep only zoom/pan and reset, hide rectangular zoom
x <- girafe(
ggobj = gg,
options = list(
opts_zoom(max = 5),
opts_selection(only_shiny = FALSE),
opts_toolbar(
position = "top”,
hidden = c("selection”, "zoom_rect”, "saveaspng")
)
)

)
if (interactive()) print(x)

opts_tooltip Tooltip settings

Description

Settings to be used with girafe() for tooltip customisation.

Usage
opts_tooltip(
css = NULL,
offx = 10,
offy = 0,

use_cursor_pos = TRUE,

opacity = 0.9,

use_fill = FALSE,

use_stroke = FALSE,

delay_mouseover = 200,

delay_mouseout = 500,

placement = c("auto”, "doc", "container"),
zindex = 9999

108 opts_tooltip

Arguments
css extra css (added to position: absolute;pointer-events: none;) used to cus-
tomize tooltip area.
of fx, of fy tooltip x and y offset

use_cursor_pos should the cursor position be used to position tooltip (in addition to offx and
offy). Setting to TRUE will have no effect in the RStudio browser windows.

opacity tooltip background opacity
use_fill, use_stroke
logical, use fill and stroke properties to color tooltip.
delay_mouseover
The duration in milliseconds of the transition associated with tooltip display.

delay_mouseout The duration in milliseconds of the transition associated with tooltip end of dis-
play.

placement Defines the container used for the tooltip element. It can be one of "auto" (de-
fault), "doc" or "container".

* doc: the host document’s body is used as tooltip container. The tooltip may
cover areas outside of the svg graphic.

* container: the svg container is used as tooltip container. In this case the
tooltip content may wrap to fit inside the svg bounds. It will also inherit the
CSS styles and transforms applied to the parent containers (like scaling in
a slide presentation).

 auto: This is the default, ggiraph choses the best option according to use
cases. Usually it redirects to "doc", however in a xaringan context, it redi-
rects to "container".

zindex tooltip css z-index, default to 999.

See Also

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover (), opts_selection(),opts_sizing(), opts_toolbar(), opts_zoom(), set_girafe_defaults()

Examples

library(ggplot2)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname)) +
geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_tooltip(opacity = .7,

opts_zoom 109

offx = 20, offy = -10,
use_fill = TRUE, use_stroke = TRUE,
delay_mouseout = 1000))

if(interactive()) print(x)

opts_zoom Zoom settings

Description

Allows customization of the zoom.

Usage

opts_zoom(min = 1, max = 1, duration = 300, default_on = FALSE)

Arguments

min minimum zoom factor

max maximum zoom factor

duration duration of the zoom transitions, in milliseconds

default_on if TRUE, pan/zoom will be activated by default when the plot is rendered
See Also

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover (), opts_selection(),opts_sizing(), opts_toolbar(),opts_tooltip(), set_girafe_defaults()

Examples

library(ggplot2)

dataset <- mtcars
dataset$carname = row.names(mtcars)

gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = gsec, color = disp,
tooltip = carname, data_id = carname)) +
geom_point_interactive() + theme_minimal()

x <- girafe(ggobj = gg)
x <- girafe_options(x,

opts_zoom(min = .7, max = 2, default_on = TRUE))
if(interactive()) print(x)

110 run_girafe_example

renderGirafe Reactive version of girafe

Description

Makes a reactive version of girafe object for use in Shiny.

Usage

renderGirafe(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

Arguments
expr An expression that returns a girafe() object.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression
outputArgs A list of arguments to be passed through to the implicit call to girafeOutput ()
when renderGirafe is used in an interactive R Markdown document.
run_girafe_example Run shiny examples and see corresponding code
Description

Run shiny examples and see corresponding code

Usage
run_girafe_example(name = "crimes")
Arguments
name an application name, one of cars, click_scale, crimes, DT, dynamic_ui, iris,

maps and modal.

scale_alpha_interactive 111

scale_alpha_interactive
Create interactive scales for alpha transparency

Description

These scales are based on ggplot2::scale_alpha(), ggplot2::scale_alpha_continuous(),
ggplot2::scale_alpha_discrete(), ggplot2::scale_alpha_binned(), ggplot2::scale_alpha_ordinal(),
ggplot2::scale_alpha_date(), ggplot2: :scale_alpha_datetime(). See the documentation

for those functions for more details.

Usage

scale_alpha_interactive(...)
scale_alpha_continuous_interactive(...)
scale_alpha_discrete_interactive(...)
scale_alpha_binned_interactive(...)
scale_alpha_ordinal_interactive(...)
scale_alpha_date_interactive(...)

scale_alpha_datetime_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be

112 scale_colour_brewer_interactive

defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also
girafe()

Other interactive scale: scale_colour_brewer_interactive(), scale_colour_interactive,
scale_colour_steps_interactive(), scale_gradient_interactive, scale_linetype_interactive(),
scale_manual_interactive, scale_shape_interactive(), scale_size_interactive(), scale_viridis_interactiy

scale_colour_brewer_interactive
Create interactive colorbrewer scales

Description

These scales are based on ggplot2: :scale_colour_brewer(), ggplot2::scale_fill_brewer(),
ggplot2::scale_colour_distiller(), ggplot2::scale_fill_distiller(), ggplot2::scale_colour_fermenter().
ggplot2::scale_fill_fermenter(). See the documentation for those functions for more details.

Usage

scale_colour_brewer_interactive(...)
scale_color_brewer_interactive(...)
scale_fill_brewer_interactive(...)
scale_colour_distiller_interactive(...)
scale_color_distiller_interactive(...)

scale_fill_distiller_interactive(...)

scale_colour_brewer_interactive 113

scale_colour_fermenter_interactive(...)
scale_color_fermenter_interactive(...)

scale_fill_fermenter_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_interactive, scale_colour_steps_interactive
scale_gradient_interactive, scale_linetype_interactive(), scale_manual_interactive,
scale_shape_interactive(), scale_size_interactive(), scale_viridis_interactive

114 scale_colour_interactive

scale_colour_interactive
Create interactive colour scales

Description

These scales are based on ggplot2: :scale_colour_continuous(), ggplot2::scale_fill_continuous(),
ggplot2::scale_colour_grey(), ggplot2::scale_fill_grey(), ggplot2::scale_colour_hue(),
ggplot2::scale_fill_hue(), ggplot2::scale_colour_binned(), ggplot2::scale_fill_binned(),
ggplot2::scale_colour_discrete(), ggplot2::scale_fill_discrete(), ggplot2::scale_colour_date(),
ggplot2::scale_fill_date(), ggplot2::scale_colour_datetime() and ggplot2::scale_fill_datetime().
See the documentation for those functions for more details.

