
Package ‘kit’
January 23, 2026

Type Package

Title Data Manipulation Functions Implemented in C

Version 0.0.21

Date 2026-01-22

Author Morgan Jacob [aut, cph],
Sebastian Krantz [ctb, cre]

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Description Basic functions, implemented in C, for large data manipulation. Fast vec-
torised ifelse()/nested if()/switch() functions, psum()/pprod() functions equiva-
lent to pmin()/pmax() plus others which are missing from base R. Most of these func-
tions are callable at C level.

URL https://fastverse.org/kit/, https://github.com/fastverse/kit

License GPL-3

Depends R (>= 3.1.0)

Suggests knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

BugReports https://github.com/fastverse/kit/issues

NeedsCompilation yes

ByteCompile TRUE

Repository CRAN

Date/Publication 2026-01-23 09:40:11 UTC

Contents
charToFact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
fduplicated/funique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
fpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1

https://fastverse.org/kit/
https://github.com/fastverse/kit
https://github.com/fastverse/kit/issues


2 charToFact

iif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
nif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
parallel-funs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
psort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
setlevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
shareData/getData/clearData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
topn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
vswitch/nswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Index 22

charToFact Convert Character Vector to Factor

Description

Similar to base::as.factor but much faster and only for converting character vector to factor.

Usage

charToFact(x, decreasing=FALSE, addNA=TRUE,
nThread=getOption("kit.nThread"))

Arguments

x A vector of type character

decreasing A boolean. Whether to order levels in decreasing order or not. Default is FALSE.

addNA A boolean. Whether to include NA in levels of the output or not. Default is TRUE.

nThread Number of thread to use.

Value

The character vector input as a factor. Please note that, unlike as.factor, NA levels are preserved
by default, however this can be changed by setting argument addNA to FALSE.

Examples

x = c("b","A","B","a","\xe4","a")
Encoding(x) = "latin1"
identical(charToFact(x), as.factor(x))
identical(charToFact(c("a","b",NA,"a")), addNA(as.factor(c("a","b",NA,"a"))))
identical(charToFact(c("a","b",NA,"a"), addNA=FALSE), as.factor(c("a","b",NA,"a")))

# Benchmarks
# ----------
# x = sample(letters,3e7,TRUE)
# microbenchmark::microbenchmark(
# kit=kit::charToFact(x,nThread = 1L),
# base=as.factor(x),



count 3

# times = 5L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# kit 188 190 196 194 200 208 5
# base 1402 1403 1455 1414 1420 1637 5

count count, countNA and countOccur

Description

Simple functions to count the number of times an element occurs.

Usage

count(x, value)
countNA(x)
countOccur(x)

Arguments

x A vector or list for countNA. A vector for count and a vector or data.frame for
countOccur.

value An element to look for. Must be non NULL, of length 1 and same type as x.

Value

For a vector countNA will return the total number of NA value. For a list, countNA will return a
list with the number of NA in each item of the list. This is a major difference with sum(is.na(x))
which will return the aggregated number of NA. Also, please note that every item of a list can be of
different type and countNA will take them into account whether they are of type logical (NA), integer
(NA_integer_), double (NA_real_), complex (NA_complex_) or character (NA_character_). As
opposed to countNA, count does not support list type and requires x and value to be of the same
type. Function countOccur takes vectors or data.frame as inputs and returns a data.frame with
the number of times each value in the vector occurs or number of times each row in a data.frame
occurs.

