
Package ‘kstMatrix’
January 23, 2026

Type Package

Date 2026-01-23

Version 2.2-1

Title Basic Functions in Knowledge Space Theory Using Matrix
Representation

Description Knowledge space theory by Doignon and Falmagne (1999)
<doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical
framework, which proposes mathematical formalisms to operationalize
knowledge structures in a particular domain. The 'kstMatrix' package
provides basic functionalities to generate, handle, and manipulate
knowledge structures and knowledge spaces. Opposed to the 'kst'
package, 'kstMatrix' uses matrix representations for knowledge
structures. Furthermore, 'kstMatrix' contains several knowledge spaces
developed by the research group around Cornelia Dowling through
querying experts.

Depends R (>= 4.4.0)

Imports stats, grDevices, sets, pks, tidyr, DiagrammeR, rsvg,
DiagrammeRsvg

Suggests knitr, markdown

Maintainer Cord Hockemeyer <cord.hockemeyer@uni-graz.at>

License GPL-3

NeedsCompilation yes

Repository CRAN

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

VignetteBuilder knitr

Author Cord Hockemeyer [aut, cre],
Peter Steiner [aut],
Wai Wong [aut]

Date/Publication 2026-01-23 13:40:07 UTC

1

https://doi.org/10.1007/978-3-642-58625-5

2 Contents

Contents
cad . 3
fractions . 4
kmassess . 4
kmassessbayesian . 8
kmassesshalfsplit . 9
kmassessinformative . 9
kmassessmentsimulation . 10
kmassessmultiplicative . 12
kmbasis . 13
kmbasis.kmsurmisefunction . 13
kmbasis.kmsurmiserelation . 14
kmbasis.matrix . 14
kmbasisfringe . 15
kmbasisneighbourhood . 16
kmcolors . 17
kmdist . 17
kmdoubleequal . 18
kmeqreduction . 19
kmfamset . 19
kmfringe . 20
kmgenerate . 21
kmgradations . 21
kmiita2SR . 22
kmiswellgraded . 23
kmlearningpaths . 24
kmneighbourhood . 24
kmnneighbourhood . 25
kmnotions . 26
kmsetiselement . 26
kmSF2basis . 27
kmsimulate . 28
kmspace . 29
kmSR2basis . 29
kmSRvalidate . 30
kmstructure . 31
kmsurmisefunction . 31
kmsurmiserelation . 32
kmsymmsetdiff . 33
kmtrivial . 34
kmunionclosure . 34
kmvalidate . 35
phsg . 36
plot . 36
readwrite . 38
xpl . 39

Index 40

cad 3

cad Knowledge spaces on AutoCAD knowledge

Description

Bases of knowledge spaces on AutoCAD knowledge obtained from querying experts.

Usage

cad

Format

A list containing seven bases (cad1 to cad6, and cadmaj) in binary matrix form. Each matrix has 28
columns representing the different knowledge items and a varying number of rows containing the
basis elements.

Details

Six experts were queried about prerequisite relationships between 28 AutoCAD knowledge items
(Dowling, 1991; 1993). A seventh basis represents those prerequisite relationships on which the
majority (4 out of 6) of the experts agree (Dowling & Hockemeyer, 1998).

References

Dowling, C. E. (1991). Constructing Knowledge Structures from the Judgements of Experts. Habil-
itationsschrift, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany.

Dowling, C. E. (1993). Applying the basis of a knowledge space for controlling the questioning of
an expert. Journal of Mathematical Psychology, 37, 21–48.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using
only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress
in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

See Also

Other Data: fractions, phsg, readwrite, xpl

4 kmassess

fractions Knowledge spaces on fractions

Description

Bases of knowledge spaces on fractions obtained from querying experts.

Usage

fractions

Format

A list containing four bases (frac1 to frac3, and fracmaj) in binary matrix form. Each matrix has 77
columns representing the different knowledge items and a varying number of rows containing the
basis elements.

Details

Three experts were queried about prerequisite relationships between 77 items on fractions (Bau-
munk & Dowling, 1997). A forth basis represents those prerequisite relationships on which the
majority of the experts agree (Dowling & Hockemeyer, 1998).

References

Baumunk, K. & Dowling, C. E. (1997). Validity of spaces for assessing knowledge about fractions.
Journal of Mathematical Psychology, 41, 99–105.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using
only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress
in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

See Also

Other Data: cad, phsg, readwrite, xpl

kmassess Perform a probabilistic knowledge assessment

Description

kmassess performs a probabilistic knowledge assessment for a given response vector, knowledge
structure, and BLIM parameters.

kmsassess performs a simplified probabilistic knowledge assessment for a given response vector,
knowledge structure, and BLIM parameters. It assumes an equal probability distribution over the
knowledge structure as starting point and identical beta and eta values for all items.

kmassess 5

Usage

kmassess(
r,
pks,
questioning,
update,
beta,
eta,
zeta0,
zeta1,
threshold,
probdev = FALSE

)

kmsassess(
r,
ks,
questioning,
update,
beta,
eta,
zeta0,
zeta1,
threshold,
probdev = FALSE

)

Arguments

r Response pattern (binary vector)

pks Probabilistic knowledge structure: a data frame with a probability distribution
in the first columns and the structure matrix in the subsequent columns.

questioning Questioning rule ("halfsplit" o "informative")

update Update rule ("Bayesian" or "multiplicative")

beta Careless error probability

eta Lucky guess probability

zeta0 Update parameter for wrong responses

zeta1 Update parameter for correct responses

threshold Probability threshold for stopping criterion

probdev Provide information on the probability development including Hasse diagrams
stored in tempdir(). Defaults to FALSE.

ks Knowledge structure: a binary matrix

6 kmassess

Details

kmassess implements the stochastic assessment procedures according to Doignon & Falmagne,
1999, chapter 10.

kmassess stops if the number of questions has reached twice the number of items.