Usage

scale_colour_continuous_interactive(...)
scale_color_continuous_interactive(...)
scale_fill_continuous_interactive(...)
scale_colour_grey_interactive(...)
scale_color_grey_interactive(...)
scale_fill_grey_interactive(...)
scale_colour_hue_interactive(...)
scale_color_hue_interactive(...)
scale_fill_hue_interactive(...)
scale_colour_binned_interactive(...)
scale_color_binned_interactive(...)
scale_fill_binned_interactive(...)
scale_colour_discrete_interactive(...)
scale_color_discrete_interactive(...)
scale_fill_discrete_interactive(...)

scale_colour_date_interactive(...)

scale_colour_interactive 115

scale_color_date_interactive(...)
scale_fill_date_interactive(...)
scale_colour_datetime_interactive(...)
scale_color_datetime_interactive(...)

scale_fill_datetime_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

116 scale_colour_steps_interactive

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_steps_interactive(), scale_gradient_interactive, scale_linetype_interactive(),
scale_manual_interactive, scale_shape_interactive(), scale_size_interactive(), scale_viridis_interactiy

scale_colour_steps_interactive
Create interactive binned gradient colour scales

Description

These scales are based on ggplot2::scale_colour_steps(), ggplot2::scale_fill_steps(),
ggplot2::scale_colour_steps2(), ggplot2::scale_fill_steps2(), ggplot2::scale_colour_stepsn()
and ggplot2::scale_fill_stepsn(). See the documentation for those functions for more details.

Usage

scale_colour_steps_interactive(...)
scale_color_steps_interactive(...)
scale_fill_steps_interactive(...)
scale_colour_steps2_interactive(...)
scale_color_steps2_interactive(...)
scale_fill_steps2_interactive(...)
scale_colour_stepsn_interactive(...)
scale_color_stepsn_interactive(...)

scale_fill_stepsn_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

scale_gradient_interactive 117

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also
girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_gradient_interactive, scale_linetype_interactive(),
scale_manual_interactive, scale_shape_interactive(), scale_size_interactive(), scale_viridis_interacti

scale_gradient_interactive
Create interactive gradient colour scales

Description

These scales are based on ggplot2: :scale_colour_gradient(), ggplot2: :scale_fill_gradient(),
ggplot2::scale_colour_gradient2(), ggplot2::scale_fill_gradient2(), ggplot2::scale_colour_gradientn()
and ggplot2::scale_fill_gradientn(). See the documentation for those functions for more de-

tails.

Usage
scale_colour_gradient_interactive(...)

scale_color_gradient_interactive(...)

scale_fill_gradient_interactive(...)

118 scale_gradient_interactive

scale_colour_gradient2_interactive(...)
scale_color_gradient2_interactive(...)
scale_fill_gradient2_interactive(...)
scale_colour_gradientn_interactive(...)
scale_color_gradientn_interactive(...)

scale_fill_gradientn_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

scale_gradient_interactive 119

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_linetype_interactive(),
scale_manual_interactive, scale_shape_interactive(), scale_size_interactive(), scale_viridis_interacti\

Examples

add interactive gradient colour scale to a ggplot -------
library(ggplot2)
library(ggiraph)

df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))

p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive()

add an interactive scale (guide is colourbar)

pl <= p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
)

x <- girafe(ggobj = p1)
if (interactive()) {

print(x)
3
make the legend title interactive
p2 <- p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
name = label_interactive(
g
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
)
)

x <- girafe(ggobj = p2)
x <- girafe_options(
X}
opts_hover_key(girafe_css("stroke:red"”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

120 scale_gradient_interactive

make the legend labels interactive

p3 <-p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
name = label_interactive(
g
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
),

labels = function(breaks) {
lapply(breaks, function(abreak) {
label_interactive(
as.character(abreak),
data_id = paste@("colourbar”, abreak),
onclick = "alert(\"colourbar\")",
tooltip = paste@("colourbar”, abreak)
)
b))
3
)
x <- girafe(ggobj = p3)
x <- girafe_options(
X,
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

also via the guide
p4 <- p +
scale_fill_gradient_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”,
guide = guide_colourbar_interactive(
title.theme = element_text_interactive(

size = 8,
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

),

label.theme = element_text_interactive(
size = 8,
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”

)

scale_linetype_interactive 121

)
x <- girafe(ggobj = p4)
x <- girafe_options(

X

’

opts_hover_key(girafe_css("stroke:red"”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3
make the legend background interactive
p5 <- p4 +
theme (
legend.background = element_rect_interactive(
data_id = "colourbar”,
onclick = "alert(\"colourbar\")",
tooltip = "colourbar”
)
)

x <- girafe(ggobj = p5)
x <- girafe_options(
X,
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

scale_linetype_interactive
Create interactive scales for line patterns

Description

These scales are based on ggplot2: :scale_linetype(), ggplot2::scale_linetype_continuous(),
ggplot2::scale_linetype_discrete() and ggplot2::scale_linetype_binned(). See the
documentation for those functions for more details.

Usage

scale_linetype_interactive(...)
scale_linetype_continuous_interactive(...)
scale_linetype_discrete_interactive(...)

scale_linetype_binned_interactive(...)