Author(s)

Morgan Jacob

See Also

pcount



4 fduplicated/funique

Examples

x = c(1, 3, NA, 5)
count(x, 3)

countNA(x)
countNA(as.list(x))

countOccur(x)

# Benchmarks countNA
# ------------------
# x = sample(c(TRUE,NA,FALSE),1e8,TRUE) # 382 Mb
# microbenchmark::microbenchmark(
# countNA(x),
# sum(is.na(x)),
# times=5L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# countNA(x) 98.7 99.2 101.2 100.1 101.4 106.4 5
# sum(is.na(x)) 405.4 441.3 478.9 461.1 523.9 562.6 5
#
# Benchmarks countOccur
# ---------------------
# x = rnorm(1e6)
# y = data.table::data.table(x)
# microbenchmark::microbenchmark(
# kit= countOccur(x),
# data.table = y[, .N, keyby = x],
# table(x),
# times = 10L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# kit 62.26 63.88 89.29 75.49 95.17 162.40 10
# data.table 189.17 194.08 235.30 227.43 263.74 337.74 10 # setDTthreads(1L)
# data.table 140.15 143.91 190.04 182.85 234.48 261.43 10 # setDTthreads(2L)
# table(x) 3560.77 3705.06 3843.47 3807.12 4048.40 4104.11 10

fduplicated/funique Fast duplicated and unique

Description

Similar to base R functions duplicated and unique, fduplicated and funique are slightly
faster for vectors and much faster for data.frame. Function uniqLen is equivalent to base R
length(unique) or data.table::uniqueN.



fduplicated/funique 5

Usage

fduplicated(x, fromLast = FALSE)
funique(x, fromLast = FALSE)
uniqLen(x)

Arguments

x A vector, data.frame or matrix.

fromLast A logical value to indicate whether the search should start from the end or be-
ginning. Default is FALSE.

Value

Function fduplicated returns a logical vector and funique returns a vector of the same type as x
without the duplicated value. Function uniqLen returns an integer.

Author(s)

Morgan Jacob

Examples

# Example 1: fduplicated
fduplicated(iris$Species)

# Example 2: funique
funique(iris$Species)

# Example 3: uniqLen
uniqLen(iris$Species)

# Benchmarks
# ----------
# x = sample(c(1:10,NA_integer_),1e8,TRUE) # 382 Mb
# microbenchmark::microbenchmark(
# duplicated(x),
# fduplicated(x),
# times = 5L
# )
# Unit: seconds
# expr min lq mean median uq max neval
# duplicated(x) 2.21 2.21 2.48 2.21 2.22 3.55 5
# fduplicated(x) 0.38 0.39 0.45 0.48 0.49 0.50 5
#
# vs data.table
# -------------
# df = iris[,5:1]
# for (i in 1:16) df = rbind(df, df) # 338 Mb
# dt = data.table::as.data.table(df)
# microbenchmark::microbenchmark(
# kit = funique(df),



6 fpos

# data.table = unique(dt),
# times = 5L
# )
# Unit: seconds
# expr min lq mean median uq max neval
# kit 1.22 1.27 1.33 1.27 1.36 1.55 5
# data.table 6.20 6.24 6.43 6.33 6.46 6.93 5 # (setDTthreads(1L))
# data.table 4.20 4.25 4.47 4.26 4.32 5.33 5 # (setDTthreads(2L))
#
# microbenchmark::microbenchmark(
# kit=uniqLen(x),
# data.table=uniqueN(x),
# times = 5L, unit = "s"
# )
# Unit: seconds
# expr min lq mean median uq max neval
# kit 0.17 0.17 0.17 0.17 0.17 0.17 5
# data.table 1.66 1.68 1.70 1.71 1.71 1.72 5 # (setDTthreads(1L))
# data.table 1.13 1.15 1.16 1.16 1.18 1.18 5 # (setDTthreads(2L))

fpos Find a matrix position inside a larger matrix

Description

The function fpos returns the locations (row and column index) where a small matrix may be found
in a larger matrix. The function also works with vectors.

Usage

fpos(needle, haystack, all=TRUE, overlap=TRUE)

Arguments

needle A matrix or vector to search for in the larger matrix or vector haystack. Note
that the needle dimensions (row and column size) must be smaller than the
haystack dimensions.

haystack A matrix or vector to look into.

all A logical value to indicate whether to return all occurrences (TRUE) or only the
first one (FALSE). Default value is TRUE.

overlap A logical value to indicate whether to allow the small matrix occurrences to
overlap or not. Default value is TRUE.

