Package ‘ir’

February 3, 2026

Title Functions to Handle and Preprocess Infrared Spectra
Version 0.4.2

Description Functions to import and handle infrared spectra (import from '.csv' and
Thermo Galactic's ".spc', baseline correction, binning, clipping,
interpolating, smoothing, averaging, adding, subtracting, dividing,
multiplying, atmospheric correction, 'tidyverse' methods, plotting).

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
Depends R (>=4.1.0)

Imports tidyr, dplyr, purrr, tibble, ggplot2, stringr, hyperSpec (>=
0.99.20200527), grDevices, rlang, methods, units, Rdpack,
magrittr, stats, lifecycle

Suggests baseline, ChemoSpec (>= 5.2.12), kableExtra, fda, knitr,
quantities, rmarkdown, signal, spelling, vctrs, tidyselect,
prospectr

VignetteBuilder knitr
RdMacros Rdpack
Date 2026-01-29

URL https://henningte.github.io/ir/, https://github.com/henningte/ir/

BugReports https://github.com/henningte/ir/issues/
Language en-US
NeedsCompilation no

Author Henning Teickner [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-3993-1182>)

Maintainer Henning Teickner <henning. teickner@uni-muenster.de>
Repository CRAN
Date/Publication 2026-02-03 21:50:02 UTC

https://henningte.github.io/ir/
https://github.com/henningte/ir/
https://github.com/henningte/ir/issues/
https://orcid.org/0000-0002-3993-1182

2 Contents

Contents
AITANZE.AT ot e e e e e e e e e e e e 3
bind 4
distinCtiir L e e e 5
EXLTACLAT e e e e e 6
filter-JOINS e e e e e 7
filterdr e e e e e 9
group_by . .o e e e 10
ir add e s 11
IE_AS AT . o o o e e s, 12
I_AVETAZE .« .« o v v v v e e e e e e e e e e e e 14
IE_DC . 15
ir_bc_polynomial 16
ir_bc_rubberband 17
I DC_SE . o o e 18
Ir_bIN . . e 19
i clip . . . e 20
ir_correct_atmosphere 21
r_divide . . . L L e 23
I drop_Spectra e 24
IT_EXPOTT_PIEPAIE . . o . v v v v v e e e e e e e e e e e e e e e e e 24
ir_flatten e e e e e 25
ir_flat_clean e e 26
Ir_get intensity e e e e e e 26
IO SPECIIUM o o vttt e e e e e e e 27
ir_get_wavenumberindex 28
ir_identify_empty_spectra e 29
I_AMPOTT_CSV . . o o v o o e e e e e e e e e e e e e e e e e 29
I_AMPOTT_SPC .« « v v v o e e e e e e e e e e e e e e e e e e e 30
irinterpolate e 32
ir_interpolate_regiono e e e e e 32
iomultiply ... 33
I NEW_ 0T . o L o o e e e 34
irnew_ir_flat e 35
ir_normalize e e 36
IT_TEMOVE_MISSING v v v v e v e e e e e e e e e e e e e e e 37
ir_sample_data L e e 38
ir_sample_prospectr 39
Ir_scale 40
iIr_smooth e 41
Ir_StaCK . . . L e e 43
Ir_SUbLract o e e e 44
Ir_to_tranSmittance v v i e e e e e e e e e e e e e e e e e e e 45
IT_varianCe_region v v v vt e e e e e e e e e e e e e 46
MULATE o o e o e e e e e e e e e e e e e e e e e e e 48
MULAtE-JOINS v v v v o e e e e e e e e e e e e e e e 49

NESE . . e e e e e e e e 52

arrange.ir 3

OPSAT . . o e e 55
PIVOL_IONGerir e e e e e 56
PIVOL_WIdErir o o e e e e e e e 58
PIOLAT . . o o e e e 60
TANZE + v v v e 61
TENAME .« . . v v v v e 62
TEP.AT .« v v v e e e e e e e e e e e e e e e e e e e 63
TOWWISEAr L o oo o e e 64
SEleCt.il e e 65
SEPATALEAT . . . v o i e e e e e e e e e e e e e e e e e e 66
SEPArate_TOWS.AT o o v it e e e e e e e e e e e e e e e e 68
slice e 69
subsetting e 70
SUMMATIZE . . . v v v v v e v e e e e e e e e e e e e e e e e e e 72
UNIEAT o ot e e e e e e e e e e e e e 73

Index 75

arrange.ir Arrange rows in ir objects by column values
Description

Arrange rows in ir objects by column values

Usage

arrange.ir(.data, ..., .by_group = FALSE)

Arguments
.data An object of class ir.
<data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.
.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.
Value

.data with arranged rows.

Source

dplyr::arrange()

4 bind

See Also

Other tidyverse: distinct.ir(), extract.ir(), filter-joins, filter.ir(), group_by, mutate,
mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

arrange
dplyr::arrange(ir_sample_data, dplyr::desc(sample_type))

bind Bind rows of ir objects

Description

Bind rows of ir objects

Usage

S3 method for class 'ir'
rbind(..., deparse.level = 1)

S3 method for class 'ir'
cbind(..., deparse.level = 1)

Arguments

Objects to bind together. For cbind, only the first of the objects is allowed to be
of class ir.

deparse.level An integer value; see rbind().

Value

An object of class ir. rbind returns all input ir objects combined row-wise. cbind returns the
input ir object and the other objects combined column-wise.

Examples

rbind

rbind(ir_sample_data, ir_sample_data)

rbind(ir_sample_data |> dplyr::select(spectra),
ir_sample_data |> dplyr::select(spectra))

cbind
chbind(ir_sample_data, a = seqg_len(nrow(ir_sample_data)))

distinct.ir 5

distinct.ir Subset distinct/unique rows in ir objects

Description

Subset distinct/unique rows in ir objects

Usage
distinct.ir(.data, ..., .keep_all = FALSE)
Arguments
.data An object of class ir.
<data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.
.keep_all If TRUE, keep all variables in .data. If a combination of . . . is not distinct, this
keeps the first row of values.
Value

.data with distinct rows.

Source

dplyr::distinct()

See Also

Other tidyverse: arrange.ir(),extract.ir(), filter-joins, filter.ir(), group_by, mutate,
mutate-joins, nest, pivot_longer.ir (), pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

distinct
dplyr::distinct(rep(ir_sample_data, 2))

6 extract.ir

extract.ir Extract a character column in an ir object into multiple columns using
regular expression groups

Description

Extract a character column in an ir object into multiple columns using regular expression groups

Usage

extract.ir(
data,
col,
into,
regex = "([[:alnum:1]+)",
remove = TRUE,
convert = FALSE,

)
Arguments
data An object of class ir.
col <tidy-select> Column to expand.
into Names of new variables to create as character vector. Use NA to omit the variable
in the output.
regex A string representing a regular expression used to extract the desired values.
There should be one group (defined by ()) for each element of into.
remove If TRUE, remove input column from output data frame.
convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.
Additional arguments passed on to methods.
Value

data with an extracted character column. See tidyr::extract().

Source

tidyr::extract()

See Also

Other tidyverse: arrange.ir(),distinct.ir(), filter-joins, filter.ir(), group_by, mutate,
mutate-joins, nest, pivot_longer.ir (), pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

filter-joins 7

Examples

extract
ir_sample_data |>
tidyr::extract(

id_sample, a

)

filter-joins Filtering joins for an ir object

Description

Filtering joins for an ir object

Usage
semi_join.ir(x, y, by = NULL, copy = FALSE, ., ha_matches = c("na", "never"))
anti_join.ir(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))
Arguments
X An object of class ir.
y A data frame.
by A join specification created with join_by(), or a character vector of variables

to join by.

If NULL, the default, x_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
theyre correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a"”, "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

8 filter-joins

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.
Other parameters passed onto methods.

na_matches Should two NA or two NaN values match?

* "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

e "never” treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base: :merge(incomparables = NA).

Value

x and y joined. If the spectra column is renamed, the ir class is dropped. See filter-joins.

Source

filter-joins

See Also

Other tidyverse: arrange.ir(),distinct.ir(), extract.ir(), filter.ir(), group_by, mutate,
mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

semi_join
set.seed(234)
dplyr::semi_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement”

)

anti_join
set.seed(234)
dplyr::anti_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),

by = "id_measurement”

filter.ir 9

filter.ir Subset rows in ir objects using column values

Description

Subset rows in ir objects using column values

Usage
filter.ir(.data, ..., .preserve = FALSE)
Arguments

.data An object of class ir.
<data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Value

.data with filtered rows.

Source

dplyr::filter()

See Also

Other tidyverse: arrange.ir(),distinct.ir(), extract.ir(), filter-joins, group_by, mutate,
mutate-joins, nest, pivot_longer.ir (), pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

filter
dplyr::filter(ir_sample_data, sample_type == "office paper")

10 group_by

group_by Group rows in ir objects by one or more variables

Description

Group rows in ir objects by one or more variables

Usage
group_by.ir(
.data,
.add = FALSE,
.drop = dplyr::group_by_drop_default(.data)
)
ungroup.ir(.data, ...)
Arguments
.data An object of class ir.
In group_by (), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate () step before the group_by (). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping.
.add When FALSE, the default, group_by () will override existing groups. To add to
the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.
.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.
Value

.data with grouped rows (group_by.ir()) or ungrouped rows (ungroup.ir()).

Source

dplyr::group_by()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

ir_add 11

Examples

group_by
dplyr::group_by(ir_sample_data, sample_type)

ungroup
dplyr: :ungroup(dplyr: :group_by(ir_sample_data, sample_type))

ir_add Add infrared spectra

Description

ir_add takes two objects of class ir, x and y, and adds the intensity values of spectra in matching
rows from y to that of x.

Usage
ir_add(x, y)
Arguments
X An object of class ir.
y An object of class ir or a numeic value. If y is an object of class ir, it must
have the same number of rows as x and the same x axis values (e.g. wavenumber
values) in each matching spectrum as in x.
Value

x where for each spectrum the respective intensity values in y are added.

Examples

x1 <-
ir::ir_add(ir::ir_sample_data, ir::ir_sample_data)
X2 <-
ir::ir_add(ir::ir_sample_data, ir::ir_sample_datal[1, 1)

adding a numeric value to an object of class ~ir".
X3 <-
ir::ir_add(ir::ir_sample_data, 1)

adding a numeric vector from an object of class ~“ir-.
x4 <-
ir::ir_add(
ir::ir_sample_data,
seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

12 ir_as_ir

ir_as_ir Converts an object to class ir

Description

ir_as_ir converts an object to an object of class ir.
Usage
ir_as_ir(x, ...)

S3 method for class 'ir'
ir_as_ir(x, ...)

S3 method for class 'data.frame'
ir_as_ir(x, ...)

S3 method for class 'ir_flat'
ir_as_ir(x, ...)

S3 method for class 'hyperSpec'
ir_as_ir(x, ...)

S3 method for class 'Spectra'

ir_as_ir(x, ...)
Arguments
X An object.

Further arguments passed to individual methods.

 If x is a data frame, an object of class ir, an object of class hyperSpec
(from package "hyperSpec’), or an object of class Spectra (from package
’ChemoSpec’), these are ignored.

Value

An object of class ir with available metadata from original objects.