122 scale_linetype_interactive

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_gradient_interactive,
scale_manual_interactive, scale_shape_interactive(), scale_size_interactive(), scale_viridis_interacti\

scale_manual_interactive 123

scale_manual_interactive
Create your own interactive discrete scale

Description

These scales are based on ggplot2: :scale_colour_manual(), ggplot2::scale_fill_manual(),
ggplot2::scale_size_manual (), ggplot2::scale_shape_manual(), ggplot2::scale_linetype_manual(),
ggplot2: :scale_alpha_manual() and ggplot2::scale_discrete_manual(). See the docu-

mentation for those functions for more details.

Usage

scale_colour_manual_interactive(...)
scale_color_manual_interactive(...)
scale_fill_manual_interactive(...)
scale_size_manual_interactive(...)
scale_shape_manual_interactive(...)
scale_linetype_manual_interactive(...)
scale_alpha_manual_interactive(...)
scale_discrete_manual_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

124 scale_manual_interactive

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_gradient_interactive,
scale_linetype_interactive(), scale_shape_interactive(), scale_size_interactive(),
scale_viridis_interactive

Examples

add interactive manual fill scale to a ggplot -------
library(ggplot2)
library(ggiraph)

dat <- data.frame(
name = c("Guy"”, "Ginette”, "David"”, "Cedric"”, "Frederic"),
gender = c("Male”, "Female”, "Male”, "Male", "Male"),
height = c(169, 160, 171, 172, 171)
)
p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +
geom_bar_interactive(stat = "identity")

add interactive scale (guide is legend)
pl <-p +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#Q@9E73"),
data_id = c(Female = "Female”, Male = "Male"),
tooltip = c(Male = "Male"”, Female = "Female")
)
x <- girafe(ggobj = p1)
if (interactive()) {
print(x)
3

scale_manual_interactive 125

make the title interactive too
p2 <-p +
scale_fill_manual_interactive(
name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#@Q9E73"),
data_id = c(Female = "Female”, Male = "Male"),
tooltip = c(Male = "Male”, Female = "Female")
)
x <- girafe(ggobj = p2)
x <- girafe_options(
X)
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

the interactive params can be functions too
p3 <-p +
scale_fill_manual_interactive(
name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#Q@9E73"),
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)
3,
onclick = function(breaks) {
paste@("alert(\"", as.character(breaks), "\")")
3
)
x <- girafe(ggobj = p3)
x <- girafe_options(
XY
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

also via the guide
p4 <-p +
scale_fill_manual_interactive(

126

values = c(Male = "#0072B2", Female = "#@Q9E73"),
data_id = function(breaks) {
as.character(breaks)
h
tooltip = function(breaks) {
as.character(breaks)
h
onclick = function(breaks) {
paste@("alert(\"", as.character(breaks), "\")")
h
guide = guide_legend_interactive(
title.theme = element_text_interactive(

scale_manual_interactive

size = 8,
data_id = "legend.title",
onclick = "alert(\"Gender levels\")",
tooltip = "Gender levels”
),
label.theme = element_text_interactive(
size = 8
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(
X)
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

make the legend labels interactive
p5 <= p +
scale_fill_manual_interactive(

name = label_interactive(

"gender”,
tooltip = "Gender levels”,
data_id = "legend.title”

),
values = c(Male = "#0072B2", Female = "#0@Q9E73"),
data_id = function(breaks) {
as.character(breaks)
}’
tooltip = function(breaks) {
as.character(breaks)
}’
onclick = function(breaks) {
paste@("alert(\"", as.character(breaks), "\")")
}’
labels = function(breaks) {
lapply(breaks, function(br) {
label_interactive(
as.character(br),

scale_shape_interactive 127

data_id = as.character(br),
onclick = paste@("alert(\"", as.character(br), "\")"),
tooltip = as.character(br)

)
1))
}

)
x <- girafe(ggobj
x <- girafe_options(

X}

opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {

print(x)
3

p5)

scale_shape_interactive
Create interactive scales for shapes

Description

These scales are based on ggplot2::scale_shape(), ggplot2::scale_shape_continuous(),
ggplot2: :scale_shape_discrete(), ggplot2::scale_shape_binned() and ggplot2::scale_shape_ordinal().
See the documentation for those functions for more details.

Usage

scale_shape_interactive(...)
scale_shape_continuous_interactive(...)
scale_shape_discrete_interactive(...)
scale_shape_binned_interactive(...)

scale_shape_ordinal_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

128 scale_size_interactive

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_gradient_interactive,
scale_linetype_interactive(), scale_manual_interactive, scale_size_interactive(),
scale_viridis_interactive

scale_size_interactive
Create interactive scales for area or radius

Description

These scales are based on ggplot2::scale_size(), ggplot2::scale_size_area(), ggplot2::scale_size_continuous
ggplot2::scale_size_discrete(), ggplot2::scale_size_binned(), ggplot2::scale_size_binned_area(),
ggplot2::scale_size_date(), ggplot2::scale_size_datetime(), ggplot2::scale_size_ordinal()

and ggplot2: :scale_radius(). See the documentation for those functions for more details.

scale_size_interactive 129

Usage

scale_size_interactive(...)
scale_size_area_interactive(...)
scale_size_continuous_interactive(...)
scale_size_discrete_interactive(...)
scale_size_binned_interactive(...)
scale_size_binned_area_interactive(...)
scale_size_date_interactive(...)
scale_size_datetime_interactive(...)
scale_size_ordinal_interactive(...)

scale_radius_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

130 scale_viridis_interactive

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_gradient_interactive,
scale_linetype_interactive(), scale_manual_interactive, scale_shape_interactive(),
scale_viridis_interactive

scale_viridis_interactive
Create interactive viridis colour scales

Description

These scales are based on ggplot2: :scale_colour_viridis_d(), ggplot2::scale_fill_viridis_d(),
ggplot2::scale_colour_viridis_c(), ggplot2::scale_fill_viridis_c(), ggplot2::scale_colour_viridis_b().
ggplot2::scale_fill_viridis_b(), ggplot2::scale_colour_ordinal(), ggplot2::scale_fill_ordinal().

See the documentation for those functions for more details.

