Package ‘lubridate’

February 4, 2026
Type Package
Title Make Dealing with Dates a Little Easier
Version 1.9.5
Maintainer Vitalie Spinu <spinuvit@gmail.com>

Description Functions to work with date-times and time-spans: fast and
user friendly parsing of date-time data, extraction and updating of
components of a date-time (years, months, days, hours, minutes, and
seconds), algebraic manipulation on date-time and time-span objects.
The 'lubridate’ package has a consistent and memorable syntax that
makes working with dates easy and fun.

License MIT + file LICENSE

URL https://lubridate.tidyverse.org,
https://github.com/tidyverse/lubridate

BugReports https://github.com/tidyverse/lubridate/issues
Depends methods, R (>=3.2)

Imports generics, timechange (>= 0.4.0)

Suggests covr, knitr, rmarkdown, testthat (>= 2.1.0), vctrs (>= 0.6.5)
Enhances chron, data.table, timeDate, tis, zoo

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

SystemRequirements A system with zoneinfo data (e.g.
/usr/share/zoneinfo). On Windows the zoneinfo included with R
is used.

https://lubridate.tidyverse.org
https://github.com/tidyverse/lubridate
https://github.com/tidyverse/lubridate/issues

2 Contents

Collate 'Dates.r' POSIXt.r' 'util.r' 'parse.r' 'timespans.r'
'intervals.r' 'difftimes.r' 'durations.r' 'periods.r'
'accessors-date.R' 'accessors-day.r' 'accessors-dst.1'
'accessors-hour.r' 'accessors-minute.r' 'accessors-month.r'
'accessors-quarter.r' 'accessors-second.r' 'accessors-tz.r'
'accessors-week.1r' 'accessors-year.r' 'am-pm.r' 'time-zones.r'
'numeric.r' 'coercion.r' 'constants.r' 'cyclic_encoding.r'
'data.r' 'decimal-dates.r' 'deprecated.r' 'format_ISO8601.r'
'guess.r' 'hidden.r' 'instants.r' 'leap-years.r'
'ops-addition.r' 'ops-compare.r' 'ops-division.r'
'ops-integer-division.r' 'ops-m+.r' 'ops-modulo.r’
'ops-multiplication.r' 'ops-subtraction.r' 'package.r'
‘pretty.r' 'round.r' 'stamp.r' 'tzdir.R' 'update.r' 'vctrs.R'
'zzz.R’

NeedsCompilation yes

Author Vitalie Spinu [aut, cre],
Garrett Grolemund [aut],
Hadley Wickham [aut],
Davis Vaughan [ctb],

Ian Lyttle [ctb],

Imanuel Costigan [ctb],
Jason Law [ctb],

Doug Mitarotonda [ctb],
Joseph Larmarange [ctb],
Jonathan Boiser [ctb],
Chel Hee Lee [ctb]

Repository CRAN
Date/Publication 2026-02-04 09:00:02 UTC

Contents
AM . . L e e e e e e e e e 4
as.duration L L e e e 4
as.anterval L L L e e e e e e e e 5
as.period 6
as_date ..o .. e e e e e e e 8
cyclic_encoding e 10
date . . . oL L e e e 11
DateTimeUpdate 12
date_decimal e 13
day e 14
days_in_month 16
decimal_date e 16
dSt . . e e 17
duration e e e e e e e e e e 17

Duration-class e 20

Contents

Index

3
fit_to_timeline e e 21
fOrce _tz 22
format_ISO8601 e 24
guess_formats L 25
hour e e e 27
interval L e e e e e e 28
Interval-class e 31
is.Date e e e e 31
is.difftime L e 32
ISANSEANL o . e e e e e e e e e e e e e e e e e e e 33
1S POSIXt e e 33
ISHMESPAn e e e 34
Takers e e e 35
leap_year e 35
local_time e e e e e e e e 36
make_datetime e 36
make_difftime 37
MINULE o e ot e 38
month e e 39
IS & o v e o e e e e e e e e e e e e e e e e e 40
NOW . o v v v e e e e e e e e e e e e e e 41
OTIZIN . . . v v ot e e e e e e e e 42
parse_date_time e e 42
periodo e e e 47
period_to_seconds e e e e 50
pretty_dates e e e 51
QUATTET .+ o o v v o e 51
rollbackward L 52
round_date L L e 53
second L L L e 57
STAIMD L e e 58
HMESPAN . . . v v v v o e 59
time_length 60
1772 61
week . .. e e e e 62
WIth_tzZ . . e e 63
VEAT . o v e e e e e e e e e e e e e 64
ymd ..o e e e 65
ymd_hms e e e 68
om+To e 72
Gowithin% e e e e e e 73

4 as.duration

am Does date time occur in the am or pm?

Description

Does date time occur in the am or pm?

