Package ‘goat’

February 4, 2026

Type Package
Title Gene Set Analysis Using the Gene Set Ordinal Association Test
Version 1.1.5
Description Perform gene set enrichment analyses using the Gene set Ordinal
Association Test (GOAT) algorithm and visualize your
results. Koopmans, F. (2024) <doi:10.1038/s42003-024-06454-5>.
URL https://github.com/ftwkoopmans/goat/
License Apache License (>= 2)
Depends R (>=4.1.0), dplyr (>=1.0.3)

Imports tibble (>= 3.0.0), tidyselect (>= 1.2.0), tidyr (>= 1.1.2),
data.table (>= 1.14.0), Matrix (>= 1.4-0), readxl (>= 1.4.1),
writex] (>= 1.4.1), Rcpp (>= 1.0.9), vetrs (>= 0.3.8), MonoPoly
(>=0.3-10), ggplot2 (>= 3.3.0), pheatmap (>= 1.0.8), treemap
(>=2.4), igraph (>= 1.2.5), ggraph (>=2.0.0)

Suggests AnnotationDbi, GO.db, org.Hs.eg.db, org.Pt.eg.db,
org.Mmu.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Dr.eg.db,
org.Dm.eg.db, org.Ce.eg.db, fgsea, testthat (>= 3.0.0)

LinkingTo Rcpp
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.3
Config/testthat/edition 3
Language en-US
NeedsCompilation yes

Author Frank Koopmans [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4973-5732>)

Maintainer Frank Koopmans <ftwkoopmans@gmail.com>
Repository CRAN
Date/Publication 2026-02-04 14:10:02 UTC

https://doi.org/10.1038/s42003-024-06454-5
https://github.com/ftwkoopmans/goat/
https://orcid.org/0000-0002-4973-5732

2 Contents

Contents
available_genesets_goatrepoo e e e 3
cluster_genesets L e e e e e 3
darken_color e 4
download_genesets_goatrepool e e 4
download_goat_manuscript_data 6
filter_genesets e e e 7
gg color_hue e e 8
goat_logo 8
goat_nulldistributions 9
gOAt_Print_VeTrSION i it e e e e e e e 9
QOAL_VETSION v v v ettt e e e e e e e e 9
GO_EENE2Z0 i i e e e e e e e e e e 10
80_0DO . .o e 10
hgnc_idmap_table 11
lighten_color e 11
load_genesets_gmtfile. 12
load_genesets_go_bioconductor Lo 13
load_genesets_go_fromfile 14
load_genesets_SyNgo e e e e e 15
minloglO_fixzero L 16
Padjust_genesets e e e e e e e e 16
Partition_genes i e e e e e e e e e 17
plot_heatmap 18
plot_lollipop e 20
plot_network 22
plot_volcano e 23
TANKSCOTE o v v e e e e e e e e e e 25
rankscore_fixed_order 26
reduce_genesetso e 26
SAVE_GENESELS . . o v v v vt e e e e e e e e e e e e e e e e e e 27
score_geneset_directionalityo 28
score_geneset_oddsratio Lo e e 29
string_trunc_right 30
SYymbol_to_entrez e e e e e e 30
taxonomy_identifierso 31
tBST_GENESELS . . . v i e e e e e e e e e e e e e e e e e e 31
test_genesets_fisherexact oL 33
test_genesets_goat_bootstrap L. 35
test_genesets_goat_fitfunction oL L oL 36
test_genesets_goat_precomputed 37
teST_GENESELS_ZSCA i e e e e e e e e e e e e e e 39
test_genesets_hypergeometric e e e e e e 40
treemap_data 41
treemap_plot L e e e e e e e 42

Index 44

available_genesets_goatrepo 3

available_genesets_goatrepo
Discover available geneset collections from the GOAT GitHub repos-
itory

Description

Yields a table that describes available gene sets. You can download the actual data for the described
versions with download_genesets_goatrepo().

Usage

available_genesets_goatrepo()

cluster_genesets cluster significant genesets from test_genesets() by geneset simi-
larity (separately for each ’geneset source’)

Description

cluster significant genesets from test_genesets() by geneset similarity (separately for each *gene-
set source’)

Usage

cluster_genesets(x, genelist, hclust_method = "ward.D2")
Arguments

X results from test_genesets()

genelist should be the same as provided to test_genesets()

hclust_method hierarchical clustering method, any of; *ward.D’, ward.D2’ (default), ’single’,
’complete’, ‘average’

Value

a list with elements genesets (param x), similarity, hc_row, hc_col

download_genesets_goatrepo

darken_color naively darken a color by mixing in black

Description

naively darken a color by mixing in black

Usage

darken_color(color, frac = 0.1)

Arguments

color input colors

frac fraction of black; >0 and <1
Value

adjusted value for input color

download_genesets_goatrepo
Download and parse geneset collections from the GOAT GitHub
repository

Description

while the Bioconductor respository is extensive, contains data for many species and is a part of
a larger infrastructure, it might contain outdated GO data when the user is not using the latest R
version. If users are on an R version that is a few years old, so will the GO data from Bioconductor
be.

As an alternative, we store gene2go data from NCBI (for Human genes only!) at the GOAT GitHub
repository. This function allows for a convenient way to download this data and then parse the
genesets.

Alternatively you can browse the files in the data branch of the GOAT GitHub repository and down-
load these files manually, then load them via the GOAT R function load_genesets_go_fromfile().
To view these data, open this URL in a browser; https://github.com/ftwkoopmans/goat/tree/data You
can also use this R package to see all available data via available_genesets_goatrepo()

By default (empty version parameter), this function will first check the online GOAT GitHub
repository to find the most recent version/date, then download the respective data.

download_genesets_goatrepo 5

Usage
download_genesets_goatrepo(
output_dir,
type = "G0",
version = "",
ignore_cache = FALSE
)
Arguments
output_dir full path to the directory where the downloaded files should be stored. Directory
is created if it does not exist. e.g. output_dir="~/data” on unix systems,
output_dir="C:/data"” on Windows, or set to output_dir=getwd() to write
output to the current working directory
type the type of genesets to download. Currently, only "GO" is supported (default)
version the dataset version. This must be a date in format YYYY-MM-DD (example

value you may use: "2024-01-01") OR be left empty (NA or empty string, the
default) to automatically download the latest version.

ignore_cache boolean, set to TRUE to force re-download and ignore cached data, if any. De-
fault: FALSE

Value

result from respective geneset parser function. e.g. if parameter type was set to"GO" (default),
this function returns the result of load_genesets_go_fromfile(). These data returned by this
function is typically used as input for filter_genesets(), c.f. full example at documentation for
test_genesets()

Examples

note: this example will download 2 files of approx 10MB in total

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/go"” on unix systems or output_dir="C:/data/go" on Windows
output_dir = tempdir()

download data files with GO annotations (note that the release/date is printed to console)
these are then parsed with the load_genesets_go_fromfile() function

if the files are already available at output_dir, these are used and download is skipped
genesets_asis = download_genesets_goatrepo(output_dir)

for a basic example on how to use the data obtain here,
refer to the example included at function documentation of: test_genesets()

6 download_goat_manuscript_data

download_goat_manuscript_data
Download the datasets that were used in the GOAT manuscript

Description

Downloads OMICs-based datasets that were used in the GOAT manuscript from the GOAT GitHub
page. This file is cached in the output directory and only needs to be downloaded once. Multiple
datasets are included and their names include the respective PubMed identifiers (PMID).

