Package ‘insight’

February 4, 2026

Type Package

Title Easy Access to Model Information for Various Model Objects
Version 1.4.6

Maintainer Daniel Liidecke <officialeasystats@gmail.com>

Description A tool to provide an easy, intuitive and consistent
access to information contained in various R models, like model
formulas, model terms, information about random effects, data that was
used to fit the model or data from response variables. 'insight'
mainly revolves around two types of functions: Functions that find
(the names of) information, starting with 'find_', and functions that
get the underlying data, starting with 'get_". The package has a
consistent syntax and works with many different model objects, where
otherwise functions to access these information are missing.

License GPL-3
URL https://easystats.github.io/insight/

BugReports https://github.com/easystats/insight/issues
Depends R (>=3.6)
Imports methods, stats, utils

Suggests AER, afex, aod, ape, BayesFactor, bayestestR, bbmle,
bdsmatrix, betareg, biglm, BH, blavaan (>= 0.5-5), blme, boot,
brms, broom, car, carData, censReg, cgam, clubSandwich, cobalt,
coxme, cplm, crch, curl, datawizard (>= 1.2.0), dbarts,
effectsize, emmeans, epiR, estimatr, feisr, fixest (>= 0.11.2),
fungible, fwb, gam, gamlss, gamlss.data, gamm4, gbm, gee,
geepack, geoR, GLMMadaptive, glmmTMB (>= 1.1.12), glmtoolbox,
gmnl, grDevices, gt, httptest2, httr2, interp, ivreg, JM,
knitr, lavaan, lavaSearch2, lcmm, Ife, Ime4, ImerTest, Imtest,
logistf, logitr, marginaleffects (>= 0.29.0), MASS, Matrix,
mclogit, mclust, MCMCglmm, merTools, metaBMA, metadat, metafor,
metaplus, mgcv, mhurdle, mice (>= 3.17.0), mlogit, mmrm,
modelbased (>= 0.9.0), multgee, MuMIn, mvtnorm, nestedLogit,
nlme, nnet, nonnest2, ordinal, panelr, parameters (>= 0.28.0),

1

https://easystats.github.io/insight/
https://github.com/easystats/insight/issues

2 Contents

parsnip, pbkrtest, performance, phylolm, plm, PROreg (>=
1.3.0), pscl, psych, quantreg, Rcpp, ReppEigen, recipes,
rmarkdown, rms, robustbase, robustlmm, rpart, rstanarm (>=
2.21.1), rstantools (>= 2.1.0), rstudioapi, RWiener, sandwich,
sdmTMB, sampleSelection, serp, speedglm, splines, statmod,
survey, survival, svylme, testthat, tidymodels, tinytable (>=
0.13.0), TMB, truncreg, tune, tweedie, VGAM, Weightlt, withr,
workflows

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Config/testthat/edition 3
Config/testthat/parallel true
Config/Needs/website easystats/easystatstemplate
Config/Needs/check stan-dev/cmdstanr
NeedsCompilation no

Author Daniel Liidecke [aut, cre] (ORCID:

<https://orcid.org/0000-0002-8895-3206>),

Dominique Makowski [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-5375-9967>),

Indrajeet Patil [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-1995-6531>),

Philip Waggoner [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-7825-7573>),

Mattan S. Ben-Shachar [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-4287-4801>),

Brenton M. Wiernik [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-9560-6336>),

Vincent Arel-Bundock [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-2042-7063>),

Etienne Bacher [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-9271-5075>),

Alex Hayes [rev] (ORCID: <https://orcid.org/0000-0002-4985-5160>),

Grant McDermott [ctb] (ORCID: <https://orcid.org/0000-0001-7883-8573>),

Rémi Thériault [ctb] (ORCID: <https://orcid.org/0000-0003-4315-6788>),

Alex Reinhart [ctb] (ORCID: <https://orcid.org/0000-0002-6658-514X>)

Repository CRAN
Date/Publication 2026-02-04 09:10:02 UTC

Contents

all_models_equal 5
check if installed e 6

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-7825-7573
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-9271-5075
https://orcid.org/0000-0002-4985-5160
https://orcid.org/0000-0001-7883-8573
https://orcid.org/0000-0003-4315-6788
https://orcid.org/0000-0002-6658-514X

Contents

3
clean_names e 7
clean_parameterso e 8
color_if 9
compact_character e 11
compact_list L e e e e 12
display e 12
download_model e 13
easystats_columns e e e e 14
efc_insight. L e 15
ellipsis_info 15
export_table 16
find_algorithm 21
find_auxiliary L 22
find_formula e 23
find_interactions e e e e 25
find_offset s e 27
find_parameters e 28
find_parameters.averaging e e e e 31
find_parameters.betamfx Lo 33
find_parameters BGGM 35
find_parameters.emmGrido o 37
find_parameters.gamlss e 38
find_parameters.glmmTMB 39
find_parameters.zeroinfl oL Lo 41
find_predictors L e e e e 44
find_random e e e e 47
find_random_slopes 48
find_response 49
find_smooth e e 50
find_statistiC e e e e e 50
find_terms e e 51
find_transformation e e 53
find_variables e e 54
find_weights 57
fish. . . e e e 58
format_bf e e e e 58
format_capitalize 59
format_Ci e 60
format_message e e e e e 61
format_number e 64
format_p. 65
format_pd e e e 66
format_rope e 67
format_string L 67
format_table e 68
format_value e 71
get_auxiliary 74

get_call . . . L 75

Contents

get_data L e e 76
get_datagrid L. e 79
get_datagridemmGrid 86
get_deviance e e 87
get df . .o e e 88
get_family 90
GELUINEEICEPL e e e e 91
get_loglikelihood 92
get_mixed_info 93
get_modelo 94
get_modelmatriX e 95
GEL_PATAMELETS . . .« . v v v e 95
get_parameters.betamfx oL L 97
get_parameters.betareg e 99
get_parameters. BGGM 101
get_parameters.emmGrido Lo 105
get_parameters.Gammlot e e e e e e e e e e e e e e e e e e 106
get_parameters.glmmTMB 108
get_parameters.hitest oL L L 110
get_parameters.zeroinflo 111
get_predicted 113
get_predicted_Ci. e 119
get_prediCtors L 123
GEL_PIIOTS e e 124
get_random L e e e e e e e 124
get_residualso e 125
GEE_IESPONSE « . . v v v v e e e e e e e e e e e e e e e e 126
GEL_SIZMA e e 128
GEL_StAtiStIC e e e e e e e 129
get_transformation Ll e 132
GELLVAICOV « . v v v v i it e e e e e e e e e e e e e e e e 133
GEL_VATIANCE . .+ . v v v v e e e e e e e e e e e e e e e e e e e 136
get_weights 141
has_intercept 142
is_bayesian_model 143
is_converged . . o. .. L. e e e e e 143
IS_empty_Objecto e e e e 145
is_gam_model 146
is_mixed_model e e 147
1S modelo e 147
is_model_supported L. 148
iIs_multivariate L e e e e e e e e 149
is_nested_models 150
is_nullmodel 151
link_function e 151
Hnk_dnverse e e 152
model_info 153

model_ name L e e e e 156

all_models_equal 5

null_model e 157
n_grouplevels e e 158
N_ODS . . e e e e 159
N_PAAMELEIS . . . v v v v v e 160
object_has_names e e e 161
print_color.o e e e e e 162
Print_parameters e e e e e e e e e e e e e e e e e e 163
standardize_column_order e 165
standardize_Nameso e e e e e e e e e e 166
text_remove_backticks L e 168
M WS . . ot e e e e e e e e e e e e 169
validate_argument L. Lo e 170

Index 172

all_models_equal Checks if all objects are models of same class
Description

Small helper that checks if all objects are supported (regression) model objects and of same class.

Usage

all_models_equal(..., verbose = FALSE)

all_models_same_class(..., verbose = FALSE)

Arguments
A list of objects.
verbose Toggle off warnings.
Value

A logical, TRUE if x are all supported model objects of same class.

Examples

data(mtcars)
data(sleepstudy, package = "lme4")

ml <- Im(mpg ~ wt + cyl + vs, data = mtcars)
m2 <- Im(mpg ~ wt + cyl, data = mtcars)

m3 <- 1me4::1lmer(Reaction ~ Days + (1 | Subject), data

sleepstudy)

m4 <- glm(formula = vs ~ wt, family = binomial(), data = mtcars)

all_models_same_class(ml, m2)
all_models_same_class(ml, m2, m3)

6 check_if installed
all_models_same_class(m1, m4, m2, m3, verbose = TRUE)
all_models_same_class(ml, m4, mtcars, m2, m3, verbose = TRUE)
check_if_installed Checking if needed package is installed
Description
Checking if needed package is installed
Usage
check_if_installed(
package,
reason = "for this function to work”,
stop = TRUE,
minimum_version = NULL,
quietly = FALSE,
prompt = interactive(),
)
Arguments
package A character vector naming the package(s), whose installation needs to be checked
in any of the libraries.
reason A phrase describing why the package is needed. The default is a generic de-
scription.
stop Logical that decides whether the function should stop if the needed package is

minimum_version

quietly

prompt

not installed. Ignored if quietly = TRUE.

A character vector, representing the minimum package version that is required
for each package. Should be of same length as package. If NULL, will automat-
ically check the DESCRIPTION file for the correct minimum version. If using
minimum_version with more than one package, NA should be used instead of
NULL for packages where a specific version is not necessary.

Logical, if TRUE, invisibly returns a vector of logicals (TRUE for each installed
package, FALSE otherwise), and does not stop or throw a warning. If quietly =
TRUE, arguments stop and prompt are ignored. Use this argument to internally
check for package dependencies without stopping or warnings.

If TRUE, will prompt the user to install needed package(s). Ignored if quietly =
TRUE.

Currently ignored

clean_names 7

Value

If stop = TRUE, and package is not yet installed, the function stops and throws an error. Else, a
named logical vector is returned, indicating which of the packages are installed, and which not.

Examples

check_if_installed("insight")

try(check_if_installed("datawizard”, stop = FALSE))
try(check_if_installed("rstanarm”, stop = FALSE))
try(check_if_installed("nonexistent_package"”, stop = FALSE))
try(check_if_installed("”insight"”, minimum_version = "99.8.7"))
try(check_if_installed(c("nonexistent”, "also_not_here"), stop = FALSE))
try(check_if_installed(c("datawizard”, "rstanarm”), stop = FALSE))

try(check_if_installed(c("datawizard”, "rstanarm"),
minimum_version = c(NA, "2.21.1"), stop = FALSE
))
clean_names Get clean names of model terms
Description

This function "cleans" names of model terms (or a character vector with such names) by removing
patterns like log() or as. factor () etc.

Usage

clean_names(x, ...)

S3 method for class 'character'

clean_names(x, include_names = FALSE, ...)
Arguments
X A fitted model, or a character vector.

Currently not used.

include_names Logical, if TRUE, returns a named vector where names are the original values of
X.
Value

The "cleaned" variable names as character vector, i.e. pattern like s() for splines or log() are
removed from the model terms.

8 clean_parameters

Note

Typically, this method is intended to work on character vectors, in order to remove patterns that
obscure the variable names. For convenience reasons it is also possible to call clean_names()
also on a model object. If x is a regression model, this function is (almost) equal to calling
find_variables(). The main difference is that clean_names() always returns a character vector,
while find_variables() returns a list of character vectors, unless flatten = TRUE. See ’Exam-
ples’.

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- as.numeric(gl(3, 1, 9))

treatment <- gl(3, 3)

m <- glm(counts ~ log(outcome) + as.factor(treatment), family = poisson())
clean_names(m)

difference "clean_names()"” and "find_variables()"
data(cbpp, package = "1me4")
m <- 1lme4::glmer(
cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp,
family = binomial

)

clean_names(m)
find_variables(m)
find_variables(m, flatten = TRUE)

clean_parameters Get clean names of model parameters

Description

This function "cleans" names of model parameters by removing patterns like "r_" or "b[]" (mostly
applicable to Stan models) and adding columns with information to which group or component
parameters belong (i.e. fixed or random, count or zero-inflated...)

The main purpose of this function is to easily filter and select model parameters, in particular of -
but not limited to - posterior samples from Stan models, depending on certain characteristics. This
might be useful when only selective results should be reported or results from all parameters should
be filtered to return only certain results (see print_parameters()).

Usage

clean_parameters(x, ...)

color_if 9

Arguments
X A fitted model.
Currently not used.
Details

The Effects column indicate if a parameter is a fixed or random effect. The Component column
refers to special model components like conditional, zero_inflated, or dispersion. For models from
package brms, the various distributional parameters are also included in this column. For models
with random effects, the Group column indicates the grouping factor of the random effects. For
multivariate response models from brms or rstanarm, an additional Response column is included,
to indicate which parameters belong to which response formula. Furthermore, Cleaned_Parameter
column is returned that contains "human readable" parameter names (which are mostly identical to
Parameter, except for for models from brms or rstanarm, or for specific terms like smooth- or
spline-terms).

Value

A data frame with "cleaned" parameter names and information on effects, component and group
where parameters belong to. To be consistent across different models, the returned data frame
always has at least four columns Parameter, Effects, Component and Cleaned_Parameter. See
’Details’.

Examples

model <- download_model("brms_zi_2")
if (!is.null(model)) {
clean_parameters(model)

}

color_if Color-formatting for data columns based on condition

Description

Convenient function that formats columns in data frames with color codes, where the color is chosen
based on certain conditions. Columns are then printed in color in the console.

Usage

color_if(
X,
columns,
predicate = *>7,

10 color_if

value = 0,
color_if = "green",
color_else = "red",
digits = 2
)
colour_if(
X ’
columns,
predicate = *>7,
value = 0,
colour_if = "green”,
colour_else = "red"”,
digits = 2
)
Arguments
X A data frame
columns Character vector with column names of x that should be formatted.
predicate A function that takes columns and value as input and which should return TRUE
or FALSE, based on if the condition (in comparison with value) is met.
value The comparator. May be used in conjunction with predicate to quickly set

up a function which compares elements in colums to value. May be ignored
when predicate is a function that internally computes other comparisons. See
’Examples’.

color_if, colour_if
Character vector, indicating the color code used to format values in x that meet
the condition of predicate and value. May be one of "red”, "yellow”,
"green”, "blue”, "violet”, "cyan” or "grey"”. Formatting is also possible
with "bold"” or "italic".

color_else, colour_else
See color_if, but only for conditions that are not met.

digits Digits for rounded values.

Details

The predicate-function simply works like this: which(predicate(x[, columns], value))

Value

x, where columns matched by predicate are wrapped into color codes.

Examples

all values in Sepal.Length larger than 5 in green, all remaining in red
x <- color_if(iris[1:1@,], columns = "Sepal.lLength”, predicate = *>", value = 5)
X

compact_character 11

cat(x$Sepal.Length)

all levels "setosa” in Species in green, all remaining in red
x <- color_if(iris, columns = "Species"”, predicate = “==", value = "setosa")
cat(x$Species)

own function, argument "value"” not needed here
p <- function(x, y) {

x> 4.9 & x <=5.1
}
all values in Sepal.Length between 4.9 and 5.1 in green, all remaining in red
x <- color_if(iris[1:10, 1, columns = "Sepal.Length”, predicate = p)
cat(x$Sepal.Length)

compact_character Remove empty strings from character

Description

Remove empty strings from character

Usage

compact_character(x)

Arguments

X A single character or a vector of characters.

Value

A character or a character vector with empty strings removed.

Examples

compact_character(c(”"x", "y", NA))
compact_character(c(”x", "NULL", "", "y"))

12 display

compact_list Remove empty elements from lists

Description

Remove empty elements from lists

Usage

compact_list(x, remove_na = FALSE)

Arguments

X A list or vector.

remove_na Logical to decide if NAs should be removed.
Examples

compact_list(list(NULL, 1, c(NA, NA)))
compact_list(c(1, NA, NA))
compact_list(c(1, NA, NA), remove_na = TRUE)

display Generic export of data frames into formatted tables

Description

display() is a generic function to export data frames into various table formats (like plain text,
markdown, ...). print_md() usually is a convenient wrapper for display(format = "markdown”).
Similar, print_html() is a shortcut for display(format = "html"). See the documentation for
the specific objects’ classes.

Usage
display(object, ...)
print_md(x, ...)
print_html(x, ...)

S3 method for class 'data.frame'
display(object, format = "markdown”, ...)

S3 method for class 'data.frame'
print_md(x, ...)

S3 method for class 'data.frame'
print_html(x, ...)

download_model 13

Arguments
object, x A data frame.
Arguments passed to other methods.
format String, indicating the output format. Can be "markdown” or "html”. A special
option is "tt", which creates a tinytable: :tt() object, where the output for-
mat is dependent on the context where the table is used, i.e. it can be markdown
format when export_table() is used in markdown files, or LaTex format when
creating PDFs etc.
Value

Depending on format, either an object of class gt_tbl, tinytable, or a character vector of class
knitr_kable.

Global Options to Customize Output when Printing

e easystats_display_format: options(easystats_display_format = <value>) will set
the default format for the display () methods. Can be one of "markdown”, "html"”, or "tt".

Examples

display(iris[1:5, 1, format = "html")
display(iris[1:5, 1, format = "tt")

display(iris[1:5, 1, format = "markdown")

download_model Download circus models

Description

Downloads pre-compiled models from the circus-repository. The circus-repository contains a vari-
ety of fitted models to help the systematic testing of other packages

Usage
download_model(
name,
url = "https://raw.github.com/easystats/circus/master/data/",
extension = ".rda",

verbose = TRUE

14 easystats_columns

Arguments
name Model name.
url String with the URL from where to download the model data. Optional, and
should only be used in case the repository-URL is changing. By default, models
are downloaded from https://raw.github.com/easystats/circus/master/data/.
extension File extension. Default is . rda.
verbose Toggle messages and warnings.
Details

The code that generated the model is available at the https://easystats.github.io/circus/
reference/index.html.

Value

A model from the circus-repository, or NULL if model could not be downloaded (e.g., due to server
problems).

References

https://easystats.github.io/circus/

Examples

download_model("aov_1")
try(download_model ("non_existent_model"”))

easystats_columns Easystats columns

Description

Returns all valid column names that are used or defined across easystats packages as character

vector.
Usage
easystats_columns(select = "all")
broom_columns(select = "all")
Arguments

select String, indicating which columns to return.

https://easystats.github.io/circus/reference/index.html
https://easystats.github.io/circus/reference/index.html
https://easystats.github.io/circus/

efc_insight 15

Value
A character vector with all (or selected) column names that are in use across the easystats-ecosystem,
or broom-alike column names for broom_columns().

Examples

easystats_columns(”uncertainty”)

efc_insight Sample dataset from the EFC Survey

Description

A sample data set, internally used in tests. Consists of 28 variables from 908 observations. The
data set is part of the EUROFAMCARE project, a cross-national survey on informal caregiving in
Europe. Useful when testing on "real-life" data sets, including random missing values. This data
set also has value and variable label attributes.

ellipsis_info Gather information about objects in ellipsis (dot dot dot)

Description

Provides information regarding the models entered in an ellipsis. It detects whether all are models,
regressions, nested regressions etc., assigning different classes to the list of objects.

Usage

ellipsis_info(objects, ...)

Default S3 method:

ellipsis_info(..., only_models = TRUE, verbose = TRUE)
Arguments
objects, ... Arbitrary number of objects. May also be a list of model objects.

only_models Only keep supported models (default to TRUE).

verbose Toggle warnings.

Value

The list with objects that were passed to the function, including additional information as attributes
(e.g. if models have same response or are nested).

16 export_table

Examples

ml <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)
m2 <- Im(Sepal.Length ~ Species, data = iris)

m3 <- Im(Sepal.Length ~ Petal.Width, data = iris)

m4 <- Im(Sepal.Length ~ 1, data = iris)

m5 <- Im(Petal.Width ~ 1, data = iris)

objects <- ellipsis_info(ml, m2, m3, m4)
class(objects)

objects <- ellipsis_info(ml, m2, m4)
attributes(objects)$is_nested

objects <- ellipsis_info(ml, m2, m5)
attributes(objects)$same_response

export_table Data frame and Tables Pretty Formatting

Description

Function to export data frames into tables, which can be printed to the console, or displayed in
markdown or HTML format (and thereby, exported to other formats like Word or PDF). The table
width is automatically adjusted to fit into the width of the display device (e.g., width of console).
Use the table_width argument to control this behaviour.

Usage
export_table(

X,
sep =" 1",
header = "-",
cross = NULL,
empty_line = NULL,
digits = 2,
protect_integers = TRUE,
missing = "",
width = NULL,
format = NULL,
title = NULL,

caption = title,
subtitle = NULL,
footer = NULL,
column_names = NULL,
align = NULL,

by = NULL,

zap_small = FALSE,
big_mark = NULL,

export_table

17

table_width = "auto”,
remove_duplicates = FALSE,
row_groups = NULL,
column_groups = NULL,

verbose

Arguments

X

sep
header
Cross

empty_line

digits

TRUE,

A data frame. May also be a list of data frames, to export multiple data frames
into multiple tables.

Column separator.
Header separator. Can be NULL.
Character that is used where separator and header lines cross.

Separator used for empty lines. If NULL, line remains empty (i.e. filled with
whitespaces).

Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5"” for 5
significant figures (see also signif()).

protect_integers

missing

width

format

Should integers be kept as integers (i.e., without decimals)?

Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

Refers to the width of columns (with numeric values). Can be either NULL,
a number or a named numeric vector. If NULL, the width for each column is
adjusted to the minimum required width. If a number, columns with numeric
values will have the minimum width specified in width. If a named numeric
vector, value names are matched against column names, and for each match,
the specified width is used (see ’Examples’). Only applies to text-format (see
format).

Name of output-format, as string. If NULL (or "text"), returned output is used
for basic printing. Can be one of NULL (the default) resp. "text” for plain
text, "markdown” (or "md") for markdown and "html” for HTML output. A
special option is "tt"”, which creates a tinytable::tt() object, where the
output format is dependent on the context where the table is used, i.e. it can be
markdown format when export_table() is used in markdown files, or LaTeX
format when creating PDFs etc.

title, caption, subtitle

Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is
printed, unless it is stored as attributes (table_title, orits alias table_caption,
and table_subtitle). If you want to force that no title is printed, even if
present as attribute, use "", which will never print titles. If x is a list of data
frames, caption may be a list of table captions, one for each table.

18

footer

column_names

align

by

zap_small

big_mark

table_width

export_table

Table footer, as string. For markdown-formatted tables, table footers, due to
the limitation in markdown rendering, are actually just a new text line under
the table. If x is a list of data frames, footer may be a list of table captions,
one for each table. If NULL, no footer is printed, unless it is stored as attributes
(table_footer). If you want to force that no footer is printed, even if present
as attribute, use "", which will never print footers.

Character vector of names that will be used as column names in the table. Must
either be of same length as columns in the table, or a named vector, where names
(LHS) indicate old column names, and values (RHS) are used as new column
names.

Column alignment. For markdown-formatted tables, the default align = NULL
will right-align numeric columns, while all other columns will be left-aligned. If
format = "html”, the default is left-align first column and center all remaining.
May be a string to indicate alignment rules for the complete table, like "left”,
"right"”, "center” or "firstleft” (to left-align first column, center remain-
ing); or a string with abbreviated alignment characters, where the length of the
string must equal the number of columns. For instance, align = "1ccrl” would
left-align the first column, center the second and third, right-align column four

and left-align the fifth column.

Name of column(s) in x that indicates grouping for tables. When format =
"html", by is passed down to gt::gt(groupname_col =by). Likewise, for
format = "tt", by indicates the name of the variable in the data frame, which is
then used to create row headers in the table. For markdown and text format, x is
internally split into a list of data frames. See also row_groups to group rows in
the printed output.

Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

Character used as thousands separator. If NULL (default), no thousands separator
isused. Use ", " for comma separator or " " for space separator.

Numeric,"”auto”, NULL or Inf, indicating the width of the complete table.

e If table_width = "auto"” (default) and the table is wider than the current
width (i.e. line length) of the console (or any other source for textual output,
like markdown files), the table is split into multiple parts.

* Else, if table_width is numeric and table rows are larger than table_width,
the table is split into multiple parts. For each new table, the first column is
repeated for better orientation.

* Use NULL or Inf to turn off automatic splitting of the table.

e options(easystats_table_width = <value>) can be used to set a de-
fault width for tables.

remove_duplicates

row_groups

Logical, if TRUE and table is split into multiple parts, duplicated ("empty") rows
will be removed. If FALSE, empty rows will be preserved. Only applies when
table_width is not NULL (or Inf) and table is split into multiple parts.

Named list, can be used as alternative to by to group rows in the printed output,
but in a more flexible way. List elements may either be character vectors that

export_table

column_groups

verbose

Value

19

match the names of values in the first column of the data frame that belong to
one group, or list elements can be row numbers of those value rows that should
belong to one group. The names of the list elements will be used as group names,
which will be inserted as "header row". Rows will be re-ordered according to
the order used in row_groups, while all rows with non-matching values will be
added to the end.

Named list, can be used to group columns in the printed output. List elements
must indicate column indices for columns that should belong to one group. The
names of the list elements will be used as group names, which will be inserted
as "column header row". Currently only works for format = "tt" or format =
"html".