Usage

am(x)
pm(x)

Arguments

X a date-time object

Value

TRUE or FALSE depending on whether x occurs in the am or pm

Examples

x <- ymd("2012-03-26")
am(x)
pm(x)

as.duration Change an object to a duration

Description

as.duration changes Interval, Period and numeric class objects to Duration objects. Numeric objects
are changed to Duration objects with the seconds unit equal to the numeric value.

Usage
as.duration(x, ...)
Arguments
X Object to be coerced to a duration

Parameters passed to other methods. Currently unused.

as.interval 5

Details

Durations are exact time measurements, whereas periods are relative time measurements. See Pe-
riod. The length of a period depends on when it occurs. Hence, a one to one mapping does not
exist between durations and periods. When used with a period object, as.duration provides an in-
exact estimate of the length of the period; each time unit is assigned its most common number of
seconds. A period of one month is converted to 2628000 seconds (approximately 30.42 days). This
ensures that 12 months will sum to 365 days, or one normal year. For an exact transformation, first
transform the period to an interval with as.interval().

Value

A duration object

See Also

Duration, duration()

Examples

span <- interval(ymd("2009-01-01"), ymd("2009-08-01")) # interval
as.duration(span)

as.duration(10) # numeric

dur <- durationChours = 10, minutes = 6)

as.numeric(dur, "hours")

as.numeric(dur, "minutes")

as.interval Change an object to an interval

Description

as.interval changes difftime, Duration, Period and numeric class objects to intervals that begin at
the specified date-time. Numeric objects are first coerced to timespans equal to the numeric value

in seconds.
Usage
as.interval(x, start, ...)
Arguments
X a duration, difftime, period, or numeric object that describes the length of the
interval
start a POSIXt or Date object that describes when the interval begins

additional arguments to pass to as.interval

6 as.period

Details

as.interval can be used to create accurate transformations between Period objects, which measure
time spans in variable length units, and Duration objects, which measure timespans as an exact
number of seconds. A start date- time must be supplied to make the conversion. Lubridate uses
this start date to look up how many seconds each variable length unit (e.g. month, year) lasted for
during the time span described. See as.duration(), as.period().

Value

an interval object

See Also

interval()

Examples

diff <- make_difftime(days = 31) # difftime
as.interval(diff, ymd("2009-01-01"))
as.interval(diff, ymd("2009-02-01"))

dur <- duration(days = 31) # duration
as.interval(dur, ymd("2009-01-01"))
as.interval(dur, ymd(”2009-02-01"))

per <- period(months = 1) # period
as.interval(per, ymd(”2009-01-01"))
as.interval(per, ymd("2009-02-01"))

as.interval (3600, ymd("2009-01-01")) # numeric

as.period Change an object to a period

Description

as.period changes Interval, Duration, difftime and numeric class objects to Period class objects with
the specified units.

Usage

as.period(x, unit, ...)

as.period 7

Arguments
X an interval, difftime, or numeric object
unit A character string that specifies which time units to build period in. unit is
only implemented for the as.period.numeric method and the as.period.interval
method. For as.period.interval, as.period will convert intervals to units no larger
than the specified unit.
additional arguments to pass to as.period
Details

Users must specify which time units to measure the period in. The exact length of each time unit in
a period will depend on when it occurs. See Period and period(). The choice of units is not trivial;
units that are normally equal may differ in length depending on when the time period occurs. For
example, when a leap second occurs one minute is longer than 60 seconds.

Because periods do not have a fixed length, they can not be accurately converted to and from Du-
ration objects. Duration objects measure time spans in exact numbers of seconds, see Duration.
Hence, a one to one mapping does not exist between durations and periods. When used with a
Duration object, as.period provides an inexact estimate; the duration is broken into time units based
on the most common lengths of time units, in seconds. Because the length of months are particu-
larly variable, a period with a months unit can not be coerced from a duration object. For an exact
transformation, first transform the duration to an interval with as.interval().

Coercing an interval to a period may cause surprising behavior if you request periods with small
units. A leap year is 366 days long, but one year long. Such an interval will convert to 366 days
when unit is set to days and 1 year when unit is set to years. Adding 366 days to a date will often
give a different result than adding one year. Daylight savings is the one exception where this does
not apply. Interval lengths are calculated on the UTC timeline, which does not use daylight savings.
Hence, periods converted with seconds or minutes will not reflect the actual variation in seconds
and minutes that occurs due to daylight savings. These periods will show the "naive" change in
seconds and minutes that is suggested by the differences in clock time. See the examples below.

Value

a period object

See Also

Period, period()

Examples

span <- interval(ymd_hms("2009-01-01 00:00:00"), ymd_hms("2010-02-02 01:01:01")) # interval
as.period(span)

as.period(span, unit = "day")

"397d 1H 1M 1S"

leap <- interval(ymd("2016-01-01"), ymd("2017-01-01"))

as.period(leap, unit = "days")

as.period(leap, unit = "years")

dst <- interval(

8 as_date

ymd("2016-11-06", tz = "America/Chicago"),
ymd("2016-11-07", tz = "America/Chicago")

)
as.period(dst, unit = "seconds"”)
as.period(dst, unit = "hours")

per <- period(hours = 10, minutes = 6)
as.numeric(per, "hours")
as.numeric(per, "minutes")

as_date Convert an object to a date or date-time

Description

Convert an object to a date or date-time
Usage
as_date(x, ...)