Examples

conversion from an ir object
ir::ir_sample_data |>
ir_as_ir()

ir_as_ir 13

conversion from a data frame
X_ir <- ir::ir_sample_data

x_df <-
x_ir |>
ir_drop_spectra() |>
dplyr: :mutate(
spectra = x_ir$spectra
) 1>

ir_as_ir()

check that ir_as_ir preserves the input class
ir_sample_data |>
structure(class = setdiff(class(ir_sample_data), "ir")) |>
dplyr::group_by(sample_type) |>
ir_as_ir()

conversion from an ir_flat object
x_ir <-
ir::ir_sample_data |>
ir::ir_flatten() |>
ir::ir_as_ir()

conversion from a hyperSpec object from package hyperSpec
if(requireNamespace("hyperSpec”)) {

x_hyperSpec <- hyperSpec::laser

x_ir <- ir_as_ir(x_hyperSpec)

}

conversion from a Spectra object from class ChemoSpec
if(requireNamespace("ChemoSpec”)) {

sample data
X <- ir_sample_data
x_flat <- ir_flatten(x)

creation of the object of class "Spectra” (the ChemoSpec package does

not contain a sample Spectra object)

n <- nrow(x)

group_vector <- seq(from = 1, to = n, by = 1)

color_vector <- rep(”"black”, times = n)

x_Spectra <- list() # dummy list

x_Spectra$freq <- as.numeric(x_flat[,1, drop = TRUE]) # wavenumber vector
x_Spectra$data <- as.matrix(t(x_flat[,-1]1)) # absorbance values as matrix
x_Spectra$names <- as.character(seq_len(nrow(x))) # sample names
x_Spectras$groups <- as.factor(group_vector) # grouping vector
x_Spectra$colors <- color_vector # colors used for groups in plots
X_Spectra$sym <- as.numeric(group_vector) # symbols used for groups in plots
x_Spectra$alt.sym <- letters[as.numeric(group_vector)] # letters used for groups in plots
x_Spectrasunit <- c("wavenumbers”, "intensity"”) # unit of x and y axes
x_Spectra$desc <- "NULL" # optional descriptions in plots

attr(x_Spectra, "class") <- "Spectra”

14 ir_average

conversion to ir
X_ir <- ir_as_ir(x_Spectra)

}

ir_average Averages infrared spectra within groups

Description

ir_average averages infrared spectra within a user-defined group. NA values are omitted by default.

Usage

ir_average(x, ..., na.rm = TRUE, .groups = "drop")

Arguments

X An object of class ir.

e Variables in x to use as groups.

na.rm A logical value indicating if NA values should be dropped (TRUE) or not (FALSE).
.groups [Experimental] Grouping structure of the result.

e "drop_last": dropping the last level of grouping. This was the only sup-
ported option before version 1.0.0.

e "drop": All levels of grouping are dropped.

» "keep": Same grouping structure as .data.

» "rowwise": Each row is its own group.

When . groups is not specified, it is chosen based on the number of rows of the
results:

« If all the results have 1 row, you get "drop_last".

* If the number of rows varies, you get "keep" (note that returning a variable
number of rows was deprecated in favor of reframe(), which also uncon-
ditionally drops all levels of grouping).

In addition, a message informs you of that choice, unless the result is ungrouped,

the option "dplyr.summarise.inform" is set to FALSE, or when summarise() is
called from a function in a package.

Value

An object of class ir where spectra have been averaged within groups defined by

Examples

average the sample data spectra across sample types
X <-

ir_sample_data |>

ir_average(sample_type)

ir_bc

15

ir_bc

Performs baseline correction on infrared spectra

Description

ir_bc performs baseline correction for infrared spectra. Baseline correction is either performed by

using a polynomial with user defined degree fitted to each spectrum (see ChemoSpec: :baselineSpectra()),
or by using a rubberband function that is fitted to each spectrum (see hyperSpec: : spc. rubberband()),

or using a Savitzky-Golay smoothed version of the input spectra (see ir_bc_sg()).

Usage
ir_bc(x, method = "rubberband”, return_bl = FALSE, ...)
Arguments
X An object of class ir.
method A character value indicating which method should be used for baseline correc-
tion. If method = "polynomial”, a polynomial is used for baseline correction.
If method = "rubberband”, a rubberband function is used for baseline correc-
tion. If method = "sg”, a Savitzky-Golay smoothed version of the input spectra
is used for baseline correction.
return_bl A logical value indicating if for each spectrum the baseline should be returned
instead of the corrected intensity values (return_bl = TRUE) or not (return_bl
= FALSE).
Further arguments passed to ir_bc_polynomial(), ir_bc_rubberband() or
ir_bc_sg().
Value

An object of class ir with the baseline corrected spectra, or if return_bl = TRUE, the baselines
instead of the spectra in column spectra.

Examples

library(dplyr)

rubberband baseline correction

x1 <-

ir::ir_sample_data |>
dplyr::slice(1:10) |>
ir::ir_bc(method = "rubberband”)

polynomial baseline correction
if (!requireNamespace("ChemoSpec”, quietly = TRUE)) {

X2 <-

ir::ir_sample_data |>

16 ir_bc_polynomial

dplyr::slice(1:10) [|>
ir::ir_bc(method = "polynomial”, degree = 2)

}

Savitzky-Golay baseline correction
if(!requireNamespace(”signal”, quietly
x3 <-
ir::ir_sample_data |>
dplyr::slice(1:10) |>
ir::ir_bc(method = "sg", p = 3, n

TRUE)) {

199, ts =1, m = 0)
3

return the baseline instead of the baseline corrected spectra
x1_bl <-

ir::ir_sample_data |>

dplyr::slice(1:10) |>

ir::ir_bc(method = "rubberband”, return_bl = TRUE)

ir_bc_polynomial Performs baseline correction on infrared spectra using a polynomial

Description

ir_bc_polynomial performs baseline correction for infrared spectra using a polynomial. ir_bc_polynomial
is an extended wrapper function for ChemoSpec: :baselineSpectra().

Usage
ir_bc_polynomial(x, degree = 2, return_bl = FALSE, ...)
Arguments
X An object of class ir.
degree An integer value representing the degree of the polynomial used for baseline
correction.
return_bl A logical value indicating if for each spectrum the baseline should be returned
instead of the corrected intensity values (return_bl = TRUE) or not (return_bl
= FALSE).
Ignored.
Value

An object of class ir with the baseline corrected spectra if returnbl = FALSE or the baselines if
returnbl = TRUE.

See Also
ir_bc()

ir_bc_rubberband 17

Examples

if (! requireNamespace("ChemoSpec”, quietly = TRUE)) {
X2 <-
ir::ir_sample_data |>
ir::ir_bc_polynomial(degree = 2, return_bl = FALSE)

3
ir_bc_rubberband Performs baseline correction on infrared spectra using a rubberband
algorithm
Description

ir_bc_rubberband performs baseline correction for infrared spectra using a rubberband algorithm.
ir_bc_rubberband is an extended wrapper function for hyperSpec: : spc. rubberband().

Usage
ir_bc_rubberband(x, do_impute = FALSE, return_bl = FALSE, ...)
Arguments
X An object of class ir.
do_impute A logical value indicating whether the in baseline the first and last values should
be imputed with the second first and second last values, respectively (TRUE) or
not (FALSE). This can be useful in case baseline correction without imputation
causes artifacts which sometimes happens with this method.
return_bl A logical value indicating if for each spectrum the baseline should be returned
instead of the corrected intensity values (return_bl = TRUE) or not (return_bl
= FALSE).
Ignored.
Value

An object of class ir with the baseline corrected spectra and, if returnbl = TRUE, the baselines.

See Also
ir_bc(Q)

Examples

x1 <=
ir::ir_sample_data |>
ir::ir_bc_rubberband(return_bl = FALSE)

18 ir_bc_sg

ir_bc_sg Performs baseline correction on infrared spectra using a Savitzky-
Golay baseline

Description

ir_bc_sg computes a smoothed version of spectra using ir_smooth() with method = "sg" and
uses this as baseline which is subtracted from the spectra to perform a baseline correction (Lasch

2012).
Usage
ir_bc_sg(x, ..., return_bl = FALSE)
Arguments
X An object of class ir.
Arguments passed to ir_smooth() (except for method which is always set to
n sgll).
return_bl A logical value indicating if for each spectrum the baseline should be returned
instead of the corrected intensity values (return_bl = TRUE) or not (return_bl
= FALSE).
Value

An object of class ir with the baseline corrected spectra and, if returnbl = TRUE, the baselines.

References

Lasch P (2012). “Spectral Pre-Processing for Biomedical Vibrational Spectroscopy and Microspec-
troscopic Imaging.” Chemometrics and Intelligent Laboratory Systems, 117, 100-114. ISSN
01697439, doi:10.1016/j.chemolab.2012.03.011.

Examples

if (! requireNamespace("”signal”, quietly = TRUE)) {
X <-
ir::ir_sample_data |>
ir::ir_bc_sg(p = 3, n =199, ts =1, m = @, return_bl = FALSE)

https://doi.org/10.1016/j.chemolab.2012.03.011

ir_bin 19

ir_bin Bins infrared spectra

Description
ir_bin bins intensity values of infrared spectra into bins of a defined width or into a defined number
of bins.

Usage

ir_bin(x, width = 10, new_x_type = "start”, return_ir_flat = FALSE)

Arguments
X An object of class ir with integer wavenumber values increasing by 1.
width An integer value indicating the wavenumber width of each resulting bin.
new_x_type A character value denoting how new wavenumber values for the computed bins

should be stored in the spectra of x after binning. Must be one of:

"start” New wavenumbers for binned intensities are the start wavenumber
value which defines the start of each bin. The default (for historical rea-
sons).

"mean” New wavenumbers for binned intensities are the average of the start and
end wavenumber values which define the start and end of each bin.

"end” New wavenumbers for binned intensities are the end wavenumber value
which defines the end of each bin.

return_ir_flat Logical value. If TRUE, the spectra are returned as ir_flat object.

Details

If a wavenumber value exactly matches the boundary of a bin window, the respective intensity value
will be assigned to both neighboring bins.

Value

An object of class ir (or ir_flat, if return_ir_flat = TRUE), where spectra have been binned.

Examples

new wavenumber values are the first wavenumber value for each bin
x1 <-

ir::ir_sample_data |>

ir_bin(width = 50, new_x_type = "start")

new wavenumber values are the last wavenumber value for each bin
X2 <-

ir::ir_sample_data |>

ir_bin(width = 50, new_x_type = "mean")

20 ir_clip

new wavenumber values are the average of the wavenumber values assigned to
each bin
x3 <-

ir::ir_sample_data |>

ir_bin(width = 50, new_x_type = "end")

compare wavenumber values for first spectra.
cbind(x1$spectral[1]11$x, x2$spectral[1]11$x, x3$spectral[1]1]1$x)

ir_clip Clips infrared spectra to new wavenumber ranges

Description
ir_clip clips infrared spectra to a new, specified, wavenumber range or multiple new specified
wavenumber ranges.

Usage

ir_clip(x, range, return_ir_flat = FALSE)

Arguments
X An object of class ir.
range A data. frame with two columns and a row for each wavenumber range to keep.

The columns are:

start A numeric vector with start values for wavenumber ranges.
end A numeric vector with end values for wavenumber ranges.

If range has more than one row, multiple ranges are clipped from x and merged
together. Overlapping ranges are not allowed.

return_ir_flat Logical value. If TRUE, the spectra are returned as ir_flat object.