Value

A two columns matrix that contains the position or index where the small matrix (needle) can be
found in the larger matrix. The first column refers to rows and the second to columns. In case both
the needle and haystack are vectors, a vector is returned.



iif 7

Author(s)

Morgan Jacob

Examples

# Example 1: find a matrix inside a larger one
big_matrix = matrix(c(1:30), nrow = 10)
small_matrix = matrix(c(14, 15, 24, 25), nrow = 2)

fpos(small_matrix, big_matrix)

# Example 2: find a vector inside a larger one
fpos(14:15, 1:30)

# Example 3:
big_matrix = matrix(c(1:5), nrow = 10, ncol = 5)
small_matrix = matrix(c(2:3), nrow = 2, ncol = 2)

# return all occurences
fpos(small_matrix, big_matrix)

# return only the first
fpos(small_matrix, big_matrix, all = FALSE)

# return non overlapping occurences
fpos(small_matrix, big_matrix, overlap = FALSE)

# Benchmarks
# ----------
# x = matrix(1:5, nrow=1e4, ncol=5e3) # 191Mb
# microbenchmark::microbenchmark(
# fpos=kit::fpos(1L, x),
# which=which(x==1L, arr.ind=TRUE),
# times=10L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# fpos 202 206 220 221 231 241 10
# which 612 637 667 653 705 724 10

iif Fast if else

Description

iif is a faster and more robust replacement of ifelse. It is comparable to dplyr::if_else,
hutils::if_else and data.table::fifelse. It returns a value with the same length as test
filled with corresponding values from yes, no or eventually na, depending on test. It does not
support S4 classes.



8 iif

Usage

iif(test, yes, no, na=NULL, tprom=FALSE, nThread=getOption("kit.nThread"))

Arguments

test A logical vector.

yes, no Values to return depending on TRUE/FALSE element of test. They must be the
same type and be either length 1 or the same length of test.

na Value to return if an element of test is missing. It must be the same type as
yes/no and be either length 1 or the same length of test. Please note that NA is
treated as logical value of length 1 as per the R documentation. NA_integer_,
NA_real_, NA_complex_ and NA_character_ are equivalent to NA but for inte-
ger, double, complex and character. Default value for argument na is NULL and
will automatically default to the equivalent NA type of argument yes.

tprom Argument to indicate whether type promotion of yes and no is allowed or not.
Either FALSE or TRUE, default is FALSE to not allow type promotion.

nThread A integer for the number of threads to use with openmp. Default value is
getOption("kit.nThread").

Details

In contrast to ifelse attributes are copied from yes to the output. This is useful when returning
Date, factor or other classes. Like dplyr::if_else and hutils::if_else, the na argument is by
default set to NULL. This argument is set to NA in data.table::fifelse. Similarly to dplyr::if_else
and when tprom=FALSE, iif requires same type for arguments yes and no. This is not strictly
the case for data.table::fifelse which will coerce integer to double. When tprom=TRUE, iif
behavior is similar to base::ifelse in the sense that it will promote or coerce yes and noto the
"highest" used type. Note, however, that unlike base::ifelse attributes are still conserved.

Value

A vector of the same length as test and attributes as yes. Data values are taken from the values of
yes and no, eventually na.