Toggle messages and warnings.

Arguments passed to tinytable::tt() and tinytable::style_tt() when
format ="tt".

If format = "text” (or NULL), a formatted character string is returned. format = "markdown” (or
"md") returns a character string of class knitr_kable, which renders nicely in markdown files.
format = "html” returns an gt object (created by the gt package), which - by default - is displayed
in the IDE’s viewer pane or default browser. This object can be further modified with the various gt-
functions. format = "tt" returns a tinytable::tt() object, which is a lightweight table format

that can be used in
the table is used.

Note

markdown, LaTeX, HTML and other formats, depending on the context where

The values for caption, subtitle and footer can also be provided as attributes of x, e.g. if
caption =NULL and x has attribute table_caption, the value for this attribute will be used as
table caption. table_subtitle is the attribute for subtitle, and table_footer for footer.

See Also

Vignettes Formatting, printing and exporting tables and Formatting model parameters.

Examples

export_table(head(iris))
export_table(head(iris), cross = "+"

export_table(head(iris), sep =

non

, header = "%" digits = 1)

split longer tables
export_table(head(iris), table_width = 30)

group (split) tables by variables
export_table(head(mtcars, 8), by = "cyl")

colored footers
data(iris)

https://easystats.github.io/insight/articles/display.html
https://easystats.github.io/parameters/articles/model_parameters_formatting.html

20

X <- as.data.frame(iris[1:5, 1)
attr(x, "table_footer”) <- c("This is a yellow footer line.”, "yellow")
export_table(x)

attr(x, "table_footer”) <- list(
c("\nA yellow line”, "yellow"),
c("\nAnd a red line", "red"),
c("\nAnd a blue line", "blue")

)
export_table(x)

attr(x, "table_footer”) <- list(
c("Without the ", "yellow"),
c("new-line character ", "red"),
c("we can have multiple colors per line.”, "blue")

)
export_table(x)

rename column names
export_table(x, column_names = letters[1:5])
export_table(x, column_names = c(Species = "a"))

column-width
d <- data.frame(

X = C(1Y 27 3)'
y = c(100, 200, 300),
z = c(10000, 20000, 30000)

)
export_table(d)

export_table(d, width = 8)
export_table(d, width = c(x = 5, z = 10))
export_table(d, width = c¢(x = 5, y =5, z = 10), align = "lcr")

group rows in the table
Not run:
data(mtcars)

fit model

mtcars$cyl <- as.factor(mtcars$cyl)

mtcars$gear <- as.factor(mtcars$gear)

model <- Im(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)

model summary, don't select "Intercept” parameter
mp <- as.data.frame(format(
parameters::model_parameters(model, drop = "*\\(Intercept"”)

)

define groups for the table

groups <- list(
Engine = c("cyl [6]1", "cyl [81", "vs", "hp"),
Interactions = c(8, 9),
Controls = c(2, 3, 7)

export_table

find_algorithm 21

)

export table with groups, using tinytable format
export_table(mp, format = "tt"”, row_groups = groups)

End(Not run)

find_algorithm Find sampling algorithm and optimizers

Description

Returns information on the sampling or estimation algorithm as well as optimization functions, or
for Bayesian model information on chains, iterations and warmup-samples.

Usage
find_algorithm(x, ...)
Arguments
X A fitted model.
Currently not used.
Value

A list with elements depending on the model.

For frequentist models:

¢ algorithm, for instance "OLS" or "ML"

* optimizer, name of optimizing function, only applies to specific models (like gam)
For frequentist mixed models:

e algorithm, for instance "REML" or "ML"

* optimizer, name of optimizing function
For Bayesian models:

e algorithm, the algorithm

¢ chains, number of chains

* iterations, number of iterations per chain

e warmup, number of warmups per chain

22 find_auxiliary

Examples

data(sleepstudy, package = "lme4")
m <- 1lme4::1lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
find_algorithm(m)

data(sleepstudy, package = "lme4")

m <- suppressWarnings(rstanarm::stan_lmer(
Reaction ~ Days + (1 | Subject),
data = sleepstudy,
refresh = @

)
find_algorithm(m)

find_auxiliary Find auxiliary (distributional) parameters from models

Description
Returns the names of all auxiliary / distributional parameters from brms-models, like dispersion,
sigma, kappa, phi, or beta...

Usage

find_auxiliary(x, ...)

Default S3 method:

find_auxiliary(x, verbose = TRUE, ...)
Arguments
X A model of class brmsfit.

Currently not used.

verbose Toggle warnings.

Value

The names of all available auxiliary parameters used in the model, or NULL if no auxiliary parameters
were found.

find_formula 23

find_formula Find model formula

Description

Returns the formula(s) for the different parts of a model (like fixed or random effects, zero-inflated
component, ...). formula_ok() checks if a model formula has valid syntax regarding writing TRUE
instead of T inside poly() and that no data names are used (i.e. no data$variable, but rather
variable).

Usage
find_formula(x, ...)

formula_ok(

X,
checks = "all",
action = "warning",

prefix_msg = NULL,
verbose = TRUE,

)

Default S3 method:
find_formula(x, verbose = TRUE, ...)

S3 method for class 'nestedlLogit'

find_formula(x, dichotomies = FALSE, verbose = TRUE, ...)
Arguments
X A fitted model.

Currently not used.

checks Indicates what kind of checks are conducted when checking the formula nota-
tion. Currently, four different formula specification that can result in unexpected
behaviour of downstream-functions are checked. checks can be one or more of:

» "dollar": Check if formula contains data name with "$", e.g. mtcars$am.

e "T": Check if formula contains poly-term with "raw=T", e.g. poly(x,
2, raw=T). In this case, all.vars() returns T as variable, which is not
intended.

e "index": Check if formula contains indexed data frames as response vari-
able (e.g., df[, 5] ~ x).

* "name”: Check if syntactically invalid variable names were used and quoted
in backticks.

e "all": Checks all of the above mentioned options.

24

find_formula

action Should a message, warning or error be given for an invalid formula? Must be

n o n

one of "message”, "warning” (default) or "error".

prefix_msg Optional string that will be added to the warning/error message. This can be

used to add additional information, e.g. about the specific function that was
calling formula_ok() and failed.

verbose Toggle warnings.
dichotomies Logical, if model is a nestedLogit objects, returns the formulas for the di-
chotomies.
Value

A list of formulas that describe the model. For simple models, only one list-element, conditional,
is returned. For more complex models, the returned list may have following elements:

conditional, the "fixed effects" part from the model (in the context of fixed-effects or instru-
mental variable regression, also called regressors) . One exception are DirichletRegModel
models from DirichletReg, which has two or three components, depending on model.

random, the "random effects" part from the model (or the id for gee-models and similar)

zero_inflated, the "fixed effects" part from the zero-inflation component of the model. for
models from brms, this component is named zi.

zero_inflated_random, the "random effects" part from the zero-inflation component of the
model; for models from brms, this component is named zi_random.

dispersion, the dispersion formula

instruments, for fixed-effects or instrumental variable regressions like ivreg::ivreg(),
1fe::felm() or plm: :plm(), the instrumental variables

cluster, for fixed-effects regressions like 1fe: : felm(), the cluster specification

correlation, for models with correlation-component like nlme: :gls(), the formula that
describes the correlation structure

scale, for distributional models such as mgcv: :gaulss() family fitted with mgcv: :gam(),
the formula that describes the scale parameter

slopes, for fixed-effects individual-slope models like feisr::feis(), the formula for the
slope parameters

precision, for DirichletRegModel models from DirichletReg, when parametrization (i.e.
model) is "alternative”.

bidrange, for models of class oohbchoice (from package DCchoice), which indicates the
right-hand side of the bar (the bid-range).

For models from package brmes, distributional parameters are also included.

Note

For models of class 1me or gls the correlation-component is only returned, when it is explicitly
defined as named argument (form), e.g. corAR1(form=~1 | Mare)

find_interactions 25

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_formula(m)

m <- 1lme4::1lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris)
f <- find_formula(m)

.F

format(f)

find_interactions Find interaction terms from models

Description

Returns all lowest to highest order interaction terms from a model.

Usage

find_interactions(x, component = "all", flatten = FALSE)

Arguments

X A fitted model.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

e component = "all” returns all possible parameters.

* If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

» For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

26 find_interactions

Value

A list of character vectors that represent the interaction terms. Depending on component, the re-
turned list has following elements (or NULL, if model has no interaction term):
* conditional, interaction terms that belong to the "fixed effects" terms from the model

* zero_inflated, interaction terms that belong to the "fixed effects" terms from the zero-
inflation component of the model

e instruments, for fixed-effects regressions like ivreg, felm or plm, interaction terms that
belong to the instrumental variables

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
e BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

find_offset 27

n on

e mfx: "precision”, "marginal”

* betareg, DirichletRegModel: "precision”
* mvord: "thresholds” and "correlation”
* clm2: "scale”

n on

* selection: "selection”, "outcome”, and "auxiliary”

n o n

e lemm: "membership”, "longitudinal”, "beta"”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)

m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_interactions(m)

m <- lm(mpg ~ wt * cyl + vs * hp x gear + carb, data = mtcars)
find_interactions(m)

find_offset Find possible offset terms in a model

Description

Returns a character vector with the name(s) of offset terms.

Usage

find_offset(x, as_term = FALSE)

Arguments
X A fitted model.
as_term Logical, if TRUE, the offset is returned as term, including possible transforma-
tions, like log(variable). If FALSE (default), only the variable name is re-
turned.
Value

A character vector with the name(s) of offset terms.

28 find_parameters

Examples

Generate some zero-inflated data

set.seed(123)

N <- 100 # Samples

X <= runif(N, @, 10) # Predictor

of f <- rgamma(N, 3, 2) # Offset variable

yhat <- -1 + x * 0.5 + log(off) # Prediction on log scale

dat <- data.frame(y = NA, x, logOff = log(off), raw_off = off)

dat$y <- rpois(N, exp(yhat)) # Poisson process

dat$y <- ifelse(rbinom(N, 1, 0.3), @, dat$y) # Zero-inflation process

ml <- pscl::zeroinfl(y ~ offset(logOff) + x | 1, data = dat, dist = "poisson"”)
find_offset(m1)

m2 <- pscl::zeroinfl(
y ~ offset(log(raw_off)) + x | 1,
data = dat,
dist = "poisson”

)

find_offset(m2)

find_offset(m2, as_term = TRUE)

m3 <- pscl::zeroinfl(y ~ x | 1, data = dat, offset = logOff, dist = "poisson"”)
find_offset(m3)

find_parameters Find names of model parameters

Description

Returns the names of model parameters, like they typically appear in the summary() output. For
Bayesian models, the parameter names equal the column names of the posterior samples after coer-
cion from as.data.frame(). See the documentation for your object’s class:

* Bayesian models (rstanarm, brms, MCMCglmm, ...)

* Generalized additive models (mgcv, VGAM, ...)

* Marginal effects models (mfx)

* Estimated marginal means (emmeans)

¢ Mixed models (Ime4, glmmTMB, GLMMadaptive, ...)

» Zero-inflated and hurdle models (pscl, ...)

* Models with special components (betareg, MuMIn, ...)

Usage

find_parameters(x, ...)

Default S3 method:
find_parameters(x, flatten = FALSE, verbose = TRUE, ...)

find_parameters 29

Arguments
X A fitted model.
Currently not used.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
verbose Toggle messages and warnings.
Value

A list of parameter names. For simple models, only one list-element, conditional, is returned.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

"all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

"nonlinear"”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

"correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

"location": returns location parameters such as conditional, zero_inflated, smooth_terms,

or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

"distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision

(and other auxiliary parameters) are returned.

Special models

Some model classes also allow rather uncommon options. These are:

n o n

¢ mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

30 find_parameters

* averaging:"conditional” and "full”

* mjoint: "survival”

n on

e« mfx: "precision”, "marginal”
¢ betareg, DirichletRegModel: "precision”
e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

e lemm: "membership”, "longitudinal”, "beta"”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Parameters, Variables, Predictors and Terms

There are four functions that return information about the variables in a model: find_predictors(),
find_variables(), find_terms() and find_parameters(). There are some differences between
those functions, which are explained using following model. Note that some, but not all of those
functions return information about the dependent and independent variables. In this example, we
only show the differences for the independent variables.

model <- Im(mpg ~ factor(gear), data = mtcars)

e find_terms(model) returns the model terms, i.e. how the variables were used in the model,
e.g. applying transformations like factor (), poly() etc. find_terms() may return a vari-
able name multiple times in case of multiple transformations. The return value would be
"factor(gear)".

e find_parameters(model) returns the names of the model parameters (coefficients). The
return value would be " (Intercept)”, "factor(gear)4" and "factor(gear)5".

e find_variables() returns the original variable names. find_variables() returns each
variable name only once. The return value would be "gear".

e find_predictors() is comparable to find_variables() and also returns the original vari-
able names, but excluded the dependent (response) variables. The return value would be
"gear”.

Examples

data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.averaging 31

find_parameters.averaging
Find model parameters from models with special components

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage
S3 method for class 'averaging'
find_parameters(x, component = "conditional”, flatten = FALSE, ...)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

Value

A list of parameter names. The returned list may have following elements, usually requested via the
component argument:

* conditional, the "fixed effects" part from the model.

e full, parameters from the full model.

* precision for models of class betareg.

e survival for model of class mjoint.

¢ extra for models of class glmx.

32 find_parameters.averaging

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

e "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

e "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear": for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision
(and other auxiliary parameters) are returned.

Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
« BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”
 averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

I

¢ betareg, DirichletRegModel: "precision’
e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

e lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

find_parameters.betamfx 33

Examples

data("GasolineYield", package = "betareg")

m <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
find_parameters(m)

find_parameters(m, component = "precision”)

find_parameters.betamfx
Find names of model parameters from marginal effects models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage
S3 method for class 'betamfx'
find_parameters(x, component = "all”, flatten = FALSE, ...)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

 If component = "location", location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

34

Value

find_parameters.betamfx

A list of parameter names. The returned list may have following elements:

» conditional, the "fixed effects" part from the model.

* marginal, the marginal effects.

* precision, the precision parameter.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

"all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

"nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

"correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

"location": returns location parameters such as conditional, zero_inflated, smooth_terms,

or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

"distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision

(and other auxiliary parameters) are returned.

Special models

Some model classes also allow rather uncommon options. These are:

n o n

mhurdle: "infrequent_purchase”, "ip”, and "auxiliary”
BGGM: "correlation” and "intercept”

BFBayesFactor, glmx: "extra”

averaging:"conditional” and "full”

mjoint: "survival”

mfx: "precision”, "marginal”

betareg, DirichletRegModel: "precision”

find_parameters. BGGM 35

e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

« selection: "selection”, "outcome”, and "auxiliary”

e lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear”
For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.BGGM Find names of model parameters from Bayesian models

Description

Returns the names of model parameters, like they typically appear in the summary () output. For
Bayesian models, the parameter names equal the column names of the posterior samples after coer-
cion from as.data.frame().

Usage
S3 method for class 'BGGM'

find_parameters(x, component = "correlation”, flatten = FALSE, ...)

S3 method for class 'brmsfit'
find_parameters(

X7
effects = "all",
component = "all”,

flatten = FALSE,
parameters = NULL,

)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called

36

flatten

effects

parameters

Value

find_parameters. BGGM

fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.
Should variables for fixed effects ("fixed"), random effects ("random”) or both
("all") be returned? Only applies to mixed models. May be abbreviated.
For models of from packages brms or rstanarm there are additional options:
» "fixed" returns fixed effects.

* "random_variance"” return random effects parameters (variance and cor-
relation components, e.g. those parameters that start with sd_ or cor_).

* "grouplevel” returns random effects group level estimates, i.e. those pa-
rameters that start with r_.

e "random” returns both "random_variance" and "grouplevel”.
e "all" returns fixed effects and random effects variances.
e "full” returns all parameters.

Regular expression pattern that describes the parameters that should be returned.

A list of parameter names. For simple models, only one list-element, conditional, is returned.
For more complex models, the returned list may have following elements:

* conditional, the "fixed effects" part from the model

* random, the "random effects" part from the model

* zero_inflated, the "fixed effects" part from the zero-inflation component of the model. For
brmes, this is named zi.

» zero_inflated_random, the "random effects" part from the zero-inflation component of the
model. For brms, this is named zi_random.

* smooth_terms, the smooth parameters

Furthermore, some models, especially from brms, can also return other auxiliary (distributional)
parameters. These may be one of the following:

* sigma, the residual standard deviation (auxiliary parameter)

find_parameters.emmGrid 37

* dispersion, the dispersion parameters (auxiliary parameter)
* beta, the beta parameter (auxiliary parameter)
* and any pre-defined or arbitrary distributional parameter for models from package brms, like
mu, ndt, kappa, etc.
Models of class BGGM additionally can return the elements correlation and intercept.

Models of class BFBayesFactor additionally can return the element extra.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.emmGrid
Find model parameters from estimated marginal means objects

Description

Returns the parameter names from a model.

Usage
S3 method for class 'emmGrid'
find_parameters(x, flatten = FALSE, merge_parameters = FALSE, ...)
Arguments
X A fitted model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-

cated values are removed.
merge_parameters

Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

Currently not used.

Value

A list of parameter names. For simple models, only one list-element, conditional, is returned.

Examples
data(mtcars)
model <- lm(mpg ~ wt * factor(cyl), data = mtcars)
emm <- emmeans(model, c("wt", "cyl"))

find_parameters(emm)

38

find_parameters.gamlss

find_parameters.gamlss

Find names of model parameters from generalized additive models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'gamlss'
find_parameters(x, flatten = FALSE, ...)

S3 method for class 'gam'

find_parameters(x, component = "all", flatten = FALSE, ...)
Arguments
X A fitted model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-

component

Value

cated values are removed.
Currently not used.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

A list of parameter names. The returned list may have following elements:

* conditional, the "fixed effects" part from the model.

* smooth_terms, the smooth parameters.

find_parameters.gImmTMB 39

Examples

data(mtcars)

m <- mgcv::gam(mpg ~ s(hp) + gear, data = mtcars)
find_parameters(m)

find_parameters.glmmTMB

Find names of model parameters from mixed models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'glmmTMB'
find_parameters(x, effects = "all”, component = "all", flatten = FALSE, ...)

Arguments

X

effects

component

flatten

A fitted model.

Should variables for fixed effects ("fixed"), random effects ("random”) or both
("all") be returned? Only applies to mixed models. May be abbreviated.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

40 find_parameters.glmmTMB

Value

A list of parameter names. The returned list may have following elements, usually returned based
on the combination of the effects and component arguments:

» conditional, the "fixed effects" part from the model.

* random, the "random effects" part from the model.

* zero_inflated, the "fixed effects" part from the zero-inflation component of the model.

* zero_inflated_random, the "random effects" part from the zero-inflation component of the
model.

* dispersion, the dispersion parameters (auxiliary parameter)

» dispersion_random, the "random effects" part from the dispersion parameters (auxiliary pa-
rameter)

* nonlinear, the parameters from the nonlinear formula.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear": for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”

find_parameters.zeroinfl 41

e BGGM: "correlation” and "intercept”
* BFBayesFactor, glmx: "extra”
* averaging:"conditional” and "full”

e mjoint: "survival”

non

e mfx: "precision”, "marginal”
* betareg, DirichletRegModel: "precision”
* mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

¢ lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(sleepstudy, package = "1lme4")

m <- 1lme4::1lmer(
Reaction ~ Days + (1 + Days | Subject),
data = sleepstudy

)

find_parameters(m)

find_parameters.zeroinfl
Find names of model parameters from zero-inflated models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'zeroinfl'

find_parameters(x, component = "all"”, flatten = FALSE, ...)
Arguments

X A fitted model.

42

find_parameters.zeroinfl

component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-

Value

cated values are removed.

Currently not used.

A list of parameter names. The returned list may have following elements:

conditional, the "fixed effects" part from the model.
zero_inflated, the "fixed effects" part from the zero-inflation component of the model.

Special models are mhurdle, which also can have the components infrequent_purchase,
ip, and auxiliary.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

"all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms"”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

find_parameters.zeroinfl 43

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.
Special models

Some model classes also allow rather uncommon options. These are:

n o ons:

¢ mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
e BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

e mjoint: "survival”

e« mfx: "precision”, "marginal”

* betareg, DirichletRegModel: "precision”

e mvord: "thresholds” and "correlation”

e clm2: "scale”

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

¢ lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(bioChemists, package = "pscl”)

m <- pscl::zeroinfl(
art ~ fem + mar + kid5 + ment | kid5 + phd,
data = bioChemists

)

find_parameters(m)

44 find_predictors

find_predictors Find names of model predictors

Description
Returns the names of the predictor variables for the different parts of a model (like fixed or random
effects, zero-inflated component, ...). Unlike find_parameters(), the names from find_predictors()
match the original variable names from the data that was used to fit the model.

Usage
find_predictors(x, ...)

Default S3 method:
find_predictors(

X,
effects = "fixed",
component = "all”,
flatten = FALSE,
verbose = TRUE,
)
Arguments
X A fitted model.
Currently not used.
effects Should variables for fixed effects ("fixed"), random effects ("random") or both
("all") be returned? Only applies to mixed models. May be abbreviated.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

 If component = "location", location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

find_predictors 45

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
verbose Toggle warnings.
Value

A list of character vectors that represent the name(s) of the predictor variables. Depending on
the combination of the arguments effects and component, the returned list can have following
elements:

e conditional, the "fixed effects" terms from the model

* random, the "random effects" terms from the model

* zero_inflated, the "fixed effects" terms from the zero-inflation component of the model.
For models from brmes, this is named zi.

* zero_inflated_random, the "random effects" terms from the zero-inflation component of the
model. For models from brmes, this is named zi_random.

» dispersion, the dispersion terms
* instruments, for fixed-effects regressions like ivreg, felmor plm, the instrumental variables

* correlation, for models with correlation-component like gls, the variables used to describe
the correlation structure

* nonlinear, for non-linear models (like models of class nlmerMod or nls), the staring esti-
mates for the nonlinear parameters

* smooth_terms returns smooth terms, only applies to GAMs (or similar models that may con-
tain smooth terms)

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

e "nonlinear": for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

46 find_predictors

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.

Special models
Some model classes also allow rather uncommon options. These are:

non

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

* betareg, DirichletRegModel: "precision”
* mvord: "thresholds” and "correlation”
e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n o n

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Parameters, Variables, Predictors and Terms

There are four functions that return information about the variables in a model: find_predictors(),
find_variables(), find_terms() and find_parameters(). There are some differences between
those functions, which are explained using following model. Note that some, but not all of those
functions return information about the dependent and independent variables. In this example, we
only show the differences for the independent variables.

model <- Im(mpg ~ factor(gear), data = mtcars)

e find_terms(model) returns the model terms, i.e. how the variables were used in the model,
e.g. applying transformations like factor (), poly() etc. find_terms() may return a vari-
able name multiple times in case of multiple transformations. The return value would be
"factor(gear)".

* find_parameters(model) returns the names of the model parameters (coefficients). The
return value would be " (Intercept)”, "factor(gear)4" and "factor(gear)5".

» find_variables() returns the original variable names. find_variables() returns each
variable name only once. The return value would be "gear".

* find_predictors() is comparable to find_variables() and also returns the original vari-
able names, but excluded the dependent (response) variables. The return value would be
"gear".

find_random 47

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_predictors(m)

find_random Find names of random effects

Description

Return the name of the grouping factors from mixed effects models.

Usage
find_random(x, split_nested = FALSE, flatten = FALSE)

Arguments

X A fitted mixed model.

split_nested Logical, if TRUE, terms from nested random effects will be returned as separated
elements, not as single string with colon. See ’Examples’.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Value

A list of character vectors that represent the name(s) of the random effects (grouping factors). De-
pending on the model, the returned list has following elements:

* random, the "random effects" terms from the conditional part of model

* zero_inflated_random, the "random effects" terms from the zero-inflation component of the
model. For brms, this is named zi_random.

* dispersion_random, the "random effects" terms from the dispersion component of the model

Models of class brmsfit may also contain elements for auxiliary parameters.

Examples

data(sleepstudy, package = "lme4")
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {

filter_group <- sleepstudy$mygrp == i

sleepstudy$mysubgrp[filter_group] <-

sample(1:30, size = sum(filter_group), replace = TRUE)

}

m <- Ime4::1lmer(

48 find_random_slopes

Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy
)

find_random(m)
find_random(m, split_nested = TRUE)

find_random_slopes Find names of random slopes

Description

Return the name of the random slopes from mixed effects models.

Usage

find_random_slopes(x)

Arguments

X A fitted mixed model.

Value
A list of character vectors with the name(s) of the random slopes, or NULL if model has no random
slopes. Depending on the model, the returned list has following elements:
* random, the random slopes from the conditional part of model

* zero_inflated_random, the random slopes from the zero-inflation component of the model.
For brms, this is named zi_random.

* dispersion_random, the random slopes from the dispersion component of the model

Models of class brmsfit may also contain elements for auxiliary parameters.

Examples

data(sleepstudy, package = "lme4")
m <- 1lme4::1lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
find_random_slopes(m)

find_response 49

find_response Find name of the response variable

Description

Returns the name(s) of the response variable(s) from a model object.