Value

An object of class ir (or ir_flat, if return_ir_flat = TRUE) where spectra have been clipped.

Examples
clipping with one range
define clipping range

range <-
data.frame(start = 900, end = 1000)

clip
X <-

ir_correct_atmosphere 21

ir::ir_sample_data |>
ir::ir_clip(range = range)

clipping with mutliple ranges

define clipping range
range <-
data.frame(start = c(900, 1900), end = c(1000, 2200))

clip

X <-
ir::ir_sample_data |>
ir::ir_clip(range = range)

ir_correct_atmosphere Corrects artifacts in a spectrum based on reference spectra of the ar-
tifact compound

Description

ir_correct_atmosphere takes two objects of class ir with the same number of spectra in each
and corrects the spectra of the first object with the spectra of the second object according to the
procedure presented by (Perez-Guaita et al. 2013).

Usage

ir_correct_atmosphere(
X,
ref,
wnl,
wn2,
return_contribution = FALSE,
do_interpolate = FALSE,

start = NULL,
dw = 1,
warn = TRUE,
return_ir_flat = FALSE

)

Arguments
X An object of class ir containing the spectra to correct (with intensities repre-
senting absorbances).
ref An object of class ir containing the reference spectra to use for correction (with

intensities representing absorbances). ref must have the same number of rows
as x, the contained spectra must cover the wavenumber range of all spectra in
x, and if do_interpolate = FALSE, all spectra must have identical wavenumber
values.

22

wnl

wn2

ir_correct_atmospbere

A numeric value representing the first wavenumber value to use as reference
point (Perez-Guaita et al. 2013). Examples used by Perez-Guaita et al. (2013)
are:

H>0 3902 cm™!.

CO, 2361 cm™*.

A numeric value representing the second wavenumber value to use as reference
point (Perez-Guaita et al. 2013). Examples used by Perez-Guaita et al. (2013)
are:

H,0 3912 cm™!.

CO, 2349 cm— 1.

return_contribution

do_interpolate

start
dw

warn

return_ir_flat

Value

A logical value indicating whether in addition to the corrected spectra, the com-
puted relative contribution of ref to each spectrum in x should be added to the
returned object as new column contribution (TRUE) or not (FALSE).

A logical value indicating if x and ref should be interpolated prior correction
(TRUE) or not (FALSE).

See ir_interpolate().
See ir_interpolate().

A logical value indicating whether warnings about mismatching wavenumber
values should be displayed (TRUE) or not (FALSE). If set to TRUE and wn1 or wn2
do not exactly match the wavenumber values in x and ref, a warning will be
printed to inform about the wavenumber difference between the selected and
targeted wavenumber value.

Logical value. If TRUE, the spectra are returned as ir_flat object.

x corrected with the reference spectra in ref.

Source

There are no references for Rd macro \insertAllCites on this help page.

Examples

x1 <-

ir_correct_atmosphere(
ir_sample_datal[1:5,], ir_sample_data[1:5,], wnl = 2361, wn2 = 2349

)

X2 <-

ir_correct_atmosphere(

ir_sample_data[1:5,], ir_sample_data[1:5, 1, wnl

2361, wn2 = 2349,

return_contribution = TRUE

)

x2$contribution

ir_divide 23

ir_divide Divide infrared spectra or divide infrared spectra by a numeric value

Description

ir_divide takes two objects of class ir, x and y, and divides their intensity values, or it takes one
object of class ir, x, and one numeric value, y, and divides all intensity values in x by y.

Usage

ir_divide(x, y)

Arguments
X An object of class ir.
y An object of class ir or a numeic value. If y is an object of class ir, it must
have the same number of rows as x and the same x axis values (e.g. wavenumber
values) in each matching spectrum as in x.
Value

x where for each spectrum intensity values are divided by the respective intensity values in y (if y
is an object of class ir), or where all intensity values are divided by y if y is a numeric value.

Examples

division with y as ir object
x1 <-
ir::ir_divide(ir::ir_sample_data, ir::ir_sample_data)
X2 <-
ir::ir_divide(ir::ir_sample_data, ir::ir_sample_datal[1, 1)

division with y being a numeric value
X3 <-
ir::ir_divide(ir::ir_sample_data, y = 20)

division with y being a numeric vector
x4 <-
ir::ir_divide(
ir::ir_sample_data,
seq(from = 0.1, to = 2, length.out = nrow(ir::ir_sample_data))

24 ir_export_prepare

ir_drop_spectra Drops the column spectra from an object is of class ir

Description
ir_drop_spectra removes the column spectra from an object of class ir and removes the "ir"
class attribute.

Usage

ir_drop_spectra(x)

Arguments

X An object of class ir.

Value

x without column spectra and without "ir" class attribute.

Examples

ir::ir_sample_data |>
ir_drop_spectra()

ir_export_prepare Prepares ir objects for export to csv

Description

Prepares ir objects for export to csv files. To export ir objects to csv, the spectra column
has to be converted to an own data frame and be exported separately from the metadata. When
preparing metadata for export, ir_export_prepare takes care of separating measurement units
and measurement errors in columns of class units::units, errors::errors, and quantities::quantities
(see the examples).

Usage

ir_export_prepare(
X,
what = "metadata”,
measurement_id = as.character(seq_len(nrow(x)))

)

ir_flatten 25

Arguments
X An object of class ir.
what A character value defining what to prepare for export. If "metadata”, the

metadata will be prepared for export and column spectra will be dropped. If
"spectra”, x is converted to an object of class ir_flat.

measurement_id A character vector an element for each row in x that contains the names to use
as column names for the spectra in the ir_flat object to create.

Value

A data frame.

Note

This function superseded irp_export_prepare() from the ’irpeat’ package.

Examples
x_spectra <- ir_export_prepare(ir_sample_datal[1:5,], what = "spectra”)
x_metadata <- ir_export_prepare(ir_sample_data[1:5, 1, what = "metadata”)
ir_flatten Converts objects of class ir to objects of class ir_flat
Description

ir_flatten takes and object of class ir, extracts the spectra column and combines the spectra
into an object of class ir_flat. Metadata are not retained during flattening.

Usage

ir_flatten(x, measurement_id = as.character(seq_len(nrow(x))))

Arguments

X An object of class ir.

measurement_id A character vector an element for each row in x that contains the names to use
as column names for the spectra in the ir_flat object to create.

Value

An object of class ir_flat.

https://github.com/henningte/irpeat/

26 ir_get_intensity

Examples

x_flat <-
ir::ir_sample_data |>
ir::ir_flatten()

ir_flat_clean Cleans objects of class ir_flat

Description

ir_flatten_clean takes an object of class ir_flat and either returns all non-empty spectra or all
empty spectra as object of class ir_flat.

Usage

ir_flat_clean(x, return_empty = FALSE)

Arguments

X An object of class ir_flat.

return_empty Alogical value indicating if the empty spectra should be returned (return_empty
= TRUE) or the non-empty spectra (return_empty = FALSE).

Value

x where empty spectra are dropped (if return_empty = TRUE) or only empty spectra are returned
(return_empty = FALSE).

ir_get_intensity Extracts intensities from spectra in an ir object for specific spectral
channels

Description

ir_get_intensity extracts intensity values of spectra for specific user-defined spectral channels
("x axis values", e.g. wavenumber values).

Usage

ir_get_intensity(x, wavenumber, warn = TRUE)

ir_get_spectrum

Arguments

X

wavenumber

warn

Value

27

An object of class ir.

A numeric vector with spectral channels ("x axis values", e.g. wavenumber
values) for which to extract intensities.

logical value indicating if warnings should be displayed (TRUE) or not (FALSE).

x with an additional column intensity. x$intensity is a list column with each element repre-
senting a data. frame with a row for each element in wavenumber and two columns:

x The "x axis values" extracted with ir_get_wavenumberindex() applied on wavenumber and the
corresponding spectrum in X.

y The extracted intensity values.

Examples

X <=

ir::ir_sample_data |>
ir::ir_get_intensity(wavenumber = 1090)

ir_get_spectrum

Extracts selected spectra from an object of class ir

Description

ir_get_spectrum extracts selected spectra from an object of class ir.

Usage

ir_get_spectrum(x, what)

Arguments

X

what

Value

An object of class ir.

A numeric vector with each element representing a row in x for which to extract
the spectrum.

An integer vector with the same length as wavenumber with the row indices of x corresponding to
the wavenumber values in wavenumber.

28 ir_get_wavenumberindex

Examples

X <-
ir::ir_sample_data |>
ir::ir_get_spectrum(what = c(5, 9))

ir_get_wavenumberindex
Gets the index of a defined wavenumber value for a spectrum

Description

ir_get_wavenumberindex gets for a defined wavenumber value or set of wavenumber values the
corresponding indices (row number) in an object of class ir that has been flattened with ir_flatten().
If the specified wavenumber values do not match exactly the wavenumber values in the ir object,
the indices for the next wavenumber values will be returned, along with a warning.

Usage

ir_get_wavenumberindex(x, wavenumber, warn = TRUE)

Arguments
X A data.frame with a column x representing the x units of a spectrum or several
spectra (e.g. in the form of an object of class ir_flat).
wavenumber A numeric vector with wavenumber values for which to get indices.
warn logical value indicating if warnings should be displayed (TRUE) or not (FALSE).
Value

An integer vector with the same length as wavenumber with the row indices of x corresponding to
the wavenumber values in wavenumber.

Examples

X_index_1090 <-
ir::ir_sample_data |>
ir::ir_flatten() |>
ir::ir_get_wavenumberindex(wavenumber = 1090)

ir_identify_empty_spectra 29

ir_identify_empty_spectra
Identifies empty spectra in an ir object

Description

ir_identify_empty_spectra() identifies empty spectra in an object of class ir. An empty spec-
trum is a spectrum which has no data values (no rows) or where all intensity values (column y) are
NA.

Usage

ir_identify_empty_spectra(x)

Arguments

X An object of class ir.

Value

A logical vector indicating for each spectrum in x whether it is empty (TRUE) or not (FALSE).

Examples

ir_identify_empty_spectra(ir::ir_sample_data)

ir_import_csv Imports infrared spectra from various files

Description

ir_import_csv imports raw infrared spectra from one or more .csv file that contains at least one
spectrum, with x axis values (e.g. wavenumbers) in the first column and intensity values of spectra
in remaining columns. Note that the function does not perform any checks for the validity of the
content read from the .csv file.

Usage

ir_import_csv(filenames, sample_id = "from_filenames”, ...)

30 ir_import_spc

Arguments
filenames A character vector representing the complete paths to the . csv files to import.

sample_id Either:

* NULL: Nothing additional happens.

* A character vector with the same length as filenames: This vector will be
added as column sample_id to the ir object.

e "from_filenames": The file name(s) will be used as values for a new col-
umn sample_id to add (the default).

e "from_colnames": The header in the csv file will be used as values for a
new column sample_id to add.

Further arguments passed to read.csv().

Value

An object of class ir containing the infrared spectra extracted from the . csv file(s).

Examples

import data from csv files
d <-
ir::ir_import_csv(
system.file(package = "ir", "extdata/klh_hodgkins_mir.csv"),

sample_id = "from_colnames”
)
ir_import_spc Imports infrared spectra from Thermo Galactic’s files
Description

ir_import_spc imports raw infrared spectra from a Thermo Galactic’s . spc file or several of such
files. ir_import_spc is a wrapper function to hyperSpec: :read.spc().