Author(s)

Morgan Jacob

See Also

nif vswitch

Examples

x = c(1:4, 3:2, 1:4)
iif(x > 2L, x, x - 1L)

# unlike ifelse, iif preserves attributes, taken from the 'yes' argument



nif 9

dates = as.Date(c("2011-01-01","2011-01-02","2011-01-03","2011-01-04","2011-01-05"))
ifelse(dates == "2011-01-01", dates - 1, dates)
iif(dates == "2011-01-01", dates - 1, dates)
yes = factor(c("a","b","c"))
no = yes[1L]
ifelse(c(TRUE,FALSE,TRUE), yes, no)
iif(c(TRUE,FALSE,TRUE), yes, no)

# Example of using the 'na' argument
iif(test = c(-5L:5L < 0L, NA), yes = 1L, no = 0L, na = 2L)

# Example of using the 'tprom' argument
iif(test = c(-5L:5L < 0L, NA), yes = 1L, no = "0", na = 2L, tprom = TRUE)

nif Nested if else

Description

nif is a fast implementation of SQL CASE WHEN statement for R. Conceptually, nif is a nested
version of iif (with smarter implementation than manual nesting). It is not the same but it is
comparable to dplyr::case_when and data.table::fcase.

Usage

nif(..., default=NULL)

Arguments

... A sequence consisting of logical condition (when)-resulting value (value) pairs
in the following order when1, value1, when2, value2, ..., whenN, valueN.
Logical conditions when1, when2, ..., whenN must all have the same length,
type and attributes. Each value may either share length with when or be length
1. Please see Examples section for further details.

default Default return value, NULL by default, for when all of the logical conditions
when1, when2, ..., whenN are FALSE or missing for some entries. Argument
default can be a vector either of length 1 or length of logical conditions when1,
when2, ..., whenN. Note that argument ’default’ must be named explicitly.

Details

Unlike data.table::fcase, the default argument is set to NULL. In addition, nif can be called
by other packages at C level. Note that at C level, the function has an additional argument SEXP
md which is either TRUE for lazy evaluation or FALSE for non lazy evaluation. This argument is not
exposed to R users and is more for C users.



10 nif

Value

Vector with the same length as the logical conditions (when) in ..., filled with the corresponding
values (value) from ..., or eventually default. Attributes of output values value1, value2,
...valueN in ... are preserved.

Author(s)

Morgan Jacob

See Also

iif vswitch

Examples

x = 1:10
nif(
x < 5L, 1L,
x > 5L, 3L
)

nif(
x < 5L, 1L:10L,
x > 5L, 3L:12L
)

# Lazy evaluation example
nif(
x < 5L, 1L,
x >= 5L, 3L,
x == 5L, stop("provided value is an unexpected one!")
)

# nif preserves attributes, example with dates
nif(
x < 5L, as.Date("2019-10-11"),
x > 5L, as.Date("2019-10-14")
)

# nif example with factor; note the matching levels
nif(
x < 5L, factor("a", levels=letters[1:3]),
x > 5L, factor("b", levels=letters[1:3])
)

# Example of using the 'default' argument
nif(
x < 5L, 1L,
x > 5L, 3L,
default = 5L
)



parallel-funs 11

nif(
x < 5L, 1L,
x > 5L, 3L,
default = rep(5L, 10L)
)

parallel-funs Parallel (Statistical) Functions

Description

Vector-valued (statistical) functions operating in parallel over vectors passed as arguments, or a
single list of vectors (such as a data frame). Similar to pmin and pmax, except that these functions
do not recycle vectors.

Usage

psum(..., na.rm = FALSE)
pprod(..., na.rm = FALSE)
fpmin(..., na.rm = FALSE)
fpmax(..., na.rm = FALSE)
prange(..., na.rm = FALSE)
pmean(..., na.rm = FALSE)
pfirst(...) # (na.rm = TRUE)
plast(...) # (na.rm = TRUE)
pall(..., na.rm = FALSE)
pallNA(...)
pallv(..., value)
pany(..., na.rm = FALSE)
panyNA(...)
panyv(..., value)
pcount(..., value)
pcountNA(...)

Arguments

... suitable (atomic) vectors of the same length, or a single list of vectors (such as
a data.frame). See Details on the allowed data types for each function, and
Examples.

na.rm A logical indicating whether missing values should be removed. Default value
is FALSE, except for pfirst and plast.

value A non NULL value of length 1.