Usage

scale_colour_viridis_d_interactive(...)
scale_color_viridis_d_interactive(...)
scale_fill_viridis_d_interactive(...)
scale_colour_viridis_c_interactive(...)
scale_color_viridis_c_interactive(...)
scale_fill_viridis_c_interactive(...)
scale_colour_viridis_b_interactive(...)
scale_color_viridis_b_interactive(...)
scale_fill_viridis_b_interactive(...)

scale_colour_ordinal_interactive(...)

scale_viridis_interactive 131

scale_color_ordinal_interactive(...)

scale_fill_ordinal_interactive(...)

Arguments

arguments passed to base function, plus any of the interactive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant function and they
can be scalar values or vectors, depending on the number of breaks (levels) and the type of the
guide used. The guides do not accept any interactive parameter directly, they receive them from the
scales.

When guide of type legend, bins, colourbar or coloursteps is used, it will be converted to a
guide_legend_interactive(), guide_bins_interactive(), guide_colourbar_interactive()
or guide_coloursteps_interactive() respectively, if it’s not already.

The length of each scale interactive parameter vector should match the length of the breaks. It can
also be a named vector, where each name should correspond to the same break name. It can also be
defined as function that takes the breaks as input and returns a named or unnamed vector of values
as output.

For binned guides like bins and coloursteps the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can
be constructed for each bin separately (look at the examples). For colourbar guide in raster mode,
the breaks vector, is scalar 1 always, meaning the interactive parameters should be scalar too. For
colourbar guide in non-raster mode, the bar is drawn using rectangles, and the breaks are the
midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc), the rel-
evant theme elements or relevant guide arguments can be used. The guide arguments title. theme
and label. theme can be defined as element_text_interactive (in fact, they will be converted to
that if they are not already), either directly or via the theme. See the element_*_interactive section
for more details.

See Also

girafe()

Other interactive scale: scale_alpha_interactive(), scale_colour_brewer_interactive(),
scale_colour_interactive, scale_colour_steps_interactive(), scale_gradient_interactive,
scale_linetype_interactive(), scale_manual_interactive, scale_shape_interactive(),
scale_size_interactive()

132 scale_viridis_interactive

Examples

add interactive viridis scale to a ggplot -------
library(ggplot2)
library(ggiraph)

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste(”"nlevel:”, after_stat(nlevel))
),
geom = "interactive_polygon”
) +
facet_grid(. ~ cut)

add interactive scale, by default the guide is a colourbar
pl <-p +
scale_fill_viridis_c_interactive(data_id = "nlevel”, tooltip = "nlevel"”)
x <- girafe(ggobj = p1)
if (interactive()) {
print(x)
3

make it legend
p2 <= p +
scale_fill_viridis_c_interactive(
data_id = "nlevel”,
tooltip = "nlevel”,
guide = "legend”
)
x <- girafe(ggobj = p2)
if (interactive()) {
print(x)
3

set the keys separately
p3 <-p +
scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
1,
tooltip = function(breaks) {
as.character(breaks)
1,
guide = "legend”
)
x <- girafe(ggobj = p3)
if (interactive()) {
print(x)
3

set_girafe_defaults 133

make the title and labels interactive
p4 <-p +
scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
3,
tooltip = function(breaks) {
as.character(breaks)

}!
guide = "legend”,
name = label_interactive(”"nlevel”, data_id = "nlevel”, tooltip = "nlevel”),

labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste@("alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p4)
x <- girafe_options(
X)
opts_hover_key(girafe_css("stroke:red”, text = "stroke:none;fill:red"))
)
if (interactive()) {
print(x)
3

set_girafe_defaults Modify defaults girafe animation options

Description

girafe animation options (see girafe_defaults()) are automatically applied to every girafe you
produce. Use set_girafe_defaults() to override them. Use init_girafe_defaults() to re-
init all values with the package defaults.

Usage

set_girafe_defaults(
fonts = NULL,
opts_sizing = NULL,
opts_tooltip = NULL,
opts_hover = NULL,
opts_hover_key = NULL,
opts_hover_inv = NULL,

134 set_girafe_defaults

opts_hover_theme = NULL,
opts_selection = NULL,
opts_selection_inv = NULL,
opts_selection_key = NULL,
opts_selection_theme = NULL,
opts_zoom = NULL,
opts_toolbar = NULL

)

Arguments
fonts default values for fonts, see argument fonts of dsvg() function.
opts_sizing default values for opts_sizing() used in argument options of girafe() func-

tion.

opts_tooltip default values for opts_tooltip() used in argument options of girafe()
function.

opts_hover default values for opts_hover () used in argument options of girafe() func-
tion.

opts_hover_key default values for opts_hover_key() used in argument options of girafe()
function.

opts_hover_inv default values for opts_hover_inv() used in argument options of girafe()
function.

opts_hover_theme
default values for opts_hover_theme () used in argument options of girafe()
function.

opts_selection default values for opts_selection() used in argument options of girafe()
function.

opts_selection_inv
default values for opts_selection_inv() used in argument options of girafe()
function.

opts_selection_key
default values for opts_selection_key() used in argument options of girafe()
function.

opts_selection_theme
default values for opts_selection_theme() used in argument options of girafe()
function.

opts_zoom default values for opts_zoom() used in argument options of girafe() func-
tion.

opts_toolbar default values for opts_toolbar() used in argument options of girafe()
function.
See Also

Other girafe animation options: girafe_defaults(), girafe_options(), init_girafe_defaults(),
opts_hover (), opts_selection(),opts_sizing(), opts_toolbar(), opts_tooltip(), opts_zoom()

validated_fonts 135

Examples

library(ggplot2)

set_girafe_defaults(
opts_hover = opts_hover(css = "r:10px;"),
opts_hover_inv = opts_hover_inv(),
opts_sizing = opts_sizing(rescale = FALSE, width = .8),
opts_tooltip = opts_tooltip(opacity = .7,
offx = 20, offy = -10,
use_fill = TRUE, use_stroke = TRUE,
delay_mouseout = 1000),
opts_toolbar = opts_toolbar(position = "top", saveaspng = FALSE),
opts_zoom = opts_zoom(min = .8, max = 7)

)

init_girafe_defaults()

validated_fonts List of validated default fonts

Description

Validates and possibly modifies the fonts to be used as default value in a graphic according to the

"non

fonts available on the machine. It process elements named "sans", "serif", "mono" and "symbol".