Usage

ir_import_spc(filenames, log.txt = TRUE)

Arguments
filenames A character vector representing the complete paths to the . spc files to import.
log. txt A logical value indicating whether to import metadata (TRUE) or not (FALSE). See

the details section. If set to FALSE, only the metadata variables exponentiation_factor
to measurement_device listed in the Value section below are included in the ir
object.

ir_import_spc 31

Details

Currently, log. txt must be set to FALSE due to a bug in hyperSpec: :read. spc(). This bug fill be
fixed in the upcoming weeks and currently can be circumvented by using the development version
of "hyperSpec’. See https://github.com/r-hyperspec/hyperSpec/issues/80.

Value

An object of class ir containing the infrared spectra extracted from the . spc file(s) and the metadata
as extracted by hyperSpec: :read. spc(). Metadata variables are:
scan_number An integer value representing the number of scans.
detection_gain_factor The detection gain factor.

scan_speed The scan speed [kHz].

laser_wavenumber The wavenumber of the laser.

detector_name The name of the detector.

source_name The name of the infrared radiation source.

purge_delay The duration of purge delay before a measurement [s].
zero_filling_factor A numeric value representing the zero filling factor.
apodisation_function The name of the apodisation function.
exponentiation_factor The exponentiation factor used for file compression.
data_point_number The number of data points in the spectrum
x_variable_type The type of the x variable.

y_variable_type The type of the y variable.

measurement_date A POSIXct representing the measurement date and time.

measurement_device The name of the measurement device.

Examples

import a sample .spc file
X <-
ir::ir_import_spc(
system.file("extdata/1.spc”, package = "ir"),
log.txt = FALSE
)

32 ir_interpolate_region

ir_interpolate Interpolates intensity values of infrared spectra in an ir object for new
wavenumber values

Description

ir_interpolate interpolates intensity values for infrared spectra for new wavenumber values.

Usage

ir_interpolate(x, start = NULL, dw = 1, return_ir_flat = FALSE)

Arguments

X An object of class ir.

start A numerical value indicating the start wavenumber value relative to which new
wavenumber values will be interpolated. The value is not allowed to be <
floor(firstvalue) - 2, whereby firstvalue is the first wavenumber value
within x. If start = NULL, floor(firstvalue) will be used as first wavenum-
ber value.

dw A numerical value representing the desired wavenumber value difference be-

tween adjacent values.

return_ir_flat Logical value. If TRUE, the spectra are returned as ir_flat object.

Value

An object of class ir (or ir_flat, if return_ir_flat = TRUE), containing the interpolated spectra.
Any NA values resulting from interpolation will be automatically dropped.

Examples

X <-
ir::ir_sample_data |>
ir::ir_interpolate(start = NULL, dw = 1)

ir_interpolate_region Interpolates selected regions in infrared spectra in an ir object

Description

ir_interpolate_region linearly interpolates a user-defined region in infrared spectra.

Usage

ir_interpolate_region(x, range)

ir_multiply 33

Arguments
X An object of class ir.
range A data. frame with a row for each region to interpolate linearly and two columns:
start A numeric vector with start values for regions to interpolate linearly (x
axis values).
end A numeric vector with end values for regions to interpolate linearly (x axis
values).
For each row in range, the values in range$start have to be smaller than the
values in range$end.
Value

x with the defined wavenumber region(s) interpolated linearly.

Examples

interpolation range
range <- data.frame(start = 1000, end = 1500)

do the interpolation

X <=
ir::ir_sample_data |>
ir::ir_interpolate_region(range = range)

ir_multiply Multiply infrared spectra or multiply infrared spectra with a numeric
value

Description

ir_multiply takes two objects of class ir, x and y, and multiplies their intensity values, or it takes
one object of class ir, x, and one numeric value, y, and multiplies all intensity values in x with y.

Usage

ir_multiply(x, y)

Arguments
X An object of class ir.
y An object of class ir or a numeic value. If y is an object of class ir, it must

have the same number of rows as x and the same x axis values (e.g. wavenumber
values) in each matching spectrum as in x.

34 ir_new_ir

Value

x where for each spectrum intensity values are multiplied with the respective intensity values in y
(if y is an object of class ir), or where all intensity values are multiplied with y if y is a numeric
value.

Examples

multiplication with y as ir object
x1 <=
ir::ir_multiply(ir::ir_sample_data, ir::ir_sample_data)
X2 <-
ir::ir_multiply(ir::ir_sample_data, ir::ir_sample_datal[1, 1)

multiplication with y being a numeric value
x3 <-
ir::ir_multiply(ir::ir_sample_data, y = -1)

multiplication with y being a numeric vector
x4 <-
ir::ir_multiply(
ir::ir_sample_data,
seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

ir_new_ir Creates an object of class ir

Description
ir_new_ir is the constructor function for objects of class ir. Anobjectofclass irisa tibble::tbl_df ()
with a sample in each row and a list column containing spectra for each sample.

Usage

ir_new_ir(spectra, metadata = tibble::tibble())

Arguments
spectra A named list in which each element contains spectral data for one measurement.
Each list element must be a data. frame with two columns and a row for each
wavenumber value in the spectra data. The first column must contain unique
wavenumber values and the second column intensity values of the measured
spectrum of the sample.
metadata An optional data. frame with additional columns containing metadata for the

spectra in spectra. Optionally, an empty data.frame can be defined if no
metadata are available.

ir_new_ir_flat 35

Value
An object of class ir with the following columns:

spectra A list column identical to spectra.

... Additional columns contained in metadata.

Examples

ir_new_ir(
spectra = ir_sample_data$spectra,
metadata = ir_sample_data |> dplyr::select(-spectra)

ir_new_ir_flat Creates an object of class ir_flat

Description

ir_new_ir_flat is the constructor function for objects of class ir_flat. An object of class
ir_flat is a data.frame where the first column ("x") contains unique x values of spectra (e.g.
wavenumbers) and all remaining columns represent intensity values from spectra corresponding to
the x values.

Usage

ir_new_ir_flat(x)

Arguments
X A data. frame with only numeric columns and only the first column name being
"X”.
Value

An object of class ir_flat.

Examples

x_flat <-
ir::ir_sample_data |>
ir::ir_flatten()

36 ir_normalize

ir_normalize Normalizes infrared spectra in an ir object

Description

ir_normalize normalizes the intensity values of infrared spectra. Different methods for normal-
ization are available.

Usage

ir_normalize(x, method = "area")

ir_normalise(x, method = "area")

Arguments

X An object of class ir.
method A character value specifying which normalization method to apply:

"zeroone"” All intensity values will be normalized to [0;1].

"area” All intensity values will be divided by the sum of the intensity values
at all wavenumber values of the spectrum.

"area_absolute” All intensity values will be divided by the sum of the inten-
sity values at all wavenumber values of the spectrum.

"vector” All intensity values will be divided by the norm of the intensity vec-
tor (vector normalization).

"snv'' Standard Normal Variate correction: For each spectrum, the average in-
tensity value is subtracted and then divided by the standard deviation.

A numeric value If method is convertible to a numeric value, e.g. method =
"980", the intensity of all spectra at a wavenumber value of 980 will be set
to 1 and the minimum intensity value of each spectrum will be set to 0, i.e.
the spectra will be normalized referring to a specific wavenumber value.

Value

An object of class ir representing a normalized version of x.

Examples
with method = "area”
x1 <-
ir::ir_sample_data |>
ir::ir_normalize(method = "area")
second derivative spectrum with method = "area” or method = "area_absolute”
X2 <-

ir::ir_sample_data |>
ir::ir_smooth(method = "sg", n =31, m=2) |>

ir_remove_missing 37

ir::ir_normalize(method = "area")
x3 <-
ir::ir_sample_data |>
ir::ir_smooth(method = "sg”, n =31, m=2) |>
ir::ir_normalize(method = "area_absolute”)
with method = "zeroone”
x4 <-
ir::ir_sample_data |>
ir::ir_normalize(method = "zeroone")
with method = "vector”
x5 <-
ir::ir_sample_data |>
ir::ir_normalize(method = "vector")
with method = "snv”
X6 <-
ir::ir_sample_data |>
ir::ir_normalize(method = "snv")

normalizing to a specific peak
x7 <-
ir::ir_sample_data |>
ir::ir_normalize(method = 1090)

ir_remove_missing Removes empty data values in an object of class ir

Description

ir_remove_missing takes and object of class ir and removes all rows in the data. frames of the
list column spectra that have NA intensity values (column y). Additionally, one can specify to
remove rows in the ir object to discard if they contain empty spectra.

Usage

ir_remove_missing(x, remove_rows = FALSE)

Arguments
X An object of class ir.
remove_rows A logical value indicating if rows in x with empty spectra should be discarded
(remove_rows = TRUE) or not (remove_rows = FALSE).
Value

x with cleaned spectra.

38 ir_sample_data

Examples

create sample data with some missing rows and one entire missing spectra
X <-
ir::ir_sample_data
x$spectral[1]] <- x$spectral[1]1]1[0,]
x$spectral[2]]1[1:100, "y"]1 <- NA_real_

remove missing values (but remove no rows in x)
x1 <-

X |>

ir::ir_remove_missing(remove_rows = FALSE)

remove missing values (and remove rows in x if a compete spectrum is

missing)
X2 <-
X |>

ir::ir_remove_missing(remove_rows = TRUE)

nrow(x)
nrow(x1)
nrow(x2)

ir_sample_data Sample object of class ir

Description

A sample object of class ir. The data set contains ATR-MIR spectra for a set of organic reference
materials along with their metadata (types of samples and a description) and accessory data (Klason
lignin mass fraction and holocellulose mass fraction).

Usage

ir_sample_data

Format

A data frame with 58 rows and 7 variables:

id_measurement An integer vector with a unique id for each spectrum.

id_sample A character vector with a unique id for each sample.

sample_type A character vector containing class labels for the types of reference materials.
sample_comment A character vector containing comments to each sample.

klason_lignin A numeric vector with the mass fractions of Klason lignin in each sample.
holocellulose A numeric vector with the mass fractions of holocellulose in each sample.

spectra See ir_new_ir().

ir_sample_prospectr 39

Source

The data set was derived from https://www.nature.com/articles/s41467-018-06050-2 and
published by Hodgkins et al. (2018) under the CC BY 4.0 license https://creativecommons.
org/licenses/by/4.0/. Hodgkins et al. (2018) originally derived the data on Klason Lignin and
Holocellulose content from De la Cruz et al. (2016).

References

De la Cruz FB, Osborne J, Barlaz MA (2016). “Determination of Sources of Organic Matter
in Solid Waste by Analysis of Phenolic Copper Oxide Oxidation Products of Lignin.” Journal
of Environmental Engineering, 142(2), 04015076. ISSN 0733-9372, 1943-7870, doi:10.1061/
(ASCE)EE.19437870.0001038.

Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, Winkler BR, Cobb
AR, Rich VI, Missilmani M, Flanagan N, Ho M, Hoyt AM, Harvey CF, Vining SR, Hough MA,
Moore TR, Richard PJH, De La Cruz FB, Toufaily J, Hamdan R, Cooper WT, Chanton JP (2018).
“Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance.”
Nature Communications, 9(1), 3640. ISSN 2041-1723, doi:10.1038/s41467018060502.

ir_sample_prospectr Wrapper to sampling functions from the 'prospectr’ package

Description

Wrapper functions that allows to directly use ’ir’ objects with sampling functions from the ’prospectr’
package.