If you encounter technical difficulties, try to;

1. download the file by copy/pasting this URL into your browser: https://github.com/ftwkoopmans/goat/raw/main/analyses
2. load the data in R using the following 2 lines of code, here assuming you stored the down-
loaded file at C:/data/goat_manuscript_datasets.rda
load("C:/data/goat_manuscript_datasets.rda")

genelist = goat_manuscript_datasets.rdal["Wingo 2020:mass-spec:PMID32424284"]]

Usage

download_goat_manuscript_data(output_dir, ignore_cache = FALSE)

Arguments

output_dir full path to the directory where the downloaded files should be stored. Directory
is created if it does not exist. e.g. output_dir="~/data" on unix systems,
output_dir="C:/data" on Windows, or set to output_dir=getwd() to write
output to the current working directory

ignore_cache boolean, set to TRUE to force re-download and ignore cached data, if any. De-
fault: FALSE

Value

a list of genelist data tables. The names of the list represent the datasets, values in the list are data
tables that can be used as a "genelist" in the GOAT R package

filter_genesets

filter_genesets

filter a geneset table, intersect with an array of genes-of-interest then
apply cutoffs on min/max genes per geneset

Description

filter a geneset table; intersect with an array of genes-of-interest then apply cutoffs on min/max

genes per geneset

Usage

filter_genesets(

genesets,
genelist,
min_overlap =
max_overlap =

1oL,
1500L,

max_overlap_fraction = 0.5,
min_signif = NA,

max_size = NA

’

dedupe = FALSE

Arguments

genesets

genelist

min_overlap

max_overlap

tibble with genesets, must contain columns ’id’, *genes’ and 'ngenes’

tibble with genes, must contain column ’gene’ and ’signif’. gene = character
column, which are matched against list column ’genes’ in genesets tibble. signif
= boolean column (you can set all to FALSE if not performing Fisher-exact or
hypergeometric test downstream)

integer, minimum number of genes in the genelist table that must match a
geneset. Must be at least 1 but when using the GOAT algorithm downstream,
this should be set to at least 10 (default=10). e.g. when set to 10, this will only
retain genesets that contain at least 10 genes that are also in your genelist.

integer, maximum number of genes in the genelist table that must match a
geneset. Set to NA to disable

max_overlap_fraction

min_signif

analogous to max_overlap, which limits the max geneset size to a given N, this
parameter defines the maximum geneset size that is to be retained as a fraction
of the input genelist length. For example, setting this to 0.5 will remove all
genesets that contain more than half the genes in the input genelist (i.e. testing
enrichment of a geneset that contains 1000 out of a total 1200 genes from your
input genelist is probably meaningless). Defaults to 50%

expert setting for debugging and algorithm evaluation/benchmarking, NOT for
regular geneset analyses. integer, minimum number of genes in the genelist
table that are signif==TRUE and match a geneset. Be careful, this is "prefilter-
ing" and will affect the correctness / calibration of estimated geneset p-values.

8 goat_logo

For GOAT and GSEA, this is NOT RECOMMENDED and will cause bias in
your dataset! Set to NA to disable (default)

max_size integer, maximum number of genes in the geneset (i.e. prior to intersect with
user’s gene list provided as genelist). Optionally, use this to remove highly
generic terms. Set to NA to disable

dedupe boolean, remove duplicate genesets (as determined after intersection with genelist)

Value

the input genesets filtered for the subset of rows that match user’s filter parameters

gg_color_hue generate colours analogous to ggplot’s default palette

Description

https://stackoverflow.com/a/8197703

Usage
gg_color_hue(n)

Arguments

n number of colors

Value

a color code (string)

goat_logo ASCII logo for this package

Description

ASCII logo for this package

Usage
goat_logo()

Value

package logo as a string

goat_nulldistributions

goat_nulldistributions
Precomputed parameters used by the GOAT algorithm

Description

there parameters are used by goat to efficiently perform geneset testing without bootstrapping

Usage

goat_nulldistributions

Format

goat_nulldistributions:
a data.frame with precomputed GOAT null distribution parameters

goat_print_version Print package version and logo to console

Description

Print package version and logo to console

Usage

goat_print_version()

Value

prints to console without returning a value

goat_version Return goat package version as a string

Description

simple wrapper around utils::package Version()

Usage

goat_version()

Value

package version as a string

10 go_obo

go_gene2go parse gene2go file

Description

note that this file lacks parent/child relations, so we only learn ’direct annotations’

Usage
go_gene2go(f, taxid_filter = 9606)

Arguments
f full path to gene2go file stored on the computer, e.g. previously downloaded
from https://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz

taxid_filter return gene annotations only for the specified taxonomy identifier (integer value).
Typical options are 9606 (Human, the default) or 10090 (mouse). Importantly,
select the taxonomy/organism that is also in your input gene list (which typically
contains human Entrez gene identifiers)

Value

a tibble with columns; source, source_version, id, name, genes, ngenes

go_obo simple vectorized parsing of GO OBO file without any dependencies
(beyond dplyr/tibble/tidyr)

Description
note that we remove links between GO terms that are across GO domains (e.g. no CC to MF re-
lations) The only supported relations are those that match this regex; "*(is_a: |relationship:
part_of|relationship: regulates|relationship: positively_regulates|relationship: negatively_regulates
Usage

go_obo(f, rename_namespace = TRUE, remove_obsolete = TRUE)

Arguments
f full path to go.obo file stored on the computer, e.g. previously downloaded from
http://current.geneontology.org/ontology/go.obo . Also works with a gzipped
file; obo.gz

rename_namespace
boolean; rename official namespace values like ’cellular_component’ to CC?
(analogous for BP and MF)

remove_obsolete
boolean; remove obsoleted terms?

hgnc_idmap_table 11

Value

tibble with ontology terms and their relations

hgnc_idmap_table Parse HGNC gene identifier lookup table that was downloaded from
genenames.org into a table with HGNC ID, symbol, synonym (NA if
unavailable), entrez ID

Description

download link: https://www.genenames.org/download/statistics-and-files/ table: "Complete dataset
download links" —» "Complete HGNC approved dataset" —» download the "TXT" table filename is
typically something like hgnc_complete_set.txt URL; https://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/hgnc_complet

Usage

hgnc_idmap_table(filename)

Arguments
filename full path to the downloaded table (expected to be tsv format, typically has .txt or
.tsv file extension)
Value

a long-format table with columns; hgnc_id, hgnc_symbol, type, value

alternatively;

table: "Total Approved Symbols" — "TXT" / "text file in TSV format" filename is typically some-
thing like non_alt_loci_set.txt

lighten_color naively lighten a color by mixing in white

Description

naively lighten a color by mixing in white

Usage

lighten_color(color, frac = 0.1)

12 load_genesets_gmtfile

Arguments

color input colors

frac fraction of white; >0 and <1
Value

adjusted value for input color

load_genesets_gmtfile parse genesets in GMT format where gene identifiers are numeric En-
trez gene IDs

Description

parse genesets in GMT format where gene identifiers are numeric Entrez gene IDs

Usage

load_genesets_gmtfile(filename, label)

Arguments
filename input file for this function should be the full path to genesets defined in GMT
format
label a shortname for the genesets in this file, for example "GO_CC", "KEGG", "MY_DB_V1".
This will be stored in the ’source’ column of the resulting table. Importantly,
multiple testing correction in GOAT is grouped by this ’source’ column so you
probably want to use a different label for each collection-of-genesets that you
load. Must not be empty, only allowed characters are; upper/lower-case letter,
numbers 0-9 and underscore
Value

tibble with columns; source (character), source_version (character), id (character), name (charac-
ter), genes (list), ngenes (int)

Example data;

URL.: https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#C5 download this data: KEGG
subset of curated pathways —» NCBI (Entrez) Gene IDs filename should be something like "c2.cp.kegg.v2023.1.Hs.entrez.gm

Examples

TODO: update the filename to your downloaded file
f = "C:/DATA/c2.cp.kegg.v2023.1.Hs.entrez.gmt"
if(file.exists(f)) genesets_asis = load_genesets_gmtfile(f, label = "KEGG")

load_genesets_go_bioconductor 13

load_genesets_go_bioconductor

Load GO annotations via Bioconductor packages (e.g. org.Hs.eg.db
for Human)

Description

Download and import genesets from the GO database using the Bioconductor infrastructure. Use the
goat::load_genesets_go_fromfile function for more fine-grained control over the GO database
version that you use; it allows you to import NCBI gene2go files

Usage

load_genesets_go_bioconductor(include_child_annotations = TRUE, taxid = 9606)

Arguments

include_child_annotations
boolean; include annotations against child terms? In most situations, TRUE
(default) is the desired setting

taxid integer value that indicates the taxonomy id. Default: 9606 (Human, Homo
sapiens). Currently supported options:
* 9606 = Human (Homo sapiens)
* 9598 = Chimpanzee (Pan troglodytes)
* 9544 = Rhesus monkey (Macaca mulatta)
¢ 10090 = Mouse (Mus musculus)
* 10116 = Rat (Rattus norvegicus)
¢ 7955 = Zebrafish (Danio rerio)
e 7227 = Fruit fly (Drosophila melanogaster)
* 6239 = Worm (Caenorhabditis elegans)

Details

Note that org.Hs.eg.db pulls data semi-annually from NCBI gene2go (as do similar databases for
other species), but the GO database version returned by this function is tied to the version of the
org.Hs.eg.db on your computer (this is controlled by the Bioconductor infrastructure). E.g. in an
outdated R installation you may get outdated GO annotations as well.