Usage

validated_fonts(fonts = list())

Arguments
fonts Named list of font names to be aliased with fonts installed on your system. If
unspecified, the R default families "sans", "serif", "mono" and "symbol" are
aliased to the family returned by match_family().
If fonts are available, the default mapping will use these values:
R family Font on Windows Font on Unix Font on Mac OS
sans Arial DejaVu Sans Helvetica
serif Times New Roman DejaVu serif =~ Times
mono Courier DejaVu mono Courier
symbol Symbol DejaVu Sans Symbol
Value

a named list of validated font family names

136 validated_fonts

See Also

girafe(), dsvg()

Other functions for font management: match_family()

Examples

validated_fonts()

Index

* device
dsvg, 7

* functions for font management
match_family, 100
validated_fonts, 135

x girafe animation options
girafe_defaults, 69
girafe_options, 70
init_girafe_defaults, 86
opts_hover, 101
opts_selection, 102
opts_sizing, 104
opts_toolbar, 105
opts_tooltip, 107
opts_zoom, 109
set_girafe_defaults, 133

x interactive scale
scale_alpha_interactive, 111
scale_colour_brewer_interactive,

112
scale_colour_interactive, 114
scale_colour_steps_interactive,
116

scale_gradient_interactive, 117
scale_linetype_interactive, 121
scale_manual_interactive, 123
scale_shape_interactive, 127
scale_size_interactive, 128
scale_viridis_interactive, 130

annotate_interactive, 4
annotation_raster_interactive, 6
annotation_raster_interactive(), 5

circleGrob(), 86
curveGrob(), 87

Devices, 8
dsvg, 7
dsvg(), 9, 64, 66, 134, 136

137

dsvg_view, 8

element_interactive, 9
element_line_interactive
(element_interactive), 9
element_rect_interactive
(element_interactive), 9
element_text_interactive
(element_interactive), 9
element_text_interactive(), 9, 89, 96, 99

facet_grid_interactive, 11
facet_wrap_interactive, 12

geom_abline_interactive, 13
geom_area_interactive
(geom_ribbon_interactive), 55
geom_bar_interactive, 16
geom_bin2d_interactive
(geom_bin_2d_interactive), 18
geom_bin_2d_interactive, 18
geom_boxplot_interactive, 19
geom_col_interactive
(geom_bar_interactive), 16
geom_contour_filled_interactive
(geom_contour_interactive), 21
geom_contour_interactive, 21
geom_count_interactive, 22
geom_crossbar_interactive, 23
geom_curve_interactive, 25
geom_density2d_filled_interactive
(geom_density_2d_interactive),
27
geom_density2d_interactive
(geom_density_2d_interactive),
27
geom_density_2d_filled_interactive
(geom_density_2d_interactive),
27
geom_density_2d_interactive, 27

138

geom_density_interactive, 29
geom_dotplot_interactive, 30
geom_errorbar_interactive
(geom_crossbar_interactive), 23
geom_errorbarh_interactive, 32
geom_fregpoly_interactive, 33
geom_hex_interactive, 34
geom_histogram_interactive
(geom_fregpoly_interactive), 33
geom_hline_interactive
(geom_abline_interactive), 13
geom_jitter_interactive, 35
geom_label_interactive, 36
geom_label_interactive(), 88
geom_label_repel_interactive
(geom_text_repel_interactive),
61
geom_line_interactive
(geom_path_interactive), 40
geom_linerange_interactive
(geom_crossbar_interactive), 23
geom_map_interactive, 38
geom_path_interactive, 40
geom_point_interactive, 43
geom_pointrange_interactive
(geom_crossbar_interactive), 23
geom_polygon_interactive, 45
geom_quantile_interactive, 48
geom_quasirandom_interactive, 49
geom_raster_interactive, 51
geom_rect_interactive, 52
geom_ribbon_interactive, 55
geom_segment_interactive
(geom_curve_interactive), 25
geom_sf_interactive, 56
geom_sf_label_interactive
(geom_sf_interactive), 56
geom_sf_text_interactive
(geom_sf_interactive), 56
geom_smooth_interactive, 58
geom_spoke_interactive, 59
geom_step_interactive
(geom_path_interactive), 40
geom_text_interactive
(geom_label_interactive), 36
geom_text_interactive(), 88
geom_text_repel_interactive, 61
geom_tile_interactive

INDEX

(geom_rect_interactive), 52
geom_violin_interactive, 62
geom_vline_interactive

(geom_abline_interactive), 13
ggbeeswarm: : geom_quasirandom(), 49
ggplot2::aes(), 13,16, 18, 19, 21, 23, 24,

26, 28, 29, 31-36, 39, 40, 43, 45, 48,

49,51, 52,55, 57, 58, 60, 61, 63, 88,

96
ggplot2::aes_(), 96
ggplot2: :annotate(), 4
ggplot2::annotation_raster(), 6
ggplot2::element_line(), 9
ggplot2::element_rect(), 9
ggplot2: :element_text(), 9
ggplot2: :facet_grid(), 11/
ggplot2::facet_wrap(), 12
ggplot2: :geom_abline(), I3
ggplot2::geom_area(), 55
ggplot2: :geom_bar(), 16
ggplot2: :geom_bin2d(), 22
ggplot2: :geom_bin_2d(), I8
ggplot2: :geom_boxplot(), 19
ggplot2::geom_col(), 16
ggplot2: :geom_contour(), 21
ggplot2: :geom_contour_filled(), 2/
ggplot2: :geom_crossbar(), 23
ggplot2::geom_curve(), 25
ggplot2::geom_density(), 29
ggplot2: :geom_density_2d(), 27
ggplot2: :geom_density_2d_filled(), 27
ggplot2: :geom_dotplot(), 30
ggplot2::geom_errorbar(), 23
ggplot2::geom_errorbarh(), 32
ggplot2: :geom_fregpoly(), 33
ggplot2: :geom_hex(), 34
ggplot2: :geom_histogram(), 33
ggplot2::geom_hline(), I3
ggplot2: :geom_jitter(), 35
ggplot2: :geom_label(), 36
ggplot2::geom_line(), 40
ggplot2: :geom_linerange(), 23
ggplot2: :geom_map(), 38
ggplot2: :geom_path(), 40
ggplot2: :geom_point(), 43
ggplot2: :geom_pointrange(), 23
ggplot2: :geom_polygon(), 45
ggplot2::geom_quantile(), 48