12 parallel-funs

Details

Functions psum, pprod work for integer, logical, double and complex types. pmean, fpmin, fpmax,
and prange only support integer, logical and double types. All these functions will error if used
with factors.

pfirst/plast select the first/last non-missing value (or non-empty or NULL value for list-vectors).
They accept all vector types with defined missing values + lists, but can only jointly handle integer
and double types (not numeric and complex or character and factor). If factors are passed, they all
need to have identical levels.

pany and pall are derived from base functions all and any and only allow logical inputs.

pcount counts the occurrence of value, and expects arguments of the same data type (except for
value = NA). pcountNA is equivalent to pcount with value = NA, and they both allow NA counting
in mixed-type data. pcountNA additionally supports list vectors and counts empty or NULL elements
as NA.

Functions panyv/pallv are wrappers around pcount, and panyNA/pallNA are wrappers around
pcountNA. They return a logical vector instead of the integer count.

None of these functions recycle vectors i.e. all input vectors need to have the same length. All
functions support long vectors with up to 2^64-1 elements.

Value

psum/pprod/pmean return the sum, product or mean of all arguments. The value returned will be
of the highest argument type (integer < double < complex). pprod only returns double or com-
plex. fpmin/fpmax return the element-wise minimum/maximum of all arguments, with the same
type as the inputs if all inputs have the same type, otherwise the highest type (logical < integer <
double). prange returns the element-wise range (max - min) as a double vector. pall[v/NA] and
pany[v/NA] return a logical vector. pcount[NA] returns an integer vector. pfirst/plast return a
vector of the same type as the inputs.

Author(s)

Morgan Jacob and Sebastian Krantz

See Also

Package ’collapse’ provides column-wise and scalar-valued analogues to many of these functions.

Examples

x = c(1, 3, NA, 5)
y = c(2, NA, 4, 1)
z = c(3, 4, 4, 1)

# Example 1: psum
psum(x, y, z, na.rm = FALSE)
psum(x, y, z, na.rm = TRUE)

# Example 2: pprod
pprod(x, y, z, na.rm = FALSE)



parallel-funs 13

pprod(x, y, z, na.rm = TRUE)

# Example 3: pmean
pmean(x, y, z, na.rm = FALSE)
pmean(x, y, z, na.rm = TRUE)

# Example 3b: fpmin, fpmax, prange
fpmin(x, y, z, na.rm = FALSE)
fpmin(x, y, z, na.rm = TRUE)
fpmax(x, y, z, na.rm = FALSE)
fpmax(x, y, z, na.rm = TRUE)
prange(x, y, z, na.rm = FALSE)
prange(x, y, z, na.rm = TRUE)

# Example 4: pfirst and plast
pfirst(x, y, z)
plast(x, y, z)

# Adjust x, y, and z to use in pall and pany
x = c(TRUE, FALSE, NA, FALSE)
y = c(TRUE, NA, TRUE, TRUE)
z = c(TRUE, TRUE, FALSE, NA)

# Example 5: pall
pall(x, y, z, na.rm = FALSE)
pall(x, y, z, na.rm = TRUE)

# Example 6: pany
pany(x, y, z, na.rm = FALSE)
pany(x, y, z, na.rm = TRUE)

# Example 7: pcount
pcount(x, y, z, value = TRUE)
pcountNA(x, y, z)

# Example 8: list/data.frame as an input
pprod(iris[,1:2])
psum(iris[,1:2])
pmean(iris[,1:2])
fpmin(iris[,1:2])
fpmax(iris[,1:2])
prange(iris[,1:2])

# Benchmarks
# ----------
# n = 1e8L
# x = rnorm(n) # 763 Mb
# y = rnorm(n)
# z = rnorm(n)
#
# microbenchmark::microbenchmark(
# kit=psum(x, y, z, na.rm = TRUE),
# base=rowSums(do.call(cbind,list(x, y, z)), na.rm=TRUE),