S4 method for signature 'ANY'
as_date(x, ...)

S4 method for signature 'POSIXt'
as_date(x, tz = NULL)

S4 method for signature 'numeric'
as_date(x, origin = lubridate::origin)

S4 method for signature 'character'
as_date(x, tz = NULL, format = NULL)

as_datetime(x, ...)

S4 method for signature 'ANY'
as_datetime(x, tz = lubridate::tz(x))

S4 method for signature 'POSIXt'
as_datetime(x, tz = lubridate::tz(x))

S4 method for signature 'numeric'
as_datetime(x, origin = lubridate::origin, tz = "UTC")

S4 method for signature 'character'
as_datetime(x, tz = "UTC", format = NULL)

S4 method for signature 'Date’
as_datetime(x, tz = "UTC")

as_date 9

Arguments
X a vector of POSIXt, numeric or character objects
further arguments to be passed to specific methods (see above).
tz atime zone name (default: time zone of the POSIXt object x). See 01sonNames ().
origin a Date object, or something which can be coerced by as.Date(origin, ...)
to such an object (default: the Unix epoch of "1970-01-01"). Note that in this
instance, x is assumed to reflect the number of days since origin at "UTC".
format format argument for character methods. When supplied parsing is performed by
parse_date_time(x, orders = formats, exact = TRUE). Thus, multiple for-
mats are supported and are tried in turn.
Value

a vector of Date objects corresponding to x.

Compare to base R

These are drop in replacements for as.Date() and as.POSIXct(), with a few tweaks to make them
work more intuitively.

» Called on a POSIXct object, as_date() uses the tzone attribute of the object to return the
same date as indicated by the printed representation of the object. This differs from as.Date,
which ignores the attribute and uses only the tz argument to as.Date() ("UTC" by default).

* Both functions provide a default origin argument for numeric vectors.

* Both functions will generate NAs for invalid date format. Valid formats are those described
by ISO8601 standard. A warning message will provide a count of the elements that were not
converted.

* as_datetime() defaults to using UTC.

Examples

dt_utc <- ymd_hms("2010-08-03 00:50:50")

dt_europe <- ymd_hms("2010-08-03 00:50:50", tz = "Europe/London")
c(as_date(dt_utc), as.Date(dt_utc))

c(as_date(dt_europe), as.Date(dt_europe))

need not supply origin

as_date(10)

Will replace invalid date format with NA

dt_wrong <- c¢("2009-09-29", "2012-11-29", "2015-29-12")
as_date(dt_wrong)

10 cyclic_encoding

cyclic_encoding Cyclic encoding of date-times

Description

Encode a date-time object into a cyclic coordinate system in which the distances between two pairs
of dates separated by the same time duration are the same.

Usage
cyclic_encoding(
X,
periods,
encoders = c("sin"”, "cos"),
week_start = getOption("”lubridate.week.start”, 7)
)
Arguments
X a date-time object
periods a character vector of periods. Follows same specification as period and floor_date
functions.
encoders names of functions to produce the encoding. Defaults to "sin" and "cos". Names
of any predefined functions accepting a numeric input are allowed.
week_start week start day (Default is 7, Sunday. Set lubridate.week.start to override).
Full or abbreviated names of the days of the week can be in English or as pro-
vided by the current locale.
Details

Machine learning models don’t know that December 31st and January 1st are close in our human
calendar sense. cyclic_encoding makes it obvious to the machine learner that two calendar dates
are close by mapping the dates onto the circle.

Value

a numeric matrix with number of columns equal length(periods) * length(types).

Examples

times <- ymd_hms(”2019-01-01 00:00:00") + hours(0:23)
cyclic_encoding(times, c("day"”, "week”, "month"))
plot(cyclic_encoding(times, "1d"))
plot(cyclic_encoding(times, "2d"), xlim = c(-1, 1))
plot(cyclic_encoding(times, "4d"), xlim = c(-1, 1))

date 11

date Get/set date component of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

date(x)

date(x) <- value

Arguments

X a date-time object

value an object for which the date() function is defined
Details

date() does not yet support years before 0 C.E. Also date() is not defined for Period objects.

Value

the date of x as a Date

Base compatibility

date() can be called without any arguments to return a string representing the current date-time.
This provides compatibility with base:date() which it overrides.