Value

A list with the following elements:

state Diagnosed knowledge state (binary vector)

probs Resulting probability distribution. If probdev is set to TRUE, a list of probability distribu-
tions for each step is given instead.

queried Sequence of items used in the assessment (list)

qtime Average time for finding a question

utime Average time for updating the probabilities

A list with the following elements:

state Diagnosed knowledge state (binary vector)

probs Resulting probability distribution. If probdev is set to TRUE, a list of probability distribu-
tions for each step is given instead.

queried Sequence of items used in the assessment (list)

qtime Average time for finding a question

utime Average time for updating the probabilities

Background

Doignon & Falmagne (1985, 1999) proposed knowledge space theory originally with adaptive
knowledge assessment in mind. The basic idea is to apply prerequisite relationships between items
for reducing the number of problems to be posed to a learner in knowledge assessment.

Falmagne & Doignon (1988; Doignon & Falmange, 1999, chapte 10) proposed a class of stochas-
tic procdures for such adaptive assessment which take into account that careless errors and lucky
guesses may happen during the assessment by estimating a probability distribution over the knowl-
edge structure. Such an assessment consists of three important parts

• Question rule

• Update rule

• Stopping criterion

For the question rule, they propose the halfsplit and the infomrative rules, implemented in kmassesshalfslit
and kmassessinfomrative.

For the update rule, they again propose two possibilities there the multiplicative rule is a generali-
sation of the (classical) Bayesian update rule implemented here in kmassessmultiplicative and
kmassessbayesian, respectively.

As stopping criterion, usually a threshold for the maximal probability for one knowledge state
is used. It is strongly recommended to keep this larger than 0.5 in order to have one unequivocal
resulting state (see also Hockemeyer, 2002).

kmassess 7

Framework of assessment functions within the kstMatrix package::
The founding stones are the four aforementioned functions for finding suitable questions and for
updating the probability estimates, respectively. They could also be used in an interactive system,
e.g. a Shiny app, for "real" adaptive assessment.
The remaining thee assessment functions serve for mere simulation of adaptive assessment. kmassess
takes, among others, a full response pattern as parameter and takes the responses for the selected
questions from this vector. kmsassess is a simplified version where the update parameters (beta
and eta for Bayesian or zeta0 and zeta1 for multiplicative update, respectively) are identical for all
items whereas they are item-specific in kmassess. Finally, kmassesssimulation takes a whole
data set, i.e. a collection of response patterns, and does an assessment for each of these patterns.
Its result is a data frame which should be suitable for further statistical evaluation, especially if
it is called several times with variant parameters (e.g., structures, update parameters, update and
question rules).
Both, kmsassess and kmassesssimulation call kmassess.

Problems:
In rare cases kmassess may flip forth and back between probability distributions resulting in an
endless loop. Therefore, it stops after twice the number of items delivering a NULL result.

References

Doignon, J.-P. & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International
Journal of Man-Machne-Studies, 23, 175-196. doi:10.1016/S00207373(85)800316.

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge Spaces. Springer Verlag, Berlin. doi:10.1007/
9783642586255.

Falmagne, J.-C. & Doignon, J.-P. (1988). A class of stochastic procedures for the assessment of
knowledge. British Journal of Mathematical and Statistical Psychology, 41, 1-23. doi:10.1111/
j.20448317.1988.tb00884.x.

Hoxkemeyer, C. (2002). A comparison of non-deterministic procedures for the adaptive assessment
of knowledge. Psychlogische Beiträge, 44(4), 495-503.

See Also

Other Knowledge assessment: kmassessbayesian(), kmassesshalfsplit(), kmassessinformative(),
kmassessmentsimulation(), kmassessmultiplicative()

Other Knowledge assessment: kmassessbayesian(), kmassesshalfsplit(), kmassessinformative(),
kmassessmentsimulation(), kmassessmultiplicative()

Examples

kmassess(c(1, 1, 0, 0),
cbind(as.data.frame(as.matrix(rep(1/9.0, 9), ncol=1)), xpl$space),
"halfsplit",
"Bayesian",
rep(0.12, 4),
rep(0.1, 4),
NULL,
NULL,

https://doi.org/10.1016/S0020-7373%2885%2980031-6
https://doi.org/10.1007/978-3-642-58625-5
https://doi.org/10.1007/978-3-642-58625-5
https://doi.org/10.1111/j.2044-8317.1988.tb00884.x
https://doi.org/10.1111/j.2044-8317.1988.tb00884.x

8 kmassessbayesian

0.55
)

kmsassess(c(1,1,0,0), xpl$space, "halfsplit", "Bayesian", 0.1, 0.1, NULL, NULL, 0.55)

kmassessbayesian Update probability distribution applying Bayesian update

Description

kmassessbayesian updates a probability distribution over a knowledge structure according to the
Bayesian update rule.

Usage

kmassessbayesian(probs, ks, beta, eta, question, response)

Arguments

probs Probability distribution over the knowledge structure (vector)

ks Binary matrix of the knowledge structure

beta Vector of careless error probabilities

eta Vector of lucky guess probabilities

question Item that has been posed

response Correctness of received response (0 or 1)

Value

Updated probability vector

See Also

Other Knowledge assessment: kmassess(), kmassesshalfsplit(), kmassessinformative(),
kmassessmentsimulation(), kmassessmultiplicative()

Examples

kmassessbayesian(c(0.02, 0.1, 0.07, 0.01, 0.4, 0.17, 0.07, 0.08, 0.08),
xpl$space,
rep(0.2,4),
rep(0.1,4),
3,
1

)

kmassesshalfsplit 9

kmassesshalfsplit Determine next question for probabilistic knowledge assessment

Description

kmassesshalfsplit determines the next question in a probabilistic assessment according to the
halfsplit rule.