14 psort

# times = 5L, unit = "s"
# )
# Unit: Second
# expr min lq mean median uq max neval
# kit 0.52 0.52 0.65 0.55 0.83 0.84 5
# base 2.16 2.27 2.34 2.35 2.43 2.49 5
#
# x = sample(c(TRUE, FALSE, NA), n, TRUE) # 382 Mb
# y = sample(c(TRUE, FALSE, NA), n, TRUE)
# z = sample(c(TRUE, FALSE, NA), n, TRUE)
#
# microbenchmark::microbenchmark(
# kit=pany(x, y, z, na.rm = TRUE),
# base=sapply(1:n, function(i) any(x[i],y[i],z[i],na.rm=TRUE)),
# times = 5L
# )
# Unit: Second
# expr min lq mean median uq max neval
# kit 1.07 1.09 1.15 1.10 1.23 1.23 5
# base 111.31 112.02 112.78 112.97 113.55 114.03 5

psort Parallel Sort

Description

Similar to base::sort but just for character vector and partially using parallelism. It is currently
experimental and might change in the future. Use with caution.

Usage

psort(x, decreasing=FALSE, na.last=NA,
nThread=getOption("kit.nThread"),c.locale=TRUE)

Arguments

x A vector of type character. If other, it will default to base::sort

na.last For controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

decreasing A boolean indicating where to sort the data in decreasing way. Default is FALSE.
nThread Number of thread to use. Default value is 1L.
c.locale A boolean, whether to use C Locale or R session locale. Default TRUE.

Value

Returns the input x in sorted order similar to base::sort but usually faster. If c.locale=FALSE,
psort will return the same output as base::sort with method="quick", i.e. using R session locale.
If c.locale=TRUE, psort will return the same output as base::sort with method="radix", i.e.
using C locale. See example below.



setlevels 15

Author(s)

Morgan Jacob

Examples

x = c("b","A","B","a","\xe4")
Encoding(x) = "latin1"
identical(psort(x, c.locale=FALSE), sort(x))
identical(psort(x, c.locale=TRUE), sort(x, method="radix"))

# Benchmarks
# ----------
# strings = as.character(as.hexmode(1:1000))
# x = sample(strings, 1e8, replace=TRUE)
# system.time({kit::psort(x, na.last = TRUE, nThread = 1L)})
# user system elapsed
# 2.833 0.434 3.277
# system.time({sort(x,method="radix",na.last = TRUE)})
# user system elapsed
# 5.597 0.559 6.176
# system.time({x[order(x,method="radix",na.last = TRUE)]})
# user system elapsed
# 5.561 0.563 6.143

setlevels Set levels of a factor object

Description

A function to set levels of a factor object.

Usage

setlevels(x, old=levels(x), new, skip_absent=FALSE)

Arguments

x A factor object.

old A character vector containing the factor levels to be changed. Default is levels
of x.

new The new character vector containing the factor levels to be added.

skip_absent Skip items in old that are missing (i.e. absent) in ‘names(x)‘. Default FALSE
halts with error if any are missing.

Value

Returns an invisible and modified factor object.



16 shareData/getData/clearData

Author(s)

Morgan Jacob

Examples

x = factor(c("A", "A", "B", "B", "B", "C")) # factor vector with levels A B C
setlevels(x, new = c("X", "Y", "Z")) # set factor levels to: X Y Z
setlevels(x, old = "X", new = "A") # set factor levels X to A

shareData/getData/clearData

Share Data between R Sessions

Description

Experimental functions that enable the user to share a R object between 2 R sessions.

Usage

shareData(data, map_name, verbose=FALSE)
getData(map_name, verbose=FALSE)
clearData(x, verbose=FALSE)

Arguments

data A R object like a vector or a data.frame.

map_name A character. A name for the memory map location where to store the data.

x An external pointer like the one returned by function shareData.

verbose A logical value TRUE or FALSE to provide or not information to the user.

Value

shareData returns a external pointer. getData returns an R object stored in the memory location
map_name. clearData returns TRUE or FALSE depending on whether the data have been cleared in
memory.