Usage

ir_sample_prospectr(x, sampling_function, ..., return_prospectr_output = FALSE)
Arguments

X An object of class ’ir’ containing the spectra based on which to sample measure-

ments.

sampling_function
A function from the ’prospectr’ package to perform sampling based on spectra
(naes(), kenStone(), duplex(), puchwein(), shenkWest(), honig()). See
the ’prospectr’ package for details.

Arguments passed to sampling_function. See the *prospectr’ package for de-
tails.

return_prospectr_output
Logical value. If TRUE, the output of sampling_function is returned. If FALSE,
values of elements model and test are included as columns in x and x is re-
turned.

https://www.nature.com/articles/s41467-018-06050-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1061/%28ASCE%29EE.1943-7870.0001038
https://doi.org/10.1061/%28ASCE%29EE.1943-7870.0001038
https://doi.org/10.1038/s41467-018-06050-2

40 ir_scale

Value

If return_prospectr_output = TRUE, the output of sampling_function. See the ’prospectr’
package for details. If return_prospectr_output = FALSE,x with the following additional columns:

for_prospectr_model Logical value indicating whether the spectrum is listed in element model of
the prospectr output (TRUE) or not (FALSE).

for_prospectr_test Logical value indicating whether the spectrum is listed in element test of the
prospectr output (TRUE) or not (FALSE).

prospectr_model Integer representing the order in which spectra are listed in element model of
the prospectr output.

prospectr_test Integer representing the order in which spectra are listed in element test of the
prospectr output.

Examples

if(requireNamespace("prospectr”, quietly = TRUE)) {
X <-
ir_sample_prospectr(
ir::ir_sample_data,
prospectr: :kenStone,

metric = "euclid”,

k = 30,

return_prospectr_output = FALSE
)
X <-

ir_sample_prospectr(
ir::ir_sample_data,
prospectr: :kenStone,

metric = "euclid”,
k = 30,
return_prospectr_output = TRUE
)
3
ir_scale Scales spectra in an ir object
Description

Scales spectra in an ir object

Usage

ir_scale(x, center = TRUE, scale = TRUE, return_ir_flat = FALSE)

ir_smooth 41

Arguments
X An object of class ir, where all non-empty spectra have identical wavenumber
values.
center either a logical value or numeric-alike vector of length equal to the number of
columns of x, where ‘numeric-alike’ means that as.numeric(.) will be applied
successfully if is.numeric(.) is not true.
scale either a logical value or a numeric-alike vector of length equal to the number of

columns of x.

return_ir_flat Logical value. If TRUE, the spectra are returned as ir_flat object.

Value

x where spectra have been scaled, i.e. from each intensity value, the average across all spectra is
subtracted (when center is a logical value), or the respective value in center is subtracted (when
center is numerical), and each intensity value is divided by the standard deviation of the intensity
values at this wavenumber across all spectra (when scale is a logical value), or the respective value
in scale (when scale is numerical). NAs are omitted during this process.

Examples

ir_sample_data |>
ir_scale() |>
plot()

ir_smooth Smooths infrared spectra in an ir object

Description

ir_smooth applies smoothing functions to infrared spectra. ir_smooth either performs Savitzky-
Golay smoothing, using on signal: :sgolayfilt(), or Fourier smoothing using fda: : smooth.basis().
Savitzky-Golay smoothing can also be used to compute derivatives of spectra.

Usage

ir_smooth(
X)
method = "sg",
p =3,
n=p+3 - phr2,
ts = 1,
m =
k =111,

42

Arguments

X

method

ts

Details

ir_smooth

An object of class ir.

A character value specifying which smoothing method to apply. If method =
"sg", a Savitzky-Golay filter will be applied on the spectra. The Savitzky-Golay
smoothing will be performed using the function signal::sgolayfilt(). If
method = "fourier”, Fourier smoothing will be performed. Fourier transfor-
mation of the spectra is performed using the fast discrete Fourier transformation
(FFT) as implemented in fda: : smooth.basis(). A smoothing function can be
defined by the argment f.

An integer value representing the filter order (i.e. the degree of the polynom) of
the Savitzky-Golay filter if method = "sg".

An odd integer value representing the length (i.e. the number of wavenumber
values used to construct the polynom) of the Savitzky-Golay filter if method =

n n

sg".
time scaling factor. See signal: :sgolayfilt().

An integer value representing the mth derivative to compute. This option can be
used to compute derivatives of spectra. See signal::sgolayfilt().

A positive odd integer representing the number of Fourier basis functions to use
as smoothed representation of the spectra if method = "fourier”.

additional arguments (ignored).

When x contains spectra with different wavenumber values, the filters are applied for each spectra
only on existing wavenumber values. This means that the filter window (if method == "sg") will be
different for these different spectra.

Value

x with smoothed spectra.

Examples

#
if (!

}

Savitzky-Golay smoothing

x1 <-

requireNamespace("signal”, quietly = TRUE)) {

ir::ir_sample_datal[1:5, 1 |>
ir::ir_smooth(method = "sg", p =3, n =51, ts =1, m = @)

Fourier smoothing
if(! requireNamespace(”"fda"”, quietly = TRUE)) {

}

X2 <-

ir::ir_sample_data[1:5,] |>
ir::ir_smooth(method = "fourier”, k = 21)

computing derivative spectra with Savitzky-Golay smoothing (here: first

ir_stack 43

derivative)
if (! requireNamespace("”signal”, quietly = TRUE)) {
X3 <-
ir::ir_sample_datal[1:5, 1 |>
ir::ir_smooth(method = "sg", p =3, n =51, ts =1, m=1)

ir_stack Stacks a matrix or data frame with spectra into a list column

Description
ir_stack takes a matrix or data frame with infrared spectra and converts it into a list column
corresponding to the column spectra in objects of class ir.

Usage

ir_stack(x)

Arguments
X A matrix or data frame with a first column (x) containing "X axis values" of
the spectra (e.g. wavenumbers) and all remaining columns containing intensity
values of spectra.
Value

A tibble::tibble() with the stacked spectra in column spectra.

Examples

from data frame

x1 <-
ir::ir_sample_data |>
ir::ir_flatten() |>
ir::ir_stack()

from matrix

X2 <-
ir::ir_sample_data |>
ir::ir_flatten() |>
as.matrix() |>
ir::ir_stack()

44 ir_subtract

ir_subtract Subtract infrared spectra

Description

ir_subtract takes two objects of class ir, x and y, and subtracts the intensity values of spectra in
matching rows from y from that of x. Alternatively, takes an object of class ir, x, and a numeric
value, y, and subtracts y from all intensity values in x.

Usage

ir_subtract(x, y)

Arguments
X An object of class ir.
y An object of class ir or a numeic value. If y is an object of class ir, it must
have the same number of rows as x and the same x axis values (e.g. wavenumber
values) in each matching spectrum as in x.
Value

x where for each spectrum the respective intensity values in y are subtracted (if y is an object of
class ir), or where for each spectrum y has been subtracted from the intensity values.

Examples

subtracting two objects of class ir
x1 <-
ir::ir_subtract(ir::ir_sample_data, ir::ir_sample_data)
X2 <-
ir::ir_subtract(ir::ir_sample_data, ir::ir_sample_data[1, 1)

subtracting a numeric value from an object of class “ir~.
x3 <-

ir::ir_subtract(ir::ir_sample_data, 20)

subtracting a numeric vector from an object of class ~ir~.
x4 <-
ir::ir_subtract(
ir::ir_sample_data,
seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

ir_to_transmittance 45

ir_to_transmittance Converts absorbance spectra to transmittance spectra or vice versa

Description

ir_to_transmittance converts absorbance spectra to transmittance spectra. ir_to_absorbance
converts transmittance spectra to absorbance spectra. Note that neither function checks whether the
input spectra are absorbance or transmittance spectra.

Usage

ir_to_transmittance(x)

ir_to_absorbance(x)

Arguments

X An object of class ir.

Value

x with y values fore each spectrum as transmittance values (in case of ir_to_transmittance) or
absorbance values (in case of ir_to_absorbance).

Source

(Stuart 2004).

References

Stuart BH (2004). Infrared Spectroscopy: Fundamentals and Applications, Analytical Techniques
in the Sciences. John Wiley and Sons, Ltd, Chichester, UK. ISBN 978-0-470-01114-0 978-0-470-
85428-0, doi:10.1002/0470011149.

Examples

convert from absorbance to transmittance
x1 <-
ir_sample_data |>
ir_to_transmittance()

convert from transmittance to absorbance
X2 <-

x1 |>

ir::ir_to_absorbance()

vapply(
seg_along(x2$spectra),
FUN = function(i) all.equal(x2$spectral[il], ir::ir_sample_data$spectral[il]),

https://doi.org/10.1002/0470011149

46 ir_variance_region

FUN.VALUE = logical(1L)

) >
all()

ir_variance_region Computes the variance of a spectrum in an ir object in a given region

Description

ir_variance_region takes a spectrum x and, depending on the arguments computes the following
summary:

if subtract_smoothed = FALSE it computes the variance of the intensity values for each spectrum
in x. If in addition range is not NULL, it computes the variance only for the region(s) repre-
sented by range.

if subtract_smoothed = TRUE it smoothes x, subtracts the smoothed x from the unsmoothed x and
computes the variance of the difference intensity values. If in addition range is not NULL, it
computes the variance only for the region(s) represented by range.

Usage

ir_variance_region(
X,
subtract_smoothed = FALSE,
do_normalize = FALSE,
normalize_method,

L

range = NULL

Arguments

X An object of class ir. These are the spectra for which to compute the variance.

subtract_smoothed
A logical value. If subtract_smoothed = TRUE, x is copied, the copy smoothed
using ir_smooth with method = "sg" and subtracted from x before the vari-
ance of the intensity values from x is computed. This allows e.g. to estimate
the noise level in a specific region of spectra. If subtract_smoothed = FALSE
(the default), nothing is subtracted from x before computing the variance of the
intensity values.

do_normalize A logical value. If set to TRUE, the spectra in x are normalized after subtraction
of a smoothed version, else no normalization is performed.

normalize_method
See ir_normalize().

ir_variance_region 47

Arguments passed to ir_smooth() (except for method which is always set to
"sg" if subtract_smoothed is TRUE). If subtract_smoothed = FALSE, these
arguments will be ignored.

range See ir_clip(). This is the range for which the variance of the intensity values
will be computed.

Value

x with two additional columns:

variance A numeric vector with the computed variances of the intensity values for the respective
spectra.

n_variance An integer vector with the number of intensity values used during computing the vari-
ance.