The actual GO database version that is retrieved is returned by this function in the source_version
column.
Value

table with columns; source (character), source_version (character), id (character), name (character),
genes (list), ngenes (int)

14 load_genesets_go_fromfile

load_genesets_go_fromfile
construct a geneset table from gene2go and OBO files

Description

This function is used to load Gene Ontology (GO) genesets from files that you manually down-
loaded from the links below. This enables the use of the latest data from GO (in contrast, Biocon-
ductor GO data may lag behind current data considerably). To construct genesets from available
raw data, download the "gene2go" file (the gene annotations) from below NCBI link and download
the GO OBO (ontology terms and relations to respective parent/child terms) from below geneon-
tology.org link. Provide the full path to the downloaded file to this function. Both "gzipped" and
"uncompressed" files are supported.

We encourage you to rename the files after your downloaded them such that the date of download
in incorporated; this ensures you can always keep track of the GO database version that was used!
For example, rename the downloaded "gene2go.gz" file to "gene2go_2024-01-31.gz".

Download link for gene2go file; https://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz
Download link for gene ontology OBO file; http://current.geneontology.org/ontology/go.obo

Usage

load_genesets_go_fromfile(
file_gene2go,
file_goobo,
include_child_annotations = TRUE,
taxid_filter = 9606

Arguments

file_gene2go full path to the gene2go file from NCBI. Also works with a gzipped file; gene2go.gz

file_goobo full path to the OBO file from geneontology.org. Also works with a gzipped file;
obo.gz

include_child_annotations
boolean; include annotations against child terms? In most situations, TRUE
(default) is the desired setting

taxid_filter return gene annotations only for the specified taxonomy identifier (integer value).
Typical options are 9606 (Human, the default) or 10090 (mouse). Importantly,
select the taxonomy/organism that is also in your input gene list (which typically
contains human Entrez gene identifiers)

Value

table with columns; source (character), source_version (character), id (character), name (character),
genes (list), ngenes (int)

load_genesets_syngo 15

Examples

TODO: update the filenames to your downloaded files

file_gene2go = "C:/DATA/gene2go_2024-01-01.gz"

file_goobo = "C:/DATA/go_2024-01-01.0bo"

if(file.exists(file_gene2go) && file.exists(file_goobo)) {
genesets_asis = load_genesets_go_fromfile(file_gene2go, file_goobo)

3

load_genesets_syngo parse genesets from the SynGO database

Description

Workflow;

* obtain the input file from; https://www.syngoportal.org

click "bulk download SynGO release ..." for SynGO release of interest
* unzip

* call this function with the full file path to the ’syngo_ontologies.xlsx’ file

Usage
load_genesets_syngo(filename, gene_database = "entrez")
Arguments
filename full path to the "syngo_ontologies.xlsx" file that was extracted from a SynGO

bulk download ZIP archive

gene_database gene IDs to return. must be any of; "entrez" (default), "hgnc", "ensembl"”

s

Value

table with columns; source (character), source_version (character), id (character), name (character),
genes (list), ngenes (int)

Examples

TODO: update the filename to your downloaded file
f = "C:/DATA/SynGO_bulk_download_release_20231201/syngo_ontologies.x1lsx"
if(file.exists(f)) genesets_asis = load_genesets_syngo(f)

16 padjust_genesets

minlog1@_fixzero -logl0 transform a vector of p-values, replacing zeros with some
limit/threshold

Description

-log10 transform a vector of p-values, replacing zeros with some limit/threshold

Usage
minlogl@_fixzero(x, limit = 2.22e-16)

Arguments
X p-value vector to transform to -log10
limit value to replace zero’s in x with. Set NA to replace zero’s in x with the smallest
finite value in x (if there is none, defaults to 2.22e-16)
Value

input parameter x transformed to -log10

Examples

pval = c(@, 10%-6, 0.001, 0.01, 1, NA, -Inf, Inf, NaN)

cbind(
input = pval,
default; replace zeros with typical R machine precision for doubles
minlogl@_default = minlogl10@_fixzero(pval),
alternatively, replace zero with lowest non-zero pvalue in input
minlogl@_limit_from_data = minlogl@_fixzero(pval, limit = NA)

)
padjust_genesets Adjust p-values for all genesets, grouped by ’source’ then adjust for
the number of ’sources’
Description

Adjust p-values for all genesets, grouped by ’source’ then adjust for the number of ’sources’

Usage

padjust_genesets(
genesets,
method = "BH",
cutoff = 0.01,
correct_sources = TRUE

partition_genes 17

Arguments
genesets tibble with genesets, must contain column ’pvalue’
method method for multiple testing correction, must be any of stats: :p.adjust.methods,
e.g. "BH" or "bonferroni"
cutoff numeric cutoff value for adjusted p-value, signif column is set to TRUE for all

values lesser-equals
correct_sources
apply Bonferroni adjustment to all p-values according to the number of geneset

sources that were tested. Boolean parameter, set TRUE to enable (default) or
FALSE to disable

Value

updated genesets table

partition_genes Classify genes into 2 groups, e.g. to define significant or topN genes,
resulting in a ’signif’ column with boolean values

Description

This can be convenient to prepare the significant/test/foreground set for classical ORA, e.g. test_genesets()
with parameter method = "fisherexact”. Note that the GOAT geneset enrichment algorithm does
not use data in the ’signif” column of the input genelist.

Usage

partition_genes(
genes,
col,
decreasing = FALSE,
use_abs = FALSE,
cutoff = NULL,
fraction = NULL,

topn = NULL
)
Arguments
genes gene tibble where each row is a unique gene, must contain column name col
col column name in genes
decreasing order col in descending (set TRUE) or ascending order (set FALSE, default)
prior to partitioning?
use_abs use absolute values (default FALSE), e.g. when setting a threshold on effect-

sizes

18 plot_heatmap

cutoff threshold for values in col to select (must provide exactly 1 parameter for filter-
ing, either cutoff, fraction or topn)

fraction fraction of rows in genes tibble to select (must provide exactly 1 parameter for
filtering, either cutoff, fraction or topn)

topn number of rows in genes tibble to select (must provide exactly 1 parameter for
filtering, either cutoff, fraction or topn)

Value

input table genes with results in the "signif" column

Examples

note: this example will download 1 files of approx 4MB

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

Download an example gene list, i.e. one of the datasets analyzed in the GOAT manuscript.
datasets = download_goat_manuscript_data(output_dir)

if(!is.null(datasets)) {

genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°

example 1: significant hits
genelist = partition_genes(genelist, col="pvalue_adjust”, decreasing=FALSE, cutoff=0.01)
cat(sum(genelist$signif), "/", nrow(genelist), "are signif\n")

example 2: abs(effectsize) >= 5
genelist = partition_genes(genelist, col="effectsize"”, decreasing=TRUE, use_abs=TRUE, cutoff=5)
cat(sum(genelist$signif), "/", nrow(genelist), "are signif\n")

example 3: top 10% 'best' p-values
genelist = partition_genes(genelist, col="pvalue"”, decreasing=FALSE, fraction = 0.1)
cat(sum(genelist$signif), "/", nrow(genelist), "are signif\n")