Usage

kmassesshalfsplit(probs, ks)

Arguments

probs Probability distribution over the knowledge structure (vector)

ks Binary matrix of the knowledge structure

Value

Number of the selected question

See Also

Other Knowledge assessment: kmassess(), kmassessbayesian(), kmassessinformative(), kmassessmentsimulation(),
kmassessmultiplicative()

Examples

kmassesshalfsplit(c(0.02, 0.1, 0.07, 0.01, 0.4, 0.17, 0.07, 0.08, 0.08),
xpl$space)

kmassessinformative Determine next question for probabilistic knowledge assessment

Description

kmassessinfmrative determines the next question in a probabiliststic assessment according to the
informative rule.

Usage

kmassessinformative(probs, ks, update, beta, eta, zeta0, zeta1)

10 kmassessmentsimulation

Arguments

probs Probability distribution over the knowledge structure (vector)

ks Binary matrix of the knowledge structure

update Update rule ("Bayesian" or "multiplicative")

beta Careless error probabilities (vector)

eta Lucky guess probabilities (vector)

zeta0 Vector of update parameters for wrong responses

zeta1 Vector of update parameters for correct responses

Value

Number of the selected question

See Also

Other Knowledge assessment: kmassess(), kmassessbayesian(), kmassesshalfsplit(), kmassessmentsimulation(),
kmassessmultiplicative()

Examples

kmassessinformative(c(0.02, 0.1, 0.07, 0.01, 0.4, 0.17, 0.07, 0.08, 0.08),
xpl$space,
"Bayesian",
rep(0.3,4),
rep(0.2,4),
NULL,
NULL
)

kmassessmentsimulation

Simulate assessments for a set of response patterns

Description

kmassessmentsimulation does a probabilistic knowledge assessment for each response pattern in
a data matrix and stores information about the assessment.

kmassessmentsimulation 11

Usage

kmassessmentsimulation(
respdata,
ks,
questioning,
update,
beta,
eta,
zeta0,
zeta1,
threshold

)

Arguments

respdata Data matrix

ks Knowledge structure

questioning Question rule

update Updating rule

beta Careless error probability

eta Lucky guess probability

zeta0 Update parameter for wrong responses

zeta1 Update parameter for correct responses

threshold Stopping criterion

Details

kmassessmentsimulation applies the kmsassess function.

Value

Assessment data as data frame

See Also

Other Knowledge assessment: kmassess(), kmassessbayesian(), kmassesshalfsplit(), kmassessinformative(),
kmassessmultiplicative()

Examples

kmassessmentsimulation(
xpl$data,
xpl$space,
"halfsplit",
"multiplicative",
NULL,
NULL,

12 kmassessmultiplicative

5,
5,
0.55

)

kmassessmultiplicative

Update probability distribution applying multiplicative rule

Description

kmassessmultiplicative updates a probability distribution on a knowledge structure according
to the multiplicative rule.

Usage

kmassessmultiplicative(probs, ks, zeta0, zeta1, question, response)

Arguments

probs Probability distribution over the knowledge structure (vector)

ks Binary matrix of the knowledge structure

zeta0 Vector of update parameters for wrong responses

zeta1 Vector of update parameters for correct responses

question Item that has been posed

response Correctness of received response (0 or 1)

Value

Updated probability vector

See Also

Other Knowledge assessment: kmassess(), kmassessbayesian(), kmassesshalfsplit(), kmassessinformative(),
kmassessmentsimulation()

Examples

kmassessmultiplicative(c(0.02, 0.1, 0.07, 0.01, 0.4, 0.17, 0.07, 0.08, 0.08),
xpl$space,
rep(1.2,4),
rep(2.1,4),
3,
1

)

kmbasis 13

kmbasis Generic kmbasis() function

Description

Generic kmbasis() function

Usage

kmbasis(x, ...)

Arguments

x Family of sets or surmise relation in matrix representation

... Optional additional parameters

Value

Basis for a knowledge space

kmbasis.kmsurmisefunction

Determine the basis for a surmise function

Description

Determine the basis for a surmise function

Usage

S3 method for class 'kmsurmisefunction'
kmbasis(x, ...)

Arguments

x Surmise Function

... Optional/future parameters

Value

Basis

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmiserelation(),
kmbasis.matrix(), kmsurmisefunction(), kmsurmiserelation(), kmunionclosure()

14 kmbasis.matrix

kmbasis.kmsurmiserelation

Determine the basis of a knowledge space from a surmise relation

Description

kmbasis.kmsurmiserelation takes a surmise relation and returns the corresponding basis.

Usage

S3 method for class 'kmsurmiserelation'
kmbasis(x, ...)

Arguments

x Surmise relation

... Space for additional, optional arameters

Value

Basis

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.matrix(), kmsurmisefunction(), kmsurmiserelation(), kmunionclosure()

kmbasis.matrix Compute the basis of a knowledge space

Description

kmbasis.matrix returns a matrix representing the basis of a knowledge space. If x is a knowledge
structure or an arbitrary family of sets kmreduction returns the basis of the smallest knowledge
space containing x.

Usage

S3 method for class 'matrix'
kmbasis(x, ...)

Arguments

x Binary matrix representing a knowledge space

... Space or future, optional parameters

kmbasisfringe 15

Value

Binary matrix representing the basis of the knowledge space.

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmsurmisefunction(), kmsurmiserelation(), kmunionclosure()

Examples

kmbasis(xpl$space)

kmbasisfringe Compute the fringe of a state within a knowledge structure using its
basis

Description

kmbasisfringe computes the fringe of a state within a knowledge structure, i.e. the set of items by
which the state differs from its neighbours.