Usage

find_response(x, combine = TRUE, ...)

S3 method for class 'joint'

find_response(x, combine = TRUE, component = "conditional”, ...)
Arguments
X A fitted model.
combine Logical, if TRUE and the response is a matrix-column, the name of the response

matches the notation in formula, and would for instance also contain patterns
like "cbind(...)". Else, the original variable names from the matrix-column
are returned. See ’Examples’.

Currently not used.

component Character, if x is a joint model, this argument can be used to specify which com-
ponent to return. Possible values are "conditional”, "survival” or "all”.

Value

The name(s) of the response variable(s) from x as character vector, or NULL if response variable
could not be found.

Examples

data(cbpp, package = "lme4")
cbpp$trials <- cbpp$size - cbpp$incidence
m <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial)

find_response(m, combine = TRUE)
find_response(m, combine = FALSE)

50 find_statistic

find_smooth Find smooth terms from a model object

Description

Return the names of smooth terms from a model object.

Usage

find_smooth(x, flatten = FALSE)

Arguments
X A (gam) model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
Value

A character vector with the name(s) of the smooth terms.

Examples

data(iris)
model <- mgcv::gam(Petal.Length ~ Petal.Width + s(Sepal.Length), data = iris)
find_smooth(model)

find_statistic Find statistic for model

Description

Returns the statistic for a regression model (z-statistic, z-statistic, etc.).

Small helper that checks if a model is a regression model object and return the statistic used.

Usage

find_statistic(x, ...)
Arguments

X An object.

Currently not used.

find_terms 51

Value

A character describing the type of statistic. If there is no statistic available with a distribution, NULL
will be returned.

Examples

regression model object

data(mtcars)

m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_statistic(m)

find_terms Find all model terms

Description

Returns a list with the names of all terms, including response value and random effects, "as is". This
means, on-the-fly tranformations or arithmetic expressions like log(), I(), as.factor() etc. are
preserved.

Usage

find_terms(x, ...)

Default S3 method:

find_terms(x, flatten = FALSE, as_term_labels = FALSE, verbose = TRUE, ...)
Arguments
X A fitted model.

Currently not used.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

as_term_labels Logical, if TRUE, extracts model formula and tries to access the "term. labels”
attribute. This should better mimic the terms () behaviour even for those models
that do not have such a method, but may be insufficient, e.g. for mixed models.

verbose Toggle warnings.

Value
A list with (depending on the model) following elements (character vectors):

* response, the name of the response variable

» conditional, the names of the predictor variables from the conditional model (as opposed to
the zero-inflated part of a model)

* random, the names of the random effects (grouping factors)

52

find_terms

* zero_inflated, the names of the predictor variables from the zero-inflated part of the model
* zero_inflated_random, the names of the random effects (grouping factors)
* dispersion, the name of the dispersion terms

e instruments, the names of instrumental variables

Returns NULL if no terms could be found (for instance, due to problems in accessing the formula).

Parameters, Variables, Predictors and Terms

There are four functions that return information about the variables in a model: find_predictors(),
find_variables(), find_terms() and find_parameters(). There are some differences between
those functions, which are explained using following model. Note that some, but not all of those
functions return information about the dependent and independent variables. In this example, we
only show the differences for the independent variables.

model <- Im(mpg ~ factor(gear), data = mtcars)

e find_terms(model) returns the model terms, i.e. how the variables were used in the model,
e.g. applying transformations like factor (), poly() etc. find_terms() may return a vari-
able name multiple times in case of multiple transformations. The return value would be
"factor(gear)".

* find_parameters(model) returns the names of the model parameters (coefficients). The
return value would be " (Intercept)”, "factor(gear)4" and "factor(gear)5"”.

* find_variables() returns the original variable names. find_variables() returns each
variable name only once. The return value would be "gear"”.

* find_predictors() is comparable to find_variables() and also returns the original vari-
able names, but excluded the dependent (response) variables. The return value would be
ngarlll

Note

The difference to find_variables() is that find_terms() may return a variable multiple times
in case of multiple transformations (see examples below), while find_variables() returns each
variable name only once.

Examples

data(sleepstudy, package = "lme4")

m <- suppressWarnings(1lme4: :1lmer(
log(Reaction) ~ Days + I(Days*2) + (1 + Days + exp(Days) | Subject),
data = sleepstudy

)

find_terms(m)
sometimes, it is necessary to retrieve terms from "term.labels” attribute

m <- Im(mpg ~ hp * (am + cyl), data = mtcars)
find_terms(m, as_term_labels = TRUE)

find_transformation 53

find_transformation Find possible transformation of model variables

Description

This functions checks whether any transformation, such as log- or exp-transforming, was applied
to the response variable (dependent variable) in a regression formula. Optionally, all model terms
can also be checked for any such transformation. Currently, following patterns are detected: log,
loglp, log2, log1@, exp, expml, sqrt, log(y+<number>), log-log, log(y,base=<number>),
power (e.g. to 2nd power, like I(y*2)), inverse (like 1/y), scale (e.g., y/3), and box-cox (e.g.,
(y*lambda - 1) / lambda).

Usage

find_transformation(x, ...)

Default S3 method:

find_transformation(x, include_all = FALSE, ...)
Arguments
X A regression model or a character string of the formulation of the (response)
variable.

Currently not used.

include_all Logical, if TRUE, does not only check the response variable, but all model terms.

Value

A string, with the name of the function of the applied transformation. Returns "identity" for no
transformation, and e.g. "log(y+3)" when a specific values was added to the response variables
before log-transforming. For unknown transformations, returns NULL.

Examples

identity, no transformation
model <- 1Im(Sepal.Length ~ Species, data = iris)
find_transformation(model)

log-transformation
model <- 1m(log(Sepal.Length) ~ Species, data = iris)
find_transformation(model)

logt2
model <- 1m(log(Sepal.Length + 2) ~ Species, data = iris)
find_transformation(model)

find transformation for all model terms
model <- Im(mpg ~ log(wt) + I(gear”2) + exp(am), data = mtcars)

54

find_variables

find_transformation(model, include_all = TRUE)

inverse, response provided as character string
find_transformation("1 / y")

find_variables

Find names of all variables

Description

Returns a list with the names of all variables, including response value and random effects.

Usage

find_variables(
X,

effects = "all",
component = "all",
flatten = FALSE,
verbose = TRUE

Arguments

X
effects

component

flatten

verbose

A fitted model.

Should variables for fixed effects ("fixed"), random effects ("random”) or both
("all") be returned? Only applies to mixed models. May be abbreviated.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

* If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Toggle warnings.

find_variables 55

Value
A list with (depending on the model) following elements (character vectors):

* response, the name of the response variable

» conditional, the names of the predictor variables from the conditional model (as opposed to
the zero-inflated part of a model)

* cluster, the names of cluster or grouping variables

* dispersion, the name of the dispersion terms

e instruments, the names of instrumental variables

* random, the names of the random effects (grouping factors)

* zero_inflated, the names of the predictor variables from the zero-inflated part of the model.
For brms, this is named zi.

* zero_inflated_random, the names of the random effects (grouping factors). For brms, this
is named zi_random.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

e "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear": for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location": returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.
Special models

Some model classes also allow rather uncommon options. These are:

56 find_variables

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
e BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”
¢ betareg, DirichletRegModel: "precision”
* mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n o n

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Parameters, Variables, Predictors and Terms

There are four functions that return information about the variables in a model: find_predictors(),
find_variables(), find_terms() and find_parameters(). There are some differences between
those functions, which are explained using following model. Note that some, but not all of those
functions return information about the dependent and independent variables. In this example, we
only show the differences for the independent variables.

model <- Im(mpg ~ factor(gear), data = mtcars)

e find_terms(model) returns the model terms, i.e. how the variables were used in the model,
e.g. applying transformations like factor (), poly() etc. find_terms() may return a vari-
able name multiple times in case of multiple transformations. The return value would be
"factor(gear)".

* find_parameters(model) returns the names of the model parameters (coefficients). The
return value would be " (Intercept)”, "factor(gear)4" and "factor(gear)5"”.

e find_variables() returns the original variable names. find_variables() returns each
variable name only once. The return value would be "gear".

* find_predictors() is comparable to find_variables() and also returns the original vari-
able names, but excluded the dependent (response) variables. The return value would be
n gea r. n X

Note

The difference to find_terms() is that find_variables() returns each variable name only once,
while find_terms() may return a variable multiple times in case of transformations or when arith-
metic expressions were used in the formula.

find_weights 57

Examples

data(cbpp, package = "1lme4")
data(sleepstudy, package = "lme4")
some data preparation...
cbpp$trials <- cbpp$size - cbpp$incidence
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {

filter_group <- sleepstudy$mygrp == i

sleepstudy$mysubgrp[filter_group] <-

sample(1:30, size = sum(filter_group), replace = TRUE)

3

ml <- 1me4::glmer(
cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp,
family = binomial

)

find_variables(m1)

m2 <- lme4::1mer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)

find_variables(m2)

find_variables(m2, flatten = TRUE)

find_weights Find names of model weights

Description

Returns the name of the variable that describes the weights of a model.

Usage
find_weights(x, ...)
Arguments
X A fitted model.
Used for objects from package survey, to pass the source argument to get_data().
See related documentation of that argument for further details.
Value

The name of the weighting variable as character vector, or NULL if no weights were specified.

58 format_bf

Examples

data(mtcars)

mtcars$weight <- rnorm(nrow(mtcars), 1, .3)

m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars, weights = weight)
find_weights(m)

fish Sample data set for count models

Description

A sample data set, used in tests and some examples. Useful for testing count models.

format_bf Bayes Factor formatting

Description

Bayes Factor formatting

Usage

format_bf(
bf,
stars = FALSE,
stars_only = FALSE,
inferiority_star = "°",
name = "BF",
protect_ratio = FALSE,
na_reference = NA,
exact = FALSE

)
Arguments
bf Bayes Factor.
stars Add significance stars (e.g., p < .001***). For Bayes factors, the thresholds for
"significant" results are values larger than 3, 10, and 30.
stars_only Return only significance stars.

inferiority_star
String, indicating the symbol that is used to indicate inferiority, i.e. when the
Bayes Factor is smaller than one third (the thresholds are smaller than one third,
1/10 and 1/30).

name Name prefixing the text. Can be NULL.

format_capitalize 59

protect_ratio Should values smaller than 1 be represented as ratios?
na_reference How to format missing values (NA).

exact Should very large or very small values be reported with a scientific format (e.g.,
4.24e5), or as truncated values (as "> 1000" and "< 1/1000").

Value

A formatted string.

Examples

bfs <- c(0.000045, 0.033, NA, 1557, 3.54)
format_bf (bfs)

format_bf(bfs, exact = TRUE, name = NULL)
format_bf(bfs, stars = TRUE)

format_bf(bfs, protect_ratio = TRUE)
format_bf(bfs, protect_ratio = TRUE, exact = TRUE)
format_bf(bfs, na_reference = 1)

format_capitalize Capitalizes the first letter in a string

Description

This function converts the first letter in a string into upper case.

Usage

format_capitalize(x, verbose = TRUE)

Arguments
X A character vector or a factor. The latter is coerced to character. All other objects
are returned unchanged.
verbose Toggle warnings.
Value

x, with first letter capitalized.

Examples

format_capitalize("hello")
format_capitalize(c("hello”, "world"))
unique(format_capitalize(iris$Species))

60

format_ci

format_ci

Confidence/Credible Interval (CI) Formatting

Description

Confidence/Credible Interval (CI) Formatting

Usage

format_ci(CI_low, ...)

S3 method for class 'numeric'

format_ci(
CI_low,
CI_high,
ci = 0.95,

digits = 2,
brackets =

TRUE,

width = NULL,
width_low = width,
width_high = width,
missing = "",
zap_small = FALSE,

ci_string = "CI",
)
Arguments

CI_low Lower CI bound. Usually a numeric value, but can also be a CI output returned
bayestestR, in which case the remaining arguments are unnecessary.
Arguments passed to or from other methods.

CI_high Upper CI bound.

ci CI level in percentage.

digits Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5"” for 5
significant figures (see also signif()).

brackets Either a logical, and if TRUE (default), values are encompassed in square brack-
ets. If FALSE or NULL, no brackets are used. Else, a character vector of length
two, indicating the opening and closing brackets.

width Minimum width of the returned string. If not NULL and width is larger than the

string’s length, leading whitespaces are added to the string. If width="auto",
width will be set to the length of the longest string.

format_message 61

width_low, width_high
Like width, but only applies to the lower or higher confidence interval value.
This can be used when the values for the lower and upper CI are of very different
length.

missing Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

ci_string String to be used in the output to indicate the type of interval. Default is "CI",

but can be changed to "HDI" or anything else, if necessary.

Value

A formatted string.

Examples

format_ci(1.20, 3.57, ci = 0.90)

format_ci(1.20, 3.57, ci = NULL)

format_ci(1.20, 3.57, ci = NULL, brackets = FALSE)
format_ci(1.20, 3.57, ci = NULL, brackets = c("(", ")"))
format_ci(c(1.205645, 23.4), c(3.57, -1.35), ci = 0.90)
format_ci(c(1.20, NA, NA), c(3.57, -1.35, NA), ci = 0.90)

automatic alignment of width, useful for printing multiple CIs in columns
x <- format_ci(c(1.205, 23.4, 100.43), c(3.57, -13.35, 9.4))
cat(x, sep = "\n")

x <- format_ci(c(1.205, 23.4, 100.43), c(3.57, -13.35, 9.4), width = "auto")
cat(x, sep = "\n")

format_message Format messages and warnings

Description

Inserts line breaks into a longer message or warning string. Line length is adjusted to maximum
length of the console, if the width can be accessed. By default, new lines are indented by two
spaces.

format_alert() is a wrapper that combines formatting a string with a call to message (), warning()
or stop(). By default, format_alert() creates amessage(). format_warning() and format_error()
change the default type of exception to warning() and stop(), respectively.

62 format_message
Usage
format_message(
string,
line_length = 0.9 * getOption("width"”, 80),
indent = " "
)
format_alert(
string,
line_length = 0.9 * getOption("width", 80),
indent = " ",
type = "message”,
call = FALSE,
immediate = FALSE
)
format_warning(..., immediate = FALSE)
format_error(...)
Arguments
string A string.
Further strings that will be concatenated as indented new lines.
line_length Numeric, the maximum length of a line. The default is 90% of the width of the
console window.
indent Character vector. If further lines are specified in . . ., a user-defined string can be
specified to indent subsequent lines. Defaults to ” " (two white spaces), hence
for each start of the line after the first line, two white space characters are in-
serted.
type Type of exception alert to raise. Can be "message” for message(), "warning”
for warning(), or "error” for stop().
call Logical. Indicating if the call should be included in the the error message. This
is usually confusing for users when the function producing the warning or error
is deep within another function, so the default is FALSE.
immediate Logical. Indicating if the warning should be printed immediately. Only ap-
plies to format_warning() or format_alert() with type = "warning"”. The
default is FALSE.
Details

There is an experimental formatting feature implemented in this function. You can use following

tags:

e {.b text} for bold formatting

format_message 63

e {.i text} to use italic font style

e {.url www.url.com} formats the string as URL (i.e., enclosing URL in < and >, blue color
and italic font style)

e {.pkg packagename?} formats the text in blue color.

This features has some limitations: it’s hard to detect the exact length for each line when the string
has multiple lines (after line breaks) and the string contains formatting tags. Thus, it can happen
that lines are wrapped at an earlier length than expected. Furthermore, if you have multiple words
in a format tag ({ .b one two three}), a line break might occur inside this tag, and the formatting
no longer works (messing up the message-string).

Value

For format_message(), a formatted string. For format_alert() and related functions, the re-
quested exception, with the exception formatted using format_message().

Examples

msg <- format_message(”"Much too long string for just one line, I guess!”,
line_length = 15
)

message(msg)

msg <- format_message("Much too long string for just one line, I guess!”,
"First new line”,
"Second new line",
"(both indented)"”,
line_length = 30
)

message(msg)

msg <- format_message("Much too long string for just one line, I guess!”,
"First new line",
"Second new line",
"(not indented)”,
line_length = 30,
indent = ""

)

message (msg)

Caution, experimental! See 'Details'

msg <- format_message(
"This is {.i italic}, visit {.url easystats.github.io/easystats}”,
line_length = 30

)

message(msg)

message
format_alert("This is a message.")
format_alert("This is a warning.", type = "message")

64 format_number

error
try(format_error(”"This is an error."))

warning
format_warning("This is a warning.")

format_number Convert number to words

Description

Convert number to words

Usage
format_number(x, textual = TRUE, ...)
Arguments
X Number.
textual Return words. If FALSE, will run format_value().
Arguments to be passed to format_value() if textual is FALSE.
Value

A formatted string.

Note

The code has been adapted from here https://github.com/ateucher/useful_code/blob/master/R/numbers2words.r

Examples

format_number (2)
format_number (45)
format_number (324.68765)

format_p

65

format_p

p-values formatting

Description

Format p-values.

Usage

format_p(

P,
stars = FALSE

’

stars_only = FALSE,
whitespace = TRUE,

n.n

name = "p",

nn

missing = ,

decimal_separator = NULL,

digits = 3,

Arguments

p

stars

stars_only

whitespace

name

missing

value or vector of p-values.

Add significance stars (e.g., p < .001***). For Bayes factors, the thresholds for
"significant” results are values larger than 3, 10, and 30.

Return only significance stars.

Logical, if TRUE (default), preserves whitespaces. Else, all whitespace characters
are removed from the returned string.

Name prefixing the text. Can be NULL.

Value by which NA values are replaced. By default, an empty string (i.e. "") is

returned for NA.

decimal_separator

digits

Value

A formatted string.

Character, if not NULL, will be used as decimal separator.

Number of significant digits. May also be "scientific” to return exact p-
values in scientific notation, or "apa” to use an APA 7th edition-style for p-
values (equivalent to digits =3). If "scientific”, control the number of
digits by adding the value as a suffix, e.g.m digits = "scientific4” to have
scientific notation with 4 decimal places.

Arguments from other methods.

66

Examples

format_p(c(.02, .
format_p(c(.02, .

065, 0, .23))
065, @, .23), name = NULL)

format_p(c(.02, .065, @, .23), stars_only = TRUE)

model <- Im(mpg ~ wt + cyl, data = mtcars)
p <- coef(summary(model))[, 4]

format_p(p, digits = "apa"”)

format_p(p, digits = "scientific")
format_p(p, digits = "scientific2")

format_pd

format_pd

Probability of direction (pd) formatting

Description

Probability of direction (pd) formatting

Usage

format_pd(pd, stars = FALSE, stars_only = FALSE, name = "pd")

Arguments

pd

stars

stars_only

name

Value

A formatted string.

Examples

format_pd(0.12)

format_pd(c(@0.12, 1, 0.9999, 0.98, 0.995, 0.96), name
format_pd(c(@0.12, 1, 0.9999, 0.98, ©.995, 0.96), stars = TRUE)

Probability of direction (pd).

Add significance stars (e.g., p < .001***). For Bayes factors, the thresholds for

"significant” results are values larger than 3, 10, and 30.

Return only significance stars.

Name prefixing the text. Can be NULL.

NULL)

format_rope 67

format_rope Percentage in ROPE formatting

Description

Percentage in ROPE formatting

Usage

format_rope(rope_percentage, name = "in ROPE"”, digits = 2)

Arguments

rope_percentage
Value or vector of percentages in ROPE.

name Name prefixing the text. Can be NULL.

digits Number of significant digits. May also be "scientific” to return exact p-
values in scientific notation, or "apa” to use an APA 7th edition-style for p-
values (equivalent to digits =3). If "scientific”, control the number of
digits by adding the value as a suffix, e.g.m digits = "scientific4” to have
scientific notation with 4 decimal places.

Value

A formatted string.

Examples

format_rope(c(0.02, 0.12, 0.357, @))
format_rope(c(0.02, 0.12, 0.357, @), name = NULL)

format_string String Values Formatting

Description

String Values Formatting
Usage
format_string(x, ...)

S3 method for class 'character'
format_string(x, length = NULL, abbreviate = "...", ...)

68 format _table

Arguments
X String value.
Arguments passed to or from other methods.
length Numeric, maximum length of the returned string. If not NULL, will shorten the
string to a maximum length, however, it will not truncate inside words. Le.
if the string length happens to be inside a word, this word is removed from the
returned string, so the returned string has a maximum length of length, but
might be shorter.
abbreviate String that will be used as suffix, if x was shortened.
Value

A formatted string.

Examples

s <- "This can be considered as very long string!”
string is shorter than max.length, so returned as is
format_string(s, 60)

string is shortened to as many words that result in
a string of maximum 20 chars
format_string(s, 20)

format_table Parameter table formatting

Description

This functions takes a data frame (usually with model parameters) as input and formats certain
columns into a more readable layout (like collapsing separate columns for lower and upper confi-
dence interval values). Furthermore, column names are formatted as well. Note that format_table()
converts all columns into character vectors!

Usage

format_table(
X,
pretty_names = TRUE,
stars = FALSE,
stars_only = FALSE,
digits = 2,
ci_width = "auto”,
ci_brackets = TRUE,
ci_digits = digits,
p_digits = 3,

format_table

69

rope_digits = digits,

ic_digits

1,

zap_small = FALSE,
preserve_attributes = FALSE,

exact = TRUE,
use_symbols

getOption("insight_use_symbols”, FALSE),

select = NULL,

verbose =

Arguments

X

pretty_names

stars

stars_only

TRUE,

A data frame of model’s parameters, as returned by various functions of the
easystats-packages. May also be a result from broom: : tidy().

Return "pretty" (i.e. more human readable) parameter names.

If TRUE, add significance stars (e.g., p < .007T**x). Can also be a character
vector, naming the columns that should include stars for significant values. This
is especially useful for Bayesian models, where we might have multiple columns
with significant values, e.g. BF for the Bayes factor or pd for the probability
of direction. In such cases, use stars =c("pd"”, "BF") to add stars to both
columns, or stars = "BF" to only add stars to the Bayes factor and exclude the
pd column. Currently, following columns are recognized: "BF", "pd"” and "p".

If TRUE, return significant stars only (and no p-values).

digits, ci_digits, p_digits, rope_digits, ic_digits

ci_width

ci_brackets

zap_small

Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

Minimum width of the returned string for confidence intervals. If not NULL and
width is larger than the string’s length, leading whitespaces are added to the
string. If width="auto", width will be set to the length of the longest string.

Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

preserve_attributes

exact

use_symbols

Logical, if TRUE, preserves all attributes from the input data frame.

Formatting for Bayes factor columns, in case the provided data frame contains
such a column (i.e. columns named "BF" or "log_BF"). For exact = TRUE, very
large or very small values are then either reported with a scientific format (e.g.,
4.24e5), else as truncated values (as "> 1000" and "< 1/1000").

Logical, if TRUE, column names that refer to particular effectsizes (like Phi,
Omega or Epsilon) include the related unicode-character instead of the writ-

70 format _table

ten name. This only works on Windows for R >=4.2, and on OS X or Linux for
R >=4.0. It is possible to define a global option for this setting, see *Note’.

select Determines which columns are printed and the table layout. There are two op-
tions for this argument:

* A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. Following tokens are replaced by the re-
lated coefficients or statistics: {estimate}, {se}, {ci} (or {ci_low} and
{ci_high}), {p3}, {pd} and {stars}. The token {ci} will be replaced by
{ci_low}, {ci_high}. Example: select = "{estimate}{stars} ({ci})"
It is possible to create multiple columns as well. A | separates values into
new cells/columns. Example: select = "{estimate} ({ci}) [{p}".

¢ A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:

— "minimal”: Estimates, confidence intervals and numeric p-values, in
two columns. This is equivalent to select = "{estimate} ({ci}) [{p}".

— "short": Estimate, standard errors and numeric p-values, in two columns.
This is equivalent to select = "{estimate} ({sel}) [{p}".

— "ci": Estimates and confidence intervals, no asterisks for p-values.
This is equivalent to select = "{estimate} ({ci})".

n

— "se": Estimates and standard errors, no asterisks for p-values. This is
equivalent to select = "{estimate} ({se})".

— "ci_p": Estimates, confidence intervals and asterisks for p-values. This
is equivalent to select = "{estimate}{stars} ({ci})".

— "se_p": Estimates, standard errors and asterisks for p-values. This is
equivalent to select = "{estimate}{stars} ({se})"..

Using select to define columns will re-order columns and remove all columns

related to uncertainty (standard errors, confidence intervals), test statistics, and
p-values (and similar, like pd or BF for Bayesian models), because these are as-

sumed to be included or intentionally excluded when using select. The new
column order will be: Parameter columns first, followed by the "glue" columns,
followed by all remaining columns. If further columns should also be placed

first, add those as focal_terms attributes to x. L.e., following columns are con-

siders as "parameter columns" and placed first: c(easystats_columns("parameter”),
attributes(x)$focal_terms).

Note: glue-like syntax is still experimental in the case of more complex models
(like mixed models) and may not return expected results.

verbose Toggle messages and warnings.

Arguments passed to or from other methods.