Examples

x <- ymd_hms("2012-03-26 23:12:13", tz = "America/New_York")

date(x)
as.Date(x) # by default as.Date assumes you want to know the date in UTC
as.Date(x, tz = "America/New_York")

date(x) <- as.Date("2000-01-02")
X

12 DateTimeUpdate

DateTimeUpdate Changes the components of a date object

Description

update.Date() and update.POSIXt() return a date with the specified elements updated. Elements
not specified will be left unaltered. update.Date and update.POSIXt do not add the specified values
to the existing date, they substitute them for the appropriate parts of the existing date.

Usage

S3 method for class 'POSIXt'
update(
object,

roll_dst = c("NA", "post"),
week_start = getOption(”lubridate.week.start”, 7),

roll = NULL,
simple = NULL
)
Arguments
object a date-time object
named arguments: years, months, ydays, wdays, mdays, days, hours, minutes,
seconds, tzs (time zone component)
roll_dst is a string vector of length one or two. When two values are supplied they spec-

ify how to roll date-times when they fall into "skipped" and "repeated" DST
transitions respectively. A single value is replicated to the length of two. Possi-
ble values are:

* “pre” - Use the time before the transition boundary.

* “boundary™ - Use the time exactly at the boundary transition.

* “post™ - Use the time after the boundary transition.

* “xfirst™ - crossed-first: First time which occurred when crossing the
boundary. For addition with positive units pre interval is crossed first and
post interval last. With negative units post interval is crossed first, pre -
last. For subtraction the logic is reversed.

* “xlast™ - crossed-last.

* “NA™ - Produce NAs when the resulting time falls inside the problematic interval.

For example ‘roll_dst =c("NA", "pre") indicates that for skipped intervals return
NA and for repeated times return the earlier time.

When multiple units are supplied the meaning of "negative period" is deter-
mined by the largest unit. For example time_add(t, days =-1, hours =2,
roll_dst = "xfirst") would operate as if with negative period, thus crossing

date_decimal 13

the boundary from the "post" to "pre" side and "xfirst" and hence resolving to
"post" time. As this might result in confusing behavior. See examples.

"xfirst" and "xlast" make sense for addition and subtraction only. An error is
raised if an attempt is made to use them with other functions.

week_start week start day (Default is 7, Sunday. Set lubridate.week.start to override).
Full or abbreviated names of the days of the week can be in English or as pro-
vided by the current locale.

simple, roll deprecated

Value

a date object with the requested elements updated. The object will retain its original class unless an
element is updated which the original class does not support. In this case, the date returned will be
a POSIXIt date object.

Examples

date <- ymd(”2009-02-10")

update(date, year = 2010, month = 1, mday = 1)

update(date, year = 2010, month = 13, mday = 1)

update(date, minute = 10, second = 3)

date_decimal Converts a decimal to a date

Description

Converts a decimal to a date

Usage

date_decimal (decimal, tz = "UTC")

Arguments

decimal a numeric object

tz the time zone required
Value

a POSIXct object, whose year corresponds to the integer part of decimal. The months, days, hours,
minutes and seconds elements are picked so the date-time will accurately represent the fraction of
the year expressed by decimal.

14 day

Examples

date <- ymd("2009-02-10")
decimal <- decimal_date(date) # 2009.11
date_decimal(decimal) # "2009-02-10 UTC"

day Get/set days component of a date-time

Description
Get/set days component of a date-time
Usage
day(x)
mday (x)
wday (
X ’
label = FALSE,
abbr = TRUE,

week_start = getOption("”lubridate.week.start”, 7),
locale = Sys.getlocale("LC_TIME")

)

qday (x)

yday (x)

day(x) <- value

mday(x) <- value

gday(x) <- value

gday(x) <- value

wday(x, week_start = getOption("lubridate.week.start”, 7)) <- value
yday(x) <- value

Arguments

X a POSIXct, POSIXIt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, or fts object.

day

label

abbr

week_start

locale

value

Details

15

logical. Only available for wday. TRUE will display the day of the week as an
ordered factor of character strings, such as "Sunday." FALSE will display the
day of the week as a number.

logical. Only available for wday. FALSE will display the day of the week as
an ordered factor of character strings, such as "Sunday." TRUE will display an
abbreviated version of the label, such as "Sun". abbr is disregarded if label =
FALSE.

day on which week starts following ISO conventions: 1 means Monday and 7
means Sunday (default). When label = FALSE and week_start = 7, the num-
ber returned for Sunday is 1, for Monday is 2, etc. When label = TRUE, the
returned value is a factor with the first level being the week start (e.g. Sunday
if week_start = 7). You can set lubridate.week.start option to control this
parameter globally.

locale to use for day names. Default to current locale.

(for wday<-) a numeric or a string giving the name of the day in the current locale
or in English. Can be abbreviated. When a string, the value of week_start is
ignored.

mday() and yday() return the day of the month and day of the year respectively. day() and
day<-() are aliases for mday () and mday<-().

Value

wday () returns the day of the week as a decimal number or an ordered factor if label is TRUE.