3

plot_heatmap plot the geneset similarity matrix as a heatmap

Description

plot the geneset similarity matrix as a heatmap

plot_heatmap

Usage

plot_heatmap(
X,
output_dir,

colors = grDevices::hcl.colors(100, "Viridis"”, rev = FALSE),

fontsize = 10

19

)
Arguments
X result from cluster_genesets()
output_dir set to NA to directly show the figures instead of writing them to file. Otherwise,
this is the full path to the directory where the downloaded files should be stored.
Directory is created if it does not exist. e.g. output_dir="~/data” on unix
systems, output_dir="C:/data” on Windows, or set to output_dir=getwd()
to write output to the current working directory
colors a vector of 100 colors to be used for the heatmap (101 breaks are computed
between 0 and the max value in the distance matrix)
fontsize parameter sent to pheatmap::pheatmap(); control the size of labels in the plot,
defaults to 10. Note that you can also change the plot device size, see examples
Value

does not return a value, plots are printed to device or files depending on output_dir parameter

Examples

note; this example downloads data when first run, and typically takes ~6@seconds

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

first run the default example from test_genesets() to obtain geneset results
datasets = download_goat_manuscript_data(output_dir)
if(!is.null(datasets)) {
genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°
genesets_asis = download_genesets_goatrepo(output_dir)
if(!is.null(genesets_asis)) {
genesets_filtered = filter_genesets(genesets_asis, genelist)
result = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize", padj_method = "bonferroni”, padj_cutoff = 0.05)

prior to running this function, cluster the genesets
clusters = cluster_genesets(result, genelist)

use the plot heatmap function and try various color palettes

plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Viridis"”, rev
plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Inferno”, rev

FALSE))
FALSE))

20

plot_lollipop

plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Lajolla", rev = TRUE))
plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Mako"”, rev = FALSE))
plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Turku”, rev = TRUE))
plot_heatmap(clusters, output_dir, colors = hcl.colors(100, "Grays"”, rev = TRUE))

}
3

plot_lollipop

Lollipop chart or barplot visualization of geneset enrichment testing
results

Description

Lollipop chart or barplot visualization of geneset enrichment testing results

Usage

plot_lollipop(

X)
output_dir,

only_reduced = FALSE,
"lollipop”,

plot_type =
show_pvalue
score_xaxis
score_color

FALSE,
"minlogp”,
ifelse(is.data.frame(x) && "score_type” %in% colnames(x) &&

is.character(x$score_type) && any(x$score_type %in% c("effectsize_up",
"effectsize_down"”)), "updown”, "minlogp"),

score_color_limits = "source”,

score_color_updown = c("#E57373", "#5E7ABC"),

max_ngenes = NA,

topn = NA,

padj_cutoff = NA

Arguments

X

output_dir

only_reduced

plot_type

results from function test_genesets

set to NA to directly show the figures instead of writing them to file. Otherwise,
this is the full path to the directory where the downloaded files should be stored.
Directory is created if it does not exist. e.g. output_dir="~/data"” on unix
systems, output_dir="C:/data” on Windows, or set to output_dir=getwd()
to write output to the current working directory

only show the reduced/summarized set of significant genesets. This requires that
you first applied the reduce_genesets function

Options: "barplot”, "lollipop" (default)

plot_lollipop 21

show_pvalue boolean parameter that indicates whether adjusted p-values should be shown
next to each data point

score_xaxis type of score to show on the x-axis. Options: "minlogp" to show -log10(adjusted
pvalue), which is default. Use "oddsratio" to show the enrichment of significant
genes. For further details on this score and its computation, see the score_geneset_oddsratio
function documentation. Basically, the genesets in this plot are sorted by their
proportion of foreground/significant genes (and this ratio is standardized against
the overall ratio of significant genes as to make this statistic comparable across
analyses/datasets).

score_color analogous to score_xaxis, here you can specify the data used for color-coding
the plot. Options: "minlogp", "oddsratio", "updown". The former 2 options
are the same as for score_xaxis, the latter enables color-coding by up-/down-
regulation as encoded in the "score_type" column. Note that this only works
when geneset testing based on "effectsize" was performed and thus the "score_type"
column has values "effectsize_up" or "effectsize_down" (encoding directional-
ity). Rows with other values are assumed NA and colored as grey.

score_color_limits
defines the limits for the color scales. options; score_color_limits = "source”
use the range of values per ’source’ to compute colors scales (default). Set to
"overall" in order to have a unified color scale across ’source’ (e.g. same color
bar across GO_CC/GO_MF/GO_BP). Alternatively, provide a numeric vector
of 2 values to manually define lower/upper-limits.

score_color_updown
array of 2 strings that describe the colors for up- and down-regulation (used
when score_color is set to "updown"). Default color-coding; up = red, down
= blue. Use hex color codes, e.g. "#ff0000" for red.

max_ngenes only plot terms with less than N genes (quick way to get rid of large/unspecific
terms)
topn topn terms to show after sorting genesets by p-value. For example, this makes it

easy to plot the top10 GO terms. Set to NA to ignore this filter (default)
padj_cutoff adjusted pvalue cutoff for terms shown in the plot. If set to NA (default), all

significant genesets are used (i.e. ’signif” column in the input geneset table)
Value
if output_dir is NA, a list of ggplot2 objects. Otherwise, write plots to file and do not return any
value
Examples

note; this example downloads data when first run, and typically takes ~6@seconds
store the downloaded files in the following directory. Here, the temporary file
directory is used. Alternatively, consider storing this data in a more permanent location.

e.g. output_dir="~/data/go” on unix systems or output_dir="C:/data/go"” on Windows
output_dir = tempdir()

first run the default example from test_genesets() to obtain geneset results

22 plot_network

datasets = download_goat_manuscript_data(output_dir)

if(!'is.null(datasets)) {

genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°

genesets_asis = download_genesets_goatrepo(output_dir)

if(lis.null(genesets_asis)) {

genesets_filtered = filter_genesets(genesets_asis, genelist)

result = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize", padj_method = "bonferroni”, padj_cutoff = 0.05)

generate lollipop charts for each GO domain (CC/BP/MF), with geneset -log1@
adjusted p-value on the x-axis and color-coding by geneset up/down-regulation
plot_lollipop(

result, output_dir, plot_type = "lollipop"”, topn = 50,

score_xaxis = "minlogp"”, score_color = "updown”

)

alternatively, as a barplot

plot_lollipop(
result, output_dir, plot_type = "barplot”, topn = 50,
score_xaxis = "minlogp"”, score_color = "updown”

)

alternatively, color-code genesets by enrichment of significant genes using
parameter ~score_color="oddsratio”" . See further “score_geneset_oddsratio”
function documentation for definition/computation of this score.
plot_lollipop(

result, output_dir, plot_type = "lollipop"”, topn = 50,

score_xaxis = "minlogp"”, score_color = "oddsratio”
)
3
3
plot_network plot geneset distance matrix as a network
Description

plot geneset distance matrix as a network

Usage

plot_network(
clusters,
src,
show_clusters = TRUE,
show_text = FALSE,
topn_edges = 5,
clr_default = "#29b6f6",
node_color_palette = goat::gg_color_hue

plot_volcano 23

Arguments
clusters result from cluster_genesets
src source property (e.g. "GO_CC")
show_clusters boolean value
show_text boolean value
topn_edges topN edges to retain per geneset (typically 5~8)
clr_default default color for the network, used only when show_clusters is set to FALSE

node_color_palette
function with 1 parameter, N, that returns N colors (default is goat function
gg_color_hue)

Value
a ggplot2 object
plot_volcano For each provided geneset, a volcano plot of all genelist log2fc and
p-values with respective geneset constituents highlighted
Description

For each provided geneset, a volcano plot of all genelist log2fc and p-values with respective geneset
constituents highlighted

Usage

plot_volcano(
X,
genelist,
plot = TRUE,
topn_labels = 0,
color_default = "#B0OBOBQ",
color_highlight = "#ef5350",
color_label = "#000000",
pointsize = 2,
pointalpha = 0.75,
labelsize = 7

)
Arguments
X a subset of the results from test_genesets function, see example
genelist input genelist, must contain columns ’gene’, ’log2fc’ and ’pvalue_adjust’ (not!

log transformed). If parameter topn_labels is provided, also include a character
column ’symbol’ that contains gene names/symbols/labels