Value

A data frame. Note that format_table() converts all columns into character vectors!

format_value 71

Note
options(insight_use_symbols = TRUE) overrides the use_symbols argument and always dis-
plays symbols, if possible.

See Also

Vignettes Formatting, printing and exporting tables and Formatting model parameters.

Examples

format_table(head(iris), digits = 1)

m <- 1m(Sepal.Length ~ Species * Sepal.Width, data = iris)
X <- parameters::model_parameters(m)
as.data.frame(format_table(x))

as.data.frame(format_table(x, p_digits = "scientific"))
"glue" columns
as.data.frame(format_table(x, select = "minimal”))

as.data.frame(format_table(x, select = "{estimate}{stars}|{p}"))

model <- rstanarm::stan_glm(
Sepal.Length ~ Species,
data = iris,
refresh = 0,
seed = 123
)
X <- parameters::model_parameters(model, ci = c(0.69, 0.89, 0.95))
as.data.frame(format_table(x))

format_value Numeric Values Formatting

Description

format_value() converts numeric values into formatted string values, where formatting can be
something like rounding digits, scientific notation etc. format_percent() is a short-cut for format_value(as_percent
= TRUE).

Usage
format_value(x, ...)
S3 method for class 'data.frame'

format_value(
X,

https://easystats.github.io/insight/articles/display.html
https://easystats.github.io/parameters/articles/model_parameters_formatting.html

72

)

digits = 2,
protect_integers = FALSE,
missing = "",

width = NULL,

as_percent = FALSE,
zap_small = FALSE,
lead_zero = TRUE,
style_positive = "none”,
style_negative = "hyphen”,
decimal_point = getOption(”"OutDec"),
big_mark = NULL,

S3 method for class 'numeric'
format_value(

)
format_percent(x, ...)
Arguments
X Numeric value.
Arguments passed to or from other methods.
digits

X,

digits = 2,
protect_integers = FALSE,
missing = "",

width = NULL,

as_percent = FALSE,
zap_small = FALSE,
lead_zero = TRUE,
style_positive = "none”,
style_negative = "hyphen”,
decimal_point = getOption(”"OutDec"),
big_mark = NULL,

format_value

Number of digits for rounding or significant figures. May also be "signif” to

return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5"” for 5

significant figures (see also signif()).

protect_integers

missing

width

Should integers be kept as integers (i.e., without decimals)?

returned for NA.

Value by which NA values are replaced. By default, an empty string (i.e. "") is

Minimum width of the returned string. If not NULL and width is larger than the
string’s length, leading whitespaces are added to the string.

format_value
as_percent

zap_small

lead_zero

style_positive

style_negative

decimal_point

big_mark

Value

A formatted string.

Examples

73

Logical, if TRUE, value is formatted as percentage value.

Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

Logical, if TRUE (default), includes leading zeros, else leading zeros are dropped.

A string that determines the style of positive numbers. May be "none” (default),
"plus” to add a plus-sign or "space” to precede the string by a Unicode "figure
space', i.e., a space equally as wide as a number or +.

A string that determines the style of negative numbers. May be "hyphen” (de-
fault), "minus” for a proper Unicode minus symbol or "parens” to wrap the
number in parentheses.

Character string containing a single character that is used as decimal point in
output conversions.

Character used as thousands separator. If NULL (default), no thousands separator
isused. Use ", " for comma separator or " " for space separator.

format_value(1.20)

format_value(1.2)

format_value(1.2012313)

format_value(c(0.
format_value(c(@.
format_value(c(@.
format_value(c(0.
format_value(c(@.
format_value(c(@.
format_value(c(0.
format_value(c(12
format_value(c(12

default
format_value(c(@.

0045, 234, -23))

0045, 0.12, 0.34))

0045, 0.12, 0.34), as_percent = TRUE)
0045, 0.12, 0.34), digits = "scientific")
0045, 0.12, 0.34), digits = "scientific2")
045, 0.12, 0.34), lead_zero = FALSE)

0045, 0.12, 0.34), decimal_point = ",")
34567.89, 1234.56), big_mark = ",")
34567.89, 1234.56), big_mark = " ")

0045, 0.123, 0.345))

significant figures

format_value(c(@.

0045, 0.123, 0.345), digits = "signif")

format_value(as.factor(c("A", "B", "A")))

format_value(iris

format_value(3)

$Species)

format_value(3, protect_integers = TRUE)

format_value(head(iris))

74 get_auxiliary

get_auxiliary Get auxiliary parameters from models

Description

Returns the requested auxiliary parameters from models, like dispersion, sigma, or beta...

Usage

get_auxiliary(
X,
type = "sigma",
summary = TRUE,
centrality = "mean”,
verbose = TRUE,

get_dispersion(x, ...)

Default S3 method:

get_dispersion(x, ...)
Arguments
X A model.
type The name of the auxiliary parameter that should be retrieved. "sigma” is avail-

able for most models, "dispersion” for models of class glm, glmerMod or
glmmTMB as well as brmsfit. "beta” and other parameters are currently only
returned for brmsfit models. See *Details’.

summary Logical, indicates whether the full posterior samples (summary = FALSE)) or
the summarized centrality indices of the posterior samples (summary = TRUE))
should be returned as estimates.

centrality Only for models with posterior samples, and when summary = TRUE. In this
case, centrality = "mean” would calculate means of posterior samples for
each parameter, while centrality = "median” would use the more robust me-
dian value as measure of central tendency.

verbose Toggle warnings.

Currently not used.

Details

Currently, only sigma and the dispersion parameter are returned, and only for a limited set of mod-
els.

get_call 75

Value

The requested auxiliary parameter, or NULL if this information could not be accessed.

Sigma Parameter

See get_sigma().

Dispersion Parameter

There are many different definitions of "dispersion"”, depending on the context. get_auxiliary()
returns the dispersion parameters that usually can be considered as variance-to-mean ratio for gener-
alized (linear) mixed models. Exceptions are models of class glmmTMB, where the dispersion equals
o2. In detail, the computation of the dispersion parameter for generalized linear models is the ratio
of the sum of the squared working-residuals and the residual degrees of freedom. For mixed models
of class glmer, the dispersion parameter is also called ¢ and is the ratio of the sum of the squared
Pearson-residuals and the residual degrees of freedom. For models of class glmmTMB, dispersion is

a2

brms-models

For models of class brmsfit, there are different options for the type argument. See a list of sup-
ported auxiliary parameters here: find_parameters.BGGM().

Examples

from ?glm

clotting <- data.frame(
u=c(5, 10, 15, 20, 30, 40, 60, 80, 100),
lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)

)
model <- glm(lot1l ~ log(u), data = clotting, family = Gamma())
get_auxiliary(model, type = "dispersion”) # same as summary(model)$dispersion
get_call Get the model’s function call
Description

Returns the model’s function call when available.

Usage
get_call(x)

Arguments

X A fitted mixed model.

76

Value

A function call.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_call(m)

m <- 1lme4::1lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data

get_call(m)

get_data

get_data

Get the data that was used to fit the model

Description

This functions tries to get the data that was used to fit the model and returns it as data frame.

Usage

get_data(x, ...)

Default S3 method:
get_data(x, source = "environment”, verbose = TRUE,

S3 method for class 'glmmTMB'

get_data(
X,
effects = "all",
component = "all”,
source = "environment"”,

verbose = TRUE,

)

S3 method for class 'afex_aov'
get_data(x, shape = c("long"”, "wide"), ...)
S3 method for class 'rma'
get_data(
X,
source = "environment"”,
verbose = TRUE,
include_interval = FALSE,
transf = NULL,

get_data 77

transf_args = NULL,
ci =0.95,

Arguments

X A fitted model.
Currently not used.

source String, indicating from where data should be recovered. If source = "environment”

(default), data is recovered from the environment (e.g. if the data is in the
workspace). This option is usually the fastest way of getting data and ensures
that the original variables used for model fitting are returned. Note that always
the current data is recovered from the environment. Hence, if the data was
modified after model fitting (e.g., variables were recoded or rows filtered), the
returned data may no longer equal the model data. If source = "frame" (or
"mf"), the data is taken from the model frame. Any transformed variables are
back-transformed, if possible. This option returns the data even if it is not avail-
able in the environment, however, in certain edge cases back-transforming to
the original data may fail. If source = "environment” fails to recover the data,
it tries to extract the data from the model frame; if source = "frame” and data
cannot be extracted from the model frame, data will be recovered from the envi-
ronment. Both ways only returns observations that have no missing data in the
variables used for model fitting.

For objects from package survey, "mf" extracts data from the model frame
of the survey design object, which is usually equivalent to the original data.
source = "environment” extracts data from the model-object in the environ-
ment, which usually includes processed variables (like the " (weights)" vari-
able for weights).

verbose Toggle messages and warnings.

effects Should model data for fixed effects ("fixed"), random effects ("random”) or
both ("all") be returned? Only applies to mixed or gee models.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

78 get_data

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

shape Return long or wide data? Only applicable in repeated measures designs.
include_interval

For meta-analysis models, should normal-approximation confidence intervals be
added for each response effect size?

transf For meta-analysis models, if intervals are included, a function applied to each
response effect size and its interval.

transf_args For meta-analysis models, an optional list of arguments passed to the transf
function.

ci For meta-analysis models, the Confidence Interval (CI) level if include_interval

= TRUE. Default to 0.95 (95%).

Value

The data that was used to fit the model.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms"”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.

get_datagrid 79

Special models

Some model classes also allow rather uncommon options. These are:

non

e mhurdle: "infrequent_purchase”, "ip”, and "auxiliary"”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”
 averaging:"conditional” and "full”

* mjoint: "survival”

e mfx: "precision”, "marginal”

* betareg, DirichletRegModel: "precision”

e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

« selection: "selection”, "outcome”, and "auxiliary”

non non

e lemm: "membership”, "longitudinal”, "beta"”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(cbpp, package = "1lme4")

cbpp$trials <- cbpp$size - cbpp$incidence

m <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial)
head(get_data(m))

get_datagrid Create a reference grid

Description

Create a reference matrix, useful for visualisation, with evenly spread and combined values. Usually
used to generate predictions using get_predicted(). See this vignette for a tutorial on how to
create a visualisation matrix using this function.

Alternatively, these can also be used to extract the "grid" columns from objects generated by em-
means and marginaleffects (see those methods for more info).

https://easystats.github.io/modelbased/articles/visualisation_matrix.html

80

Usage

get_datagrid(x, ...)

S3 method for class 'data.frame'
get_datagrid(

)

X’

by = "al]-",

factors = "reference”,
numerics = "mean”,
length = 10,

range = "range”,

preserve_range = FALSE,
protect_integers = TRUE,
digits = 3,

reference = x,

S3 method for class 'numeric'
get_datagrid(

)

X,
length = 10,

range = "range”,
protect_integers = TRUE,
digits = 3,

S3 method for class 'factor'
get_datagrid(x, ...)

Default S3 method:
get_datagrid(

X’

by = "all",

factors = "reference”,
numerics = "mean”,

preserve_range = TRUE,
reference = x,
include_smooth = TRUE,
include_random = FALSE,
include_response = FALSE,
data = NULL,

digits = 3,

verbose = TRUE,

get_datagrid

get_datagrid 81

Arguments
X An object from which to construct the reference grid.
Arguments passed to or from other methods (for instance, length or range to
control the spread of numeric variables.).
by Indicates the focal predictors (variables) for the reference grid and at which

values focal predictors should be represented. If not specified otherwise, repre-
sentative values for numeric variables or predictors are evenly distributed from
the minimum to the maximum, with a total number of length values covering
that range (see ’Examples’). Possible options for by are:

* Select variables only:
— "all”, which will include all variables or predictors.

— a character vector of one or more variable or predictor names, like
c("Species”, "Sepal.Width"), which will create a grid of all com-
binations of unique values.

Note: If by specifies only variable names, without associated values, the
following occurs: factor variables use all their levels, numeric variables
use a range of length equally spaced values between their minimum and
maximum, and character variables use all their unique values.

¢ Select variables and values:

— by can be a list of named elements, indicating focal predictors and their
representative values, e.g. by = list(mpg = 10:20), by = 1ist(Sepal.Length
=c(2, 4), Species ="setosa"),orby = list(Sepal.Length = seq(2,
5,0.5)).

— Instead of a list, it is possible to write a string representation, or a char-
acter vector of such strings, e.g. by = "mpg = 10:20", by = c("Sepal.Length
=c(2, 4)", "Species = 'setosa'"), orby = "Sepal.Length = seq(2,

5, ©.5)". Note the usage of single and double quotes to assign strings
within strings.

— In general, any expression after a = will be evaluated as R code, which
allows using own functions, e.g.
fun <- function(x) x"2
get_datagrid(iris, by = "Sepal.Width = fun(2:5)")

Note: If by specifies variables with their associated values, argument length
is ignored.

There is a special handling of assignments with brackets, i.e. values defined in-
side [and], which create summaries for numeric variables. Following "tokens"
that creates pre-defined representative values are possible:
 for mean and -/+ 1 SD around the mean: "x = [sd]"
e for median and -/+ 1 MAD around the median: "x = [mad]”
* for Tukey’s five number summary (minimum, lower-hinge, median, upper-
hinge, maximum): "x = [fivenum]”
* for quartiles: "x = [quartiles]” (same as "x = [fivenum]”, but excluding
minimum and maximum)
* for terciles: "x = [terciles]”

82

factors

numerics

length

range

get_datagrid

* for terciles, including minimum and maximum: "x = [terciles2]”
* for a pretty value range: "x = [pretty]”

e for minimum and maximum value: "x = [minmax]"

¢ for 0 and the maximum value: "x = [zeromax]"

 for a random sample from all values: "x = [sample <number>]", where
<number> should be a positive integer, e.g. "x = [sample 15]".

Note: the length argument will be ignored when using brackets-tokens.

The remaining variables not specified in by will be fixed (see also arguments
factors and numerics).

Type of summary for factors not specified in by. Can be "reference” (set at
the reference level), "mode” (set at the most common level) or "all” to keep all
levels.

Type of summary for numeric values not specified in by. Can be "all” (will
duplicate the grid for all unique values), any function ("mean”, "median”, ...) or
a value (e.g., numerics = @). Special functions are "mode”, which will set the
numeric variable to its most common value, and "integer", which returns the

rounded mean.

Length of numeric target variables selected in by (if no representative values are
additionally specified). This arguments controls the number of (equally spread)
values that will be taken to represent the continuous (non-integer alike!) vari-
ables. A longer length will increase precision, but can also substantially increase
the size of the datagrid (especially in case of interactions). If NA, will return all
the unique values.

In case of multiple continuous target variables, length can also be a vector of
different values (see ’Examples’). In this case, length must be of same length
as numeric target variables. If length is a named vector, values are matched
against the names of the target variables.

When range = "range” (the default), length is ignored for integer type vari-

ables when length is larger than the number of unique values and protect_integers

is TRUE (default). Set protect_integers = FALSE to create a spread of length
number of values from minimum to maximum for integers, including fractions
(i.e., to treat integer variables as regular numeric variables).

length is furthermore ignored if "tokens" (in brackets [and]) are used in by,
or if representative values are additionally specified in by.

Option to control the representative values given in by, if no specific values were
provided. Use in combination with the length argument to control the number
of values within the specified range. range can be one of the following:

* "range"” (default), will use the minimum and maximum of the original data
vector as end-points (min and max). For integer variables, the length argu-
ment will be ignored, and "range” will only use values that appear in the
data. Set protect_integers = FALSE to override this behaviour for integer
variables.

« if an interval type is specified, such as "iqr”, "ci”, "hdi"” or "eti”, it
will spread the values within that range (the default CI width is 95% but
this can be changed by adding for instance ci = 0.90.) See IQR() and

get_datagrid 83

bayestestR::ci(). This can be useful to have more robust change and
skipping extreme values.

* if "sd” or "mad”, it will spread by this dispersion index around the mean or
the median, respectively. If the length argument is an even number (e.g.,
4), it will have one more step on the positive side (i.e., -1, @, +1, +2).
The result is a named vector. See ’Examples.’

» "grid"” will create a reference grid that is useful when plotting predictions,
by choosing representative values for numeric variables based on their po-
sition in the reference grid. If a numeric variable is the first predictor in
by, values from minimum to maximum of the same length as indicated in
length are generated. For numeric predictors not specified at first in by,
mean and -1/+1 SD around the mean are returned. For factors, all levels are
returned.

* "pretty” will create a range "pretty" values, using pretty(), where the
value in length is used for the n argument in pretty().

range can also be a vector of different values (see ’Examples’). In this case,
range must be of same length as numeric target variables. If range is a named
vector, values are matched against the names of the target variables.

preserve_range Inthe case of combinations between numeric variables and factors, setting preserve_range
= TRUE will drop the observations where the value of the numeric variable is
originally not present in the range of its factor level. This leads to an unbal-
anced grid. Also, if you want the minimum and the maximum to closely match
the actual ranges, you should increase the length argument.
protect_integers
Defaults to TRUE. Indicates whether integers (whole numbers) should be treated
as integers (i.e., prevent adding any in-between round number values), or - if
FALSE - as regular numeric variables. Only applies to focal predictors (specified
in by) and when:

1. range = "range” (the default), or if range = "grid"” and the first predictor
in by is an integer;
2. length is larger than the number of unique values for the variable.

If length is smaller than the number of unique values, protect_integers is
ignored.

digits Number of digits used for rounding numeric values specified in by. E.g., x = [sd]
will round the mean and +-/1 SD in the data grid to digits.

reference The reference vector from which to compute the mean and SD. Used when stan-
dardizing or unstandardizing the grid using effectsize: :standardize.

include_smooth If x is a model object, decide whether smooth terms should be included in the
data grid or not.

include_random If x is a mixed model object, decide whether random effect terms should be
included in the data grid or not. If include_random is FALSE, but x is a mixed
model with random effects, these will still be included in the returned grid, but
set to their "population level" value (e.g., NA for glmmTMB or @ for merMod).
This ensures that common predict () methods work properly, as these usually
need data with all variables in the model included.

84 get_datagrid

include_response
If x is a model object, decide whether the response variable should be included
in the data grid or not.

data Optional, the data frame that was used to fit the model. Usually, the data is
retrieved via get_data().
verbose Toggle warnings.
Details

Data grids are an (artificial or theoretical) representation of the sample. They consists of predictors
of interest (so-called focal predictors), and meaningful values, at which the sample characteristics
(focal predictors) should be represented. The focal predictors are selected in by. To select mean-
ingful (or representative) values, either use by, or use a combination of the arguments length and
range.

Value

Reference grid data frame.

See Also

get_predicted() to extract predictions, for which the data grid is useful, and see the methods for
objects generated by emmeans and marginaleffects to extract the "grid" columns.

Examples

Datagrids of variables and dataframes
data(iris)
data(mtcars)

Single variable is of interest; all others are "fixed" -----------------—-

Factors, returns all the levels

get_datagrid(iris, by = "Species")

Specify an expression

get_datagrid(iris, by = "Species = c('setosa', 'versicolor')")

Numeric variables, default spread length = 10
get_datagrid(iris, by = "Sepal.Length")

change length

get_datagrid(iris, by = "Sepal.Length”, length = 3)

change non-targets fixing
get_datagrid(iris[2:150,],

by = "Sepal.Length”,

factors = "mode"”, numerics = "median”

)

change min/max of target
get_datagrid(iris, by = "Sepal.Length”, range = "ci”, ci = 0.90)

get_datagrid

Manually change min/max

get_datagrid(iris, by = "Sepal.Length = c(0, 1)")

-1 SD, mean and +1 SD
get_datagrid(iris, by = "Sepal.Length = [sd]")

rounded to 1 digit
get_datagrid(iris, by = "Sepal.Length = [sd]"”, digits = 1)

identical to previous line: -1 SD, mean and +1 SD
get_datagrid(iris, by = "Sepal.Length”, range = "sd”, length = 3)

quartiles
get_datagrid(iris, by = "Sepal.Length = [quartiles]"”)

Standardization and unstandardization
data <- get_datagrid(iris, by = "Sepal.Length”, range = "sd", length = 3)

It is a named vector (extract names with “names(out$Sepal.Length)™)
data$Sepal.Length
datawizard::standardize(data, select = "Sepal.Length”)

Manually specify values

data <- get_datagrid(iris, by = "Sepal.Length = c(-2, 0, 2)")
data

datawizard: :unstandardize(data, select = "Sepal.Length")

Multiple variables are of interest, creating a combination --------------

get_datagrid(iris, by = c("Sepal.Length”, "Species"), length = 3)
get_datagrid(iris, by = c(”Sepal.Length”, "Petal.Length"), length = c(3, 2))
get_datagrid(iris, by = c(1, 3), length = 3)

get_datagrid(iris, by = c("Sepal.Length”, "Species"), preserve_range = TRUE)
get_datagrid(iris, by = c("Sepal.Length”, "Species”), numerics = 0)
get_datagrid(iris, by = c(”Sepal.Length = 3", "Species”))

get_datagrid(iris, by = c("Sepal.Length = c(3, 1)", "Species = 'setosa'"))

specify length individually for each focal predictor
values are matched by names
get_datagrid(mtcars[1:4], by = c("mpg"”, "hp"), length = c(hp = 3, mpg = 2))

Numeric and categorical variables, generating a grid for plots
default spread when numerics are first: length = 10
get_datagrid(iris, by = c("”Sepal.Length”, "Species”), range = "grid")

default spread when numerics are not first: length = 3 (-1 SD, mean and +1 SD)
get_datagrid(iris, by = c("”Species”, "Sepal.Length”), range = "grid")

range of values
get_datagrid(iris, by = c(”"Sepal.Width = 1:5", "Petal.Width = 1:3"))

With list-style by-argument

86 get_datagrid.emmGrid

get_datagrid(
iris,
by = list(Sepal.Length = 1:3, Species = c("setosa”, "versicolor"))

)

With models

Fit a linear regression
model <- 1m(Sepal.Length ~ Sepal.Width * Petal.Length, data = iris)

Get datagrid of predictors
data <- get_datagrid(model, length = c(20, 3), range = c("range"”, "sd"))
same as: get_datagrid(model, range = "grid”, length = 20)

Add predictions
data$Sepal.Length <- get_predicted(model, data = data)

Visualize relationships (each color is at -1 SD, Mean, and + 1 SD of Petal.lLength)
plot(data$Sepal .Width, data$Sepal.Length,

col = data$Petal.Length,

main = "Relationship at -1 SD, Mean, and + 1 SD of Petal.Length”
)

get_datagrid.emmGrid Extract a reference grid from objects created by {emmeans} and
{marginaleffects}

Description

Extract a reference grid from objects created by {emmeans} and {marginaleffects}

Usage
S3 method for class 'emmGrid'
get_datagrid(x, ...)
Arguments
X An object created by a function such as emmeans: : emmeans(), marginaleffects: :slopes(),
etc.

Currently not used

Details

Note that for {emmeans} inputs the results is a proper grid (all combinations of values are repre-
sented), except when a nesting structure is detected. Additionally, when the input is an emm_list
object, the function will rbind() the data-grids of all the elements in the input.

For {marginaleffects} inputs, the output may very well be a non-grid result. See examples.

get_deviance 87

Value

A data. frame with key columns that identify the rows in x.

Examples

data("mtcars")
mtcars$cyl <- factor(mtcars$cyl)

mod <- glm(am ~ cyl + hp + wt,
family = binomial("logit"),
data = mtcars

eml <- emmeans::emmeans(mod, ~ cyl + hp, at = list(hp = c(100, 150)))
get_datagrid(eml)

contr1 <- emmeans::contrast(eml, method = "consec”, by = "hp")
get_datagrid(contr1)

emll <- emmeans::emmeans(mod, pairwise ~ cyl | hp, at = list(hp = c(100, 150)))
get_datagrid(emll) # not a "true"” grid
mfx1 <- marginaleffects::slopes(mod, variables = "hp")

get_datagrid(mfx1) # not a "true”" grid

mfx2 <- marginaleffects::slopes(mod, variables = c("hp”, "wt"), by = "am")
get_datagrid(mfx2)

contr2 <- marginaleffects: :avg_comparisons(mod)
get_datagrid(contr2) # not a "true” grid

get_deviance Model Deviance

Description

Returns model deviance (see stats: :deviance()).

Usage

get_deviance(x, ...)

Default S3 method:
get_deviance(x, verbose = TRUE, ...)

88 get_df

Arguments
X A model.
Not used.
verbose Toggle warnings and messages.
Details

For GLMMs of class glmerMod, glmmTMB or MixMod, the absolute unconditional deviance is re-
turned (see ’Details’ in ?1me4: :merMod-class), i.e. minus twice the log-likelihood. To get the
relative conditional deviance (relative to a saturated model, conditioned on the conditional modes
of random effects), use deviance(). The value returned get_deviance() usually equals the
deviance-value from the summary ().

Value

The model deviance.

Examples

data(mtcars)
x <= Im(mpg ~ cyl, data = mtcars)
get_deviance(x)

get_df Extract degrees of freedom

Description

Estimate or extract residual or model-based degrees of freedom from regression models.

Usage

get_df(x, ...)

Default S3 method:

get_df(x, type = "residual”, verbose = TRUE, ...)
Arguments
X A statistical model.