Examples

X <- as.Date("2009-09-02")

wday(x) # 4

wday(x, label = TRUE) # Wed

wday(x, week_start = 1) # 3
wday(x, week_start = 7) # 4

wday(x, label
wday(x, label

TRUE, week_start = 7) # Wed (Sun is the first level)
TRUE, week_start = 1) # Wed (Mon is the first level)

wday (ymd(080101))

wday(ymd(080101), label = TRUE, abbr
wday(ymd(@80101), label
wday (ymd(080101) + days(-2:4), label

FALSE)
TRUE, abbr = TRUE)
TRUE, abbr = TRUE)

X <- as.Date("2009-09-02")

yday(x) # 245
mday(x) # 2

yday(x) <- 1 # "2009-01-01"
yday(x) <- 366 # "2010-01-01"

mday(x) > 3

16 decimal date

days_in_month Get the number of days in the month of a date-time

Description
Date-time must be a POSIXct, POSIXIt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

days_in_month(x)

Arguments

X a date-time object

Value

An integer of the number of days in the month component of the date-time object.

decimal_date Converts a date to a decimal of its year

Description

Converts a date to a decimal of its year

Usage

decimal_date(date)

Arguments

date a POSIXt or Date object

Value

a numeric object where the date is expressed as a fraction of its year

Examples

date <- ymd("2009-02-10")
decimal_date(date) # 2009.11

dst 17

dst Get daylight savings time indicator of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

dst(x)

Arguments

X a date-time object

Details

A date-time’s daylight savings flag can not be set because it depends on the date-time’s year, month,
day, and hour values.

Value

A logical. TRUE if DST is in force, FALSE if not, NA if unknown.

Examples

X <- ymd("2012-03-26")
dst(x)

duration Create a duration object.

Description

duration() creates a duration object with the specified values. Entries for different units are cu-
mulative. durations display as the number of seconds in a time span. When this number is large,
durations also display an estimate in larger units, however, the underlying object is always recorded
as a fixed number of seconds. For display and creation purposes, units are converted to seconds
using their most common lengths in seconds. Minutes = 60 seconds, hours = 3600 seconds, days =
86400 seconds, weeks = 604800. Units larger than weeks are not used due to their variability.

18

Usage
duration(num = NULL, units = "seconds”, ...)
dseconds(x = 1)
dminutes(x = 1)

dhours(x = 1)
ddays(x = 1)
dweeks(x = 1)
dmonths(x = 1)
dyears(x = 1)
dmilliseconds(x
dmicroseconds(x
dnanoseconds (x
dpicoseconds(x
is.duration(x)

Arguments

num

units

Details

D}
D}

:‘])
:])

duration

the number or a character vector of time units. In string representation all unam-
biguous name units and abbreviations and ISO 8601 formats are supported; *m’
stands for month and "M’ for minutes unless ISO 8601 "P" modifier is present

(see examples). Fractional units are supported.

a character string that specifies the type of units that num refers to. When num is

character, this argument is ignored.

a list of time units to be included in the duration and their amounts. Seconds,
minutes, hours, days, weeks, months and years are supported. Durations of

months and years assume that year consists of 365.25 days.

numeric value of the number of units to be contained in the duration.

Durations record the exact number of seconds in a time span. They measure the exact passage of
time but do not always align with measurements made in larger units of time such as hours, months
and years. This is because the length of larger time units can be affected by conventions such as
leap years and Daylight Savings Time. Base R provides a second class for measuring durations, the

difftime class.

duration 19

Duration objects can be easily created with the helper functions dweeks (), ddays(), dminutes(),
dseconds (). These objects can be added to and subtracted to date- times to create a user interface
similar to object oriented programming.

Value

a duration object

See Also

as.duration() Duration

Examples

Separate period and units vectors
duration(90, "seconds")

duration(1.5, "minutes"”)

duration(-1, "days")

Units as arguments

duration(day = -1)

duration(second = 90)

duration(minute = 1.5)

duration(mins = 1.5)

duration(second = 3, minute = 1.5, hour = 2, day = 6, week = 1)
duration(hour = 1, minute = -60)

Parsing

duration(”2M 1sec”)

duration(”2hours 2minutes 1second"”)

duration(”2d 2H 2M 2S")

duration(”2days 2hours 2mins 2secs”)

Missing numerals default to 1. Repeated units are added up.
duration("day day")

ISO 8601 parsing

duration("”P3Y6M4DT12H30M5S")

duration("P23DT23H") # M stands for months

duration(”10DT10M") # M stands for minutes

duration("P23DT60QH 20min 100 sec”) # mixing ISO and lubridate style parsing

Comparison with characters (from v1.6.0)

duration("day 2 sec") > "day 1sec”

ELEMENTARY CONSTRUCTORS:

20

dseconds (1)
dminutes(3.5)