Usage

kmbasisfringe(state, basis)

kmbasisinnerfringe(state, basis)

kmbasisouterfringe(state, basis)

Arguments

state Binary vector representing a knowledge state

basis kmbasis object

Value

Binary vector representing the fringe

References

Hockemeyer C (1997). Using the Basis of a Knowledge Space for Determining the Fringe of a
Knowledge State. Journal of Mathematical Psychology, 41, 275–279.

See Also

Other Fringes & learning paths: kmbasisneighbourhood(), kmfringe(), kmgradations(), kmlearningpaths(),
kmneighbourhood(), kmnneighbourhood()

16 kmbasisneighbourhood

Examples

kmbasisfringe(c(1,0,0,0), xpl$basis)

kmbasisneighbourhood Compute the neighbourhod of a state within a knowledge structure
using its basis

Description

kmbasisneighbourhood computes the neighbourhood of a state within a knowledge structure, i.e.
the family of all other states with a symmetric set difference of 1.

Usage

kmbasisneighbourhood(state, basis, include = FALSE)

Arguments

state Binary vector representing a knowledge state

basis kmbasis object

include Boolean whether the original state should be included in the result (default
FALSE)

Value

Matrix containing the neighbouring states, one per row

See Also

Other Fringes & learning paths: kmbasisfringe(), kmfringe(), kmgradations(), kmlearningpaths(),
kmneighbourhood(), kmnneighbourhood()

Examples

kmbasisneighbourhood(c(1,1,0,0), xpl$basis)

kmcolors 17

kmcolors Determine a color vector based on probabilities

Description

kmcolors takes a probabilty vector and a color palette and creates a color vector to be used with
kstMatrix::plot.

Usage

kmcolors(prob, palette = cm.colors)

Arguments

prob Probability vector

palette Color palette (default = cm.colors)

See Also

Other Plotting knowledge structures: plot()

Other Utilities: kmdoubleequal(), kmsetiselement(), kmsymmsetdiff()

kmdist Compute the distance between a data set and a knowledge structure

Description

kmdist returns a named vector with the frequencies of distances between a set of response patterns
and a knowledge structure. This vector can be used to compute, e.g., the Discrepancy Index (DI) or
the Distance Agreement Coefficient (DA).

Usage

kmdist(data, struct)

Arguments

data Binary matrix representing a set of response patterns

struct Binary matrix representing a knowledge structure

Value

Distance distribution vector

18 kmdoubleequal

See Also

Other Validating knowledge spaces: kmSRvalidate(), kmvalidate()

Examples

kmdist(xpl$data, xpl$space)

kmdoubleequal Test two double numbers on equity with a certain tolerance

Description

Test two double numbers on equity with a certain tolerance

Usage

kmdoubleequal(x, y, tol = sqrt(.Machine$double.eps))

Arguments

x First double to compare

y Second double to compare

tol Tolerance optional)

Value

Boolean for (approximate) equity

See Also

Other Utilities: kmcolors(), kmsetiselement(), kmsymmsetdiff()

Examples

kmdoubleequal(0.5+0.5, 1)

kmeqreduction 19

kmeqreduction Reduce a family of knowledge states with respect to item equivalence

Description

kmeqreduction takes a family of knowledge states and returns its reduction to non-equivalent
items.

Usage

kmeqreduction(x)

Arguments

x Binary matrix

Value

Binary matrix reduced by equivalences

See Also

Other Properties of knowledge structures: kmiswellgraded(), kmnotions()

Examples

kmeqreduction(xpl$space)

kmfamset Convert a binary matrix to a kmfamset object (family of sets)

Description

kmfamset returns a kmfamset object after checking that the passed object is a binary matrix with
all different rows. If the passe object inherits the kmfamset property, nothing else is changed.

Usage

kmfamset(x)

Arguments

x Binary matrix representing a family of sets

20 kmfringe

Value

kmfamset object

See Also

Other Constructors: kmspace(), kmstructure()

Examples

m <- as.matrix(c(1,0,0,0,1,0,1,1,1), nrow=3, byrow=TRUE)
kmfamset(m)

kmfringe Compute the fringe of a state within a knowledge structure

Description

kmfringe computes the fringe of a state within a knowledge structure, i.e. the set of items by which
the state differs from its neighbours.

Usage

kmfringe(state, struct)

kminnerfringe(state, struct)

kmouterfringe(state, struct)

Arguments

state Binary vector representing a knowledge state

struct Binary matrix representing a knowledge structure

Value

Binary vector representing the fringe

See Also

Other Fringes & learning paths: kmbasisfringe(), kmbasisneighbourhood(), kmgradations(),
kmlearningpaths(), kmneighbourhood(), kmnneighbourhood()

Examples

kmfringe(c(1,0,0,0), xpl$space)

kmgenerate 21

kmgenerate Generate a knowledge structure from a set of response patterns

Description

kmgenerate returns a matrix representing a knowledge structure generated from data. It uses a sim-
plistic approach: patterns with a frequency above a specified threshold are considered as knowledge
states. If the specified threshold is 0 (default) a real threshold is computed as N (number of response
patterns) divided by 2^|Q|. Please note that the number of response patterns should be much higher
than the size of the power set of the item set Q. A factor of art least 10 is recommended. Currently,
the number of items is limited to the number of bits in a C long minus one (i.e. 31 under Windows
and 63 otherwise). But we would probably run into memory problems way earlier anyway.