INDEX

ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:

ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:

:geom_raster(), 51
:geom_rect(), 52
:geom_ribbon(), 55
:geom_segment(), 25
:geom_sf (), 56
:geom_sf_label(), 56
:geom_sf_text(), 56
:geom_smooth(), 58
:geom_spoke (), 59
:geom_step(), 40
:geom_text (), 36
:geom_tile(), 52
:geom_violin(), 63
:geom_vline(), 13
:guide_bins(), 71
:guide_colourbar(), 74
:guide_coloursteps(), 78
:guide_legend(), 80
:labeller(), 96

:labellers, 96

:1labs(), 9, 89, 99
:scale_alpha(), 111
:scale_alpha_binned(), 111
:scale_alpha_continuous(), 111
:scale_alpha_date(), 111
:scale_alpha_datetime(), 111
:scale_alpha_discrete(), 111
:scale_alpha_manual(), 123
:scale_alpha_ordinal (), 111
:scale_colour_binned(), 114
:scale_colour_brewer(), 112
:scale_colour_continuous(),
114

:scale_colour_date(), 114
:scale_colour_datetime(), 114
:scale_colour_discrete(), 114
:scale_colour_distiller(), 112
:scale_colour_fermenter(), 112
:scale_colour_gradient(), 117
:scale_colour_gradient2(), 117
:scale_colour_gradientn(), 117
:scale_colour_grey(), 114
:scale_colour_hue(), 114
:scale_colour_manual(), 123
:scale_colour_ordinal(), 130
:scale_colour_steps(), 116
:scale_colour_steps2(), 116
:scale_colour_stepsn(), 116

ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:

ggplot?2

ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:

139

:scale_colour_viridis_b(), 130
:scale_colour_viridis_c(), 130
:scale_colour_viridis_d(), 130
:scale_discrete_manual(), 123
:scale_fill_binned(), 114
:scale_fill_brewer(), 112
:scale_fill_continuous(), 114
:scale_fill_date(), 114
:scale_fill_datetime(), /14
:scale_fill_discrete(), 114
:scale_fill_distiller(), 112
:scale_fill_fermenter(), 112
:scale_fill_gradient(), 117
:scale_fill_gradient2(), 117
:scale_fill_gradientn(), 117
:scale_fill_grey(), 114
:scale_fill_hue(), 114
:scale_fill_manual(), 123
:scale_fill_ordinal(), 130
:scale_fill_steps(), 116
:scale_fill_steps2(), 116
:scale_fill_stepsn(), 116
:scale_fill_viridis_b(), 130
:scale_fill_viridis_c(), 130
:scale_fill_viridis_d(), 130
:scale_linetype(), 121
:scale_linetype_binned(), 121
:scale_linetype_continuous(),
121
::scale_linetype_discrete(),
121
:scale_linetype_manual(), 123
:scale_radius(), 128
:scale_shape(), 127
:scale_shape_binned(), 127
:scale_shape_continuous(), 127
:scale_shape_discrete(), 127
:scale_shape_manual(), 123
:scale_shape_ordinal(), 127
:scale_size(), 128
:scale_size_area(), 128
:scale_size_binned(), /128
:scale_size_binned_area(), 128
:scale_size_continuous(), 128
:scale_size_date(), 128
:scale_size_datetime(), 128
:scale_size_discrete(), 128
:scale_size_manual(), 123

140

ggplot2::scale_size_ordinal(), 128
ggplot2::theme(), 9, 96
ggrepel: :geom_label_repel(), 61
ggrepel: :geom_text_repel(), 61
girafe, 64
girafe(), 5, 6, 10, 12, 13, 16, 18, 19, 22-24,
26, 28, 29, 31, 32, 34-36, 39, 40, 44,
45,48, 49, 51, 53, 55, 57, 58, 60, 61,
63,68-70,72,75,79,81, 86, 87,
90-95, 107,110,112, 113,115,117,
119,122,124, 128, 130, 131, 136
girafe_css, 67
girafe_css(), 69, 70,88, 101-103
girafe_css_bicolor, 68
girafe_css_bicolor(), 68, 70, 102, 103
girafe_defaults, 69, 70, 86, 102-104, 106,
108, 109, 134
girafe_defaults(), 133
girafe_options, 70, 70, 86, 102—104, 106,
108, 109, 134
girafe_options(), 65, 66, 90
girafeOutput, 67
girafeOutput(), 7110
guide_bins_interactive, 71
guide_bins_interactive(), 72, 75, 78, 81
89,111,113,115,117, 118, 122
123,128, 129, 131
guide_colorbar_interactive
(guide_colourbar_interactive),
74
guide_colorsteps_interactive
(guide_coloursteps_interactive),
78
guide_colourbar_interactive, 74
guide_colourbar_interactive(), 72, 75,
78,81,89,111,113,115,117, 118,
122, 123,128, 129, 131
guide_coloursteps_interactive, 78
guide_coloursteps_interactive(), 72, 75,
78,81,89,111,113,115,117, 118,
122, 123,128, 129, 131
guide_legend_interactive, 80
guide_legend_interactive(), 72,75, 78,
81,89,111,113,115,117, 118, 122,
123,128, 129, 131