X <- ymd("2009-08-03", tz = "America/Chicago"”)
x + ddays(1) + dhours(6) + dminutes(30)
x + ddays(100) - dhours(8)

class(as.Date("2009-08-09") + ddays(1)) # retains Date class
as.Date("2009-08-09") + dhours(12)
class(as.Date("2009-08-09") + dhours(12))

converts to POSIXt class to accomodate time units

dweeks(1) - ddays(7)
c(1:3) * dhours(1)

compare DST handling to durations

boundary <- ymd_hms("2009-03-08 01:59:59", tz = "America/Chicago”)
boundary + days(1) # period

boundary + ddays(1) # duration

is.duration(as.Date("2009-08-03")) # FALSE
is.duration(duration(days = 12.4)) # TRUE

Duration-class

Duration-class Duration class

Description

Duration is an S4 class that extends the Timespan class. Durations record the exact number of
seconds in a time span. They measure the exact passage of time but do not always align with
measurements made in larger units of time such as hours, months and years. This is because the
exact length of larger time units can be affected by conventions such as leap years and Daylight

Savings Time.

Details

Durations provide a method for measuring generalized timespans when we wish to treat time as a
mathematical quantity that increases in a uniform, monotone manner along a continuous number
line. They allow exact comparisons with other durations. See Period for an alternative way to

measure timespans that better preserves clock times.

Durations class objects have one slot: .Data, a numeric object equal to the number of seconds in the

duration.

fit_to_timeline 21

fit_to_timeline Fit a POSIXIt date-time to the timeline

Description

The POSIXIt format allows you to create instants that do not exist in real life due to daylight savings
time and other conventions. fit_to_timeline matches POSIXIt date-times to a real times. If an instant
does not exist, fit to timeline will replace it with an NA. If an instant does exist, but has been paired
with an incorrect timezone/daylight savings time combination, fit_to_timeline returns the instant
with the correct combination.

Usage

fit_to_timeline(lt, class = "POSIXct", simple = FALSE)

Arguments
1t a POSIXIt date-time object.
class a character string that describes what type of object to return, POSIXIt or POSIXct.
Defaults to POSIXct. This is an optimization to avoid needless conversions.
simple if TRUE, lubridate makes no attempt to detect meaningless time-dates or to
correct time zones. No NAs are produced and the most meaningful valid dates
are returned instead. See examples.
Value

a POSIXct or POSIXIt object that contains no illusory date-times

Examples

Not run:

tricky <- structure(list(
sec = c(5, 0, 0, -1),
min = c(oL, 5L, 5L, eL),
hour = c(2L, oL, 2L, 2L),
mday = c(4L, 4L, 14L, 4L),
mon = c(10L, 1oL, 2L, 1eL),
year = c(112L, 112L, 110L, 112L),
wday = c(oL, oL, oL, oL),
yday = c(308L, 308L, 72L, 308L),
isdst = c(1L, oL, oL, 1L)

),

.Names = c(
"sec”, "min”, "hour”, "mday”, "mon”,
Hyearll’ ”Wday”, llydayll’ "iSdSt”

)’

class = c("POSIX1t"”, "POSIXt"),

22 force_tz

tzone = c("America/Chicago”, "CST", "CDT")
)

tricky

[1] "2012-11-04 02:00:00 CDT"” Doesn't exist because clocks "fall back” to 1:00 CST
[2] "2012-11-04 00:05:00 CST"” Times are still CDT, not CST at this instant

[3] "2010-03-14 02:00:00 CDT" DST gap

[4] "2012-11-04 01:59:59 CDT"” Does exist, but has deceptive internal structure

fit_to_timeline(tricky)

Returns:

[1] "2012-11-04 02:00:00 CST"” instant paired with correct tz & DST combination
[2] "2012-11-04 00:05:00 CDT" instant paired with correct tz & DST combination
[3] NA - fake time changed to NA (compare to as.POSIXct(tricky))

[4] "2012-11-04 01:59:59 CDT"” -real instant, left as is

fit_to_timeline(tricky, simple = TRUE)

Returns valid time-dates by extrapolating CDT and CST zones:
[1] "2012-11-04 01:00:05 CST" "2012-11-04 01:05:00 CDT"

[3] "2010-03-14 03:05:00 CDT" "2012-11-04 ©1:59:59 CDT"

End(Not run)

force_tz Replace time zone to create new date-time

Description

force_tz returns the date-time that has the same clock time as input time, but in the new time zone.
force_tzs is the parallel version of force_tz, meaning that every element from time argument is
matched with the corresponding time zone in tzones argument.

Usage

force_tz(time, tzone = "", ...)

Default S3 method:
force_tz(time, tzone = "", roll_dst = c("NA", "post”), roll = NULL, ...)

force_tzs(
time,
tzones,
tzone_out = "UTC",
roll_dst = c("NA", "post"),
roll = NULL

force_tz 23

Arguments

time a POSIXct, POSIXIt, Date, chron date-time object, or a data.frame object. When
a data.frame all POSIXt elements of a data.frame are processed with force_tz()
and new data.frame is returned.

tzone a character string containing the time zone to convert to. R must recognize the
name contained in the string as a time zone on your system.