24

plot_volcano

plot if TRUE, will directly show the plots. if FALSE, returns a list of ggplot objects
corresponding to rows in the input result parameter

topn_labels for how many genes that overlap between genelist and a geneset should we plot
the gene symbol? This requires a column ’symbol’ in the genelist parameter
(default: 0)

color_default color for genes that are not part of a geneset (default: grey)

color_highlight
color used to highlight geneset constituents (default: red)

color_label provided that topn_labels is set, this is the color of the text labels (default: black)

pointsize size of the dots, this parameter is passed to geom_point (default: 2)
pointalpha alpha of the dots, this parameter is passed to geom_point (default: 0.75)
labelsize provided that topn_labels is set, this is the text size (in pt) for the labels (default:
7
Value

if plot==FALSE, a list of ggplot2 objects. Otherwise, does not return any value

Examples

note; this example downloads data when first run, and typically takes ~6@seconds

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

first run the default example from test_genesets() to obtain geneset results
datasets = download_goat_manuscript_data(output_dir)
if(!lis.null(datasets)) {
genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°
genesets_asis = download_genesets_goatrepo(output_dir)
if(!is.null(genesets_asis)) {
genesets_filtered = filter_genesets(genesets_asis, genelist)
result = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize", padj_method = "bonferroni”, padj_cutoff = 0.05)

example 1; select top1@ GO CC terms from the geneset testing results

result_subset = result |> filter(source == "GO_CC") |> arrange(pvalue) |> head(n = 10)
pdf (paste@(output_dir, "/volcano_CC_top1@.pdf"), width = 4, height = 4)
plot_volcano(result_subset, genelist)

dev.off()

example 2;, select small genesets that are significant and have
near-exclusive enrichment in either up up/down-regulated genes
first, add geneset directionality scores to our results

result = score_geneset_directionality(result, genelist)

next, subset the geneset result table

result_subset = result |>

rankscore 25

filter(signif & ngenes <= 50 & abs(score_directionality_rank) > 0.6) |>
arrange(pvalue_adjust)
finally, create plots. Note that the genelist contains a column 'symbol'
which we use here to print labels for the topN genes per plotted geneset
pdf (paste@(output_dir, "/volcano_signif_ngenes50_directionality@6.pdf"”), width = 4, height = 4)
plot_volcano(result_subset, genelist, topn_labels = 10)

dev.off()
3
3
rankscore compute rank”2 scores and rescale these between 0~1000 (with further
precision captured by decimals)
Description

rank”2 can yield huge values, e.g. a large genelist of N=50000 genes would imply max gene score
= 5000072 = 2.5e+09. Thus we rescale these scores between 0~1000 so downstream applications
(e.g. sum of 10000 gene scores) don’t explode to huge numbers.

Usage

rankscore(x, sortl, sort2, sort3, colname)

Arguments
X data.frame to sort (i.e. the genelist)
sortil numeric vector of length nrow(x) to sort by first/primarily (descending order,
higher value gets better result score)
sort2 numeric vector of length nrow(x) to sort by for breaking ties (descending order,
higher value gets better result score)
sort3 numeric vector of length nrow(x) to sort by for breaking ties (descending order,
higher value gets better result score)
colname name for result column in x (overwritten if already exists)
Value

data.frame x with added column colname, containing gene scores between 0 and 1000

Examples

x = data.frame(gene=c(1, 2, 3, 4, 5),
pvalue=c(0.01, 1, 1, 0.1, 1),
effectsize=c(-2, 0.25, 0.5, 1, 0.25))
print(x, row.names = FALSE)
print(rankscore(x, sortl = -1xx$pvalue, sort2 = abs(x$effectsize),
sort3 = x$gene, colname="score") |>
arrange(desc(score)), row.names = FALSE)

26 reduce_genesets

rankscore_fixed_order Gene score array, from low to high scores

Description

Gene score array, from low to high scores

Usage

rankscore_fixed_order(n)

Arguments

n genelist length

Value

result of (1:n)*2/ (n*2 / 1000)

reduce_genesets Reduce the set of significant genesets to a minimum

Description

Analyses are performed independently per ’source’ of genesets. The result of this function is the
geneset table with a newly appended column ’signif_and_reduced’

Usage

reduce_genesets(
clusters,
simscore_threshold = 0.9,
universe_fraction = 0.25,
signifgenes_fraction = 0.9

Arguments

clusters results from cluster_genesets()

simscore_threshold
similarity score (0~1) that is required to consider one geneset to be a "parent
term" of another. Setting a lower value will yield fewer genesets / stronger
summarization. Typical settings for this parameter are 0.8~0.99 (0.9 is default)

save_genesets 27

universe_fraction
discard genesets that cover more than X fraction of all genes in the universe
(unique set of genes covered by all significant genesets). Setting this to 0.25
will deprioritize genesets that cover 25% of all genes (in significant genesets).
This prevents very generic GO terms like "protein-containing complex" to be in-
cluded in results. Typical settings for this parameter are 0.1~0.5 (0.25 is default)
signifgenes_fraction
the minimum fraction of "foreground genes" (’genes_signif’ column) found
across all significant genesets that should be covered by the reduced geneset
collection. This parameter doesn’t do anything if there are fewer than 5 "fore-
ground genes" alltogether. Typical settings for this parameter are 0.75~0.95 (0.9
is default)

Value

the genesets table from the clusters parameter, with results in column "signif_and_reduced"

save_genesets Write a geneset table to file.

Description

Works for any filtered geneset table generated by this package, e.g. results from any of these
functions; filter_genesets(), test_genesets() or simplify_genesets().

The genelist table is required to 1) lookup gene symbols and 2) determine the ordering of genes
within-geneset. The latter makes it such that the output table shows the most important genes (in
context of user’s data) first.

All output columns that list gene identifiers or symbols are trimmed to 25000 characters. Depending
on your input gene identifier type and dataset filtering settings (e.g. max geneset size), this might
lead to some truncation. For example, 15 characters per ensembl gene ID (if these are used in
provided genesets instead of default NCBI Entrez) and 1 char as delimiter, only the top ~1500
ensembl gene identifiers are included. If your geneset filtering allows for larger genesets and you
want to check if any gene identifiers are lost upon saving, keep an eye out for the trailing ellipsis
(’..”). Because genes in each geneset of the output table are sorted by order of importance as
indicated in the genelist table, this shouldn’t be an issue in typical use-cases where the output table
is to check the topN most important/significant genes of a geneset of interest.

Usage

save_genesets(x, genelist, filename, arrange_genes = TRUE)

Arguments

X result from filter_genesets(), test_genesets() orsimplify_genesets().
When saving the latter, output will include clusters assigned to each significant
geneset

28 score_geneset_directionality

genelist same as provided for test_genesets(). A column named ’symbol’ is required,
it’ll be used to pretty-print gene symbols per geneset in the output table

filename full path to the output file. Supported file extensions; csv, tsv, xIsx. Optionally,
set to NA to not write to disk and return the result table instead

arrange_genes set to TRUE (default) to arrange the genelist table by best p-value on top (if
column ’pvalue’ exists), alternatively by descending absolute effectsize (if no
pvalue but effectize is available). Set FALSE to use sorting of the genelist table
as-is

Value

if filename is NA, returns the validated and formatted geneset result table. Otherwise, writes the
table to file and does not return a value

score_geneset_directionality
Compute a score between -1 and 1 representing the proportion of up-
or down-regulated genes for each geneset, weighted by gene effectsizes

Description

Importantly, the scope/utility of this score is limited to help users post-hoc filter for genesets that
contain mostly up/down-regulated genes. However, this might not coincide with the geneset pvalues
/ significance. For example, genesets may exclusively contain genes with a positive effectsize but
at the same time these can all be minor effects/values and thus the geneset is not significant or less
significant than other genesets with the exact same "directionality score". For example, genesets
may contain both up- and down-regulated genes but still be significant when testing with GOAT
and using score_type="'effectsize'

The scores computed with this function can help in post-hoc interpretation of GOAT results to

further narrow down all significant genesets to a subset with strong directionality. For example,

after test_genesets() we can filter the results for A) significant genesets and B) that contain

at most N genes and C) that are near-exclusively up/down-regulated. Bringing this all together

(also useful for other types of geneset testing, like ORA, score_type="pvalue", etc); result =
test_genesets(genesets_filtered, genelist, method = "goat", score_type = "effectsize”,
padj_method = "bonferroni”, padj_cutoff =0.05) result = score_geneset_directionality(result,
genelist) result |>filter(signif & ngenes <= 100 & abs(score_directionality_rank) >=