Currently not used.

type Type of approximation for the degrees of freedom. Can be one of the following:

get_df 89

* "residual” (aka "analytical”) returns the residual degrees of freedom,
which usually is what stats: :df.residual() returns. If a model object
has no method to extract residual degrees of freedom, these are calculated
as n-p, i.e. the number of observations minus the number of estimated
parameters. If residual degrees of freedom cannot be extracted by either
approach, returns Inf.

* "wald" returns residual (aka analytical) degrees of freedom for models with
t-statistic, 1 for models with Chi-squared statistic, and Inf for all other
models. Also returns Inf if residual degrees of freedom cannot be ex-
tracted.

* "normal” always returns Inf.

* "model” returns model-based degrees of freedom, i.e. the number of (esti-
mated) parameters.

 For mixed models, can also be "ml1" (or "m-1-1", approximation of de-
grees of freedom based on a "m-I-1" heuristic as suggested by EIff et al.
2019) or "between-within” (or "betwithin").

¢ For mixed models of class merMod, type can also be "satterthwaite” or
"kenward-roger"” (or "kenward"). See ’Details’.

Usually, when degrees of freedom are required to calculate p-values or confi-
dence intervals, type = "wald" is likely to be the best choice in most cases.

verbose Toggle warnings.

Details

Degrees of freedom for mixed models

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In
such cases it is recommended to approximate a more accurate number of degrees of freedom for
such inferential statistics (see Li and Redden 2015).

m-I-1 degrees of freedom

The m-I-1 heuristic is an approach that uses a t-distribution with fewer degrees of freedom. In par-
ticular for repeated measure designs (longitudinal data analysis), the m-1-1 heuristic is likely to be
more accurate than simply using the residual or infinite degrees of freedom, because get_df (type
="ml11") returns different degrees of freedom for within-cluster and between-cluster effects. Note
that the "m-1-1" heuristic is not applicable (or at least less accurate) for complex multilevel designs,
e.g. with cross-classified clusters. In such cases, more accurate approaches like the Kenward-Roger
approximation is recommended. However, the "m-1-1" heuristic also applies to generalized mixed
models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models
only.

Between-within degrees of freedom

The Between-within denominator degrees of freedom approximation is, similar to the "m-1-1"
heuristic, recommended in particular for (generalized) linear mixed models with repeated mea-
surements (longitudinal design). get_df (type = "betwithin”) implements a heuristic based on
the between-within approach, i.e. this type returns different degrees of freedom for within-cluster
and between-cluster effects. Note that this implementation does not return exactly the same results
as shown in Li and Redden 2015, but similar.

90 get_family

Satterthwaite and Kenward-Rogers degrees of freedom

Unlike simpler approximation heuristics like the "m-I-1" rule (type = "ml1"), the Satterthwaite
or Kenward-Rogers approximation is also applicable in more complex multilevel designs. How-
ever, the "m-1-1" or "between-within" heuristics also apply to generalized mixed models, while
approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

References

* Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from re-
stricted maximum likelihood. Biometrics, 983-997.

 Satterthwaite FE (1946) An approximate distribution of estimates of variance components.
Biometrics Bulletin 2 (6):110-4.

« Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

e Li, P, Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38

Examples

model <- Im(Sepal.Length ~ Petal.lLength * Species, data = iris)
get_df(model) # same as df.residual(model)
get_df(model, type = "model”) # same as attr(loglLik(model), "df")

get_family A robust alternative to stats::family

Description

A robust and resilient alternative to stats: :family. To avoid issues with models like gamm4.

Usage
get_family(x, ...)
Arguments
X A statistical model.

Further arguments passed to methods.

get_intercept

Examples

data(mtcars)
x <- glm(vs ~ wt, data = mtcars, family = "binomial")
get_family(x)

X <= mgcv: :gamm(
vs ~ am + s(wt),
random = list(cyl = ~1),
data = mtcars,
family = "binomial”
)
get_family(x)

get_intercept Get the value at the intercept

Description

Returns the value at the intercept (i.e., the intercept parameter), and NA if there isn’t one.

Usage
get_intercept(x, ...)
Arguments
X A model.
Not used.
Value

The value of the intercept.

Examples

get_intercept(1lm(Sepal.Length ~ Petal.Width, data = iris))
get_intercept(1lm(Sepal.Length ~ @ + Petal.Width, data = iris))

get_intercept(lme4: :1mer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris))

get_intercept(gamm4::gamm4 (Sepal.Length ~ s(Petal.Width), data = iris))

92 get_loglikelihood

get_loglikelihood Log-Likelihood and Log-Likelihood correction

Description

A robust function to compute the log-likelihood of a model, as well as individual log-likelihoods
(for each observation) whenever possible. Can be used as a replacement for stats: :logLik() out
of the box, as the returned object is of the same class (and it gives the same results by default).

get_loglikelihood_adjustment() can be used to correct the log-likelihood for models with
transformed response variables. The adjustment value can be added to the log-likelihood to get
the corrected value. This is done automatically in get_loglikelihood() if check_response =
TRUE.

Usage

get_loglikelihood(x, ...)
loglikelihood(x, ...)
get_loglikelihood_adjustment (x)

S3 method for class 'lm'
get_loglikelihood(

X,
estimator = "ML",
REML = FALSE,

check_response = FALSE,
verbose = TRUE,

Arguments

X A model.
Passed down to loglLik(), if possible.

estimator Corresponds to the different estimators for the standard deviation of the errors. If
estimator="ML" (default), the scaling is done by n (the biased ML estimator),
which is then equivalent to using stats::loglLik(). If estimator="0LS", it
returns the unbiased OLS estimator. estimator="REML" will give same results
as logLik(. .., REML=TRUE).

REML Only for linear models. This argument is present for compatibility with stats: :loglLik().

Setting it to TRUE will overwrite the estimator argument and is thus equivalent
to setting estimator="REML". It will give the same results as stats: :logLik(. ..,
REML=TRUE). Note that individual log-likelihoods are not available under REML.

get_mixed_info 93

check_response Logical, if TRUE, checks if the response variable is transformed (like log() or
sqrt()), and if so, returns a corrected log-likelihood. To get back to the original
scale, the likelihood of the model is multiplied by the Jacobian/derivative of the
transformation.

verbose Toggle warnings and messages.

Value

get_loglikelihood() returns an object of class "loglLik", also containing the log-likelihoods for
each observation as a per_observation attribute (attributes(get_loglikelihood(x))$per_observation)
when possible. The code was partly inspired from the nonnest2 package.

get_loglikelihood_adjustment() returns the adjustment value to be added to the log-likelihood
to correct for transformed response variables, or NULL if the adjustment could not be computed.

Examples
x <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)
get_loglikelihood(x, estimator = "ML") # Equivalent to stats::loglLik(x)

get_loglikelihood(x, estimator = "REML") # Equivalent to stats::loglLik(x, REML=TRUE)
get_loglikelihood(x, estimator = "OLS")

get_mixed_info Extract various information from mixed models

Description

Small helper function that returns essential information on coefficients, model matrix, variance and
correlation parameters, as well as random effects parameters of mixed effects models as list. Mainly
used for internal purposes.

Usage
get_mixed_info(model, ...)

Default S3 method:
get_mixed_info(model, verbose = TRUE, ...)

S3 method for class 'glmmTMB'

get_mixed_info(model, component = "conditional”, verbose = TRUE, ...)
Arguments
model A mixed effects model.
Not used.
verbose Toggle off warnings.
component For glmmTMB and MixMod models, this argument specifies the component of the

model to extract. Possible values are "conditional” (default) and "zero_inflated”
(or "zi").

94 get_model

Value

This function returns a list that has the same structure for any mixed models with the following
components:

* beta (contains fixed effects, as returned by 1me4: : fixef (model))

* X (contains the model matrix, as returned by 1me4: : getME(model, "X"))

* vc (contains the variance and correlation parameters, as returned by 1me4: : VarCorr(model))

* re (random effects parameters, as returned by 1me4: : ranef (model))

get_model Get a model objects that is saved as attribute

Description

This functions tries to get a model object from the object x, where the model object is saved as an
(arbitrarily named) attribute. This is useful for example, when a model is fitted and saved as an
attribute of a data frame.

Usage
get_model(x, name = "model”, element = NULL, ...)
Arguments
X An object that contains a model object as an attribute. This could be a data frame
or any other object that has an attribute containing the model.
name The name of the attribute that contains the model object. Defaults to "model”.
element String or character vector. If provided, this argument allows you to specify
which element(s) of the model object to return. This can be useful if the model
object is a list or has multiple components, and you only want to extract a spe-
cific part.
Not used.
Value

The object that is stored as an attribute of x with the name name, or the specific element of that
object if element is provided. If the attribute or element does not exist, an error is raised.

Examples

Example of using get_model

d <- data.frame(x = rnorm(100), y = rnorm(100))
fit a model and save it as an attribute
model <- lm(y ~ x, data = d)

attr(d, "model”) <- model

get the model back

get_modelmatrix 95

get_model (d)
get the coefficients of the model

get_model(d, element = "coefficients”)
get_modelmatrix Model Matrix
Description

Creates a design matrix from the description. Any character variables are coerced to factors.

Usage
get_modelmatrix(x, ...)
Arguments
X An object.
Passed down to other methods (mainly model.matrix()).
Examples
data(mtcars)

model <- Im(am ~ vs, data = mtcars)
get_modelmatrix(model)

get_parameters Get model parameters

Description

Returns the coefficients (or posterior samples for Bayesian models) from a model. See the docu-
mentation for your object’s class:

* Bayesian models (rstanarm, brms, MCMCglmm, ...)

* Estimated marginal means (emmeans)

* Generalized additive models (mgcv, VGAM, ...)

¢ Marginal effects models (mfx)

* Mixed models (Ime4, glimmTMB, GLMMadaptive, ...)

e Zero-inflated and hurdle models (pscl, ...)

* Models with special components (betareg, MuMIn, ...)

* Hypothesis tests (htest)

96

Usage

get_parameters

get_parameters(x, ...)

Default S3 method:

get_parameters(x, verbose = TRUE, ...)
Arguments
X A fitted model.

Currently not used.

verbose Toggle messages and warnings.

Details

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used.

get_parameters() is comparable to coef (), however, the coefficients are returned as data frame
(with columns for names and point estimates of coefficients). For Bayesian models, the posterior
samples of parameters are returned.

Value

* for non-Bayesian models, a data frame with two columns: the parameter names and the related

point estimates.

» for Anova (aov()) with error term, a list of parameters for the conditional and the random

effects parameters

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

"all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

"nonlinear"”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

get_parameters.betamfx 97

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip”, and "auxiliary"”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

e mfx: "precision”, "marginal”

¢ betareg, DirichletRegModel: "precision”

* mvord: "thresholds” and "correlation”

e clm2: "scale”

n on

* selection: "selection”, "outcome”, and "auxiliary”

n o n n o n

e lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.betamfx
Get model parameters from marginal effects models

Description

Returns the coefficients from a model.

Usage

S3 method for class 'betamfx'
get_parameters(x, component = "all”, ...)

98

get_parameters.betamfx

Arguments

X

A fitted model.

component Which type of parameters to return, such as parameters for the conditional

Value

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Currently not used.

A data frame with three columns: the parameter names, the related point estimates and the compo-

nent.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

"all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms"”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

"nonlinear"”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

get_parameters.betareg 99

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

¢ mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
e BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

e averaging:"conditional” and "full”

* mjoint: "survival”

e mfx: "precision”, "marginal”

¢ betareg, DirichletRegModel: "precision”

* mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

non

e lemm: "membership”, "longitudinal”, "beta"”, "splines”, and "linear”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.betareg
Get model parameters from models with special components

Description

Returns the coefficients from a model.

Usage

S3 method for class 'betareg'
get_parameters(x, component = "all”, ...)

100

get_parameters.betareg

Arguments

X

A fitted model.

component Which type of parameters to return, such as parameters for the conditional

Value

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Currently not used.

A data frame with three columns: the parameter names, the related point estimates and the compo-

nent.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

"all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

"conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

"smooth_terms"”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

"zero_inflated” (or "zi"): returns the zero-inflation component.

"dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

"instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

"nonlinear"”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

get_parameters. BGGM 101

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.

Special models

Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip”, and "auxiliary"
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

I

¢ betareg, DirichletRegModel: "precision’
e mvord: "thresholds"” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n o n

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(”"GasolineYield", package = "betareg")

m <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
get_parameters(m)

get_parameters(m, component = "precision")

get_parameters.BGGM Get model parameters from Bayesian models

Description

Returns the coefficients (or posterior samples for Bayesian models) from a model.

102 get_parameters. BGGM

Usage

S3 method for class 'BGGM'
get_parameters(

X,
component = "correlation”,
summary = FALSE,
centrality = "mean”,

)

S3 method for class 'BFBayesFactor'
get_parameters(

X’
effects = "all”,
component = "all",

iterations = 4000,
progress = FALSE,

verbose = TRUE,
summary = FALSE,
centrality = "mean”,

S3 method for class 'brmsfit'
get_parameters(

X,
effects = "fixed",
component = "all",

parameters = NULL,
summary = FALSE,

centrality = "mean”,
)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

get_parameters. BGGM 103

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

summary Logical, indicates whether the full posterior samples (summary = FALSE)) or
the summarized centrality indices of the posterior samples (summary = TRUE))
should be returned as estimates.

centrality Only for models with posterior samples, and when summary = TRUE. In this
case, centrality = "mean” would calculate means of posterior samples for
each parameter, while centrality = "median” would use the more robust me-
dian value as measure of central tendency.

Currently only used for models of class brmsfit, where a variable argument
can be used, which is directly passed to the as.data.frame() method (i.e.,
as.data.frame(x, variable = variable)).

effects Should variables for fixed effects ("fixed"), random effects ("random”) or both
("all") be returned? Only applies to mixed models. May be abbreviated.
For models of from packages brms or rstanarm there are additional options:

e "fixed" returns fixed effects.

* "random_variance” return random effects parameters (variance and cor-
relation components, e.g. those parameters that start with sd_ or cor_).

e "grouplevel” returns random effects group level estimates, i.e. those pa-
rameters that start with r_.

e "random” returns both "random_variance" and "grouplevel”.
e "all1" returns fixed effects and random effects variances.

e "full” returns all parameters.

iterations Number of posterior draws.

progress Display progress.

verbose Toggle messages and warnings.

parameters Regular expression pattern that describes the parameters that should be returned.
Details

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used.

Value

The posterior samples from the requested parameters as data frame. If summary = TRUE, returns
a data frame with two columns: the parameter names and the related point estimates (based on
centrality).

104 get_parameters. BGGM

BFBayesFactor Models

Note that for BFBayesFactor models (from the BayesFactor package), posteriors are only ex-
tracted from the first numerator model (i.e., mode1[1]). If you want to apply some function foo()
to another model stored in the BFBayesFactor object, index it directly, e.g. foo(model[2]),
foo(1/model[5]), etc. See also bayestestR: :weighted_posteriors().

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

¢ mhurdle: "infrequent_purchase”, "ip", and "auxiliary"
e BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

n on

e mfx: "precision”, "marginal”
n

¢ betareg, DirichletRegModel: "precision

e mvord: "thresholds” and "correlation”

get_parameters.emmGrid 105

e clm2: "scale”

n on

* selection: "selection”, "outcome”, and "auxiliary”

n o n n o n

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.emmGrid
Get model parameters from estimated marginal means objects

Description

Returns the coefficients from a model.

Usage
S3 method for class 'emmGrid'
get_parameters(x, summary = FALSE, merge_parameters = FALSE, ...)
Arguments
X A fitted model.
summary Logical, indicates whether the full posterior samples (summary = FALSE)) or

the summarized centrality indices of the posterior samples (summary = TRUE))

should be returned as estimates.
merge_parameters

Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

Currently not used.

Value

A data frame with two columns: the parameter names and the related point estimates.

Note

Note that emmGrid or emm_list objects returned by functions from emmeans have a different
structure compared to usual regression models. Hence, the Parameter column does not always
contain names of variables, but may rather contain values, e.g. for contrasts. See an example for
pairwise comparisons below.

106 get_parameters.gamm

Examples

data(mtcars)
model <- lm(mpg ~ wt * factor(cyl), data = mtcars)

emm <- emmeans(model, "cyl")
get_parameters(emm)

emm <- emmeans(model, pairwise ~ cyl)
get_parameters(emm)

get_parameters.gamm Get model parameters from generalized additive models

Description

Returns the coefficients from a model.

Usage
S3 method for class 'gamm'
get_parameters(x, component = "all”, ...)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Currently not used.

get_parameters.gamm 107

Value

For models with smooth terms or zero-inflation component, a data frame with three columns: the
parameter names, the related point estimates and the component.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

e "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

* "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:

n o n

¢ mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
« BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”
* betareg, DirichletRegModel: "precision”
e mvord: "thresholds” and "correlation”

e clm2: "scale”

108 get_parameters.gImmTMB

[l non

* selection: "selection”, "outcome”, and "auxiliary”

e lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”
For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.glmmTMB
Get model parameters from mixed models

Description

Returns the coefficients from a model.

Usage
S3 method for class 'glmmTMB'
get_parameters(x, effects = "fixed"”, component = "all”, ...)
Arguments
X A fitted model.
effects Should variables for fixed effects ("fixed"), random effects ("random"”) or both

("all") be returned? Only applies to mixed models. May be abbreviated.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

e component = "all” returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

get_parameters.glmmTMB 109

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Currently not used.

Details

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used. See details in the
section Model Components.

Value

If effects = "fixed", a data frame with two columns: the parameter names and the related point
estimates. If effects = "random”, a list of data frames with the random effects (as returned by
ranef()), unless the random effects have the same simplified structure as fixed effects (e.g. for
models from MCMCglmm).

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments": for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.
Special models

Some model classes also allow rather uncommon options. These are:

110 get_parameters.htest

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

e« mfx: "precision”, "marginal”

* betareg, DirichletRegModel: "precision”

* mvord: "thresholds” and "correlation”

* clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n non

e lemm: "membership”, "longitudinal”, "beta"”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-

butional parameter, like mu, ndt, kappa, etc.

Examples

data(Salamanders, package = "glmmTMB")
m <- glmmTMB: : g1lmmTMB(
count ~ mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)

get_parameters(m)

get_parameters.htest Get model parameters from htest-objects

Description

Returns the parameters from a hypothesis test.

Usage
S3 method for class 'htest'
get_parameters(x, ...)
Arguments
X A fitted model.

Currently not used.

get_parameters.zeroinfl 111

Value

A data frame with two columns: the parameter names and the related point estimates.

Examples

get_parameters(t.test(1:10, y = c(7:20)))

get_parameters.zeroinfl
Get model parameters from zero-inflated and hurdle models

Description

Returns the coefficients from a model.

Usage
S3 method for class 'zeroinfl'
get_parameters(x, component = "all”, ...)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all” returns all possible parameters.

* If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Currently not used.

Value

For models with smooth terms or zero-inflation component, a data frame with three columns: the
parameter names, the related point estimates and the component.

112 get_parameters.zeroinfl

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

e "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

e "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear": for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaor precision
(and other auxiliary parameters) are returned.

Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip", and "auxiliary”
« BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”
 averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

I

¢ betareg, DirichletRegModel: "precision’
e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

e lemm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

get_predicted 113

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_predicted Model predictions (robust) and their confidence intervals

Description

The get_predicted() function is a robust, flexible and user-friendly alternative to base R predict ()
function. Additional features and advantages include availability of uncertainty intervals (CI), boot-
strapping, a more intuitive API and the support of more models than base R’s predict() function.
However, although the interface are simplified, it is still very important to read the documentation
of the arguments. This is because making "predictions" (a lose term for a variety of things) is a
non-trivial process, with lots of caveats and complications. Read the ’Details’ section for more
information.

get_predicted_ci() returns the confidence (or prediction) interval (CI) associated with predic-
tions made by a model. This function can be called separately on a vector of predicted values.
get_predicted() usually returns confidence intervals (included as attribute, and accessible via the
as.data.frame() method) by default. It is preferred to rely on the get_predicted() function
for standard errors and confidence intervals - use get_predicted_ci() only if standard errors and
confidence intervals are not available otherwise.

Usage
get_predicted(x, ...)

Default S3 method:
get_predicted(

X,

data = NULL,

predict = "expectation”,
ci = NULL,

ci_type = "confidence"”,
ci_method = NULL,
dispersion_method = "sd",
vcov = NULL,

vcov_args = NULL,
verbose = TRUE,

)

S3 method for class 'lm'
get_predicted(
X,

114

)

S3 method for class 'stanreg'

data = NULL,

predict = "expectation”,
ci = NULL,

iterations = NULL,
verbose = TRUE,

get_predicted(

)

X,

data = NULL,

predict = "expectation”,
iterations = NULL,

ci = NULL,

ci_method = NULL,
include_random = "default”,

include_smooth = TRUE,
verbose = TRUE,

S3 method for class 'gam'
get_predicted(

)

X,

data = NULL,

predict = "expectation”,
ci = NULL,
include_random = TRUE,
include_smooth = TRUE,
iterations = NULL,
verbose = TRUE,

S3 method for class 'lmerMod'

get_predicted(

X)

data = NULL,

predict = "expectation”,

ci = NULL,

ci_method = NULL,
include_random = "default”,

iterations = NULL,
verbose = TRUE,

get_predicted

get_predicted

115

S3 method for class 'principal'’

get_predicted(x, data = NULL, ...)
Arguments

X A statistical model (can also be a data.frame, in which case the second argument
has to be a model).
Other argument to be passed, for instance to the model’s predict () method, or
get_predicted_ci().

data An optional data frame in which to look for variables with which to predict. If
omitted, the data used to fit the model is used. Visualization matrices can be
generated using get_datagrid().

predict string or NULL

* "link” returns predictions on the model’s link-scale (for logistic models,
that means the log-odds scale) with a confidence interval (CI). This op-
tion should also be used for finite mixture models (currently only family
brms: :mixture() from package brms), when predicted values of the re-
sponse for each class is required.

* "expectation” (default) also returns confidence intervals, but this time the
output is on the response scale (for logistic models, that means probabili-
ties).

* "prediction” also gives an output on the response scale, but this time
associated with a prediction interval (PI), which is larger than a confidence
interval (though it mostly make sense for linear models).

* "classification” is relevant only for binomial, ordinal or mixture mod-
els.

— For binomial models, predict = "classification” will additionally
transform the predictions into the original response’s type (for instance,
to a factor).

— For ordinal models (e.g., classes c1m or multinom), gives the predicted
response class membership, defined as highest probability prediction.

— For finite mixture models (currently only family brms: :mixture()
from package brms) also returns the predicted response class member-
ship (similar as for ordinal models).

 Other strings are passed directly to the type argument of the predict()
method supplied by the modelling package.

 Specifically for models of class brmsfit (package brms), the predict ar-
gument can be any valid option for the dpar argument, to predict distribu-

tional parameters (such as "sigma”, "beta"”, "kappa”, "phi” and so on,
see ?brms: :brmsfamily).

* When predict = NULL, alternative arguments such as type will be captured
by the ... ellipsis and passed directly to the predict () method supplied
by the modelling package. Note that this might result in conflicts with
multiple matching type arguments - thus, the recommendation is to use the
predict argument for those values.

116

ci

ci_type

ci_method

get_predicted

* Notes: You can see the four options for predictions as on a gradient from
"close to the model" to "close to the response data": "link", "expecta-
tion", "prediction"”, "classification". The predict argument modulates two
things: the scale of the output and the type of certainty interval. Read more

about in the Details section below.

The interval level. Default is NULL, to be fast even for larger models. Set the
interval level to an explicit value, e.g. 0. 95, for 95% CI).

Can be "prediction” or "confidence”. Prediction intervals show the range
that likely contains the value of a new observation (in what range it would fall),
whereas confidence intervals reflect the uncertainty around the estimated param-
eters (and gives the range of the link; for instance of the regression line in a linear
regressions). Prediction intervals account for both the uncertainty in the model’s
parameters, plus the random variation of the individual values. Thus, prediction
intervals are always wider than confidence intervals. Moreover, prediction in-
tervals will not necessarily become narrower as the sample size increases (as
they do not reflect only the quality of the fit). This applies mostly for "simple"
linear models (like 1m), as for other models (e.g., glm), prediction intervals are
somewhat useless (for instance, for a binomial model for which the dependent
variable is a vector of 1s and Os, the prediction interval is... [@, 1]).

The method for computing p values and confidence intervals. Possible values
depend on model type.
* NULL uses the default method, which varies based on the model type.
* Most frequentist models: "wald” (default), "residual” or "normal”.
* Bayesian models: "quantile” (default), "hdi”, "eti”, and "spi”.
e Mixed effects Ime4 models: "wald” (default), "residual”, "normal”,
"satterthwaite"”, and "kenward-roger".

See get_df () for details.

dispersion_method

VvCoVv

Bootstrap dispersion and Bayesian posterior summary: "sd” or "mad”.

Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

¢ A covariance matrix
* A function which returns a covariance matrix (e.g., stats: :vcov())
* A string which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "HC", "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich: : vcovHC
— Cluster-robust: "CR", "CR@", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR

— Bootstrap: "BS", "xy", "residual”, "wild", "mammen”, "fractional”,

n on

"jackknife"”, "norm”, "webb". See ?sandwich: : vcovBS
— Other sandwich package functions: "HAC", "PC", "CL", "OPG", "PL".