Parameters passed to other methods.

roll_dst is a string vector of length one or two. When two values are supplied they spec-
ify how to roll date-times when they fall into "skipped" and "repeated" DST
transitions respectively. A single value is replicated to the length of two. Possi-
ble values are:

“pre” - Use the time before the transition boundary.

“boundary™ - Use the time exactly at the boundary transition.

“post™ - Use the time after the boundary transition.

“xfirst™ - crossed-first: First time which occurred when crossing the

boundary. For addition with positive units pre interval is crossed first and
post interval last. With negative units post interval is crossed first, pre -
last. For subtraction the logic is reversed.

“xlast™ - crossed-last.

“NA™ - Produce NAs when the resulting time falls inside the problematic interval.

X % %X %

% %

For example ‘roll_dst =c("NA", "pre") indicates that for skipped intervals return
NA and for repeated times return the earlier time.

When multiple units are supplied the meaning of "negative period" is deter-
mined by the largest unit. For example time_add(t, days =-1, hours =2,
roll_dst = "xfirst") would operate as if with negative period, thus crossing
the boundary from the "post" to "pre" side and "xfirst" and hence resolving to
"post" time. As this might result in confusing behavior. See examples.

"xfirst" and "xlast" make sense for addition and subtraction only. An error is
raised if an attempt is made to use them with other functions.

roll deprecated, same as roll_dst parameter.

tzones character vector of timezones to be "enforced" on time time stamps. If time
and tzones lengths differ, the smaller one is recycled in accordance with usual
R conventions.

tzone_out timezone of the returned date-time vector (for force_tzs).

Details

Although the new date-time has the same clock time (e.g. the same values in the year, month, days,
etc. elements) it is a different moment of time than the input date-time.

As R date-time vectors cannot hold elements with non-uniform time zones, force_tzs returns a
vector with time zone tzone_out, UTC by default.

Value

a POSIXct object in the updated time zone

24 format_ISO8601

See Also

with_tz(), local_time()

Examples

x <- ymd_hms("2009-08-07 00:00:01", tz = "America/New_York")
force_tz(x, "UTC")
force_tz(x, "Europe/Amsterdam”)

DST skip:

y <- ymd_hms("2010-03-14 02:05:05 UTC")

force_tz(y, "America/New_York"”, roll_dst = "NA")
force_tz(y, "America/New_York", roll_dst = "pre")
force_tz(y, "America/New_York", roll_dst = "boundary")
force_tz(y, "America/New_York"”, roll_dst = "post")

DST repeat

y <- ymd_hms("2014-11-02 01:35:00", tz = "UTC")
force_tz(y, "America/New_York", roll_dst = "NA")
force_tz(y, "America/New_York", roll_dst = "pre")
force_tz(y, "America/New_York"”, roll_dst = "boundary")
force_tz(y, "America/New_York", roll_dst = "post")

DST skipped and repeated

y <- ymd_hms("2010-03-14 02:05:05 UTC", "2014-11-02 01:35:00", tz = "UTC")
force_tz(y, "America/New_York”, roll_dst = c("NA", "pre"))

force_tz(y, "America/New_York"”, roll_dst = c("boundary”, "post"))

Heterogeneous time-zones:
x <= ymd_hms(c("2009-08-07 00:00:01", "2009-08-07 01:02:03"))
force_tzs(x, tzones = c("America/New_York", "Europe/Amsterdam”))

force_tzs(x, tzones = c("America/New_York", "Europe/Amsterdam”), tzone_out = "America/New_York")

x <- ymd_hms("2009-08-07 00:00:01")

force_tzs(x, tzones = c("America/New_York", "Europe/Amsterdam”))
format_IS08601 Format in ISO8601 character format
Description

Format in ISO8601 character format

Usage

format_IS08601(x, usetz = FALSE, precision = NULL, ...)

guess_formats 25

Arguments
X An object to convert to [ISO8601 character format.
usetz Include the time zone in the formatting. If usetz is TRUE, the time zone is
included. If usetz is "Z", the time is converted to "UTC" and the time zone is
indicated with "Z" ISO8601 notation.
precision The amount of precision to represent with substrings of "ymdhms", as year,
month, day, hour, minute, and second. (e.g. "ymd" is days precision, "ymdhm"
is minute precision. When NULL, full precision for the object is shown.
Additional arguments to methods.
Value

A character vector of ISO8601-formatted text.

References

https://en.wikipedia.org/wiki/IS0_8601

Examples

format_IS08601(as.Date("02-01-2018", format = "%m-%d-%Y"))
format_IS08601(as.POSIXct("2018-02-01 03:04:05", tz = "America/New_York"), usetz = TRUE)
format_IS08601(as.POSIXct("2018-02-01 03:04:05", tz = "America/New_York"), precision = "ymdhm")

guess_formats Guess possible date-times formats from a character vector

Description

Guess possible date-times formats from a character vector.