Author(s)

Morgan Jacob



topn 17

Examples

# In R session 1: share data in memory
# > x = shareData(mtcars,"share1")
#
# In R session 2: get data from session 1
# > getData("share1")
#
# In R session 1: clear data in memory
# > clearData(x)

topn Top N values index

Description

topn is used to get the indices of the few values of an input. This is an extension of which.max/which.min
which provide only the first such index.

The output is the same as order(vec)[1:n], but internally optimized not to sort the irrelevant
elements of the input (and therefore much faster, for small n relative to input size).

Usage

topn(vec, n=6L, decreasing=TRUE, hasna=TRUE, index=TRUE)

Arguments

vec A numeric vector of type numeric or integer. Other types are not supported yet.

n A positive integer value greater or equal to 1.

decreasing A logical value (default TRUE) to indicate whether to sort vec in decreasing or
increasing order. Equivalent to argument decreasing in function base::order.
Please note that unlike topn default value in base::order is FALSE.

hasna A logical value (default TRUE) to indicate whether vec contains NA values.

index A logical value (default TRUE) to indicate whether indexes or values of vec.

Value

integer vector of indices of the most extreme (according to decreasing) n values in vector vec.
Please note that for large value of n, i.e. 1500 or 2000 (depending on the value of hasna), topn will
default to base R function order.

Author(s)

Morgan Jacob



18 vswitch/nswitch

Examples

x = rnorm(1e4)

# Example 1: index of top 6 negative values
topn(x, 6L, decreasing=FALSE)
order(x)[1:6]

# Example 2: index of top 6 positive values
topn(x, 6L, decreasing = TRUE)
order(x, decreasing=TRUE)[1:6]

# Example 3: top 6 negative values
topn(x, 6L, decreasing=FALSE, index=FALSE)
sort(x)[1:6]

# Benchmarks
# ----------
# x = rnorm(1e7) # 76Mb
# microbenchmark::microbenchmark(
# topn=kit::topn(x, 6L),
# order=order(x, decreasing=TRUE)[1:6],
# times=10L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# topn 11 11 13 11 12 18 10
# order 563 565 587 566 602 661 10
#
# microbenchmark::microbenchmark(
# topn=kit::topn(x, 6L, decreasing=FALSE, index=FALSE),
# sort=sort(x, partial=1:6)[1:6],
# times=10L
# )
# Unit: milliseconds
# expr min lq mean median uq max neval
# topn 11 11 11 11 12 12 10
# sort 167 175 197 178 205 303 10

vswitch/nswitch Vectorised switch

Description

vswitch/ nswitch is a vectorised version of base function switch. This function can also be seen
as a particular case of function nif, as shown in examples below, and should also be faster.

Usage

vswitch(x, values, outputs, default=NULL,
nThread=getOption("kit.nThread"),



vswitch/nswitch 19

checkEnc=TRUE)
nswitch(x, ..., default=NULL,

nThread=getOption("kit.nThread"),
checkEnc=TRUE)

Arguments

x A vector or list.

values A vector or list with values from x to match. Note that x and values must have
the same class and attributes.

outputs A list or vector with the outputs to return for every matching values. Each item
of the list must be of length 1 or length of x. Note that if all list items are of
length 1 then it might be simpler to use a vector.

... A sequence of values and outputs in the following order value1, output1,
value2, output2, ..., valueN, outputN. Values value1, value2, ..., valueN
must all have length1, same type and attributes. Each output may either share
length with x or be length 1. Please see Examples section for further details.

default Values to return is no match. Must be a vector or list of length 1 or same length
as x. Also, default must have the same type, class and attributes as items from
outputs.

nThread A integer for the number of threads to use with openmp. Default value is
getOption("kit.nThread").

checkEnc A logical value whether or not to check if x and values have comparable and
consistent encoding. Default is TRUE.