0.95)

Usage

score_geneset_directionality(genesets, genelist)

Arguments

genesets tibble with genesets, must contain columns ’source’, ’id’, ’genes’

genelist tibble with genes, must contain columns ’gene’, ’effectsize’

score_geneset_oddsratio 29

Value

input genesets with results in 3 columns; score_directionality_rank is the weighted gene
score where gene values are the sign of their effectsize and weights are linearly proportional to
their inverse ranks in the input genelist. score_directionality_rank2 is similar, but now us-
ing rank”2 gene weights to boost the influence of most-important genes in the input genelist.
score_directionality_value uses the absolute gene effectsizes as gene weights Note that the
latter is least robust as it depends on the scaling of input data!

score definitions;

geneset directionality score = weighted mean of respective genes, where gene weights are 1 minus
their relative rank in up/down-regulation (depending on negative/positive effectsize) and the value
for each gene is -1 or 1 depending on up/down-regulation (sign of effectsize).

pseudocode;

1. gene values and weights A) gene weight between 0 and 1 for the subset of upregulated genes
/ positive effectsizes;

* 1 = for the subset of genes with effectsize > 0, compute gene rank (1 = highest effectsize, N =
smallest effectsize that is greater than zero)

* weight = | - r/max(r) B) analogous to (A) for the subset of genes with negative effectsize C)
result per gene: value = sign of its effectsize, weight = 0 if effectsize 0, otherwise respective
weights from (A) or (B)

1. geneset score_directionality = weighted mean over values/weights of respective genes

score_geneset_oddsratio
Compute odds-ratio for each geneset

Description

gs_signif = number of significant genes in geneset G that intersect with user’s genelist (i.e. fore-
ground genes in G) gs_all = number of genes in geneset G that intersect with user’s genelist (i.e.
foreground+background genes in G) k_signif = total number of significant genes in user’s genelist
k_all = total number of genes in user’s genelist

gs_signif/gs_all =ratio of foreground genes in geneset G k_signif/k_all =ratio of overall foreground
genes (i.e. expected value for a random geneset)

oddsratio = (gs_signif/gs_all) / (k_signif/k_all)

Usage

score_geneset_oddsratio(genesets, genelist)

30 symbol_to_entrez

Arguments
genesets tibble with genesets, must contain columns ’source’, ’id’, 'ngenes’, ‘ngenes_signif’
genelist tibble with genes, must contain columns ’gene’, ’signif’

Value

input genesets with results in column "score_oddsratio"

string_trunc_right simple string truncation

Description
replacement for stringr::trunc() so we don’t need a package dependency for just 1 function (our
code was adapter therefrom)

Usage

string_trunc_right(string, width, trim_left = FALSE)

Arguments

string string that should be truncated

width desired max length

trim_left instead of right trunc (default), do left instead
Value

truncated variant of input string

symbol_to_entrez Map the the symbol column in a table to HGNC human gene IDs by
matching official gene symbols and synonyms

Description
Map the the symbol column in a table to HGNC human gene IDs by matching official gene symbols
and synonyms

Usage

symbol_to_entrez(x, hgnc)

taxonomy_identifiers 31

Arguments

X a data.table with a column symbol

hgnc HGNC lookup table from hgnc_idmap_table()
Value

entrez gene IDs are returned in the "gene" column of table x. Additionally, columns "entrez_id",
"hgnc_id" and "hgnc_symbol"

Examples

TODO: update the filename to your downloaded file
download instructions in the documentation of “hgnc_idmap_table()"
f = "C:/DATA/HGNC/hgnc_complete_set.txt"

if(file.exists(f)) {
df = data.frame(symbol = c("vamp2”, "STXBP1", "UNC18", NA, "PSD95", "NOT-A-GENE"))
hgnc = hgnc_idmap_table(f)
df = symbol_to_entrez(df, hgnc)
print(df)
}

taxonomy_identifiers Lookup table for taxonomy identifiers, their names and respective Bio-
conductor packages

Description

To prevent adding a huge number of dependencies to this R package, as the respective bioconduc-
tor_package also has to be added to the DESCRIPTION > Suggests, we’ve only included the limited
set of commonly used organisms.

Usage

taxonomy_identifiers()

test_genesets Perform geneset enrichment testing using any supported method

Description

Perform geneset enrichment testing using any supported method

32 test_genesets

Usage

test_genesets(
genesets,
genelist,
method,
padj_method = "BH",
padj_sources = TRUE,
padj_cutoff = 0.01,
padj_min_signifgenes = oL,

)
Arguments

genesets tibble with genesets, must contain columns ’source’, ’source_version’, ’id’, 'name’,
’genes’, ‘ngenes’, ‘ngenes_signif’

genelist tibble with genes, must contain column ’gene’ and ’test’. gene = character col-
umn, which are matched against list column ’genes’ in genesets tibble. test =
boolean column (you can set all to FALSE if not performing Fisher-exact or
hypergeometric test downstream)

method method for overrepresentation analysis. Options: "goat", "hypergeometric",
"fisherexact", "fisherexact_ease", "gsea", "idea"

padj_method first step of multiple testing correction; method for p-value adjustment, passed

to stats::p.adjust() via padjust_genesets(), e.g. set "BH" to compute
FDR adjusted p-values (default) or "bonferroni" for a more stringent procedure

padj_sources second step of multiple testing correction; apply Bonferroni adjustment to all
p-values according to the number of geneset sources that were tested. Boolean
parameter, set TRUE to enable (default) or FALSE to disable

padj_cutoff cutoff for adjusted p-value, signif column is set to TRUE for all values lesser-
equals

padj_min_signifgenes
if a value larger than zero is provided, this will perform additional post-hoc
filtering; after p-value adjustment, set the pvalue_adjust to NA and signif to
FALSE for all genesets with fewer than padj_min_signifgenes ’input genes
that were significant’ (ngenes_signif column in genesets table). So this does
not affect the accuracy of estimated p-values, in contrast to prefiltering genesets
prior to p-value computation or adjusting p-values

further parameters are passed to the respective stats method

Details

After application of the enrichment testing algorithm (e.g. GOAT, ORA or GSEA), multiple testing
correction is applied to obtain adjusted p-values using padjust_genesets. That function will
first apply the specified pvalue adjustment procedure in the padj_method parameter within each
’source’ in the genesets table. Second, it applies Bonferroni adjustment to all p-values according to
the number of different geneset sources that were tested (or set padj_sources = FALSE to disable).

test_genesets_fisherexact 33

For example, if the input is a genesets table that contains GO_CC, GO_BP and GO_MF genesets,
first multiple testing correction is applied within each source (e.g. using FDR if so desired) and
afterwards a Bonferroni correction is applied based on 3 repeated analyses.

Note that this is more rigorous than typical GO tools; hypothetically, one could split all GO_CC
pathways into 1000 different databases/’sources’ and then run enrichment testing. Consequently,
the multiple testing burden is reduced if one doesn’t adjust p-values for the number of ’sources’ as
we do here.