htmltools: :HTML(), 88
htmlwidgets: :createWidget(), 64

INDEX

init_girafe_defaults, 70, 85, 102—-104,
106, 108, 109, 134
interactive parameter, 101
interactive_circle_grob, 86
interactive_curve_grob, 87
interactive_lines_grob
(interactive_polyline_grob), 92
interactive_parameters, 5, 6, 9, 13, 16, 18,
19,21, 22,24, 25, 27, 29, 31-36, 39,
40, 43, 45,48, 49, 51, 52, 55, 56, 58,
60, 61,63,72,75,79,81, 86, 87, 87,
90-96, 100, 111,113,115, 116, 118,
122, 123,127,129, 131
interactive_path_grob, 90
interactive_points_grob, 90
interactive_polygon_grob, 91
interactive_polyline_grob, 92
interactive_raster_grob, 92
interactive_rect_grob, 93
interactive_roundrect_grob, 94
interactive_segments_grob, 94
interactive_text_grob, 95

label_interactive, 99
label_interactive(), 9, 89, 96
labeller_interactive, 96
labeller_interactive(), 11, 12, 100
linesGrob(), 92

match_family, 100, 136
match_family(), 8, 135

opts_hover, 70, 86, 101, 103, 104, 106, 108,
109, 134
opts_hover(), 64, 88, 134
opts_hover_inv (opts_hover), 101
opts_hover_inv(), 134
opts_hover_key (opts_hover), 101
opts_hover_key(), 88, 134
opts_hover_theme (opts_hover), 101
opts_hover_theme(), 88, 134
opts_selection, 70, 86, 102, 102, 104, 106,
108, 109, 134
opts_selection(), 64, 88, 134
opts_selection_inv (opts_selection), 102
opts_selection_inv(), 134
opts_selection_key (opts_selection), 102
opts_selection_key(), 88, 134

INDEX

opts_selection_theme (opts_selection),
102

opts_selection_theme(), 88, 134

opts_sizing, 70, 86, 102, 103, 104, 106, 108,
109, 134

opts_sizing(), 134

opts_toolbar, 70, 86, 102-104, 105, 108
109, 134

opts_toolbar(), 134

opts_tooltip, 70, 86, 102-104, 106, 107,
109, 134

opts_tooltip(), 64, 88, 134

opts_zoom, 70, 86, 102-104, 106, 108, 109,
134

opts_zoom(), 134

pathGrob(), 90
pointsGrob(), 90
polygonGrob(), 91
polylineGrob(), 92

rasterGrob(), 92
rectGrob(), 93
renderGirafe, 110
roundrectGrob(), 94
run_girafe_example, 110

scale_alpha_binned_interactive
(scale_alpha_interactive), 111
scale_alpha_continuous_interactive
(scale_alpha_interactive), 111
scale_alpha_date_interactive
(scale_alpha_interactive), 111
scale_alpha_datetime_interactive
(scale_alpha_interactive), 111
scale_alpha_discrete_interactive
(scale_alpha_interactive), 111
scale_alpha_interactive, 111, 113, 116,
117,119, 122,124, 128, 130, 131
scale_alpha_manual_interactive
(scale_manual_interactive), 123
scale_alpha_ordinal_interactive
(scale_alpha_interactive), 111
scale_color_binned_interactive
(scale_colour_interactive), 114
scale_color_brewer_interactive

(scale_colour_brewer_interactive),

112

141

scale_color_continuous_interactive
(scale_colour_interactive), 114
scale_color_date_interactive
(scale_colour_interactive), 114
scale_color_datetime_interactive
(scale_colour_interactive), 114
scale_color_discrete_interactive
(scale_colour_interactive), 114
scale_color_distiller_interactive
(scale_colour_brewer_interactive),
112
scale_color_fermenter_interactive
(scale_colour_brewer_interactive),
112
scale_color_gradient2_interactive
(scale_gradient_interactive),
117
scale_color_gradient_interactive
(scale_gradient_interactive),
117
scale_color_gradientn_interactive
(scale_gradient_interactive),
117
scale_color_grey_interactive
(scale_colour_interactive), 114
scale_color_hue_interactive
(scale_colour_interactive), 114
scale_color_manual_interactive
(scale_manual_interactive), 123
scale_color_ordinal_interactive
(scale_viridis_interactive),
130
scale_color_steps2_interactive
(scale_colour_steps_interactive),
116
scale_color_steps_interactive
(scale_colour_steps_interactive),
116
scale_color_stepsn_interactive
(scale_colour_steps_interactive),
116
scale_color_viridis_b_interactive
(scale_viridis_interactive),
130
scale_color_viridis_c_interactive
(scale_viridis_interactive),
130
scale_color_viridis_d_interactive

142

(scale_viridis_interactive),
130
scale_colour_binned_interactive
(scale_colour_interactive), 114
scale_colour_brewer_interactive, 112,
112,116, 117,119,122, 124, 128,
130, 131
scale_colour_continuous_interactive
(scale_colour_interactive), 114
scale_colour_date_interactive
(scale_colour_interactive), 114
scale_colour_datetime_interactive
(scale_colour_interactive), 114
scale_colour_discrete_interactive
(scale_colour_interactive), 114
scale_colour_distiller_interactive
(scale_colour_brewer_interactive),
112
scale_colour_fermenter_interactive
(scale_colour_brewer_interactive),
112
scale_colour_gradient2_interactive
(scale_gradient_interactive),
117
scale_colour_gradient_interactive
(scale_gradient_interactive),
117
scale_colour_gradientn_interactive
(scale_gradient_interactive),
117
scale_colour_grey_interactive
(scale_colour_interactive), 114
scale_colour_hue_interactive
(scale_colour_interactive), 114
scale_colour_interactive, 112, 113, 114,
117,119, 122,124, 128, 130, 131
scale_colour_manual_interactive
(scale_manual_interactive), 123
scale_colour_ordinal_interactive
(scale_viridis_interactive),
130
scale_colour_steps2_interactive
(scale_colour_steps_interactive),
116
scale_colour_steps_interactive, 112
113,116,116, 119, 122, 124, 128,
130, 131
scale_colour_stepsn_interactive