— Kenward-Roger approximation: kenward-roger. See ?pbkrtest: : vcovAdj.

get_predicted 117

Exceptions are following models:

* Model of class glmgee, which have pre-defined options for the variance-
covariance matrix calculation. These are "robust”, "df-adjusted”, "model”,
"bias-corrected”, and "jackknife"”. See ?glmtoolbox: :vcov.glmgee
for details.

* Model of class glmmTMB currently only support the "HCQ" option.

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR", the default is set to "CR3".

verbose Toggle warnings.

iterations For Bayesian models, this corresponds to the number of posterior draws. If
NULL, will return all the draws (one for each iteration of the model). For fre-
quentist models, if not NULL, will generate bootstrapped draws, from which
bootstrapped Cls will be computed. Iterations can be accessed by running
as.data.frame(..., keep_iterations = TRUE) on the output.

include_random If "default”, include all random effects in the prediction, unless random effect
variables are not in the data. If TRUE, include all random effects in the predic-
tion (in this case, it will be checked if actually all random effect variables are in
data). If FALSE, don’t take them into account. Can also be a formula to specify
which random effects to condition on when predicting (passed to the re.form
argument). If include_random = TRUE and data is provided, make sure to in-
clude the random effect variables in data as well.

include_smooth For General Additive Models (GAMs). If FALSE, will fix the value of the smooth
to its average, so that the predictions are not depending on it. (default), mean(),
or bayestestR: :map_estimate().

Details

In insight::get_predicted(), the predict argument jointly modulates two separate concepts,
the scale and the uncertainty interval.

Value

The fitted values (i.e. predictions for the response). For Bayesian or bootstrapped models (when
iterations !=NULL), iterations (as columns and observations are rows) can be accessed via as.data.frame().

Confidence Interval (CI) vs. Prediction Interval (PI))

* Linear models - 1m(): For linear models, prediction intervals (predict="prediction")
show the range that likely contains the value of a new observation (in what range it is likely to
fall), whereas confidence intervals (predict="expectation” or predict="1ink") reflect the
uncertainty around the estimated parameters (and gives the range of uncertainty of the regres-
sion line). In general, Prediction Intervals (PIs) account for both the uncertainty in the model’s
parameters, plus the random variation of the individual values. Thus, prediction intervals are

118 get_predicted

always wider than confidence intervals. Moreover, prediction intervals will not necessarily
become narrower as the sample size increases (as they do not reflect only the quality of the fit,
but also the variability within the data).

* Generalized Linear models - glm(): For binomial models, prediction intervals are somewhat
useless (for instance, for a binomial (Bernoulli) model for which the dependent variable is a
vector of 1s and Os, the prediction interval is... [0, 1]).

Link scale vs. Response scale

When users set the predict argument to "expectation”, the predictions are returned on the re-
sponse scale, which is arguably the most convenient way to understand and visualize relationships
of interest. When users set the predict argument to "1ink”, predictions are returned on the link
scale, and no transformation is applied. For instance, for a logistic regression model, the response
scale corresponds to the predicted probabilities, whereas the link-scale makes predictions of log-
odds (probabilities on the logit scale). Note that when users select predict = "classification”
in binomial models, the get_predicted() function will first calculate predictions as if the user had
selected predict = "expectation”. Then, it will round the responses in order to return the most
likely outcome. For ordinal or mixture models, it returns the predicted class membership, based on
the highest probability of classification.

Heteroscedasticity consistent standard errors

The arguments vcov and vcov_args can be used to calculate robust standard errors for confidence
intervals of predictions. These arguments, when provided in get_predicted(), are passed down
to get_predicted_ci(), thus, see the related documentation there for more details.

Finite mixture models

For finite mixture models (currently, only the mixture () family from package brms is supported),
use predict = "classification” to predict the class membership. To predict outcome values by
class, use predict = "1ink"”. Other predict options will return predicted values of the outcome
for the full data, not stratified by class membership.

Bayesian and Bootstrapped models and iterations

For predictions based on multiple iterations, for instance in the case of Bayesian models and
bootstrapped predictions, the function used to compute the centrality (point-estimate predictions)
can be modified via the centrality_function argument. For instance, get_predicted(model,
centrality_function = stats::median). The default is mean. Individual draws can be ac-
cessed by running iter <- as.data.frame(get_predicted(model)), and their iterations can be
reshaped into a long format by bayestestR: : reshape_iterations(iter).

Hypothesis tests

There is limited support for hypothesis tests, i.e. objects of class htest:

* chisq.test(): returns the expected values of the contingency table.

get_predicted_ci 119

See Also

get_datagrid()

Examples

data(mtcars)
x <= Im(mpg ~ cyl + hp, data = mtcars)

predictions <- get_predicted(x, ci = 0.95)
predictions

Options and methods ---------------------
get_predicted(x, predict = "prediction”)

Get CI
as.data.frame(predictions)

Bootstrapped

as.data.frame(get_predicted(x, iterations = 4))

Same as as.data.frame(..., keep_iterations = FALSE)
summary (get_predicted(x, iterations = 4))

Different prediction types --------------——--------
data(iris)
data <- droplevels(iris[1:100, 1)

Fit a logistic model
x <- glm(Species ~ Sepal.Length, data = data, family = "binomial")

Expectation (default): response scale + CI
pred <- get_predicted(x, predict = "expectation”, ci = 0.95)
head(as.data.frame(pred))

Prediction: response scale + PI
pred <- get_predicted(x, predict = "prediction”, ci = 0.95)
head(as.data.frame(pred))

Link: link scale + CI
pred <- get_predicted(x, predict = "link"”, ci = 0.95)
head(as.data.frame(pred))

Classification: classification "type" + PI
pred <- get_predicted(x, predict = "classification”, ci = 0.95)
head(as.data.frame(pred))

get_predicted_ci Confidence intervals around predicted values

120 get_predicted_ci

Description

Confidence intervals around predicted values

Usage

get_predicted_ci(x, ...)

Default S3 method:
get_predicted_ci(
X,
predictions = NULL,
data = NULL,
se = NULL,
ci = 0.95,
ci_type = "confidence"”,
ci_method = NULL,
dispersion_method = "sd",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,

Arguments

X A statistical model (can also be a data.frame, in which case the second argument
has to be a model).

Other argument to be passed, for instance to the model’s predict () method, or
get_predicted_ci().

predictions A vector of predicted values (as obtained by stats::fitted(), stats::predict()
or get_predicted()).

data An optional data frame in which to look for variables with which to predict. If
omitted, the data used to fit the model is used. Visualization matrices can be
generated using get_datagrid().

se Numeric vector of standard error of predicted values. If NULL, standard errors
are calculated based on the variance-covariance matrix.

ci The interval level. Default is NULL, to be fast even for larger models. Set the
interval level to an explicit value, e.g. 0. 95, for 95% CI).

ci_type Can be "prediction” or "confidence"”. Prediction intervals show the range
that likely contains the value of a new observation (in what range it would fall),
whereas confidence intervals reflect the uncertainty around the estimated param-
eters (and gives the range of the link; for instance of the regression line in a linear
regressions). Prediction intervals account for both the uncertainty in the model’s
parameters, plus the random variation of the individual values. Thus, prediction
intervals are always wider than confidence intervals. Moreover, prediction in-
tervals will not necessarily become narrower as the sample size increases (as
they do not reflect only the quality of the fit). This applies mostly for "simple"

get_predicted_ci

ci_method

121

linear models (like 1m), as for other models (e.g., glm), prediction intervals are
somewhat useless (for instance, for a binomial model for which the dependent
variable is a vector of 1s and Os, the prediction interval is... [@, 1]).

The method for computing p values and confidence intervals. Possible values
depend on model type.
* NULL uses the default method, which varies based on the model type.
* Most frequentist models: "wald” (default), "residual” or "normal”.
* Bayesian models: "quantile” (default), "hdi”, "eti”, and "spi”.
¢ Mixed effects Ime4 models: "wald” (default), "residual”, "normal”,
"satterthwaite”, and "kenward-roger".

See get_df () for details.

dispersion_method

vCcoVv

vcov_args

verbose

Bootstrap dispersion and Bayesian posterior summary: "sd” or "mad”.

Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

* A covariance matrix

* A function which returns a covariance matrix (e.g., stats: :vcov())

* A string which indicates the kind of uncertainty estimates to return.

— Heteroskedasticity-consistent: "HC", "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich: :vcovHC

Cluster-robust: "CR", "CR@", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR

Bootstrap: "BS", "xy", "residual”, "wild”, "mammen”, "fractional”,

non

"jackknife”, "norm"”, "webb". See ?sandwich: : vcovBS
Other sandwich package functions: "HAC", "PC", "CL", "OPG", "PL".

Kenward-Roger approximation: kenward-roger. See ?pbkrtest: : vcovAdj.

Exceptions are following models:

* Model of class glmgee, which have pre-defined options for the variance-
covariance matrix calculation. These are "robust”, "df-adjusted”, "model”,
"bias-corrected”, and "jackknife"”. See ?glmtoolbox: :vcov.glmgee
for details.

* Model of class glmmTMB currently only support the "HCQ" option.

List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR", the default is set to "CR3".

Toggle warnings.

122 get_predicted_ci

Details

Typically, get_predicted() returns confidence intervals based on the standard errors as returned
by the predict()-function, assuming normal distribution (+/- 1.96 * SE) resp. a Student’s t-
distribution (if degrees of freedom are available). If predict() for a certain class does not return
standard errors (for example, merMod-objects), these are calculated manually, based on following
steps: matrix-multiply X by the parameter vector B to get the predictions, then extract the variance-
covariance matrix V of the parameters and compute XVX' to get the variance-covariance matrix of
the predictions. The square-root of the diagonal of this matrix represent the standard errors of
the predictions, which are then multiplied by the critical test-statistic value (e.g., ~1.96 for normal
distribution) for the confidence intervals.

If ci_type = "prediction”, prediction intervals are calculated. These are wider than confidence
intervals, because they also take into account the uncertainty of the model itself. Before taking
the square-root of the diagonal of the variance-covariance matrix, get_predicted_ci() adds the
residual variance to these values. For mixed models, get_variance_residual() is used, while
get_sigma()*2 is used for non-mixed models.

It is preferred to rely on standard errors returned by get_predicted() (i.e. returned by the
predict()-function), because these are more accurate than manually calculated standard errors.
Use get_predicted_ci() only if standard errors are not available otherwise. An exception are
Bayesian models or bootstrapped predictions, where get_predicted_ci() returns quantiles of the
posterior distribution or bootstrapped samples of the predictions. These are actually accurate stan-
dard errors resp. confidence (or uncertainty) intervals.

Examples

Confidence Intervals for Model Predictions

data(mtcars)
Linear model

x <= Im(mpg ~ cyl + hp, data = mtcars)
predictions <- predict(x)

ci_vals <- get_predicted_ci(x, predictions, ci_type = "prediction")
head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci_type = "confidence")

head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci = c(0.8, 0.9, 0.95))
head(ci_vals)

Bootstrapped

predictions <- get_predicted(x, iterations = 500)
get_predicted_ci(x, predictions)

ci_vals <- get_predicted_ci(x, predictions, ci = c(0.80, 0.95))
head(ci_vals)

datawizard: :reshape_ci(ci_vals)

ci_vals <- get_predicted_ci(x,

get_predictors 123

predictions,
dispersion_method = "MAD",
ci_method = "HDI"

)

head(ci_vals)

Logistic model

x <- glm(vs ~ wt, data = mtcars, family = "binomial”)

predictions <- predict(x, type = "link")

ci_vals <- get_predicted_ci(x, predictions, ci_type = "prediction”)
head(ci_vals)

ci_vals <- get_predicted_ci(x, predictions, ci_type = "confidence")

head(ci_vals)

get_predictors Get the data from model predictors

Description

Returns the data from all predictor variables (fixed effects).

Usage

get_predictors(x, verbose = TRUE)

Arguments

X A fitted model.

verbose Toggle messages and warnings.
Value

The data from all predictor variables, as data frame.

Examples

m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
head(get_predictors(m))

124 get_random

get_priors Get summary of priors used for a model

Description

Provides a summary of the prior distributions used for the parameters in a given model.

Usage

get_priors(x, ...)

S3 method for class 'brmsfit'

get_priors(x, verbose = TRUE, ...)
Arguments
X A Bayesian model.

Currently not used.

verbose Toggle warnings and messages.

Value

A data frame with a summary of the prior distributions used for the parameters in a given model.

Examples

library(rstanarm)
model <- stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)
get_priors(model)

get_random Get the data from random effects

Description

Returns the data from all random effects terms.

Usage

get_random(x)

Arguments

X A fitted mixed model.

get_residuals 125

Value

The data from all random effects terms, as data frame. Or NULL if model has no random effects.

Examples

data(sleepstudy)
prepare some data...
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {

filter_group <- sleepstudy$mygrp == i

sleepstudy$mysubgrp[filter_group] <-

sample(1:30, size = sum(filter_group), replace = TRUE)

3

m <- lmer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)

head(get_random(m))

get_residuals Extract model residuals

Description

Returns the residuals from regression models.

Usage

get_residuals(x, ...)

Default S3 method:

get_residuals(x, weighted = FALSE, verbose = TRUE, ...)
Arguments
X A model.

Passed down to residuals(), if possible.
weighted Logical, if TRUE, returns weighted residuals.
verbose Toggle warnings and messages.

Value

The residuals, or NULL if this information could not be accessed.

126 get_response

Note

This function returns the default type of residuals, i.e. for the response from linear models, the
deviance residuals for models of class glm etc. To access different types, pass down the type
argument (see 'Examples’).

This function is a robust alternative to residuals(), as it works for some special model objects
that otherwise do not respond properly to calling residuals().

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_residuals(m)

m <- glm(vs ~ wt + cyl + mpg, data = mtcars, family = binomial())
get_residuals(m) # type = "deviance” by default

get_residuals(m, type = "response”)
get_response Get the values from the response variable
Description

Returns the values the response variable(s) from a model object. If the model is a multivariate
response model, a data frame with values from all response variables is returned.

Usage

get_response(x, ...)

Default S3 method:
get_response(
X,
select = NULL,
as_proportion = TRUE,
source = "environment”,
verbose = TRUE,

)

S3 method for class 'nestedlLogit'

get_response(x, dichotomies = FALSE, source = "environment”, ...)
Arguments

X A fitted model.

Currently not used.

get_response 127

select Optional name(s) of response variables for which to extract values. Can be used
in case of regression models with multiple response variables.

as_proportion Logical, if TRUE and the response value is a proportion (e.g. y1 / y2), then the
returned response value will be a vector with the result of this proportion. Else,
always a data frame is returned.

source String, indicating from where data should be recovered. If source = "environment”

(default), data is recovered from the environment (e.g. if the data is in the
workspace). This option is usually the fastest way of getting data and ensures
that the original variables used for model fitting are returned. Note that always
the current data is recovered from the environment. Hence, if the data was
modified after model fitting (e.g., variables were recoded or rows filtered), the
returned data may no longer equal the model data. If source = "frame” (or
"mf"), the data is taken from the model frame. Any transformed variables are
back-transformed, if possible. This option returns the data even if it is not avail-
able in the environment, however, in certain edge cases back-transforming to
the original data may fail. If source = "environment” fails to recover the data,
it tries to extract the data from the model frame; if source = "frame” and data
cannot be extracted from the model frame, data will be recovered from the envi-
ronment. Both ways only returns observations that have no missing data in the
variables used for model fitting.

For objects from package survey, "mf" extracts data from the model frame
of the survey design object, which is usually equivalent to the original data.
source = "environment” extracts data from the model-object in the environ-
ment, which usually includes processed variables (like the " (weights)" vari-

able for weights).

verbose Toggle warnings.

dichotomies Logical, if model is a nestedLogit objects, returns the response values for the
dichotomies.

Value

The values of the response variable, as vector, or a data frame if x has more than one defined
response variable.

Examples

data(cbpp)
cbpp$trials <- cbpp$size - cbpp$incidence
dat <<- cbpp

m <- glm(cbind(incidence, trials) ~ period, data = dat, family = binomial)
head(get_response(m))
get_response(m, select = "incidence")

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_response(m)

128 get_sigma

get_sigma Get residual standard deviation from models

Description

Returns sigma, which corresponds the estimated standard deviation of the residuals. This function
extends the sigma() base R generic for models that don’t have implemented it. It also computes
the confidence interval (CI), which is stored as an attribute.

Sigma is a key-component of regression models, and part of the so-called auxiliary parameters that
are estimated. Indeed, linear models for instance assume that the residuals comes from a normal
distribution with mean O and standard deviation sigma. See the details section below for more
information about its interpretation and calculation.

Usage
get_sigma(x, ci = NULL, verbose = TRUE, ...)
Arguments
X A model.
ci Scalar, the CI level. The default (NULL) returns no CI.
verbose Toggle messages and warnings.
For internal use.
Value

The residual standard deviation (sigma), or NULL if this information could not be accessed.

Interpretation of Sigma

The residual standard deviation, o, indicates that the predicted outcome will be within +/- ¢ units
of the linear predictor for approximately 68% of the data points (Gelman, Hill & Vehtari 2020,
p.84). In other words, the residual standard deviation indicates the accuracy for a model to predict
scores, thus it can be thought of as "a measure of the average distance each observation falls from
its prediction from the model" (Gelman, Hill & Vehtari 2020, p.168). o can be considered as a
measure of the unexplained variation in the data, or of the precision of inferences about regression
coefficients.

Calculation of Sigma

By default, get_sigma() tries to extract sigma by calling stats: :sigma(). If the model-object has
no sigma() method, the next step is calculating sigma as square-root of the model-deviance divided
by the residual degrees of freedom. Finally, if even this approach fails, and x is a mixed model, the
residual standard deviation is accessed using the square-root from get_variance_residual().

get_statistic 129

References

Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. Cambridge University
Press.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_sigma(m)

get_statistic Get statistic associated with estimates

Description

Returns the statistic (¢, z, ...) for model estimates. In most cases, this is the related column from
coef (summary()).

Usage

get_statistic(x, ...)

Default S3 method:
get_statistic(x, column_index = 3, verbose = TRUE, ...)

S3 method for class 'glmmTMB'
get_statistic(x, component = "all”, ...)

S3 method for class 'emmGrid'
get_statistic(x, ci = 0.95, adjust = "none", merge_parameters = FALSE, ...)

S3 method for class 'gee'

get_statistic(x, robust = FALSE, ...)
Arguments
X A model.

Currently not used.

column_index For model objects that have no defined get_statistic() method yet, the de-
fault method is called. This method tries to extract the statistic column from

coef (summary ()), where the index of the column that is being pulled is column_index.

Defaults to 3, which is the default statistic column for most models’ summary-
output.

verbose Toggle warnings.

130

component

ci

adjust

get_statistic

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

e If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Confidence Interval (CI) level. Default to @.95 (95%). Currently only applies to
objects of class emmGrid.

Character value naming the method used to adjust p-values or confidence inter-
vals. See ?emmeans: : summary.emmGrid for details.

merge_parameters

robust

Value

Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

Logical, if TRUE, test statistic based on robust standard errors is returned.

A data frame with the model’s parameter names and the related test statistic.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

* "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-

nent.

* "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

e "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

get_statistic 131

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.

Special models

Some model classes also allow rather uncommon options. These are:

n on

e mhurdle: "infrequent_purchase”, "ip"”, and "auxiliary”
* BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

* averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

n

¢ betareg, DirichletRegModel: "precision
e mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear"”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_statistic(m)

132 get_transformation

get_transformation Return function of transformed response variables

Description

This functions checks whether any transformation, such as log- or exp-transforming, was applied
to the response variable (dependent variable) in a regression formula, and returns the related func-
tion that was used for transformation. See find_transformation() for an overview of supported
transformations that are detected.

Usage

get_transformation(x, include_all = FALSE, verbose = TRUE)

Arguments
X A regression model or a character string of the formulation of the (response)
variable.
include_all Logical, if TRUE, does not only check the response variable, but all model terms.
verbose Logical, if TRUE, prints a warning if the transformation could not be determined.
Value

A list of two functions: $transformation, the function that was used to transform the response
variable; $inverse, the inverse-function of $transformation (can be used for "back-transformation").
If no transformation was applied, both list-elements $transformation and $inverse just return
function(x) x. If transformation is unknown, NULL is returned.

Examples

identity, no transformation
model <- Im(Sepal.Length ~ Species, data = iris)
get_transformation(model)

log-transformation
model <- 1m(log(Sepal.Length) ~ Species, data = iris)
get_transformation(model)

log-function
get_transformation(model)$transformation(@.3)
log(0.3)

inverse function is exp()
get_transformation(model)$inverse(@.3)
exp(0.3)

get transformations for all model terms
model <- lm(mpg ~ log(wt) + I(gear”2) + exp(am), data = mtcars)
get_transformation(model, include_all = TRUE)

get_varcov 133

get_varcov Get variance-covariance matrix from models

Description

Returns the variance-covariance, as retrieved by stats: : vcov (), but works for more model objects
that probably don’t provide a vcov ()-method.

Usage
get_varcov(x, ...)

Default S3 method:
get_varcov(x, verbose = TRUE, vcov = NULL, vcov_args = NULL, ...)

S3 method for class 'glmgee'
get_varcov(x, verbose = TRUE, vcov = "robust”, ...)

S3 method for class 'hurdle'
get_varcov(

X,
component = "conditional”,
vcov = NULL,

vcov_args = NULL,
verbose = TRUE,

S3 method for class 'aov'
get_varcov(x, complete = FALSE, verbose = TRUE, ...)

S3 method for class 'mixor'

get_varcov(x, effects = "all”, verbose = TRUE, ...)
Arguments
X A model.
Currently not used.
verbose Toggle warnings.
vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-

bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

¢ A covariance matrix

* A function which returns a covariance matrix (e.g., stats: :vcov())

134

vcov_args

component

complete
effects

Value

get_varcov

* A string which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "HC", "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich: :vcovHC
— Cluster-robust: "CR", "CR@", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR
— Bootstrap: "BS", "xy", "residual”, "wild", "mammen”, "fractional”,

"jackknife”, "norm"”, "webb". See ?sandwich: : vcovBS
— Other sandwich package functions: "HAC", "PC", "CL", "OPG", "PL".

— Kenward-Roger approximation: kenward-roger. See ?pbkrtest: :vcovAdj.

Exceptions are following models:

* Model of class glmgee, which have pre-defined options for the variance-
covariance matrix calculation. These are "robust”, "df-adjusted”, "model”,
"bias-corrected”, and "jackknife". See ?glmtoolbox: :vcov.glmgee
for details.

* Model of class glmmTMB currently only support the "HC@" option.

List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list
of available arguments. If no estimation type (argument type) is given, the
default type for "HC" equals the default from the sandwich package; for type
"CR", the default is set to "CR3".

Should the complete variance-covariance matrix of the model be returned, or
only for specific model components only (like count or zero-inflated model
parts)? Applies to models with zero-inflated component, or models with pre-
cision (e.g. betareg) component. component may be one of "conditional”,
"zi", "zero-inflated”, "dispersion”, "precision”, or "all". May be ab-
breviated. Note that the conditional component also refers to the count or mean
component - names may differ, depending on the modeling package. See sec-
tion Model components for details. For models of class glmmTMB, the component
argument can also be "full”, to return the full variance-covariance matrix (in-

cluding random effects, called theta).
Logical, if TRUE, for aov, returns the full variance-covariance matrix.

Should the complete variance-covariance matrix of the model be returned, or
only for specific model parameters only? Currently only applies to models of
class mixor and MixMod.

The variance-covariance matrix, as matrix-object.

Model components

Possible values for the component argument depend on the model class. Following are valid op-

tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

get_varcov 135

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

zero_i or "zi"): returns the zero-inflation component.

e "zero_inflated” "zi" t th flat t

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "nonlinear”: for non-linear models (like models of class nlmerMod or nls), returns staring
estimates for the nonlinear parameters.

e "correlation”: for models with correlation-component, like gls, the variables used to de-
scribe the correlation structure are returned.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.

Special models
Some model classes also allow rather uncommon options. These are:

n o n

e mhurdle: "infrequent_purchase”, "ip"”, and "auxiliary”
« BGGM: "correlation” and "intercept”

* BFBayesFactor, glmx: "extra”

e averaging:"conditional” and "full”

* mjoint: "survival”

non

e mfx: "precision”, "marginal”

I

* betareg, DirichletRegModel: "precision’
* mvord: "thresholds” and "correlation”

e clm2: "scale”

non

* selection: "selection”, "outcome”, and "auxiliary”

n o n n on

¢ lecmm: "membership”, "longitudinal”, "beta”, "splines”, and "linear”

For models of class brmsfit (package brms), even more options are possible for the component
argument, which are not all documented in detail here. It can be any pre-defined or arbitrary distri-
butional parameter, like mu, ndt, kappa, etc.

Note

get_varcov() tries to return the nearest positive definite matrix in case of negative eigenvalues
of the variance-covariance matrix. This ensures that it is still possible, for instance, to calculate
standard errors of model parameters. A message is shown when the matrix is negative definite and
a corrected matrix is returned.