Value

the input genesets, with results stored in columns *pvalue’, ’pvalue_adjust’ and ’signif”

Examples

#' # note; this example downloads data when first run, and typically takes ~6@seconds

Basic example for a complete GOAT workflow
Downloads test data to your computer and stores it at current working directory
Refer to the GitHub documentation for elaborate documentation and a worked example

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/go"” on unix systems or output_dir="C:/data/go" on Windows
output_dir = tempdir()

download an example gene list

datasets = download_goat_manuscript_data(output_dir)
if(!is.null(datasets)) {

genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°

download GO genesets
genesets_asis = download_genesets_goatrepo(output_dir)
if(lis.null(genesets_asis)) {

filter genesets for sufficient overlap with the genelist, then apply GOAT

genesets_filtered = filter_genesets(genesets_asis, genelist)

result = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize", padj_method = "bonferroni”, padj_cutoff = 0.05)

print first 10 rows of the result table

print(result |> select(source, name, ngenes, pvalue_adjust) [|> utils::head(n=10))
3

}

test_genesets_fisherexact
Geneset ORA using Fisher-exact test

34 test_genesets_fisherexact

Description

In most cases, it’s more convenient to call the more generic test_genesets function which also
deals with multiple-testing correction (per geneset source)

It is assumed that the genesets and genelist parameters are in sync, i.e. genesets provided here
is the result of the filter_genesets() function (using the same genelist table)

Same as hypergeometric for non-EASE, but slower because stats::fisher.test isn’t vectorized

Only genesets with at least 1 significant gene are subjected to statistical testing (e.g. NA is returned
for genesets without significant genes)

Usage

test_genesets_fisherexact(
genesets,
genelist,
require_nsignif = 1L,
use_ease = FALSE

)

Arguments
genesets tibble with genesets, must contain columns ’id’, ngenes’ and 'ngenes_signif’
genelist tibble with genes, must contain column ’signif’. The number of rows in this table

(where signif is not NA) is assumed to be the total number of tested genes, the
number of rows where signif==TRUE is assumed the total number of significant
genes.
require_nsignif

minimum number of ’signif genes’ that overlap with a geneset; NA pvalues are
returned for genesets with ngenes_signif <= require_nsignif. This func-
tion 'prefilters’ genesets, so beware that this will influence downstream multiple
testing correction. Default is 1

use_ease use a more conservative score coined by DAVID online tools @ https://david.ncifcrf.gov/helps/functional _

Value

input genesets table with results in the "pvalue" column

See Also

test_genesets

Examples

note; this example downloads data when first run, and typically takes ~6@seconds

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

test_genesets_goat_bootstrap 35

first run the default example from test_genesets() to obtain input data
datasets = download_goat_manuscript_data(output_dir)
if(!is.null(datasets)) {

genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°

genesets_asis = download_genesets_goatrepo(output_dir)

genesets_filtered = filter_genesets(genesets_asis, genelist)
if(lis.null(genesets_asis)) {

example: same results between Fisher-exact and hypergeometric tests

result_hg = test_genesets_hypergeometric(genesets_filtered, genelist, require_nsignif = 3L)
result_fe = test_genesets_fisherexact(genesets_filtered, genelist, require_nsignif = 3L)
all.equal(result_hg$pvalue, result_fe$pvalue)

3

3

test_genesets_goat_bootstrap
Naive GOAT variant where we estimate null parameters for each gene-
set size independently

Description

In typical use-cases, one applies test_genesets() instead with parameter method="goat"” , which
in turn will use test_genesets_goat_precomputed (and not this function).

Usage

test_genesets_goat_bootstrap(
genesets,
genelist,
score_type,
niter = 5e+05,
verbose = FALSE

)
Arguments
genesets see test_genesets_goat_precomputed
genelist see test_genesets_goat_precomputed
score_type see test_genesets_goat_precomputed
niter integer number of bootstrap iterations; at least 10000, at most 5000000
verbose boolean, create debug plots
Value

see test_genesets_goat_precomputed

36 test_genesets_goat_fitfunction

test_genesets_goat_fitfunction
Variant of the main GOAT function
test_genesets_goat_precomputed that does not use previ-
ously prepared parameters

Description

In typical use-cases, one applies test_genesets() instead with parameter method="goat" , which
in turn will use test_genesets_goat_precomputed (and not this function).

Usage

test_genesets_goat_fitfunction(
genesets,
genelist,
score_type,
niter = 5e+05,
verbose = FALSE

)
Arguments
genesets see test_genesets_goat_precomputed
genelist see test_genesets_goat_precomputed
score_type see test_genesets_goat_precomputed
niter integer number of bootstrap iterations; at least 10000, at most 5000000
verbose boolean, create debug plots
Details

Optionally, use this function to ignore precomputed/bundled null distribution estimates and per-
form new permutations and function fitting (e.g. because you want to test the effect of huge niter
parameter, but beware of RAM requirements)

Value

see test_genesets_goat_precomputed

test_genesets_goat_precomputed 37

test_genesets_goat_precomputed

Test geneset enrichment with the Geneset Ordinal Association Test
(GOAT) algorithm

Description

In most cases, it’s more convenient to call the more generic test_genesets function which also
applies multiple-testing correction (per geneset source) to the geneset p-values computed by this

function.

This is the canonical geneset test function for GOAT that uses precomputed null distributions that
are bundled with the GOAT package

Usage

test_genesets_goat_precomputed(genesets, genelist, score_type)

Arguments

genesets

genelist

score_type

Value

genesets data.frame, must contain columns; "source", "id", "genes", "ngenes"

genelist data.frame, must contain columns "gene" and "pvalue"/"effectsize" (de-
pending on parameter score_type)

how to compute gene scores? Option "pvalue" uses values from the pvalue
column in genelist in a one-way test for enrichment; lower p-value is bet-
ter Option "effectsize" uses values from the effectsize column in genelist in
a two-way test for enrichment; is a geneset enriched in either down- or up-
regulated genes? Option "effectsize_abs" uses values from the effectsize col-
umn in genelist in a one-way test for enrichment; is a geneset enriched when
testing absolute effectsizes? Option "effectsize_up" uses values from the effect-
size column in genelist in a one-way test for enrichment; is a geneset enriched
in up-regulated genes? (i.e. positive effectsize) Option "effectsize_down" uses
values from the effectsize column in genelist in a one-way test for enrichment;
is a geneset enriched in down-regulated genes? (i.e. negative effectsize)

input genesets table with results in the "pvalue", "score_type" columns. "zscore" column: A
standardized z-score is computed from geneset p-values + effectsize direction (up/down) if tested.
Importantly, we here return standardized z-scores because the GOAT geneset score (mean of gene
scores) is relative to the respective geneset-size-matched null distributions (a skewed normal)! In
contrast, the standardized z-scores are comparable between genesets (as are the pvalues).

Only if either (or both) the effectsize-up/down was tested, the direction of regulation has been tested
(effectsize_abs and pvalue score types are agnostic to up/down regulation). So when score_type was
set to any of effectsize/effectsize_down/effectsize_up, the z-scores are negative values in case the
"score_type" output column is "effectsize_down".

38 test_genesets_goat_precomputed

See Also

test_genesets

Examples

note; this example downloads data when first run, and typically takes ~6@seconds

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

first run the default example from test_genesets() to obtain input data
datasets = download_goat_manuscript_data(output_dir)
if(!'is.null(datasets)) {

genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°

genesets_asis = download_genesets_goatrepo(output_dir)
if(lis.null(genesets_asis)) {

genesets_filtered = filter_genesets(genesets_asis, genelist)

we here compare GOAT with precomputed null distributions against
a GOAT function that performs bootstrapping to compute null distributions on-demand

apply goat with precomputed null (default) and goat with on-demand bootstrapping
result_precomputed = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize", padj_method = "bonferroni”, padj_cutoff = 0.05) |>
undo sorting by p-value @ test_genesets(), instead sort by stable IDs
arrange(source, id)
result_bootstrapped = test_genesets(genesets_filtered, genelist, method = "goat_bootstrap”,
score_type = "effectsize”, padj_method = "bonferroni”, padj_cutoff = 0.05, verbose = TRUE) |>
arrange(source, id)

tables should align

stopifnot(result_precomputed$id == result_bootstrapped$id)

no missing values

stopifnot(is.finite(result_precomputed$pvalue) &
is.finite(is.finite(result_bootstrapped$pvalue)))

compare results
plot(result_precomputed$pvalue, result_bootstrapped$pvalue)
abline(@, 1, col=2)

plot(minlogl@_fixzero(result_precomputed$pvalue),
minlogl@_fixzero(result_bootstrapped$pvalue))
abline(0, 1, col=2)

summary(minlog1@_fixzero(result_precomputed$pvalue) -
minlogl@_fixzero(result_bootstrapped$pvalue))

test_genesets_gsea 39

test_genesets_gsea GSEA as implemented in the fgsea R package

Description

In most cases, it’s more convenient to call the more generic test_genesets function which also
deals with multiple-testing correction (per geneset source)

Usage

test_genesets_gsea(
genesets,
genelist,
score_type = NULL,
parallel_threads = 1L,
gseaParam = 1,
nPermSimple = 50000,
gsea_genelist_col = NULL,
gsea_scoretype = NULL,
random_seed = 123