Examples

Whole spectra variance
x1 <-
ir::ir_sample_data |>
ir::ir_variance_region(
subtract_smoothed = FALSE,
do_normalize = TRUE,
normalize_method = "area”,
range = NULL
)

Spectra variance, but only from a specific region
range <- data.frame(start = 2700, end = 2800)

X2 <-
ir::ir_sample_data |>
ir::ir_normalize(method = "area") |>

ir::ir_variance_region(
subtract_smoothed = FALSE,
do_normalize = TRUE,
normalize_method = "area”,
range = range

)

Spectra variance after subtracting a smoothed version of the spectra and
only from a specific region
X3 <-
ir::ir_sample_data %>%
ir::ir_variance_region(
subtract_smoothed = TRUE,
do_normalize = FALSE,
range = range,
p=3,,n=31,ts=1, m=20

48 mutate

mutate Mutate an ir object by adding new or replacing existing columns

Description

Mutate an ir object by adding new or replacing existing columns

Usage
mutate.ir(
.data,
.keep = c("all”, "used”, "unused”, "none"),
.before = NULL,
.after = NULL
)
transmute.ir(.data, ...)
Arguments
.data An object of class ir.
<data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:
* A vector of length 1, which will be recycled to the correct length.
* A vector the same length as the current group (or the whole data frame if
ungrouped).
¢ NULL, to remove the column.
* A data frame or tibble, to create multiple columns in the output.
.keep Control which columns from . data are retained in the output. Grouping columns

and columns created by . . . are always kept.

e "all" retains all columns from .data. This is the default.

* "used” retains only the columns used in ... to create new columns. This
is useful for checking your work, as it displays inputs and outputs side-by-
side.

* "unused” retains only the columns not used in . . . to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

* "none"” doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by . . . are kept.

.before, .after <tidy-select> Optionally, control where new columns should appear (the de-
fault is to add to the right hand side). See relocate() for more details.

mutate-joins 49

Value
.data with modified columns. If the spectra column is dropped or invalidated (see ir_new_ir()),
the ir class is dropped, else the object is of class ir.

Source

dplyr: :mutate()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

mutate
dplyr::mutate(ir_sample_data, hkl = klason_lignin + holocellulose)

transmute
dplyr::transmute(ir_sample_data, hkl = klason_lignin + holocellulose)

mutate-joins Mutating joins for an ir object

Description

Mutating joins for an ir object

Usage

inner_join.ir(
X,
y)
by = NULL,
copy = FALSE,
suffix = c(”.x",

”'yll),
keep = FALSE,
na_matches = c("na", "never")

left_join.ir(
X)
Y,

50

)

ri

)

fu

by = NULL,
copy = FALSE,

suffix = c(”.x",

keep = FALSE,
na_matches =

ght_join.ir(
X,

Y,

by = NULL,
copy = FALSE,

n

BADN

c("na", "never")

suffix = c(".x", "

keep = FALSE,
na_matches =

11_join.ir(
X,

Y,

by = NULL,
copy = FALSE,
suffix = c(".

keep = FALSE,

na_matches = c("na”,

Arguments

X

y
by

BADN

c("na", "never")

n

X

An object of class ir.

n
’

BADN

"never")

A data frame.

mutate-joins

A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check

they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.

For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a ==b, ¢ ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten

this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

mutate-joins 51

For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().
copy If x and y are not from the same data source, and copy is TRUE, then y will be

copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Other parameters passed onto methods.
keep Should the join keys from both x and y be preserved in the output?
e If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.
* If TRUE, all keys from both inputs are retained.

 If FALSE, only keys from x are retained. For right and full joins, the data in
key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

e "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

e "never"” treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base: :merge(incomparables = NA).

Value

x and y joined. If the spectra column is renamed, the ir class is dropped. See mutate-joins.

Source

mutate-joins

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, nest, pivot_longer.ir(),pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

inner_join
set.seed(234)
dplyr::inner_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),

52

nitrogen_content = rbeta(n = 10, 0.2, 0.1)
)Y
by = "id_measurement”

)

left_join
set.seed(234)
dplyr::left_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement”

)

right_join
set.seed(234)
dplyr::right_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement”

)

full_join
set.seed(234)
dplyr::full_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),

by = "id_measurement”

nest

nest

Nest and un-nest an ir object

Description

Nest and un-nest an ir object

nest 53

Usage

nest.ir(.data, ..., .names_sep = NULL, .key = deprecated())

unnest.ir(
data,
cols,

keep_empty = FALSE,

ptype = NULL,

names_sep = NULL,

names_repair = "check_unique”,
.drop = deprecated(),

.id = deprecated(),

.sep = deprecated(),

.preserve = deprecated()

Arguments

.data An object of class ir.
<tidy-select> Columns to nest; these will appear in the inner data frames.
Specified using name-variable pairs of the form new_col = c(col1, col2, col3).
The right hand side can be any valid tidyselect expression.
If not supplied, then . .. is derived as all columns not selected by . by, and will
use the column name from . key.
[Deprecated]: previously you could write df |> nest(x, y, z). Convert to df
|>nest(data=c(x,y, z)).

.key The name of the resulting nested column. Only applicable when . . . isn’t spec-
ified, i.e. in the case of df |> nest(.by =x).
If NULL, then "data” will be used by default.

data A data frame.

cols <tidy-select> List-columns to unnest.

When selecting multiple columns, values from the same row will be recycled to
their common size.

keep_empty By default, you get one row of output for each element of the list that you are
unchopping/unnesting. This means that if there’s a size-0 element (like NULL
or an empty data frame or vector), then that entire row will be dropped from
the output. If you want to preserve all rows, use keep_empty = TRUE to replace
size-0 elements with a single row of missing values.

ptype Optionally, a named list of column name-prototype pairs to coerce cols to, over-
riding the default that will be guessed from combining the individual values.
Alternatively, a single empty ptype can be supplied, which will be applied to all

cols.
names_sep, .names_sep

If NULL, the default, the names will be left as is. In nest(), inner names will
come from the former outer names; in unnest (), the new outer names will come
from the inner names.

54 nest

If a string, the inner and outer names will be used together. In unnest(), the
names of the new outer columns will be formed by pasting together the outer
and the inner column names, separated by names_sep. In nest (), the new inner
names will have the outer names + names_sep automatically stripped. This
makes names_sep roughly symmetric between nesting and unnesting.

names_repair Used to check that output data frame has valid names. Must be one of the

following options:

* "minimal": no name repair or checks, beyond basic existence,

* "unique": make sure names are unique and not empty,

* "check_unique": (the default), no name repair, but check they are unique,

* "universal": make the names unique and syntactic

* afunction: apply custom name repair.

* tidyr_legacy: use the name repair from tidyr 0.8.

* aformula: a purrr-style anonymous function (see rlang: :as_function())
See vctrs: :vec_as_names () for more details on these terms and the strategies

used to enforce them.
.drop, .preserve

[Deprecated]: all list-columns are now preserved; If there are any that you don’t
want in the output use select() to remove them prior to unnesting.

.id [Deprecated]: convert df |>unnest(x, .id="id") todf |> mutate(id = names(x)) [> unnest(x)

.sep [Deprecated]: use names_sep instead.

Value

.data with nested or unnested columns. If the spectra column is dropped or invalidated (see
ir_new_ir()), the ir class is dropped, else the object is of class ir.

Source

tidyr::nest()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

nest
ir_sample_data |>
tidyr::nest(
contents = c(holocellulose, klason_lignin)

)

unnest
ir_sample_data |>

Ops.ir 55

tidyr: :nest(
contents = c(holocellulose, klason_lignin)
) 1>

tidyr::unnest("contents”)

Ops.ir Arithmetic operations for ir objects

Description

Arithmetic operations for ir objects

Usage

S3 method for class 'ir'
Ops(el, e2)

Arguments

el An object of class ir.

e2 An object of class ir or a numeric value.

Value

e1 with intensity values of the spectra added to/subtracted with/multiplied with/divided by those in
ez:

* If e2 is a numeric value, all intensity values in the spectra of e1 are added/subtracted/multiplied/divided
by e2.

* If e2 is an ir object with one row, it is replicated (see rep.ir) so that the row numbers match
to those of e1 and intensity values are added/subtracted/multiplied/divided row-wise.

» Ife2isan ir object with the same number of rows as e1, intensity values are added/subtracted/multiplied/divided
row-wise.

Examples

addition
ir::ir_sample_data + ir::ir_sample_data
ir::ir_sample_data + 2
ir::ir_sample_data +
seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

subtraction

ir::ir_sample_data - ir::ir_sample_data
ir::ir_sample_data - 2
ir::ir_sample_data -

56

#H#
ir

ir:
ir:

#it

ir:
ir:

ir

seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

multiplication

::ir_sample_data * ir::ir_sample_data

:ir_sample_data * 2

:ir_sample_data *

seq(from = @, to = 2, length.out = nrow(ir::ir_sample_data))

division

:ir_sample_data / ir::ir_sample_data

:ir_sample_data / 2

::ir_sample_data /

seq(from = 0.1, to = 2, length.out = nrow(ir::ir_sample_data))

pivot_longer.ir

pivot_longer.ir

Pivot an ir object from wide to long

Description

Pivot an ir object from wide to long

Usage

pi

vot_longer.ir(
data,

cols,

names_to = "name”,

names_prefix = NULL,

names_sep = NULL,
names_pattern = NULL,
names_ptypes = list(),
names_transform = list(),
names_repair = "check_unique”,
values_to = "value”,
values_drop_na = FALSE,
values_ptypes = list(),
values_transform = list(),

)
Arguments
data An object of class ir.
cols <tidy-select> Columns to pivot into longer format.
names_to

A character vector specifying the new column or columns to create from the

information stored in the column names of data specified by cols.

pivot_longer.ir

names_prefix

57

e If length O, or if NULL is supplied, no columns will be created.

* If length 1, a single column will be created which will contain the column
names specified by cols.

o Iflength >1, multiple columns will be created. In this case, one of names_sep
or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

— NA will discard the corresponding component of the column name.

— ".value" indicates that the corresponding component of the column
name defines the name of the output column containing the cell values,
overriding values_to entirely.

A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern

If names_to contains multiple values, these arguments control how the column
name is broken up.

names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).

names_pattern takes the same specification as extract (), a regular expression
containing matching groups (()).

If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes, values_ptypes

names_transform,

names_repair

values_to

Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer () or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.
values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.

If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

What happens if the output has invalid column names? The default, "check_unique”
is to error if the columns are duplicated. Use "minimal” to allow duplicates

in the output, or "unique” to de-duplicated by adding numeric suffixes. See
vctrs: :vec_as_names() for more options.

A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this

58 pivot_wider.ir

value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the values_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

Additional arguments passed on to methods.

Value

data in a long format. If the spectra column is dropped or invalidated (see ir_new_ir()), the ir
class is dropped, else the object is of class ir.

Source

tidyr::pivot_longer()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_wider.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

pivot_longer
ir_sample_data |>
tidyr::pivot_longer(
cols = dplyr::any_of(c("holocellulose”, "klason_lignin"))
)

pivot_wider.ir Pivot an ir object from wide to long

Description

Pivot an ir object from wide to long

Usage

pivot_wider.ir(
data,
id_cols = NULL,
names_from = "name”,

nn

names_prefix = ,

non

names_sep = _°,

pivot_wider.ir 59

names_glue = NULL,

names_sort = FALSE,
names_repair = "check_unique”,
values_from = "value”,
values_fill = NULL,

values_fn = NULL,

)
Arguments
data An object of class ir.
id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-

ically used when you have redundant variables, i.e. variables whose values are

perfectly correlated with existing variables.