Usage

kmgenerate(x, threshold = 0)

Arguments

x Binary matrix representing a data set

threshold Threshold for taking response patterns as knowledge states (default 0)

Value

Binary matrix representing the generated knowledge structure

See Also

Other Generating knowledge spaces: kmiita2SR()

Examples

kmgenerate(xpl$sim, 15)

kmgradations Determine all gradations between two states

Description

Determine all gradations between two states

Usage

kmgradations(structure, from = NULL, to = NULL)

22 kmiita2SR

Arguments

structure Knowledge structure

from Starting state (if NULL (default), it is the empty set)

to Goal state (if NULL (default), it is the full item set)

Value

A list of gradations where each gradation is a list of states

See Also

Other Fringes & learning paths: kmbasisfringe(), kmbasisneighbourhood(), kmfringe(), kmlearningpaths(),
kmneighbourhood(), kmnneighbourhood()

Examples

kmgradations(xpl$space)

kmiita2SR Convert an IITA result into a surmise relation matrix

Description

kmiita2SR takes the result of a DAKS::iita() call and delivers the matrix of the computed surmise
relation.

Usage

kmiita2SR(ii, names = NULL, items = 0)

Arguments

ii iita() result

names Vector of item names (default NULL)

items Minimal number of items (default 0)

Value

Surmise relation matrix

The iita() function looses information on the item names and uses consecutive numbers instead.
The implications part of its result does not give any hint on isolated items, i.e. items which#
neither have a prerequisite nor are prerequisite of any other item. Therefore, a minimal number of
items can be passed to kmiita2SR(). If the highest item number within implications is higher,
this items parameter is ignored.

kmiswellgraded 23

See Also

Other Generating knowledge spaces: kmgenerate()

kmiswellgraded Check for wellgradedness of a knowledge structure

Description

kmiswellgraded returns whether a knowledge structure is wellgraded.

Usage

kmiswellgraded(x)

Arguments

x Binary matrix representing a knowledge space

Value

Logical value specifying whether x is wellgraded

References

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge Spaces. Springer–Verlag, Berlin.

See Also

Other Properties of knowledge structures: kmeqreduction(), kmnotions()

Examples

kmiswellgraded(xpl$space)

24 kmneighbourhood

kmlearningpaths Determine all learning paths in a knowledge structure

Description

Determine all learning paths in a knowledge structure

Usage

kmlearningpaths(structure)

Arguments

structure Knowledge structure

Value

A list of learning paths where each learning path is a list of states

See Also

Other Fringes & learning paths: kmbasisfringe(), kmbasisneighbourhood(), kmfringe(), kmgradations(),
kmneighbourhood(), kmnneighbourhood()

Examples

kmlearningpaths(xpl$space)

kmneighbourhood Compute the neighbourhod of a state within a knowledge structure

Description

kmneighbourhood computes the neighbourhood of a state within a knowledge structure, i.e. the
family of all other states with a symmetric set difference of 1.

Usage

kmneighbourhood(state, struct, include = FALSE)

Arguments

state Binary vector representing a knowledge state
struct Binary matrix representing a knowledge structure
include Boolean whether the original state should be included in the result (default

FALSE)

kmnneighbourhood 25

Value

Matrix containing the neighbouring states, one per row

See Also

Other Fringes & learning paths: kmbasisfringe(), kmbasisneighbourhood(), kmfringe(), kmgradations(),
kmlearningpaths(), kmnneighbourhood()

Examples

kmneighbourhood(c(1,1,0,0), xpl$space)

kmnneighbourhood Compute the n-neighbourhod of a state within a knowledge structure

Description

kmnneighbourhood computes the n-neighbourhood of a state within a knowledge structure, i.e. the
family of all other states with a symmetric set difference maximal n.

Usage

kmnneighbourhood(state, struct, distance, include = FALSE)

Arguments

state Binary vector representing a knowledge state

struct Binary matrix representing a knowledge structure

distance Size of the n-neighbourhood

include Boolean whether the original state should be included (defaul FALSE)

Value

Matrix containing the neighbouring states, one per row

See Also

Other Fringes & learning paths: kmbasisfringe(), kmbasisneighbourhood(), kmfringe(), kmgradations(),
kmlearningpaths(), kmneighbourhood()

Examples

kmnneighbourhood(c(1,1,0,0), xpl$space, 2)

26 kmsetiselement

kmnotions Determine the notions of a knowledge structure

Description

kmnotions returns a matrix representing the notions of a knowledge structure.

Usage

kmnotions(x)

Arguments

x Binary matrix representing a knowledge structure

Value

Binary matrix representing notions in the knowledge structure

The matrix has a ’1’ in row ’i’ and column ’j’ if ’i’ and ’j’ belong to the same notion (i.e. are
equivalent). It is a symmetric matrix with ’1’s in the main diagonal.

See Also

Other Properties of knowledge structures: kmeqreduction(), kmiswellgraded()

Examples

kmnotions(xpl$space)

kmsetiselement Test if a state is contained in a family of states

Description

Test if a state is contained in a family of states

Usage

kmsetiselement(s, f)

Arguments

s State

f Family of sets

kmSF2basis 27

Value

Boolean is s is contained in f

See Also

Other Utilities: kmcolors(), kmdoubleequal(), kmsymmsetdiff()

Examples

kmsetiselement(c(1,1,1,0), xpl$space)

kmSF2basis Derive a basis from a surmise function

Description

kmSF2basis expects a surmise function data frame and returns the corresponding basis.

Usage

kmSF2basis(sf)

Arguments

sf Surmise function

Value

Matrix representing the basis.

See Also

Other Different representations for knowledge spaces: kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmbasis.matrix(), kmsurmisefunction(), kmsurmiserelation(),
kmunionclosure()

28 kmsimulate

kmsimulate Simulate a set of response patterns according to the BLIM

Description

kmsimulate returns a data set of n simulated response patterns based on the knowledge structure x
given as a binary matrix. The simulation follows the BLIM (Basic Local Independence Model; see
Doigon & Falmagne, 1999).