)
Arguments
genesets data.frame/tibble with geneset and gene columns
genelist data.frame/tibble with gene and score columns. Should contain columns gene
and either pvalue or effectsize, depending on score_type parameter
score_type how to compute gene scores? options: "pvalue"”, "effectsize”, "custom". Option

"pvalue" uses -log10 transformed values from the pvalue column in genelist.
Option "effectsize" uses values from the effectsize column in genelist as-is.
Option "custom" expects 2 additional parameters; gsea_genelist_col should
be a column name in genelist to be used for f{GSEA (values used as-is),
gsea_scoretype should be the respective value for the f{GSEA scoreType pa-
rameter ("pos’, 'neg’ or ’std)
parallel_threads

number of threads to use for parallel processing. Set to 0 to automatically se-
lect all available processors/cores, set to 1 to disable (default) or to N to use N
processes. Note that multiprocessing sometimes breaks on RStudio + Windows,
hence this parameter is set to 1 to disable multiprocessing by default for now

gseaParam passed to fgsea: :fgsea(), from manual: "GSEA parameter value, all gene-
level statis are raised to the power of *gseaParam’ before calculation of GSEA
enrichment scores.". default = 1. Further comments by fGSEA author at https://github.com/ctlab/fgsea/iss

nPermSimple passed to fgsea: : fgsea(), from manual: "Number of permutations in the sim-
ple fgsea implementation for preliminary estimation of P-values.". default =
50000 in this R package but 1000 by default in fGSEA v1.22.0; we observed

40 test_genesets_hypergeometric

much better accuracy in null simulations when increasing this from default 1k
to 10k and further minor improvement towards 50k, hence the latter is our de-
fault

gsea_genelist_col
optional, only used for score_type "custom"

gsea_scoretype optional, only used for score_type "custom"

random_seed the random seed that is passed to set.seed() in order to ensure fgsea results
are reproducible. default: 123

Value

input genesets table with results in the "pvalue", "score_type" and "gsea_nes" columns

See Also

test_genesets

test_genesets_hypergeometric
Geneset ORA using hypergeometric test

Description

In most cases, it’s more convenient to call the more generic test_genesets function which also
deals with multiple-testing correction (per geneset source)

It is assumed that the genesets and genelist parameters are in sync, i.e. genesets provided here
is the result of the filter_genesets() function (using the same genelist table)

Only genesets with at least 1 significant gene are subjected to statistical testing (e.g. NA is returned
for genesets without significant genes)

Usage

test_genesets_hypergeometric(genesets, genelist, require_nsignif = 1L)

Arguments
genesets tibble with genesets, must contain columns ’id’, 'ngenes’ and ’ngenes_signif’
genelist tibble with genes, must contain column ’signif’. The number of rows in this table

(where signif is not NA) is assumed to be the total number of tested genes, the
number of rows where signif==TRUE is assumed the total number of significant
genes.
require_nsignif

minimum number of ’signif genes’ that overlap with a geneset; NA pvalues are
returned for genesets with ngenes_signif <= require_nsignif. This func-
tion ’prefilters’ genesets, so beware that this will influence downstream multiple
testing correction. Default is 1

treemap_data 41

Value

input genesets table with results in the "pvalue” column

See Also

test_genesets

treemap_data Construct tree and treemap data structures from geneset parent/child
relations

Description

refer to the goat::treemap_plot() function for a complete example

Usage

treemap_data(
geneset_ids,

genesets,
genesets_test_result,
simplify = "none”,
toplevel_max_ngenes = NA

)

Arguments
geneset_ids vector of geneset identifiers
genesets entire geneset table; typically the complete GO database

genesets_test_result
geneset testing results; the output from test_genesets()

simplify strategy for reducing the genesets returned in the treemap. Options; "leaf_only"
(most stringent, returns only leaves in the tree structure) "prune_singletons" (re-
move parent terms that have exactly 1 child) "pvalue" (remove parent terms

where the child term p-value is at least 4 times better) "none" (default; return all
significant genesets that are not a "grouping term" in the treemap)

toplevel_max_ngenes
groups in the treemap should not have more than this many genes ('ngenes’ in

geneset test results). If not set, this defaults to 50% of the total number of unique
genes in the geneset test results

Value

data structure needed for treemap_plot()

42 treemap_plot

treemap_plot Plot a treemap

Description

simple wrapper around the treemap R package. To customize this plot, copy/paste its code and
tweak parameters as desired

Usage

treemap_plot(x, label_group = FALSE)

Arguments

X treemap_plotdata data table that was computed by the treemap_data() func-
tion

label_group set TRUE to show only group-level labels

Value

a ggplot2 object constructed by treemap: : treemap()

Examples

note; this example downloads data when first run, and typically takes ~6@seconds

store the downloaded files in the following directory. Here, the temporary file

directory is used. Alternatively, consider storing this data in a more permanent location.
e.g. output_dir="~/data/goat” on unix systems or output_dir="C:/data/goat” on Windows
output_dir = tempdir()

first run the default example from test_genesets() to obtain geneset results
datasets = download_goat_manuscript_data(output_dir)
if(lis.null(datasets)) {
genelist = datasets$ Wingo 2020:mass-spec:PMID32424284°
genesets_asis = download_genesets_goatrepo(output_dir)
if(lis.null(genesets_asis)) {
genesets_filtered = filter_genesets(genesets_asis, genelist)
result = test_genesets(genesets_filtered, genelist, method = "goat”,
score_type = "effectsize”, padj_method = "bonferroni”, padj_cutoff = 0.05)

subset GO CC results
x = result |> filter(signif & source == "GO_CC")
tm = treemap_data(
geneset_ids = x$id,
genesets = genesets_filtered,
genesets_test_result = x,
simplify = "leaf_only" # options: none/leaf_only/prune_singletons/pvalue

treemap_plot

treemap_plot(tm$treemap_plotdata)
3
3

43

Index

x datasets
goat_nulldistributions, 9

available_genesets_goatrepo, 3
cluster_genesets, 3

darken_color, 4
download_genesets_goatrepo, 4
download_goat_manuscript_data, 6

filter_genesets, 7

gg_color_hue, 8
go_gene2go, 10

go_obo, 10

goat_logo, 8
goat_nulldistributions, 9
goat_print_version, 9
goat_version, 9

hgnc_idmap_table, 11

lighten_color, 11
load_genesets_gmtfile, 12
load_genesets_go_bioconductor, 13
load_genesets_go_fromfile, 14
load_genesets_syngo, 15

minlogl@_fixzero, 16

padjust_genesets, 16
partition_genes, 17
plot_heatmap, 18
plot_lollipop, 20
plot_network, 22
plot_volcano, 23

rankscore, 25
rankscore_fixed_order, 26
reduce_genesets, 26

44

save_genesets, 27
score_geneset_directionality, 28
score_geneset_oddsratio, 29
string_trunc_right, 30
symbol_to_entrez, 30

taxonomy_identifiers, 31
test_genesets, 31
test_genesets_fisherexact, 33
test_genesets_goat_bootstrap, 35
test_genesets_goat_fitfunction, 36
test_genesets_goat_precomputed, 37
test_genesets_gsea, 39
test_genesets_hypergeometric, 40
treemap_data, 41

treemap_plot, 42

	available_genesets_goatrepo
	cluster_genesets
	darken_color
	download_genesets_goatrepo
	download_goat_manuscript_data
	filter_genesets
	gg_color_hue
	goat_logo
	goat_nulldistributions
	goat_print_version
	goat_version
	go_gene2go
	go_obo
	hgnc_idmap_table
	lighten_color
	load_genesets_gmtfile
	load_genesets_go_bioconductor
	load_genesets_go_fromfile
	load_genesets_syngo
	minlog10_fixzero
	padjust_genesets
	partition_genes
	plot_heatmap
	plot_lollipop
	plot_network
	plot_volcano
	rankscore
	rankscore_fixed_order
	reduce_genesets
	save_genesets
	score_geneset_directionality
	score_geneset_oddsratio
	string_trunc_right
	symbol_to_entrez
	taxonomy_identifiers
	test_genesets
	test_genesets_fisherexact
	test_genesets_goat_bootstrap
	test_genesets_goat_fitfunction
	test_genesets_goat_precomputed
	test_genesets_gsea
	test_genesets_hypergeometric
	treemap_data
	treemap_plot
	Index