Value

A vector or list of the same length as x with values from outputs items and from default if
missing.

Author(s)

Morgan Jacob

See Also

iif nif

Examples

x = sample(c(10L, 20L, 30L, 40L, 50L, 60L), 3e2, replace=TRUE)

# The below example of 'vswitch' is
a1 = vswitch(

x = x,
values = c(10L,20L,30L,40L,50L),
outputs = c(11L,21L,31L,41L,51L),
default = NA_integer_



20 vswitch/nswitch

)

# equivalent to the following 'nif' example.
# However for large vectors 'vswitch' should be faster.
b1 = nif(

x==10L, 11L,
x==20L, 21L,
x==30L, 31L,
x==40L, 41L,
x==50L, 51L,
default = NA_integer_

)
identical(a1, b1)

# nswitch can also be used as follows:
c1 = nswitch(x,

10L, 11L,
20L, 21L,
30L, 31L,
40L, 41L,
50L, 51L,
default = NA_integer_

)
identical(a1, c1)

# Example with list in 'outputs' argument
y = c(1, 0, NA_real_)
a2 = vswitch(

x = y,
values = c(1, 0),
outputs = list(c(2, 3, 4), c(5, 6, 7)),
default = 8

)

b2 = nif(
y==1, c(2, 3, 4),
y==0, c(5, 6, 7),
default = 8

)

identical(a2, b2)

c2 = nswitch(y,
1, c(2, 3, 4),
0, c(5, 6, 7),
default = 8

)

identical(a2, c2)

# Benchmarks
# ----------
# x = sample(1:100, 3e8, TRUE) # 1.1Gb



vswitch/nswitch 21

# microbenchmark::microbenchmark(
# nif=kit::nif(
# x==10L, 0L,
# x==20L, 10L,
# x==30L, 20L,
# default= 30L
# ),
# vswitch=kit::vswitch(
# x, c( 10L, 20L, 30L), list(0L, 10L, 20L), 30L
# ),
# times=10L
# )
# Unit: seconds
# expr min lq mean median uq max neval
# nif 4.27 4.37 4.43 4.42 4.52 4.53 10
# vswitch 1.08 1.09 1.20 1.10 1.43 1.44 10 # 1 thread
# vswitch 0.46 0.57 0.57 0.58 0.58 0.60 10 # 2 threads



Index

charToFact, 2
clearData

(shareData/getData/clearData),
16

count, 3
countNA (count), 3
countOccur (count), 3

fduplicated (fduplicated/funique), 4
fduplicated/funique, 4
fpmax (parallel-funs), 11
fpmin (parallel-funs), 11
fpos, 6
funique (fduplicated/funique), 4

getData (shareData/getData/clearData),
16

ifelse, 7, 8
iif, 7, 9, 10, 19

nif, 8, 9, 19
nswitch (vswitch/nswitch), 18

pall (parallel-funs), 11
pallNA (parallel-funs), 11
pallv (parallel-funs), 11
pany (parallel-funs), 11
panyNA (parallel-funs), 11
panyv (parallel-funs), 11
parallel-funs, 11
pcount, 3
pcount (parallel-funs), 11
pcountNA (parallel-funs), 11
pfirst (parallel-funs), 11
plast (parallel-funs), 11
pmax, 11
pmean (parallel-funs), 11
pmin, 11
pprod (parallel-funs), 11
prange (parallel-funs), 11

psort, 14
psum (parallel-funs), 11

setlevels, 15
shareData

(shareData/getData/clearData),
16

shareData/getData/clearData, 16

topn, 17

uniqLen (fduplicated/funique), 4

vswitch, 8, 10
vswitch (vswitch/nswitch), 18
vswitch/nswitch, 18

which.max, 17
which.min, 17

22


	charToFact
	count
	fduplicated/funique
	fpos
	iif
	nif
	parallel-funs
	psort
	setlevels
	shareData/getData/clearData
	topn
	vswitch/nswitch
	Index