Usage

kmsimulate(x, n, beta, eta)

Arguments

x Binary matrix representing a knowledge space

n Number of simulated response patterns

beta Careless error probability value or vector

eta Lucky guess probability value or vector

Details

The beta and eta parameters must be either single numericals or vectors with a length identical to
the number of rows in the x matrix. A mixture is possible.

The sample function used by kmsimulate might work inaccurately for knowledge structures x with
2^31 or more states.

Value

Binary matrix representing the simulated data set

References

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge Spaces. Springer–Verlag, Berlin.

Examples

kmsimulate(xpl$space, 50, 0.2, 0.1)
kmsimulate(xpl$space, 50, c(0.2, 0.25, 0.15, 0.2), c(0.1, 0.15, 0.05, 0.1))
kmsimulate(xpl$space, 50, c(0.2, 0.25, 0.15, 0.2), 0)

kmspace 29

kmspace Convert a binary matrix to a kmspace object

Description

kmspace() returns a kmspace object for a binary matrix.

Usage

kmspace(x)

Arguments

x Binary matrix representing a family of sets

Value

kmspace object

See Also

Other Constructors: kmfamset(), kmstructure()

Examples

m <- as.matrix(c(1,0,0,0,1,0,1,1,1), nrow=3, byrow=TRUE)
kmspace(m)

kmSR2basis Determine the basis of a knowledge space from a surmise relation

Description

kmSR2basis takes a surmise relation and returns the corresponding basis.

Usage

kmSR2basis(sr)

Arguments

sr Surmise relation

Value

Basis

30 kmSRvalidate

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmbasis.matrix(), kmsurmisefunction(), kmsurmiserelation(),
kmunionclosure()

kmSRvalidate Validate a surmise relation against a data set

Description

kmSRvalidate returns a list with two elements, Goodman & Kruskal’s gamma value and the viola-
tional coefficient (VC).

Usage

kmSRvalidate(data, sr)

Arguments

data Binary matrix representing a set of response patterns

sr Binary matrix representing a surmise relation

Value

A list with two elements:

gamma Goodman & Kruskal’s gamma index

VC Violational Coefficient

See Also

Other Validating knowledge spaces: kmdist(), kmvalidate()

Examples

kmSRvalidate(xpl$data, xpl$sr)

kmstructure 31

kmstructure Convert a binary matrix to a kmstructure object

Description

kmstructure() returns a kmstructure object after checking that the passed object is a binary
matrix without double rows. The empty set and the full item set are added if missing.

Usage

kmstructure(x)

Arguments

x Binary matrix representing a family of sets

Value

kmstructure object

See Also

Other Constructors: kmfamset(), kmspace()

Examples

m <- as.matrix(c(1,0,0,0,1,0,1,1,1), nrow=3, byrow=TRUE)
kmstructure(m)

kmsurmisefunction Compute the surmise function for a knowledge space or basis

Description

kmsurmisefunction returns a data frame representing the surmise function for a knowledge space
or basis. The rows of the data frame are ordered by item name.

Usage

kmsurmisefunction(x)

Arguments

x Binary matrix representing a knowledge space or basis

32 kmsurmiserelation

Value

Data frame representing the surmise unction of x.

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmbasis.matrix(), kmsurmiserelation(), kmunionclosure()

Examples

kmsurmisefunction(xpl$space)

kmsurmiserelation Compute the surmise relation of a quasi-ordinal knowledge space

Description

kmsurmiserelation returns a matrix representing the surmise relation of a quasi-ordinal knowl-
edge space. If x is a general knowledge space, a knowledge structure or an arbitrary family of sets,
kmsurmiserelation returns the surmise relation of the smallest quasi-ordinal knowledge space
containing x.

Usage

kmsurmiserelation(x)

Arguments

x Binary matrix representing a quasi-ordinal knowledge space

Value

Binary matrix representing the surmise relation of the corresponding quasi-ordinal knowledge space

Note: The columns of the surmise relation matrix describe the minimal state for the respective item
in the quasi-ordinal knowledge space.

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmbasis.matrix(), kmsurmisefunction(), kmunionclosure()

Examples

kmsurmiserelation(xpl$space)

kmsymmsetdiff 33

kmsymmsetdiff Compute the symmetric set difference between two sets

Description

Compute the symmetric set difference between two sets

Usage

kmsymmsetdiff(x, y)

kmsetdistance(x, y)

Arguments

x Binary vector representing a set

y Binary vector representing a set

Value

kmsymmsetdiff: Symmetric set difference between ’x’ and ’y’

kmsetdistance: Distance between the sets ’x’ and ’y’, i.e. the cardinality of the symmetric set
difference

See Also

Other Utilities: kmcolors(), kmdoubleequal(), kmsetiselement()

Other Utilities: kmcolors(), kmdoubleequal(), kmsetiselement()

Examples

kmsymmsetdiff(c(1,0,0), c(1,1,0))

kmsetdistance(c(1,0,0), c(1,1,0))

34 kmunionclosure

kmtrivial Create trivial knowledge spaces

Description

These functions create trivial knowledge spaces of a given item number. The minimal space con-
tains just the empty set and the full item set while the maximal space is equal to the power set.

Usage

kmminimalspace(noi)

kmmaximalspace(noi)

Arguments

noi Number of items

Details

Please note that the computation time for creating large power sets can grow quite large easily.

Value

A binary matrix representing the respective knowledge space

Examples

kmminimalspace(5)
kmmaximalspace(5)

kmunionclosure Close a family of sets under union

Description

kmunionclosure returns a matrix representing a knowledge space. Please note that it may take
quite some time for computing larger knowledge spaces.