Defaults to all columns in data except for the columns specified through names_from

and values_from. If a tidyselect expression is supplied, it will be evaluated on

data after removing the columns specified through names_fromand values_from.
names_from, values_from

<tidy-select> A pair of arguments describing which column (or columns)

to get the name of the output column (names_from), and which column (or

columns) to get the cell values from (values_from).

If values_from contains multiple values, the value will be added to the front of

the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_repair What happens if the output has invalid column names? The default, "check_unique”
is to error if the columns are duplicated. Use "minimal” to allow duplicates
in the output, or "unique” to de-duplicated by adding numeric suffixes. See
vctrs: :vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to different
values_from columns.

60 plot.ir
Additional arguments passed on to methods.

Value

data in a wide format. If the spectra column is dropped or invalidated (see ir_new_ir()), the ir
class is dropped, else the object is of class ir.

Source

tidyr::pivot_wider()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), rename, rowwise.ir(), select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

pivot_wider
ir_sample_data |>
tidyr::pivot_longer(
cols = dplyr::any_of(c("holocellulose”, "klason_lignin"))

) 1>
tidyr::pivot_wider(names_from = "name"”, values_from = "value")
plot.ir Plots an object of class ir
Description

plot.ir is the plot method for objects of class ir.

Usage
S3 method for class 'ir'
plot(x, ...)
Arguments
X An object of class ir.
Further arguments, will be ignored.
Value

An object of class ggplot2.

range 61

Examples

simple plotting
plot(ir::ir_sample_datal[1:2, 1)

advanced functions
plot(ir::ir_sample_data) +
ggplot2::facet_wrap(~ sample_type)

range Get the minima/maxima/range/median of x axis values or intensity val-
ues of infrared spectra

Description

range.ir extracts the range of x axis values (e.g. wavenumbers) or intensity values of infrared
spectra.

min.ir extracts the minimum x axis value (e.g. wavenumber) or intensity value of infrared spectra.
max. ir extracts the maximum x axis value (e.g. wavenumber) or intensity value of infrared spectra.

median.ir extracts the median x axis value (e.g. wavenumber) or intensity value of infrared spectra.

Usage

S3 method for class 'ir'
range(
X,
na.rm = FALSE,
.dimension = "y",
.col_names = c("y_min", "y_max")

S3 method for class 'ir'
min(x, ..., na.rm = FALSE, .dimension = "y", .col_name = "y_min")

S3 method for class 'ir'
max(x, ..., na.rm = FALSE, .dimension = "y", .col_name = "y_max")

S3 method for class 'ir'

median(x, na.rm = FALSE, ..., .dimension = "y", .col_name = "y_median")
Arguments
X An object of class ir.

Further arguments, ignored.

na.rm A logical value. See max ().

62

.dimension

.col_names

.col_name

Value

rename

A character value. Must be one of the following:

"x" In this case, the minimum/maximum/range/median of x axis values of the
spectra in x are extracted.
" n

y'" In this case, the minimum/maximum/range/median of intensity values of
the spectra in x are extracted.
A character vector of length 2 representing the names of the columns in which
to store the extracted values. The first element is the name for the column with
minima values, the second the name for the column with maxima values.
A character value representing the name of the column in which to store the
extracted values.

x with the extracted values.

Examples

range of intensity values

x1 <-

ir::ir_sample_data |>
range(.dimension = "y")

minimum intensity values

x1 <-

ir::ir_sample_data |>
min(.dimension = "y")

maximum intensity values

x1 <-

ir::ir_sample_data |>
max(.dimension = "y")

median intensity values

x1 <-
ir::ir_sample_data |>
stats::median(.dimension = "y")
rename Rename columns in ir objects

Description

Rename columns in ir objects

Usage

rename.ir(.data, ...)

rename_with.ir(.data, .fn, .cols = dplyr::everything(), ...)

rep.ir 63

Arguments
.data An object of class ir.
For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto . fn.
.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.
.cols <tidy-select> Columns to rename; defaults to all columns.
Value

.data with renamed columns. If the spectra column is renamed, and no new valid spectra
column is created, the ir class is dropped, else the object is of class ir.
Source

dplyr: :rename()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples
rename
dplyr::rename(ir_sample_data, hol = "holocellulose"”)
dplyr::rename(ir_sample_data, spec = "spectra”) # drops ir class

rename_with

dplyr::rename_with(ir_sample_data, .cols = dplyr::starts_with("id_"),
toupper)

dplyr::rename_with(ir_sample_data, toupper) # drops ir class

rep.ir Replicate ir objects

Description

rep.ir is the replicate method for ir objects. Replicating and ir object means to replicate its rows
and bind these together to a larger ir object.

64

Usage
S3 method for class 'ir'
rep(x, ...)
Arguments
X An object of class ir.
See rep().
Value

An object of class ir with replicated spectra.

Examples

replicate the sample data
X <= rep(ir::ir_sample_data, times = 2)
X <= rep(ir::ir_sample_data, each = 2)

X <- rep(ir::ir_sample_data, length.out = 3)

rowwise.ir

rowwise.ir Group input ir objects by rows

Description

Group input ir objects by rows

<tidy-select> Variables to be preserved when calling summarise(). This is
typically a set of variables whose combination uniquely identify each row.

NB: unlike group_by () you can not create new variables here but instead you

can select multiple variables with (e.g.) everything().

Usage
rowwise.ir(.data, ...)
Arguments
.data Input data frame.
data An object of class ir.
Value

data as row-wise data frame. See dplyr: :rowwise().

Source

dplyr::rowwise()

select.ir 65

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, select.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

rowwise
dplyr::rowwise(ir_sample_data) |>
dplyr: :mutate(
hkl =
mean (
units::drop_units(klason_lignin),
units::drop_units(holocellulose)

)

select.ir Subset columns in ir objects using column names and types

Description

Subset columns in ir objects using column names and types

Usage
select.ir(.data, ...)
Arguments
.data An object of class ir.
<tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x: y can be used to select a range of variables.
Value

.data with the selected columns. If the spectra column is dropped, the ir class is dropped, else
the object is of class ir.

Source

dplyr::select()

66 separate.ir

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
separate.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

select
dplyr::select(ir_sample_data, spectra)
dplyr::select(ir_sample_data, holocellulose) # drops ir class

separate.ir Separate a character column in an ir object into multiple columns
with a regular expression or numeric locations

Description

Separate a character column in an ir object into multiple columns with a regular expression or
numeric locations

Usage

separate.ir(
data,
col,
into,
sep = "[*[:alnum:]]+",
remove = TRUE,
convert = FALSE,

extra = "warn”,
fill = "warn”,
)
Arguments
data An object of class ir.
col <tidy-select> Column to expand.
into Names of new variables to create as character vector. Use NA to omit the variable
in the output.
sep Separator between columns.

If character, sep is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.

separate.ir 67

If numeric, sep is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of sep should be one less than into.

remove If TRUE, remove input column from output data frame.

convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.
extra If sep is a character vector, this controls what happens when there are too many
pieces. There are three valid options:
e "warn” (the default): emit a warning and drop extra values.
e "drop": drop any extra values without a warning.
* "merge": only splits at most length(into) times
fill If sep is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:
e "warn" (the default): emit a warning and fill from the right
* "right”: fill with missing values on the right

e "left": fill with missing values on the left

Additional arguments passed on to methods.

Value

.data with separated columns. If the spectra column is dropped or invalidated (see ir_new_ir()),
the ir class is dropped, else the object is of class ir.

Source

tidyr: :separate()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

separate
ir_sample_data |>
tidyr: :separate(
col = "id_sample”, c("a", "b", "c")

)

68 separate_rows.ir

separate_rows.ir Separate a collapsed column in an ir object into multiple rows

Description

Separate a collapsed column in an ir object into multiple rows

Usage
separate_rows.ir(data, ..., sep = "[*[:alnum:].J+", convert = FALSE)
Arguments
data An object of class ir.
<tidy-select> Columns to separate across multiple rows
sep Separator delimiting collapsed values.
convert If TRUE will automatically run type.convert() on the key column. This is
useful if the column types are actually numeric, integer, or logical.
Value

data with a collapsed column separated into multiple rows. See tidyr: :separate_rows().

Source

tidyr: :separate_rows()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), slice, summarize, unite.ir()

Examples

separate_rows
ir_sample_data |>
tidyr::unite(
col = content, holocellulose, klason_lignin
) 1>
tidyr: :separate_rows(
col

)

slice 69

slice Subset rows in ir objects using their positions

Description

Subset rows in ir objects using their positions

Usage

slice.ir(.data, ..., .preserve = FALSE)

slice_sample.ir(.data, ..., n, prop, weight_by = NULL, replace = FALSE)

Arguments

.data An object of class ir.

For slice(): <data-masking> Integer row values.

Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.

For slice_x(), these arguments are passed on to methods.
.preserve Relevant when the . data input is grouped. If . preserve = FALSE (the default),

the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

n, prop Provide either n, the number of rows, or prop, the proportion of rows to select.
If neither are supplied, n = 1 will be used. If n is greater than the number of rows
in the group (or prop > 1), the result will be silently truncated to the group size.
prop will be rounded towards zero to generate an integer number of rows.

A negative value of n or prop will be subtracted from the group size. For exam-
ple, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop = -0.25 with
8 rows will select 8 * (1 - 0.25) = 6 rows.

weight_by <data-masking> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the default) re-
placement.

Value

.data with subsetted rows.

Source

dplyr::slice()

70 subsetting

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), summarize, unite.ir()

Examples

slice

dplyr::slice(ir_sample_data, 1:5)
dplyr::slice_min(ir_sample_data, holocellulose, n
dplyr::slice_max(ir_sample_data, holocellulose, n
dplyr::slice_head(ir_sample_data, n = 5)
dplyr::slice_tail(ir_sample_data, n = 5)

3
3

slice_sample
set.seed(234)
dplyr::slice_sample(ir_sample_data, n = 3)

subsetting Subsetting ir objects

Description

Subsetting ir objects

Usage
S3 method for class 'ir'
x[i, j, ..., exact = TRUE]

S3 method for class 'ir'
x$1i

S3 method for class 'ir'
x[[i, j, ..., exact = TRUE]]

S3 replacement method for class 'ir
x$i, j, ... <= value

S3 replacement method for class 'ir
i[j, ..., exact = TRUE] <- value

S3 replacement method for class
il[j, ..., exact = TRUE]] <- value

subsetting

Arguments
X

i’j

exact

value

Value

If the subsetting op

71

An object of class ir.

Row and column indices. If j is omitted, i is used as column index.
Ignored.

Ignored, with a warning.

A value to store in a row, column, range or cell. Tibbles are stricter than data
frames in what is accepted here.

eration preserves a valid spectra column (see ir()), an object of class ir with

accordingly subsetted rows or columns. Else a tibble: :tbl_df () or vector.