INDEX

(scale_colour_steps_interactive),
116
scale_colour_viridis_b_interactive
(scale_viridis_interactive),
130
scale_colour_viridis_c_interactive
(scale_viridis_interactive),
130
scale_colour_viridis_d_interactive
(scale_viridis_interactive),
130
scale_discrete_manual_interactive
(scale_manual_interactive), 123
scale_fill_binned_interactive
(scale_colour_interactive), 114
scale_fill_brewer_interactive
(scale_colour_brewer_interactive),
112
scale_fill_continuous_interactive
(scale_colour_interactive), 114
scale_fill_date_interactive
(scale_colour_interactive), 114
scale_fill_datetime_interactive
(scale_colour_interactive), 114
scale_fill_discrete_interactive
(scale_colour_interactive), 114
scale_fill_distiller_interactive
(scale_colour_brewer_interactive),
112
scale_fill_fermenter_interactive
(scale_colour_brewer_interactive),
112
scale_fill_gradient2_interactive
(scale_gradient_interactive),
117
scale_fill_gradient_interactive
(scale_gradient_interactive),
117
scale_fill_gradientn_interactive
(scale_gradient_interactive),
117
scale_fill_grey_interactive
(scale_colour_interactive), 114
scale_fill_hue_interactive
(scale_colour_interactive), 114
scale_fill_manual_interactive
(scale_manual_interactive), 123
scale_fill_ordinal_interactive

INDEX

(scale_viridis_interactive),
130
scale_fill_steps2_interactive

(scale_colour_steps_interactive),

116
scale_fill_steps_interactive

(scale_colour_steps_interactive),

116
scale_fill_stepsn_interactive

(scale_colour_steps_interactive),

116
scale_fill_viridis_b_interactive
(scale_viridis_interactive),
130
scale_fill_viridis_c_interactive
(scale_viridis_interactive),
130
scale_fill_viridis_d_interactive
(scale_viridis_interactive),
130
scale_gradient_interactive, 112, 113,
116, 117,117,122, 124, 128, 130
131
scale_linetype_binned_interactive
(scale_linetype_interactive),
121
scale_linetype_continuous_interactive
(scale_linetype_interactive),
121
scale_linetype_discrete_interactive
(scale_linetype_interactive),
121
scale_linetype_interactive, 112, 113,
116, 117,119,121, 124, 128, 130,
131
scale_linetype_manual_interactive
(scale_manual_interactive), 123
scale_manual_interactive, 112, 113, 116,
117,119, 122,123, 128, 130, 131
scale_radius_interactive
(scale_size_interactive), 128
scale_shape_binned_interactive
(scale_shape_interactive), 127
scale_shape_continuous_interactive
(scale_shape_interactive), 127
scale_shape_discrete_interactive
(scale_shape_interactive), 127
scale_shape_interactive, 112, 113,116

143

117,119, 122, 124, 127, 130, 131
scale_shape_manual_interactive
(scale_manual_interactive), 123
scale_shape_ordinal_interactive
(scale_shape_interactive), 127
scale_size_area_interactive
(scale_size_interactive), 128
scale_size_binned_area_interactive
(scale_size_interactive), 128
scale_size_binned_interactive
(scale_size_interactive), 128
scale_size_continuous_interactive
(scale_size_interactive), 128
scale_size_date_interactive
(scale_size_interactive), 128
scale_size_datetime_interactive
(scale_size_interactive), 128
scale_size_discrete_interactive
(scale_size_interactive), 128
scale_size_interactive, 112, 113,116,
117,119, 122,124, 128, 128, 131
scale_size_manual_interactive
(scale_manual_interactive), 123
scale_size_ordinal_interactive
(scale_size_interactive), 128
scale_viridis_interactive, 112, 113,116,
117,119,122, 124, 128, 130, 130
segmentsGrob, 94
set_girafe_defaults, 70, 86, 102—-104, 106,
108, 109, 133
set_girafe_defaults(), 65

textGrob, 95

validated_fonts, 101, 135
validated_fonts(), 66

	annotate_interactive
	annotation_raster_interactive
	dsvg
	dsvg_view
	element_interactive
	facet_grid_interactive
	facet_wrap_interactive
	geom_abline_interactive
	geom_bar_interactive
	geom_bin_2d_interactive
	geom_boxplot_interactive
	geom_contour_interactive
	geom_count_interactive
	geom_crossbar_interactive
	geom_curve_interactive
	geom_density_2d_interactive
	geom_density_interactive
	geom_dotplot_interactive
	geom_errorbarh_interactive
	geom_freqpoly_interactive
	geom_hex_interactive
	geom_jitter_interactive
	geom_label_interactive
	geom_map_interactive
	geom_path_interactive
	geom_point_interactive
	geom_polygon_interactive
	geom_quantile_interactive
	geom_quasirandom_interactive
	geom_raster_interactive
	geom_rect_interactive
	geom_ribbon_interactive
	geom_sf_interactive
	geom_smooth_interactive
	geom_spoke_interactive
	geom_text_repel_interactive
	geom_violin_interactive
	girafe
	girafeOutput
	girafe_css
	girafe_css_bicolor
	girafe_defaults
	girafe_options
	guide_bins_interactive
	guide_colourbar_interactive
	guide_coloursteps_interactive
	guide_legend_interactive
	init_girafe_defaults
	interactive_circle_grob
	interactive_curve_grob
	interactive_parameters
	interactive_path_grob
	interactive_points_grob
	interactive_polygon_grob
	interactive_polyline_grob
	interactive_raster_grob
	interactive_rect_grob
	interactive_roundrect_grob
	interactive_segments_grob
	interactive_text_grob
	labeller_interactive
	label_interactive
	match_family
	opts_hover
	opts_selection
	opts_sizing
	opts_toolbar
	opts_tooltip
	opts_zoom
	renderGirafe
	run_girafe_example
	scale_alpha_interactive
	scale_colour_brewer_interactive
	scale_colour_interactive
	scale_colour_steps_interactive
	scale_gradient_interactive
	scale_linetype_interactive
	scale_manual_interactive
	scale_shape_interactive
	scale_size_interactive
	scale_viridis_interactive
	set_girafe_defaults
	validated_fonts
	Index