Usage

kmunionclosure(x)

Arguments

x Binary matrix representing a family of sets

kmvalidate 35

Value

Binary matrix representing the corresponding knowledge space, i.e. the closure of the family under
union including the empty set and the full set.

kmunionclosure implements the irredundant algorithm developed by Dowling (1993).

References

Dowling, C. E. (1993). On the irredundant construction of knowledge spaces. Journal of Mathe-
matical Psychology, 37, 49–62.

See Also

Other Different representations for knowledge spaces: kmSF2basis(), kmSR2basis(), kmbasis.kmsurmisefunction(),
kmbasis.kmsurmiserelation(), kmbasis.matrix(), kmsurmisefunction(), kmsurmiserelation()

Examples

kmunionclosure(xpl$basis)

kmvalidate Validate a knowledge structure against a data set

Description

kmvalidate returns a list with three elements, a named vector (dist) with the frequencies of dis-
tances between a set of response patterns and a knowledge structure, the Discrepancy Index (DI),
and the Distance Agreement Coefficient (DA).

Usage

kmvalidate(data, struct)

Arguments

data Binary matrix representing a set of response patterns

struct Binary matrix representing a knowledge structure

Value

A list with three elements:

dist Distance distribution vector

DI Discrepancy Index

DA Distance Agreement Coefficient

36 plot

Warning

The DA computation can take quite some time for larger item sets as the power set has to be
computed. For item sets with around 30 items or more, it may even crash the system due to huge
memory requests.

See Also

Other Validating knowledge spaces: kmSRvalidate(), kmdist()

Examples

kmvalidate(xpl$data, xpl$space)

phsg Knowledge space on linear functions

Description

Basis of a small knowledge space and list of items on linear functions used in a manuscript by
Steiner et al.

Usage

phsg

Format

A list containing the basis and the list of items

See Also

Other Data: cad, fractions, readwrite, xpl

plot Plot a Hasse diagram

Description

plot takes a matrix representing a family of sets (knowledge states) or a surmise relation and a
color vector, and draws a Hasse diagram. If the color vector is NULL the states are drawn in green,
the items in the relation are drawn in orange.

plot 37

Usage

S3 method for class 'kmfamset'
plot(
x,
...,
horizontal = FALSE,
colors = NULL,
keepNames = TRUE,
itemsep = ",",
braces = TRUE,
vertexshape = "oval",
arrowhead = "none",
arrowtail = "none",
edgelabel = FALSE,
verbose = 0

)

S3 method for class 'kmneighbourhood'
plot(
x,
...,
horizontal = FALSE,
colors = c("#eeee00", "#aaccff", "#bbffbb"),
keepNames = TRUE,
itemsep = ",",
braces = TRUE,
vertexshape = "oval",
arrowhead = "none",
arrowtail = "none",
edgelabel = FALSE,
state,
verbose = 0

)

S3 method for class 'kmsurmiserelation'
plot(
x,
...,
horizontal = FALSE,
colors = NULL,
keepNames = TRUE,
vertexshape = "circle",
arrowhead = "none",
arrowtail = "none",
verbose = 0

)

38 readwrite

Arguments

x Binary matrix representing a family of sets
... Optional inherited parameters
horizontal Boolean defining orientation of the graph, default FALSE
colors Color value or vector (default NULL).
keepNames Keep item names (default TRUE)
itemsep Item separator in sets (default ’,’; only for families of states)
braces Put braces around vertices (default TRUE; only for families of states)
vertexshape Shape of the vertex objects, e.g. circle, oval, box, or none. See Graphviz Node

Shapes for a complete list of possible values.
arrowhead Form of the arrow head, e.g. vee or none (default). See Graphviz Arrow Types

for a complete list of possible values. This may be used for vertical graphs
although none is the standard there.

arrowtail Form of the arrow tail, e.g. vee or none (default). See Graphviz Arrow Types
for a complete list of possible values. This should be used for horizontal graphs.

edgelabel Boolean whether to label the edges of the diagram (default FALSE)
verbose Verbosity level (0 (default), 1, or 2)
state Knowledge state whose neighbourhood is to be pictured

See Also

Other Plotting knowledge structures: kmcolors()

readwrite Knowledge spaces on reading and writing abilities

Description

Bases of knowledge spaces on reading/writing abilities obtained from querying experts.

Usage

readwrite

Format

A list containing four bases (rw1 to rw3, and rwmaj) in binary matrix form. Each matrix has 48
columns representing the different knowledge items and a varying number of rows containing the
basis elements.

Details

Three experts were queried about prerequisite relationships between 48 items on reading and writing
abilities (Dowling, 1991; 1993). A forth basis represents those prerequisite relationships on which
the majority of the experts agree (Dowling & Hockemeyer, 1998).

https://graphviz.org/doc/info/shapes.html
https://graphviz.org/doc/info/shapes.html
https://graphviz.org/docs/attr-types/arrowType/
https://graphviz.org/docs/attr-types/arrowType/

xpl 39

References

Dowling, C. E. (1991). Constructing Knowledge Structures from the Judgements of Experts. Habil-
itationsschrift, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany.

Dowling, C. E. (1993). Applying the basis of a knowledge space for controlling the questioning of
an expert. Journal of Mathematical Psychology, 37, 21–48.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using
only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress
in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

See Also

Other Data: cad, fractions, phsg, xpl

xpl Small example knowledge space

Description

Basis and space matrix, surmise relation and surmise function of a small fictional knowledge space,
and two data sets (data (7 patterns) and sim (500 patterns)to be used in examples. The latter was
produced from the space with kmsimulate() with beta and eta values of 0.1.