Examples

subsetting rows
ir_sample_datal[1,
ir_sample_data[10
ir_sample_datalir

subsetting colu
ir_sample_datal,

ir_sample_datal[["
ir_sample_data$sp

not explicitly
class(ir_sample_d
class(ir_sample_d

subsetting valu
ir_sample_datal,
ir_sample_datal,
ir_sample_data$id
ir_sample_data[[1

setting and rep
X <= ir::ir_sampl
x$a <- 3

x[, "a"] <- 4
x$sample_type <-
x[[111 <= rev(x[L

deleting the sp
x$spectra <- NULL
class(x)

setting and rep
X <= ir::ir_sampl
x[1, 1 <-x[2,]
class(x)

]

015, 1]

_sample_data$sample_type == "office paper”,]
mns

"spectra"]

spectra”]]

ectra

selecting the spectra column drops the ir class
atal, 11)
atal, "spectra”l])

es
1] # drops the ir class
c("id_sample”, "spectra”)]

_sample
, 111

lacing columns
e_data

nan

a

111)

ectra column drops the ir class

lacing rows
e_data

72 summarize

setting invalid values in the spectra column drops the ir class
x_replacement <- x[1, 1]

x_replacement$spectra <- list(1)

x[1,] <- x_replacement

class(x)

setting and replacing values
X <= ir::ir_sample_data
x[[1, 111 <- 100

replacing an element in the spectra column by an invalid element drops the
ir class attribute

x[[3, "spectra”]] <- list(1)

class(x)

summarize Summarize each group in a ir object to fewer rows

Description

Summarize each group in a ir object to fewer rows

Usage
summarize.ir(.data, ..., .groups = NULL)
summarise.ir(.data, ..., .groups = NULL)
Arguments
.data An object of class ir.
<data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:
* A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
* A data frame, to add multiple columns from a single expression.
[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.
.groups [Experimental] Grouping structure of the result.

e "drop_last": dropping the last level of grouping. This was the only sup-
ported option before version 1.0.0.

e "drop": All levels of grouping are dropped.
* "keep": Same grouping structure as .data.
* "rowwise": Each row is its own group.

unite.ir 73

When . groups is not specified, it is chosen based on the number of rows of the
results:

* If all the results have 1 row, you get "drop_last".

* If the number of rows varies, you get "keep" (note that returning a variable
number of rows was deprecated in favor of reframe(), which also uncon-
ditionally drops all levels of grouping).

In addition, a message informs you of that choice, unless the result is ungrouped,
the option "dplyr.summarise.inform" is set to FALSE, or when summarise() is
called from a function in a package.
Value
.data with summarized columns. If the spectra column is dropped or invalidated (see ir_new_ir()),
the ir class is dropped, else the object is of class ir.
Source

dplyr: :summarize()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, unite.ir()

Examples

summarize

select in each sample_type groups the first spectrum
ir_sample_data |>
dplyr::group_by(sample_type) |>
dplyr::summarize(spectra = list(spectral[1]1]))

unite.ir Unite multiple columns in an ir object into one by pasting strings
together

Description

Unite multiple columns in an ir object into one by pasting strings together

Usage

unite.ir(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

74 unite.ir

Arguments
data An object of class ir.
col The name of the new column, as a string or symbol.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).
<tidy-select> Columns to unite
sep Separator to use between values.
remove If TRUE, remove input columns from output data frame.
na.rm If TRUE, missing values will be removed prior to uniting each value.
Value

.data with united columns. If the spectra column is dropped or invalidated (see ir_new_ir()),
the ir class is dropped, else the object is of class ir.

Source

tidyr::unite()

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(),
group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(),
select.ir(), separate.ir(), separate_rows.ir(), slice, summarize

Examples

unite
ir_sample_data |>
tidyr: :separate(
Hid_samplell’ C("a“, llbll’ IICII)
) 1>
tidyr::unite(id_sample, a, b, c)

Index

+ datasets
ir_sample_data, 38
* tidyverse
arrange.ir, 3
distinct.ir, 5
extract.ir, 6
filter-joins, 7
filter.ir,9
group_by, 10
mutate, 48
mutate-joins, 49
nest, 52
pivot_longer.ir, 56
pivot_wider.ir, 58
rename, 62
rowwise.ir, 64
select.ir, 65
separate.ir, 66
separate_rows.ir, 68
slice, 69
summarize, 72
unite.ir, 73
?join_by, 7, 50
[.ir (subsetting), 70
[<-.ir (subsetting), 70
[[.ir (subsetting), 70
[[<-.ir (subsetting), 70
$.ir (subsetting), 70
$<-.ir (subsetting), 70

anti_join.ir (filter-joins), 7
arrange.ir, 3,5, 6, 8-10,49, 51, 54, 58, 60,

63, 65-68, 70,73, 74
as.numeric, 41

bind, 4
cbind.ir (bind), 4

ChemoSpec: :baselineSpectra(), 15, 16
cross_join(), 7, 51

75

desc(), 3
distinct.ir,4,5,6,8-10,49, 51, 54, 58, 60,
63, 65-68, 70, 73, 74
:arrange(), 3
:distinct(), 5
:filter(), 9
:group_by(), 10
:mutate(), 49
:rename(), 63
:rowwise(), 64
:select(), 65
:slice(), 69
:summarize(), 73

dplyr:
dplyr:
dplyr:
dplyr:
dplyr:
dplyr:
dplyr:
dplyr:
dplyr:
dplyr:

errors::errors, 24

extract(), 57

extract.ir, 4, 5,6, 8-10,49, 51, 54, 58, 60,
63, 65-68, 70, 73, 74

fda: :smooth.basis(), 41, 42
filter-joins, 7
filter.ir,4-6,8,9, 10,49, 51, 54, 58, 60,
63, 65-68, 70, 73, 74
full_join.ir (mutate-joins), 49

ggplot2, 60

group_by, 4-6, 8, 9, 10, 49, 51, 54, 58, 60, 63,
65-68, 70, 73, 74

group_by_drop_default(), 10

hyperSpec: :read.spc(), 30, 31
hyperSpec: :spc.rubberband(), 15, 17

inner_join.ir (mutate-joins), 49

ir, 11, 12, 14-21,23-25,27,29-33, 36-38,
42, 4446, 60, 61, 63, 64

ir(), 71

ir_add, 11

ir_as_ir, 12

ir_average, 14

ir_bc, 15

76

ir_bc(Q), 16, 17
ir_bc_polynomial, 16
ir_bc_polynomial(), 15
ir_bc_rubberband, 17
ir_bc_rubberband(), 15
ir_bc_sg, 18
ir_bc_sg(), 15
ir_bin, 19
ir_clip, 20
ir_clip(), 47
ir_correct_atmosphere, 21
ir_divide, 23
ir_drop_spectra, 24
ir_export_prepare, 24
ir_flat, 19, 20, 22, 25, 26, 28, 32, 41
ir_flat_clean, 26
ir_flatten, 25
ir_flatten(), 28
ir_get_intensity, 26
ir_get_spectrum, 27
ir_get_wavenumberindex, 28
ir_get_wavenumberindex(), 27
ir_identify_empty_spectra, 29
ir_import_csv, 29
ir_import_spc, 30
ir_interpolate, 32
ir_interpolate(), 22
ir_interpolate_region, 32
ir_multiply, 33
ir_new_ir, 34
ir_new_ir(), 38, 49, 54, 58, 60, 67, 73, 74
ir_new_ir_flat, 35
ir_normalise (ir_normalize), 36
ir_normalize, 36
ir_normalize(), 46
ir_remove_missing, 37
ir_sample_data, 38
ir_sample_prospectr, 39
ir_scale, 40
ir_smooth, 41
ir_smooth(), 18,47
ir_stack, 43
ir_subtract, 44
ir_to_absorbance (ir_to_transmittance),
45
ir_to_transmittance, 45
ir_variance_region, 46
is.numeric, 41

INDEX

join_by(), 7, 50
left_join.ir (mutate-joins), 49

match(), 8, 51

max (), 61

max.ir (range), 61

median.ir (range), 61

merge(), 8, 51

min.ir (range), 61

mutate, 4-6, 8-10, 48, 51, 54, 58, 60, 63,
65-68, 70, 73, 74

mutate-joins, 49

nest, 4-6, 8-10,49, 51,52, 58, 60, 63, 65-68,
70,73, 74

Ops.ir, 55

pivot_longer.ir, 4-6,8-10, 49, 51, 54, 56,
60, 63, 65-68, 70, 73, 74
pivot_wider.ir, 4-6, 8-10, 49, 51, 54, 58,
58, 63, 65-68, 70, 73, 74

plot.ir, 60

quantities::quantities, 24
quasiquotation, 74

range, 61

rbind(), 4

rbind.ir (bind), 4

read.csv(), 30

reframe(), 14,72, 73

relocate(), 48

rename, 4-6, 810, 49, 51, 54, 58, 60, 62,
65-68, 70, 73, 74

rename_with.ir (rename), 62

rep(), 64

rep.ir, 55,63

right_join.ir (mutate-joins), 49

rlang::as_function(), 54

rlang::ensym(), 74

rowwise.ir, 4-6, 810,49, 51, 54, 58, 60, 63,
64, 66-68, 70, 73, 74

select.ir, 4-6, 8—10, 49, 51, 54, 58, 60, 63,

65, 65, 67, 68, 70,73, 74
semi_join.ir (filter-joins), 7
separate(), 57

INDEX 77

separate.ir, 4-6, 8-10, 49, 51, 54, 58, 60,
63, 65, 66, 66, 68, 70, 73, 74

separate_rows.ir, 4-6, 8-10, 49, 51, 54, 58,
60, 63, 65-67, 68, 70, 73, 74

signal::sgolayfilt(), 41, 42

slice, 4-6, 8-10, 49, 51, 54, 58, 60, 63
65-68, 69, 73, 74

slice_sample.ir (slice), 69

subsetting, 70

summarise (summarize), 72

summarise(), 64

summarize, 4-6, 8~10, 49, 51, 54, 58, 60, 63,
65-68, 70,72, 74

tibble::tbl_df (), 34,71
tibble::tibble(), 43
tidyr::extract(), 6
tidyr::nest(), 54
tidyr::pivot_longer(), 58
tidyr: :pivot_wider(), 60
tidyr: :separate(), 67
tidyr: :separate_rows(), 68
tidyr::unite(), 74
tidyr_legacy, 54
transmute.ir (mutate), 48
type.convert(), 6, 67, 68

ungroup.ir (group_by), 10

unite.ir, 4-6,8-10,49, 51, 54, 58, 60, 63,
65-68, 70, 73,73

units::units, 24

unnest.ir (nest), 52

vctrs: :vec_as_names(), 54, 57, 59

	arrange.ir
	bind
	distinct.ir
	extract.ir
	filter-joins
	filter.ir
	group_by
	ir_add
	ir_as_ir
	ir_average
	ir_bc
	ir_bc_polynomial
	ir_bc_rubberband
	ir_bc_sg
	ir_bin
	ir_clip
	ir_correct_atmosphere
	ir_divide
	ir_drop_spectra
	ir_export_prepare
	ir_flatten
	ir_flat_clean
	ir_get_intensity
	ir_get_spectrum
	ir_get_wavenumberindex
	ir_identify_empty_spectra
	ir_import_csv
	ir_import_spc
	ir_interpolate
	ir_interpolate_region
	ir_multiply
	ir_new_ir
	ir_new_ir_flat
	ir_normalize
	ir_remove_missing
	ir_sample_data
	ir_sample_prospectr
	ir_scale
	ir_smooth
	ir_stack
	ir_subtract
	ir_to_transmittance
	ir_variance_region
	mutate
	mutate-joins
	nest
	Ops.ir
	pivot_longer.ir
	pivot_wider.ir
	plot.ir
	range
	rename
	rep.ir
	rowwise.ir
	select.ir
	separate.ir
	separate_rows.ir
	slice
	subsetting
	summarize
	unite.ir
	Index