136 get_variance

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_varcov(m)

vcov of zero-inflation component from hurdle-model

data(”"bioChemists”, package = "pscl”)

mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(mod, component = "zero_inflated")

robust vcov of, count component from hurdle-model

data("bioChemists”, package = "pscl”)

mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(

mod,
component = "conditional”,
vcov = "BS",
vcov_args = list(R = 50)
)
get_variance Get variance components from random effects models
Description

This function extracts the different variance components of a mixed model and returns the result
as list. Functions like get_variance_residual (x) or get_variance_fixed(x) are shortcuts for
get_variance(x, component = "residual”) etc.

Usage

get_variance(x, ...)

S3 method for class 'merMod'
get_variance(
X)
component = "all",
tolerance = 1e-08,
null_model = NULL,
approximation = "lognormal”,
verbose = TRUE,

S3 method for class 'glmmTMB'
get_variance(
X,

get_variance 137

component = "all",
model_component = NULL,
tolerance = 1e-08,
null_model = NULL,
approximation = "lognormal”,
verbose = TRUE,

)

get_variance_residual(x, verbose = TRUE, ...)

get_variance_fixed(x, verbose = TRUE, ...)

get_variance_random(x, verbose = TRUE, tolerance = 1e-08, ...)

get_variance_distribution(x, verbose = TRUE, ...)

get_variance_dispersion(x, verbose = TRUE, ...)

get_variance_intercept(x, verbose = TRUE, ...)

get_variance_slope(x, verbose = TRUE, ...)

get_correlation_slope_intercept(x, verbose = TRUE, ...)

get_correlation_slopes(x, verbose = TRUE, ...)

Arguments

X A mixed effects model.
Currently not used.

component Character value, indicating the variance component that should be returned.
By default, all variance components are returned. Valid options are "all”,
"fixed", "random”, "residual”, "distribution”, "dispersion”, "intercept”,
"slope”, "rho@1"”, and "rho@@", which are equivalent to calling the dedicated
functions like get_variance_residual () etc. The distribution-specific ("distribution”)
and residual ("residual”) variance are the most computational intensive com-
ponents, and hence may take a few seconds to calculate.

tolerance Tolerance for singularity check of random effects, to decide whether to compute
random effect variances or not. Indicates up to which value the convergence
result is accepted. The larger tolerance is, the stricter the test will be. See
performance: :check_singularity().

null_model Optional, a null-model to be used for the calculation of random effect variances.

If NULL, the null-model is computed internally.

approximation Character string, indicating the approximation method for the distribution-specific
(observation level, or residual) variance. Only applies to non-Gaussian models.
Can be "lognormal” (default), "delta” or "trigamma". For binomial models,

138 get_variance

the default is the theoretical distribution specific variance, however, it can also
be "observation_level”. See Nakagawa et al. 2017, in particular supplement
2, for details.

verbose Toggle off warnings.

model_component
For models that can have a zero-inflation component, specify for which com-
ponent variances should be returned. If NULL or "full” (the default), both
the conditional and the zero-inflation component are taken into account. If
"conditional”, only the conditional component is considered.

Details

This function returns different variance components from mixed models, which are needed, for
instance, to calculate r-squared measures or the intraclass-correlation coefficient (ICC).

Value

A list with following elements:

e var.fixed, variance attributable to the fixed effects
e var.random, (mean) variance of random effects

* var.residual, residual variance (sum of dispersion and distribution-specific/observation level
variance)

* var.distribution, distribution-specific (or observation level) variance

* var.dispersion, variance due to additive dispersion

* var.intercept, the random-intercept-variance, or between-subject-variance (7og)
* var.slope, the random-slope-variance (71)

* cor.slope_intercept, the random-slope-intercept-correlation (pg1)

* cor.slopes, the correlation between random slopes (pgg)

Fixed effects variance

The fixed effects variance, crj%, is the variance of the matrix-multiplication 5 * X (parameter vector
by model matrix).

Random effects variance

The random effect variance, a,?, represents the mean random effect variance of the model. Since this
variance reflects the "average" random effects variance for mixed models, it is also appropriate for
models with more complex random effects structures, like random slopes or nested random effects.
Details can be found in Johnson 2014, in particular equation 10. For simple random-intercept
models, the random effects variance equals the random-intercept variance.

get_variance 139

Distribution-specific (observation level) variance

The distribution-specific variance, o2, is the conditional variance of the response given the predic-
tors , Var[y|x1, which depends on the model family.
» Gaussian: For Gaussian models, it is o2 (i.e. sigma(model)*2).

* Bernoulli: For models with binary outcome, it is 2 /3 for logit-link, 1 for probit-link, and
72 /6 for cloglog-links.

* Binomial: For other binomial models, the distribution-specific variance for Bernoulli models
is used, divided by a weighting factor based on the number of trials and successes.

» Gamma: Models from Gamma-families use u? (as obtained from family$variance()).

* For all other models, the distribution-specific variance is by default based on lognormal ap-
proximation, log(1 + var(x)/u?) (see Nakagawa et al. 2017). Other approximation methods
can be specified with the approximation argument.

» Zero-inflation models: The expected variance of a zero-inflated model is computed according
to Zuur et al. 2012, p277.
Variance for the additive overdispersion term

The variance for the additive overdispersion term, Jg, represents "the excess variation relative to
what is expected from a certain distribution" (Nakagawa et al. 2017). In (most? many?) cases, this
will be 0.

Residual variance

The residual variance, o2, is simply o2 + o2. It is also called within-subject variance.

Random intercept variance

The random intercept variance, or between-subject variance (Tyg), is obtained from VarCorr ().
It indicates how much groups or subjects differ from each other, while the residual variance o2
indicates the within-subject variance.

Random slope variance
The random slope variance (7y1) is obtained from VarCorr (). This measure is only available for
mixed models with random slopes.

Random slope-intercept correlation
The random slope-intercept correlation (pp;) is obtained from VarCorr(). This measure is only
available for mixed models with random intercepts and slopes.

Supported models and model families

This function supports models of class merMod (including models from blme), clmm, cpglmm,
glmmadmb, glmmTMB, MixMod, 1me, mixed, rlmerMod, stanreg, brmsfit or wbm. Support for ob-
jects of class MixMod (GLMMadaptive), 1me (nlme) or brmsfit (brms) is not fully implemented
or tested, and therefore may not work for all models of the aforementioned classes.

140 get_variance

The results are validated against the solutions provided by Nakagawa et al. (2017), in particular
examples shown in the Supplement 2 of the paper. Other model families are validated against results
from the MuMIn package. This means that the returned variance components should be accurate
and reliable for following mixed models or model families:

* Bernoulli (logistic) regression

* Binomial regression (with other than binary outcomes)

* Poisson and Quasi-Poisson regression

* Negative binomial regression (including nbinom1, nbinom2 and nbinom12 families)

* Gaussian regression (linear models)

* Gamma regression

* Tweedie regression

* Beta regression

* Ordered beta regression
Following model families are not yet validated, but should work:

» Zero-inflated and hurdle models

* Beta-binomial regression

* Compound Poisson regression

* Generalized Poisson regression

* Log-normal regression

» Skew-normal regression
Extracting variance components for models with zero-inflation part is not straightforward, because
it is not definitely clear how the distribution-specific variance should be calculated. Therefore, it

is recommended to carefully inspect the results, and probably validate against other models, e.g.
Bayesian models (although results may be only roughly comparable).

Log-normal regressions (e.g. lognormal() family in glmmTMB or gaussian("log")) often
have a very low fixed effects variance (if they were calculated as suggested by Nakagawa et al.
2017). This results in very low ICC or r-squared values, which may not be meaningful (see
performance: :icc() or performance::r2_nakagawa()).

References

* Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes
models. Methods in Ecology and Evolution, 5(9), 944-946. doi:10.1111/2041210X.12225

* Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2
and intra-class correlation coefficient from generalized linear mixed-effects models revisited
and expanded. Journal of The Royal Society Interface, 14(134), 20170213. doi:10.1098/
rsif.2017.0213

e Zuur, A. F, Savel’ev, A. A., & Ieno, E. N. (2012). Zero inflated models and generalized linear
mixed models with R. Newburgh, United Kingdom: Highland Statistics.

https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.1098/rsif.2017.0213

get_weights 141

Examples

library(1lme4)
data(sleepstudy)
m <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)

get_variance(m)
get_variance_fixed(m)
get_variance_residual(m)

get_weights Get the values from model weights

Description

Returns weighting variable of a model.

Usage

get_weights(x, ...)

Default S3 method:

get_weights(x, remove_na = FALSE, null_as_ones = FALSE, ...)
Arguments
X A fitted model.

Used for objects from package survey, to pass the source argument to get_data().
See related documentation of that argument for further details.

remove_na Logical, if TRUE, removes possible missing values.

null_as_ones Logical, if TRUE, will return a vector of 1 if no weights were specified in the
model (as if the weights were all set to 1).

Value

The weighting variable, or NULL if no weights were specified. If the weighting variable should also
be returned (instead of NULL) when all weights are set to 1 (i.e. no weighting), set null_as_ones =
TRUE.

142 has_intercept

Examples

data(mtcars)
set.seed(123)
mtcars$weight <- rnorm(nrow(mtcars), 1, .3)

LMs
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars, weights = weight)
get_weights(m)

get_weights(Im(mpg ~ wt, data = mtcars), null_as_ones = TRUE)

GLMs

m <- glm(vs ~ disp + mpg, data = mtcars, weights = weight, family = quasibinomial)
get_weights(m)

m <- glm(cbind(cyl, gear) ~ mpg, data = mtcars, weights = weight, family = binomial)
get_weights(m)

has_intercept Checks if model has an intercept

Description

Checks if model has an intercept.

Usage

has_intercept(x, verbose = TRUE)

Arguments
X A model object.
verbose Toggle warnings.
Value

TRUE if x has an intercept, FALSE otherwise.

Examples

model <- Im(mpg ~ @ + gear, data = mtcars)
has_intercept(model)

model <- Im(mpg ~ gear, data = mtcars)
has_intercept(model)

model <- lmer(Reaction ~ @ + Days + (Days | Subject), data = sleepstudy)
has_intercept(model)

is_bayesian_model 143

model <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
has_intercept(model)

is_bayesian_model Checks if a model is a Bayesian model

Description

Small helper that checks if a model is a Bayesian model.

Usage

is_bayesian_model(x, exclude = NULL)

Arguments
X A model object.
exclude Optional character vector, indicating classes that should not be included in the
check. E.g., exclude = "stanreg"” would return FALSE for models from pack-
age rstanarm.
Value

A logical, TRUE if x is a Bayesian model.

Examples

library(rstanarm)
model <- stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)
is_bayesian_model (model)

is_converged Convergence test for mixed effects models

Description

is_converged() provides an alternative convergence test for merMod-objects.
Usage
is_converged(x, tolerance = 0.001, ...)

S3 method for class 'merMod'
is_converged(x, tolerance = 0.001, verbose = TRUE, ...)

144 is_converged

Arguments
X A model object from class merMod, glmmTMB, glm, lavaan or _glm.
tolerance Indicates up to which value the convergence result is accepted. The smaller
tolerance is, the stricter the test will be.
Currently not used.
verbose Toggle messages and warnings.
Value

TRUE if convergence is fine and FALSE if convergence is suspicious. Additionally, the convergence
value is returned as attribute. For merMod models, if the model is singular, convergence is de-
termined by the optimizer’s convergence code. For non-singular models where derivatives are un-
available, FALSE is returned and a message is printed to indicate that convergence cannot be assessed
through the usual gradient-based checks.

Convergence and log-likelihood

Convergence problems typically arise when the model hasn’t converged to a solution where the
log-likelihood has a true maximum. This may result in unreliable and overly complex (or non-
estimable) estimates and standard errors.

Inspect model convergence

Ime4 performs a convergence-check (see ?1me4: : convergence), however, as discussed here and
suggested by one of the Ime4-authors in this comment, this check can be too strict. is_converged()
(and its wrapper function, performance: :check_convergence()) thus provides an alternative
convergence test for merMod-objects.

Resolving convergence issues

Convergence issues are not easy to diagnose. The help page on ?1me4: :convergence provides
most of the current advice about how to resolve convergence issues. In general, convergence issues
may be addressed by one or more of the following strategies: 1. Rescale continuous predictors; 2.
try a different optimizer; 3. increase the number of iterations; or, if everything else fails, 4. sim-
plify the model. Another clue might be large parameter values, e.g. estimates (on the scale of the
linear predictor) larger than 10 in (non-identity link) generalized linear model might indicate com-
plete separation, which can be addressed by regularization, e.g. penalized regression or Bayesian
regression with appropriate priors on the fixed effects.

Convergence versus Singularity

Note the different meaning between singularity and convergence: singularity indicates an issue
with the "true" best estimate, i.e. whether the maximum likelihood estimation for the variance-
covariance matrix of the random effects is positive definite or only semi-definite. Convergence is a
question of whether we can assume that the numerical optimization has worked correctly or not. A
convergence failure means the optimizer (the algorithm) could not find a stable solution (Bates et.
al 2015).

https://github.com/lme4/lme4/issues/120
https://github.com/lme4/lme4/issues/120#issuecomment-39920269

is_empty_object 145

For singular models (see ?1me4: : isSingular), convergence is determined based on the optimizer’s
convergence code. If the optimizer reports successful convergence (convergence code 0) for a sin-
gular model, is_converged() returns TRUE. For non-singular models, in cases where the gradi-
ent and Hessian are not available, is_converged() returns FALSE and prints a message to in-
dicate that convergence cannot be assessed through the usual gradient-based checks. Note that
performance: :check_convergence() is a wrapper around insight::is_converged().

References

Bates, D., Michler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models
Using Ime4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101

Examples

library(1lme4)

data(cbpp)

set.seed(1)

cbpp$x <- rnorm(nrow(cbpp))
cbpp$x2 <- runif(nrow(cbpp))

model <- glmer(
cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd),
data = cbpp,
family = binomial()

)

is_converged(model)

library(glmmTMB)
model <- glmmTMB(
Sepal.Length ~ poly(Petal.Width, 4) * poly(Petal.Length, 4) +
(1 + poly(Petal.width, 4) | Species),
data = iris

)

is_converged(model)

is_empty_object Check if object is empty

Description

Check if object is empty

https://doi.org/10.18637/jss.v067.i01

146

Usage

is_empty_object(x)

Arguments

X A list, a vector, or a dataframe.

Value

A logical indicating whether the entered object is empty.

Examples

is_empty_object(c(1, 2, 3, NA))
is_empty_object(list(NULL, c(NA, NA)))
is_empty_object(list(NULL, NA))

is_gam_model

is_gam_model Checks if a model is a generalized additive model

Description

Small helper that checks if a model is a generalized additive model.

Usage

is_gam_model (x)

Arguments

X A model object.

Value

A logical, TRUE if x is a generalized additive model and has smooth-terms

Note

This function only returns TRUE when the model inherits from a typical GAM model class and
when smooth terms are present in the model formula. If model has no smooth terms or is not from

a typical gam class, FALSE is returned.

Examples

data(iris)

modell <- 1m(Petal.Length ~ Petal.Width + Sepal.Length, data = iris)
model2 <- mgcv::gam(Petal.Length ~ Petal.Width + s(Sepal.Length), data
is_gam_model (modell)

is_gam_model (model2)

iris)

1s_mixed_model 147

is_mixed_model Checks if a model is a mixed effects model

Description

Small helper that checks if a model is a mixed effects model, i.e. if it the model has random effects.

Usage

is_mixed_model (x)

Arguments

X A model object.

Value

A logical, TRUE if x is a mixed model.

Examples

data(mtcars)
model <- Im(mpg ~ wt + cyl + vs, data = mtcars)
is_mixed_model(model)

data(sleepstudy, package = "lme4")
model <- 1lme4::1lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
is_mixed_model (model)

is_model Checks if an object is a regression model or statistical test object

Description

Small helper that checks if a model is a regression model or a statistical object. is_regression_model ()
is stricter and only returns TRUE for regression models, but not for, e.g., htest objects.

Usage

is_model (x)

is_regression_model (x)

Arguments

X An object.

148 is_model_supported

Details

This function returns TRUE if x is a model object.

Value

A logical, TRUE if x is a (supported) model object.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)

is_model(m)
is_model (mtcars)

test <- t.test(1:10, y = c(7:20))
is_model(test)
is_regression_model (test)

is_model_supported Checks if a regression model object is supported by the insight package

Description
Small helper that checks if a model is a supported (regression) model object. supported_models()
prints a list of currently supported model classes.

Usage

is_model_supported(x)
supported_models()

Arguments

X An object.

Details
This function returns TRUE if x is a model object that works with the package’s functions. A list of
supported models can also be found here: https://github.com/easystats/insight.

Value

A logical, TRUE if x is a (supported) model object.

https://github.com/easystats/insight

is_multivariate 149

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)

is_model_supported(m)
is_model_supported(mtcars)

to see all supported models
supported_models()

is_multivariate Checks if an object stems from a multivariate response model

Description

Small helper that checks if a model is a multivariate response model, i.e. a model with multiple
outcomes.

Usage

is_multivariate(x)

Arguments

X A model object, or an object returned by a function from this package.

Value

A logical, TRUE if either x is a model object and is a multivariate response model, or TRUE if a return
value from a function of insight is from a multivariate response model.

Examples

library(rstanarm)
data("pbcLong")
model <- suppressWarnings(stan_mvmer (
formula = list(
logBili ~ year + (1 | id),
albumin ~ sex + year + (year | id)
),
data = pbclLong,
chains = 1, cores = 1, seed = 12345, iter = 1000,
show_messages = FALSE, refresh = 0

)

f <- find_formula(model)
is_multivariate(model)

150 is_nested_models

is_multivariate(f)

is_nested_models Checks whether a list of models are nested models

Description

Checks whether a list of models are nested models, strictly following the order they were passed to
the function.

Usage

is_nested_models(...)

Arguments

Multiple regression model objects.

Details

The term "nested" here means that all the fixed predictors of a model are contained within the
fixed predictors of a larger model (sometimes referred to as the encompassing model). Currently,
is_nested_models() ignores random effects parameters.

Value

TRUE if models are nested, FALSE otherwise. If models are nested, also returns two attributes that
indicate whether nesting of models is in decreasing or increasing order.

Examples

ml <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)
m2 <- Im(Sepal.Length ~ Species, data = iris)

m3 <- Im(Sepal.Length ~ Petal.Width, data = iris)

m4 <- Im(Sepal.Length ~ 1, data = iris)

is_nested_models(m1, m2, m4)
is_nested_models(m4, m2, ml)
is_nested_models(m1, m2, m3)

is_nullmodel 151

is_nullmodel Checks if model is a null-model (intercept-only)

Description
Checks if model is a null-model (intercept-only), i.e. if the conditional part of the model has no
predictors.

Usage

is_nullmodel (x)

Arguments

X A model object.

Value

TRUE if x is a null-model, FALSE otherwise.

Examples

model <- Im(mpg ~ 1, data = mtcars)
is_nullmodel (model)

model <- Im(mpg ~ gear, data = mtcars)
is_nullmodel (model)

data(sleepstudy, package = "lme4")

model <- 1lme4::lmer(Reaction ~ 1 + (Days | Subject), data = sleepstudy)
is_nullmodel (model)

model <- 1lme4::1lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
is_nullmodel (model)

link_function Get link-function from model object

Description

Returns the link-function from a model object.

152 link_inverse
Usage
link_function(x, ...)

S3 method for class 'betamfx'
link_function(x, what = c("mean”, "precision”), ...)

S3 method for class 'gamlss'
link_function(x, what = c("mu"”, "sigma”, "nu”, "tau"), ...)

S3 method for class 'betareg'
link_function(x, what = c("mean”, "precision”), ...)

S3 method for class 'DirichletRegModel'’

link_function(x, what = c("mean”, "precision”), ...)
Arguments
X A fitted model.

Currently not used.

what For gamlss models, indicates for which distribution parameter the link (in-
verse) function should be returned; for betareg or DirichletRegModel, can
be "mean” or "precision”.

Value

A function, describing the link-function from a model-object. For multivariate-response models, a
list of functions is returned.

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- gl(3, 1, 9)

treatment <- gl(3, 3)

m <- glm(counts ~ outcome + treatment, family = poisson())

link_function(m)(@.3)
same as
log(0.3)

link_inverse Get link-inverse function from model object

Description

Returns the link-inverse function from a model object.

model_info 153
Usage
link_inverse(x, ...)

S3 method for class 'betareg'
link_inverse(x, what = c("mean”, "precision”), ...)

S3 method for class 'DirichletRegModel’
link_inverse(x, what = c("mean”, "precision”), ...)

S3 method for class 'betamfx'
link_inverse(x, what = c("mean”, "precision”), ...)

S3 method for class 'gamlss'

link_inverse(x, what = c("mu”, "sigma", "nu"”, "tau"), ...)
Arguments
X A fitted model.

Currently not used.

what For gamlss models, indicates for which distribution parameter the link (in-
verse) function should be returned; for betareg or DirichletRegModel, can
be "mean” or "precision”.

Value

A function, describing the inverse-link function from a model-object. For multivariate-response
models, a list of functions is returned.

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- gl(3, 1, 9)

treatment <- gl(3, 3)

m <- glm(counts ~ outcome + treatment, family = poisson())

link_inverse(m) (0.3)
same as
exp(0.3)

model_info Access information from model objects

Description

Retrieve information from model objects.

154

Usage

model_info

model_info(x, ...)

Default S3 method:
model_info(x, verbose = TRUE, ...)

S3 method for class 'brmsfit'

model_info(x, response = NULL, ...)
Arguments
X A fitted model.
Currently not used.
verbose Toggle off warnings.
response If x is a multivariate response model, model_info() returns a list of information

Details

for each response variable. Set response to the number of a specific response
variable, or provide the name of the response variable in response, to return the
information for only one response.

model_info() returns a list with information about the model for many different model objects.
Following information is returned, where all values starting with is_ are logicals.

Common families and distributions:

is_bernoulli: special case of binomial models: family is Bernoulli
is_beta: family is beta

is_betabinomial: family is beta-binomial

is_binomial: family is binomial (but not negative binomial)
is_categorical: family is categorical link

is_censored: model is a censored model (has a censored response, including survival mod-
els)

is_count: model is a count model (i.e. family is either poisson or negative binomial)
is_cumulative: family is ordinal or cumulative link

is_dirichlet: family is dirichlet

is_exponential: family is exponential (e.g. Gamma or Weibull)

is_linear: family is gaussian

is_logit: model has logit link

is_multinomial: family is multinomial or categorical link

is_negbin: family is negative binomial

is_orderedbeta: family is ordered beta

is_ordinal: family is ordinal or cumulative link

model_info 155

is_poisson: family is poisson
is_probit: model has probit link

is_tweedie: family is tweedie

Special model types:

is_anova: model is an Anova object

is_bayesian: model is a Bayesian model

is_dispersion: model has dispersion component (not only dispersion parameter)

is_gam: model is a generalized additive model

is_meta: model is a meta-analysis object

is_mixed: model is a mixed effects model (with random effects)

is_mixture: model is a finite mixture model (currently only recognized for package brms).

is_multivariate: model is a multivariate response model (currently only works for brmsfit
and vglm/vgam objects)

is_hurdle: model has zero-inflation component and is a hurdle-model (truncated family dis-
tribution)

is_rtchoice: model is a brms decision-making (sequential sampling) model, which models
outcomes that consists of two components (reaction times and choice).

is_survival: model is a survival model
is_trial: model response contains additional information about the trials
is_truncated: model is a truncated model (has a truncated response)

is_wiener: model is a brms decision-making (sequential sampling) model with Wiener pro-
cess (also called drift diffusion model)

is_zero_inflated: model has zero-inflation component

Hypotheses tests:

is_binomtest: model is an an object of class htest, returned by binom. test ()
is_chi2test: model is an an object of class htest, returned by chisq.test()
is_correlation: model is an an object of class htest, returned by cor. test()
is_ftest: model is an an object of class htest, and test-statistic is an F-statistic.
is_levenetest: model is an an object of class anova, returned by car: :leveneTest ().
is_onewaytest: model is an an object of class htest, returned by oneway. test()
is_proptest: model is an an object of class htest, returned by prop. test()

is_ranktest: model is an an object of class htest, returned by cor.test() (if Spearman’s
rank correlation), wilcox. text() or kruskal.test().

is_ttest: model is an an object of class htest, returned by t.test()

is_variancetest: model is an an object of class htest, returned by bartlett.test(),
shapiro.test() or car::leveneTest().

is_xtab: model is an an object of class htest or BFBayesFactor, and test-statistic stems
from a contingency table (i.e. chisq.test() or BayesFactor: :contingencyTableBF()).

156 model _name

Other model information:

e link_function: the link-function

e family: name of the distributional family of the model. For some exceptions (like some
htest objects), can also be the name of the test.

* n_obs: number of observations

* n_grouplevels: for mixed models, returns names and numbers of random effect groups

Value

A list with information about the model, like family, link-function etc. (see ’Details’).