Usage

xpl

Format

A list containing the basis, the space, the surmise relation, the surmise function, and the two data
matrices data and sim.

See Also

Other Data: cad, fractions, phsg, readwrite

Index

∗ Constructors
kmfamset, 19
kmspace, 29
kmstructure, 31

∗ Data
cad, 3
fractions, 4
phsg, 36
readwrite, 38
xpl, 39

∗ Different representations for knowledge
spaces

kmbasis.kmsurmisefunction, 13
kmbasis.kmsurmiserelation, 14
kmbasis.matrix, 14
kmSF2basis, 27
kmSR2basis, 29
kmsurmisefunction, 31
kmsurmiserelation, 32
kmunionclosure, 34

∗ Fringes & learning paths
kmbasisfringe, 15
kmbasisneighbourhood, 16
kmfringe, 20
kmgradations, 21
kmlearningpaths, 24
kmneighbourhood, 24
kmnneighbourhood, 25

∗ Generating knowledge spaces
kmgenerate, 21
kmiita2SR, 22

∗ Knowledge assessment
kmassess, 4
kmassessbayesian, 8
kmassesshalfsplit, 9
kmassessinformative, 9
kmassessmentsimulation, 10
kmassessmultiplicative, 12

∗ Plotting knowledge structures

kmcolors, 17
plot, 36

∗ Properties of knowledge structures
kmeqreduction, 19
kmiswellgraded, 23
kmnotions, 26

∗ Simulating response patterns
kmsimulate, 28

∗ Trivial knowledge spaces
kmtrivial, 34

∗ Utilities
kmcolors, 17
kmdoubleequal, 18
kmsetiselement, 26
kmsymmsetdiff, 33

∗ Validating knowledge spaces
kmdist, 17
kmSRvalidate, 30
kmvalidate, 35

∗ datasets
cad, 3
fractions, 4
phsg, 36
readwrite, 38
xpl, 39

Assessment (kmassess), 4

cad, 3, 4, 36, 39

fractions, 3, 4, 36, 39

kmassess, 4, 8–12
kmassessbayesian, 7, 8, 9–12
kmassesshalfsplit, 7, 8, 9, 10–12
kmassessinformative, 7–9, 9, 11, 12
kmassessmentsimulation, 7–10, 10, 12
kmassessmultiplicative, 7–11, 12
kmbasis, 13
kmbasis.kmsurmisefunction, 13, 14, 15, 27,

30, 32, 35

40

INDEX 41

kmbasis.kmsurmiserelation, 13, 14, 15, 27,
30, 32, 35

kmbasis.matrix, 13, 14, 14, 27, 30, 32, 35
kmbasisfringe, 15, 16, 20, 22, 24, 25
kmbasisinnerfringe (kmbasisfringe), 15
kmbasisneighbourhood, 15, 16, 20, 22, 24, 25
kmbasisouterfringe (kmbasisfringe), 15
kmcolors, 17, 18, 27, 33, 38
kmdist, 17, 30, 36
kmdoubleequal, 17, 18, 27, 33
kmeqreduction, 19, 23, 26
kmfamset, 19, 29, 31
kmfringe, 15, 16, 20, 22, 24, 25
kmgenerate, 21, 23
kmgradations, 15, 16, 20, 21, 24, 25
kmiita2SR, 21, 22
kminnerfringe (kmfringe), 20
kmiswellgraded, 19, 23, 26
kmlearningpaths, 15, 16, 20, 22, 24, 25
kmmaximalspace (kmtrivial), 34
kmminimalspace (kmtrivial), 34
kmneighbourhood, 15, 16, 20, 22, 24, 24, 25
kmnneighbourhood, 15, 16, 20, 22, 24, 25, 25
kmnotions, 19, 23, 26
kmouterfringe (kmfringe), 20
kmsassess (kmassess), 4
kmsetdistance (kmsymmsetdiff), 33
kmsetiselement, 17, 18, 26, 33
kmSF2basis, 13–15, 27, 30, 32, 35
kmsimulate, 28
kmspace, 20, 29, 31
kmSR2basis, 13–15, 27, 29, 32, 35
kmSRvalidate, 18, 30, 36
kmstructure, 20, 29, 31
kmsurmisefunction, 13–15, 27, 30, 31, 32, 35
kmsurmiserelation, 13–15, 27, 30, 32, 32, 35
kmsymmsetdiff, 17, 18, 27, 33
kmtrivial, 34
kmunionclosure, 13–15, 27, 30, 32, 34
kmvalidate, 18, 30, 35

phsg, 3, 4, 36, 39
plot, 17, 36

readwrite, 3, 4, 36, 38, 39

xpl, 3, 4, 36, 39, 39

	cad
	fractions
	kmassess
	kmassessbayesian
	kmassesshalfsplit
	kmassessinformative
	kmassessmentsimulation
	kmassessmultiplicative
	kmbasis
	kmbasis.kmsurmisefunction
	kmbasis.kmsurmiserelation
	kmbasis.matrix
	kmbasisfringe
	kmbasisneighbourhood
	kmcolors
	kmdist
	kmdoubleequal
	kmeqreduction
	kmfamset
	kmfringe
	kmgenerate
	kmgradations
	kmiita2SR
	kmiswellgraded
	kmlearningpaths
	kmneighbourhood
	kmnneighbourhood
	kmnotions
	kmsetiselement
	kmSF2basis
	kmsimulate
	kmspace
	kmSR2basis
	kmSRvalidate
	kmstructure
	kmsurmisefunction
	kmsurmiserelation
	kmsymmsetdiff
	kmtrivial
	kmunionclosure
	kmvalidate
	phsg
	plot
	readwrite
	xpl
	Index