Examples

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive = 20 - numdead)

dat <- data.frame(ldose, sex, SF, stringsAsFactors = FALSE)
m <- glm(SF ~ sex * ldose, family = binomial)

logistic regression
model_info(m)

t-test
m <- t.test(1:10, y = c(7:20))
model_info(m)

model_name Name the model

Description

Returns the "name" (class attribute) of a model, possibly including further information.

Usage

model_name(x, ...)

Default S3 method:

model_name(x, include_formula = FALSE, include_call = FALSE, ...)
Arguments
X A model.

e Currently not used.
include_formula
Should the name include the model’s formula.

include_call If TRUE, will return the function call as a name.

null _model 157

Value

A character string of a name (which usually equals the model’s class attribute).

Examples

m <- Im(Sepal.Length ~ Petal.Width, data = iris)
model_name(m)

model_name(m, include_formula = TRUE)
model_name(m, include_call = TRUE)

model_name(lme4: :1mer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris))

null_model Compute intercept-only model for regression models

Description

This function computes the null-model (i.e. (y ~ 1)) of a model. For mixed models, the null-model
takes random effects into account.

Usage
null_model(model, ...)

Default S3 method:

null_model(model, verbose = TRUE, ...)
Arguments
model A (mixed effects) model.

Arguments passed to or from other methods.

verbose Toggle off warnings.

Value

The null-model of x

Examples

data(sleepstudy)

m <- Ilmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
summary (m)

summary (null_model(m))

158 n_grouplevels

n_grouplevels Count number of random effect levels in a mixed model

Description

Returns the number of group levels of random effects from mixed models.

Usage
n_grouplevels(x, ...)
Arguments
X A mixed model.
Additional arguments that can be passed to the function. Currently, you can
use data to provide the model data, if available, to avoid retrieving model data
multiple times.
Value

The number of group levels in the model.

Examples

data(sleepstudy, package = "lme4")
set.seed(12345)
sleepstudy$grp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$subgrp <- NA
for (i in 1:5) ¢
filter_group <- sleepstudy$grp == i
sleepstudy$subgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)
3
model <- 1me4::1lmer(
Reaction ~ Days + (1 | grp / subgrp) + (1 | Subject),
data = sleepstudy
)

n_grouplevels(model)

n_obs

159

n_obs

Get number of observations from a model

Description

This method returns the number of observation that were used to fit the model, as numeric value.

Usage

n_obs(x,

.2

S3 method for class 'glm'
n_obs(x, disaggregate = FALSE, ...)

S3 method for class 'svyolr'
n_obs(x, weighted = FALSE, ...)

S3 method for class 'afex_aov'
n_obs(x, shape = c("long”, "wide"), ...)

S3 method for class 'stanmvreg'

n_obs(x, select = NULL, ...)
Arguments
X A fitted model.

disaggregate

weighted
shape

select

Value

Currently not used.

For binomial models with aggregated data, n_obs () returns the number of data
rows by default. If disaggregate = TRUE, the total number of trials is returned
instead (determined by summing the results of weights() for aggregated data,
which will be either the weights input for proportion success response or the row
sums of the response matrix if matrix response, see *’Examples’).

For survey designs, returns the weighted sample size.
Return long or wide data? Only applicable in repeated measures designs.

Optional name(s) of response variables for which to extract values. Can be used
in case of regression models with multiple response variables.

The number of observations used to fit the model, or NULL if this information is not available.

Examples

data(mtcars)

m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)

n_obs(m)

160 n_parameters

data(cbpp, package = "1me4")

m <- glm(
cbind(incidence, size - incidence) ~ period,
data = cbpp,
family = binomial(link = "logit")

)

n_obs(m)

n_obs(m, disaggregate = TRUE)

n_parameters Count number of parameters in a model

Description

Returns the number of parameters (coefficients) of a model.
Usage
n_parameters(x, ...)

Default S3 method:
n_parameters(x, remove_nonestimable = FALSE, ...)

S3 method for class 'merMod'
n_parameters(x, effects = "fixed", remove_nonestimable = FALSE, ...)

S3 method for class 'glmmTMB'
n_parameters(

X,
effects = "fixed”,
component = "all",

remove_nonestimable = FALSE,

Arguments

X A statistical model.

Arguments passed to or from other methods.

remove_nonestimable
Logical, if TRUE, removes (i.e. does not count) non-estimable parameters (which
may occur for models with rank-deficient model matrix).

effects Should variables for fixed effects ("fixed"), random effects ("random”) or both
("all") be returned? Only applies to mixed models. May be abbreviated.

object_has_names 161

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):

* component = "all" returns all possible parameters.

 If component = "location”, location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).

* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

Value

The number of parameters in the model.

Note

This function returns the number of parameters for the fixed effects by default, as returned by
find_parameters(x, effects = "fixed"). It does not include all estimated model parameters,
i.e. auxiliary parameters like sigma or dispersion are not counted. To get the number of all estimated
parameters, use get_df (x, type = "model”).

Examples

data(iris)
model <- 1m(Sepal.Length ~ Sepal.Width * Species, data = iris)
n_parameters(model)

object_has_names Check names and rownames

Description

object_has_names() checks if specified names are present in the given object. object_has_rownames ()
checks if rownames are present in a dataframe.

Usage

object_has_names(x, names)

object_has_rownames(x)

162 print_color

Arguments
X A named object (an atomic vector, a list, a dataframe, etc.).
names A single character or a vector of characters.

Value

A logical or a vector of logicals.

Examples

check if specified names are present in the given object
object_has_names(mtcars, "am")

object_has_names(anscombe, c("x1", "z1", "y1"))
object_has_names(list("x" =1, "y" = 2), c("x", "a"))

check if a dataframe has rownames
object_has_rownames(mtcars)

print_color Coloured console output

Description
Convenient function that allows coloured output in the console. Mainly implemented to reduce
package dependencies.

Usage

print_color(text, color)
print_colour(text, colour)
color_text(text, color)
colour_text(text, colour)

color_theme()

Arguments

text The text to print.

color, colour Character vector, indicating the colour for printing. May be one of "white”,
"black”, "red”, "yellow"”, "green"”, "blue”, "violet”, "cyan” or "grey".
Bright variants of colors are available by adding the prefix "b" (or "br_" or
"bright_"), e.g. "bred” (or "br_red” resp. "bright_red"). Background
colors can be set by adding the prefix "bg_" (e.g. "bg_red"). Formatting is also

print_parameters 163

possible with "bold” or "italic”. Note that "bright_black” is equivalent
to "grey”, and "bg_grey" has no effect (it is equivalent to the IDE’s default
background).

Details

This function prints text directly to the console using cat (), so no string is returned. color_text(),
however, returns only the formatted string, without using cat(). color_theme() either returns
"dark” when RStudio is used with dark color scheme, "light" when it’s used with light theme,
and NULL if the theme could not be detected.

Value

Nothing.

Examples

print_color("I'm blue dabedi dabedei”, "blue")

print_parameters Prepare summary statistics of model parameters for printing

Description

This function takes a data frame, typically a data frame with information on summaries of model pa-
rameters like bayestestR: :describe_posterior(), bayestestR: :hdi() or parameters: :model_parameters(),
as input and splits this information into several parts, depending on the model. See details below.

Usage

print_parameters(
X)

by = c("Effects”, "Component”, "Group”, "Response”),
format = "text”,

parameter_column = "Parameter”,
keep_parameter_column = TRUE,

remove_empty_column = FALSE,

titles = NULL,

subtitles = NULL

Arguments

X A fitted model, or a data frame returned by clean_parameters().

One or more objects (data frames), which contain information about the model
parameters and related statistics (like confidence intervals, HDI, ROPE, ...).

164 print_parameters

by by should be a character vector with one or more of the following elements:
"Effects”, "Component”, "Response” and "Group”. These are the column
names returned by clean_parameters(), which is used to extract the informa-
tion from which the group or component model parameters belong. If NULL, the
merged data frame is returned. Else, the data frame is split into a list, split by
the values from those columns defined in by.

format Name of output-format, as string. If NULL (or "text"), assumed use for output is
basic printing. If "markdown”, markdown-format is assumed. This only affects
the style of title- and table-caption attributes, which are used in export_table().

parameter_column
String, name of the column that contains the parameter names. Usually, for data
frames returned by functions the easystats-packages, this will be "Parameter”.

keep_parameter_column
Logical, if TRUE, the data frames in the returned list have both a "Cleaned_Parameter”
and "Parameter” column. If FALSE, the (unformatted) "Parameter” is re-
moved, and the column with cleaned parameter names ("Cleaned_Parameter™)
is renamed into "Parameter”.

remove_empty_column
Logical, if TRUE, columns with completely empty character values will be re-
moved.

titles, subtitles
By default, the names of the model components (like fixed or random effects,
count or zero-inflated model part) are added as attributes "table_title"” and
"table_subtitle” to each list element returned by print_parameters(). These
attributes are then extracted and used as table (sub) titles in export_table().
Use titles and subtitles to override the default attribute values for "table_title”
and "table_subtitle”. titles and subtitles may be any length from 1 to
same length as returned list elements. If titles and subtitles are shorter than
existing elements, only the first default attributes are overwritten.

Details

This function prepares data frames that contain information about model parameters for clear print-
ing.

First, x is required, which should either be a model object or a prepared data frame as returned by
clean_parameters(). If x is a model, clean_parameters() is called on that model object to get
information with which model components the parameters are associated.

Then, ... take one or more data frames that also contain information about parameters from the
same model, but also have additional information provided by other methods. For instance, a
data frame in ... might be the result of, for instance, bayestestR: :describe_posterior(), or
parameters: :model_parameters(), where we have a) a Parameter column and b) columns with
other parameter values (like CI, HDI, test statistic, etc.).

Now we have a data frame with model parameters and information about the association to the
different model components, a data frame with model parameters, and some summary statistics.
print_parameters() then merges these data frames, so the parameters or statistics of interest are
also associated with the different model components. The data frame is split into a list, so for a
clear printing. Users can loop over this list and print each component for a better overview. Further,
parameter names are "cleaned", if necessary, also for a cleaner print. See also ’Examples’.

standardize_column_order 165

Value

A data frame or a list of data frames (if by is not NULL). If a list is returned, the element names
reflect the model components where the extracted information in the data frames belong to, e.g.
random.zero_inflated.Intercept: persons. This is the data frame that contains the parameters
for the random effects from group-level "persons" from the zero-inflated model component.

Examples

library(bayestestR)
model <- download_model("brms_zi_2")
if (!is.null(model)) {
X <- hdi(model, effects = "all”, component = "all")

hdi() returns a data frame; here we use only the
information on parameter names and HDI values
tmp <- as.data.frame(x)[, 1:4]

tmp

Based on the "by" argument, we get a list of data frames that
is split into several parts that reflect the model components.
print_parameters(model, tmp)

This is the standard print()-method for "bayestestR::hdi"-objects.

For printing methods, it is easy to print complex summary statistics
in a clean way to the console by splitting the information into

different model components.

X

standardize_column_order
Standardize column order

Description
Standardizes order of columns for dataframes and other objects from easystats and broom ecosys-
tem packages.

Usage

standardize_column_order(data, ...)

S3 method for class 'parameters_model'
standardize_column_order(data, style = "easystats”, ...)

166 standardize_names

Arguments
data A data frame. In particular, objects from easystats package functions like parameters: :model_paramete
or effectsize::effectsize() are accepted, but also data frames returned by
broom: :tidy() are valid objects.
Currently not used.
style Standardization can either be based on the naming conventions from the easystats-
project, or on broom’s naming scheme.
Value

A data frame, with standardized column order.

Examples

easystats conventions
df1 <- chind.data.frame(

CI_low = -2.873,
t = 5.494,
CI_high = -1.088,
p = 0.00001,
Parameter = -1.980,
CI = 0.95,
df = 29.234,
Method = "Student's t-test”
)
standardize_column_order(df1, style = "easystats")

broom conventions
df2 <- cbind.data.frame(

conf.low = -2.873,
statistic = 5.494,
conf.high = -1.088,
p.value = 0.00001,
estimate = -1.980,
conf.level = 0.95,
df = 29.234,
method = "Student's t-test”
)
standardize_column_order(df2, style = "broom")
standardize_names Standardize column names
Description

Standardize column names from data frames, in particular objects returned from parameters: :model_parameters(),
so column names are consistent and the same for any model object.

https://easystats.github.io/easystats/
https://easystats.github.io/easystats/

standardize_names 167

Usage

standardize_names(data, ...)

S3 method for class 'parameters_model'
standardize_names(
data,
style = c("easystats”, "broom"),
ignore_estimate = FALSE,

)
Arguments
data A data frame. In particular, objects from easystats package functions like parameters: :model_paramete
or effectsize::effectsize() are accepted, but also data frames returned by
broom: :tidy() are valid objects.
Currently not used.
style Standardization can either be based on the naming conventions from the easystats-

project, or on broom’s naming scheme.
ignore_estimate

Logical, if TRUE, column names like "mean” or "median” will not be converted
to "Coefficient” resp. "estimate”.

Details

This method is in particular useful for package developers or users who use, e.g., parameters: :model_parameters()
in their own code or functions to retrieve model parameters for further processing. As model_parameters()

returns a data frame with varying column names (depending on the input), accessing the required

information is probably not quite straightforward. In such cases, standardize_names() can be

used to get consistent, i.e. always the same column names, no matter what kind of model was used

in model_parameters().

For style = "broom”, column names are renamed to match broom’s naming scheme, i.e. Parameter
is renamed to term, Coefficient becomes estimate and so on.

For style = "easystats”, when data is an object from broom: : tidy(), column names are con-
verted from "broom"-style into "easystats"-style.
Value

A data frame, with standardized column names.

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)

as.data.frame(mp)
standardize_names(mp)
standardize_names(mp, style = "broom")

https://easystats.github.io/easystats/
https://easystats.github.io/easystats/

168 text_remove_backticks

text_remove_backticks Remove backticks from a string

Description

This function removes backticks from a string.

Usage

text_remove_backticks(x, ...)

S3 method for class 'data.frame'

text_remove_backticks(x, column = "Parameter”, verbose = FALSE,)
Arguments
X A character vector, a data frame or a matrix. If a matrix, backticks are removed

from the column and row names, not from values of a character vector.

Currently not used.

column If x is a data frame, specify the column of character vectors, where backticks
should be removed. If NULL, all character vectors are processed.
verbose Toggle warnings.
Value

x, where all backticks are removed.

Note

If x is a character vector or data frame, backticks are removed from the elements of that character
vector (or character vectors from the data frame.) If x is a matrix, the behaviour slightly differs: in
this case, backticks are removed from the column and row names. The reason for this behaviour
is that this function mainly serves formatting coefficient names. For vcov() (a matrix), row and
column names equal the coefficient names and therefore are manipulated then.

Examples

example model

data(iris)

iris$~a m* <- iris$Species

iris$-Sepal Width™ <- iris$Sepal.Width

model <- Im(Sepal Width™ ~ Petal.Length + “a m™, data = iris)

remove backticks from string
names (coef (model))
text_remove_backticks(names(coef (model)))

trim_ws 169

remove backticks from character variable in a data frame
column defaults to "Parameter"”.
d <- data.frame(
Parameter = names(coef(model)),
Estimate = unname(coef(model))
)
d
text_remove_backticks(d)

H

trim_ws Small helper functions

Description

Collection of small helper functions. trim_ws() is an efficient function to trim leading and trailing
whitespaces from character vectors or strings. n_unique() returns the number of unique values in
a vector. has_single_value() is equivalent to n_unique() == 1 but is faster (note the different
default for the remove_na argument). safe_deparse() is comparable to deparsel(), i.e. it can
safely deparse very long expressions into a single string. safe_deparse_symbol () only deparses
a substituted expressions when possible, which can be much faster than deparse(substitute())
for those cases where substitute() returns no valid object name.

Usage

trim_ws(x, ...)

S3 method for class 'data.frame'
trim_ws(x, character_only = TRUE, ...)

n_unique(x, ...)

Default S3 method:
n_unique(x, remove_na = TRUE, ...)

safe_deparse(x, ...)

safe_deparse_symbol (x)

has_single_value(x, remove_na = FALSE, ...)
Arguments
X A (character) vector, or for some functions may also be a data frame.

Currently not used.
character_only Logical, if TRUE and x is a data frame or list, only processes character vectors.

remove_na Logical, if missing values should be removed from the input.

170 validate_argument

Value

* n_unique(): For a vector, n_unique always returns an integer value, even if the input is NULL
(the return value will be @ then). For data frames or lists, n_unique () returns a named numeric
vector, with the number of unique values for each element.

* has_single_value(): TRUE if x has only one unique value, FALSE otherwise.
* trim_ws(): A character vector, where trailing and leading white spaces are removed.
* safe_deparse(): A character string of the unevaluated expression or symbol.

» safe_deparse_symbol(): A character string of the unevaluated expression or symbol, if x
was a symbol. If x is no symbol (i.e. if is.name(x) would return FALSE), NULL is returned.

Examples

trim_ws(” no space! ")
n_unique(iris$Species)
has_single_value(c(1, 1, 2))

safe_deparse_symbol() compared to deparse(substitute())
safe_deparse_symbol (as.name("test"))
deparse(substitute(as.name("test")))

validate_argument Validate arguments against a given set of options

Description

This is a replacement for match.arg(), however, the error string should be more informative for
users. The name of the affected argument is shown, and possible typos as well as remaining valid
options. Note that the argument several.ok is always FALSE in validate_argument(), i.e. this
function - unlike match.arg() - does not allow evaluating several valid options at once.

Usage

validate_argument(argument, options)

Arguments
argument The bare name of the argument to be validated.
options Valid options, usually a character vector.
Value

argument if it is a valid option, else an error is thrown.

validate_argument 171

Examples
foo <- function(test = "small") {
validate_argument(test, c("small”, "medium”, "large"))
}
foo("small")
errors:

foo("masll")

Index

x data
efc_insight, 15
fish, 58

all_models_equal, 5
all_models_same_class
(all_models_equal), 5

Bayesian models, 28, 95

bayestestR::ci(), 83

bayestestR: :describe_posterior(), 163,
164

bayestestR::hdi(), 163

bayestestR: :weighted_posteriors(), 104

brms: :mixture(), 115

broom_columns (easystats_columns), 14

check_if_installed, 6
clean_names, 7
clean_parameters, 8
clean_parameters(), 163, 164
color_if, 9

color_text (print_color), 162
color_theme (print_color), 162
colour_if (color_if),9
colour_text (print_color), 162
compact_character, 11
compact_list, 12

display, 12
download_model, 13

easystats_columns, 14
efc_insight, 15
effectsize::effectsize(), 166, 167
ellipsis_info, 15

emmeans: :emmeans(), 86

Estimated marginal means, 28, 95
export_table, 16
export_table(), 164

172

find_algorithm, 21
find_auxiliary, 22
find_formula, 23
find_interactions, 25
find_offset, 27
find_parameters, 28
find_parameters(), 44
find_parameters.averaging, 31
find_parameters.betamfx, 33
find_parameters.BGGM, 35
find_parameters.BGGM(), 75
find_parameters.brmsfit
(find_parameters.BGGM), 35
find_parameters.emmGrid, 37
find_parameters.gam
(find_parameters.gamlss), 38
find_parameters.gamlss, 38
find_parameters.glmmTMB, 39
find_parameters.zeroinfl, 41
find_predictors, 44
find_random, 47
find_random_slopes, 48
find_response, 49
find_smooth, 50
find_statistic, 50
find_terms, 51
find_terms(), 56
find_transformation, 53
find_transformation(), 132
find_variables, 54
find_variables(), 52
find_weights, 57
fish, 58
format_alert (format_message), 61
format_bf, 58
format_capitalize, 59
format_ci, 60
format_error (format_message), 61
format_message, 61

INDEX

format_number, 64

format_p, 65

format_pd, 66

format_percent (format_value), 71
format_rope, 67
format_string, 67
format_table, 68

format_value, 71
format_value(), 64
format_warning (format_message), 61
formula_ok (find_formula), 23

Generalized additive models, 28, 95

get_auxiliary, 74

get_call, 75

get_correlation_slope_intercept
(get_variance), 136

get_correlation_slopes (get_variance),
136

get_data, 76

get_data(), 57, 141

get_datagrid, 79

get_datagrid(), 115,119, 120

get_datagrid.emmGrid, 86

get_deviance, 87

get_df, 88

get_df (), 116, 121

get_dispersion (get_auxiliary), 74

get_family, 90

get_intercept, 91

get_loglikelihood, 92

get_loglikelihood_adjustment
(get_loglikelihood), 92

get_mixed_info, 93

get_model, 94

get_modelmatrix, 95

get_parameters, 95

get_parameters.betamfx, 97

get_parameters.betareg, 99

get_parameters.BFBayesFactor
(get_parameters.BGGM), 101

get_parameters.BGGM, 101

get_parameters.brmsfit
(get_parameters.BGGM), 101

get_parameters.emmGrid, 105

get_parameters.gamm, 106

get_parameters.glmmTMB, 108

get_parameters.htest, 110

get_parameters.zeroinfl, 111

173

get_predicted, 113

get_predicted(), 79, 84, 120

get_predicted_ci, 119

get_predicted_ci(), 113

get_predictors, 123

get_priors, 124

get_random, 124

get_residuals, 125

get_response, 126

get_sigma, 128

get_sigma(), 75

get_statistic, 129

get_transformation, 132

get_varcov, 133

get_variance, 136

get_variance_dispersion (get_variance),
136

get_variance_distribution
(get_variance), 136

get_variance_fixed (get_variance), 136

get_variance_intercept (get_variance),
136

get_variance_random (get_variance), 136

get_variance_residual (get_variance),
136

get_variance_slope (get_variance), 136

get_weights, 141

has_intercept, 142
has_single_value (trim_ws), 169
Hypothesis tests, 95

IQR(), 82
is_bayesian_model, 143
is_converged, 143
is_empty_object, 145
is_gam_model, 146
is_mixed_model, 147
is_model, 147
is_model_supported, 148
is_multivariate, 149
is_nested_models, 150
is_nullmodel, 151
is_regression_model (is_model), 147

link_function, 151
link_inverse, 152
loglikelihood (get_loglikelihood), 92

Marginal effects models, 28, 95

174

marginaleffects: :slopes(), 86
methods, 79, 84

Mixed models, 28, 95

model_info, 153

model_name, 156

Models with special components, 28, 95

n_grouplevels, 158
n_obs, 159
n_parameters, 160
n_unique (trim_ws), 169
null_model, 157

object_has_names, 161
object_has_rownames (object_has_names),
161

parameters: :model_parameters(), 163,
164, 166, 167

performance: :check_singularity(), 137

performance::icc(), 140

performance: :r2_nakagawa(), 140

predict(), 113

pretty(), 83

print_color, 162

print_colour (print_color), 162

print_html (display), 12

print_md (display), 12

print_parameters, 163

print_parameters(), 8

safe_deparse (trim_ws), 169
safe_deparse_symbol (trim_ws), 169
signif (), 17, 60, 69, 72
standardize_column_order, 165
standardize_names, 166
stats::df.residual(), 89
supported_models (is_model_supported),
148

text_remove_backticks, 168
tinytable: :style_tt(), 19
tinytable::tt(), 13,17, 19
trim_ws, 169

validate_argument, 170

Zero-inflated and hurdle models, 28, 95

INDEX

	all_models_equal
	check_if_installed
	clean_names
	clean_parameters
	color_if
	compact_character
	compact_list
	display
	download_model
	easystats_columns
	efc_insight
	ellipsis_info
	export_table
	find_algorithm
	find_auxiliary
	find_formula
	find_interactions
	find_offset
	find_parameters
	find_parameters.averaging
	find_parameters.betamfx
	find_parameters.BGGM
	find_parameters.emmGrid
	find_parameters.gamlss
	find_parameters.glmmTMB
	find_parameters.zeroinfl
	find_predictors
	find_random
	find_random_slopes
	find_response
	find_smooth
	find_statistic
	find_terms
	find_transformation
	find_variables
	find_weights
	fish
	format_bf
	format_capitalize
	format_ci
	format_message
	format_number
	format_p
	format_pd
	format_rope
	format_string
	format_table
	format_value
	get_auxiliary
	get_call
	get_data
	get_datagrid
	get_datagrid.emmGrid
	get_deviance
	get_df
	get_family
	get_intercept
	get_loglikelihood
	get_mixed_info
	get_model
	get_modelmatrix
	get_parameters
	get_parameters.betamfx
	get_parameters.betareg
	get_parameters.BGGM
	get_parameters.emmGrid
	get_parameters.gamm
	get_parameters.glmmTMB
	get_parameters.htest
	get_parameters.zeroinfl
	get_predicted
	get_predicted_ci
	get_predictors
	get_priors
	get_random
	get_residuals
	get_response
	get_sigma
	get_statistic
	get_transformation
	get_varcov
	get_variance
	get_weights
	has_intercept
	is_bayesian_model
	is_converged
	is_empty_object
	is_gam_model
	is_mixed_model
	is_model
	is_model_supported
	is_multivariate
	is_nested_models
	is_nullmodel
	link_function
	link_inverse
	model_info
	model_name
	null_model
	n_grouplevels
	n_obs
	n_parameters
	object_has_names
	print_color
	print_parameters
	standardize_column_order
	standardize_names
	text_remove_backticks
	trim_ws
	validate_argument
	Index