Usage

guess_formats(
X,
orders,
locale = Sys.getlocale("LC_TIME"),
preproc_wday = TRUE,
print_matches = FALSE

https://en.wikipedia.org/wiki/ISO_8601

26

Arguments

X
orders

locale

guess_formats

input vector of date-times.
format orders to look for. See examples.

locale to use. Defaults to the current locale.

preproc_wday whether to preprocess weekday names. Internal optimization used by ymd_hms ()

family of functions. If TRUE, weekdays are substituted with %a or %A accord-
ingly, so that there is no need to supply this format explicitly.

print_matches for development purposes mainly. If TRUE, prints a matrix of matched templates.

Value

a vector of matched formats

Examples

x <- c('February 20th 1973',

"february 14, 2004",
"Sunday, May 1, 2000",
"Sunday, May 1, 2000",
"february 14, 04",

'Feb 20th 73',

"January 5 1999 at 7pm”,
"jan 3 2010",

"Jan 1, 1999",

"jan 3 10",

"01 3 2010",

"1 310",

113 89',

"5/27/1979",

"12/31/99",

"DOB:12/11/00",

'Thu, 1 July 2004 22:30:00',
'Thu, 1st of July 2004 at 22:30:00',
'Thu, 1July 2004 at 22:30:00',
'Thu, 1July2004 22:30:00',
'"Thu, 1July@4 22:30:00',

"21 Aug 2011, 11:15:34 pm",
"1979-05-27 05:00:59",
"1979-05-27",

"3 jan 2000",

"17 april 85",

"27/5/1979",

'20 01 89",

'00/13/10",

"14 12 00",

"03:23:22 pm")

hour 27

guess_formats(x, "BdY")

guess_formats(x, "Bdy")

m also matches b and B; y also matches Y
guess_formats(x, "mdy"”, print_matches = TRUE)

T also matches IMSp order
guess_formats(x, "T", print_matches = TRUE)

b and B are equivalent and match, both, abreviated and full names
guess_formats(x, c("mdY"”, "BdY", "Bdy", "bdY"”, "bdy"), print_matches = TRUE)
guess_formats(x, c("dmy"”, "dbY"”, "dBy"”, "dBY"), print_matches = TRUE)

guess_formats(x, c("dBY HMS", "dbY HMS"”, "dmyHMS", "BdY H"), print_matches = TRUE)

guess_formats(x, c("ymd HMS"), print_matches = TRUE)

hour Get/set hours component of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

hour (x)

hour(x) <- value

Arguments

X a date-time object

value numeric value to be assigned to the hour component
Value

the hours element of x as a decimal number

Examples

X <- ymd("2012-03-26")
hour (x)

hour(x) <- 1

hour(x) <- 25

hour(x) > 2

28 interval

interval Utilities for creation and manipulation of Interval objects

Description

interval() creates an Interval object with the specified start and end dates. If the start date occurs
before the end date, the interval will be positive. Otherwise, it will be negative. Character vectors
in ISO 8601 format are supported from v1.7.2.

int_start()/int_end() and int_start<-()/int_end<-() are "accessors" and "setters" respec-
tively of the start/end date of an interval.

int_f1lip() reverses the order of the start date and end date in an interval. The new interval takes
place during the same timespan as the original interval, but has the opposite direction.

int_shift() shifts the start and end dates of an interval up or down the timeline by a specified
amount. Note that this may change the exact length of the interval if the interval is shifted by a
Period object. Intervals shifted by a Duration or difftime object will retain their exact length in
seconds.

int_overlaps() tests if two intervals overlap.

int_standardize() ensures all intervals in an interval object are positive. If an interval is not
positive, flip it so that it retains its endpoints but becomes positive.

int_aligns() tests if two intervals share an endpoint. The direction of each interval is ignored.
int_align tests whether the earliest or latest moments of each interval occur at the same time.

int_diff () returns the intervals that occur between the elements of a vector of date-times. int_diff ()
is similar to the POSIXt and Date methods of diff (), but returns an Interval object instead of a
difftime object.

Usage
interval(start = NULL, end = NULL, tzone = tz(start))
start %--% end
is.interval(x)
int_start(int)
int_start(int) <- value
int_end(int)
int_end(int) <- value
int_length(int)

int_flip(int)

interval 29

int_shift(int, by)
int_overlaps(intl1, int2)
int_standardize(int)
int_aligns(int1, int2)

int_diff(times)

Arguments
start, end POSIXt, Date or a character vectors. When start is a character vector and
end is NULL, ISO 8601 specification is assumed but with much more permissive
lubridate style parsing both for dates and periods (see examples).
tzone a recognized timezone to display the interval in
X an R object
int an interval object
value interval’s start/end to be assigned to int
by A period or duration object to shift by (for int_shift)
int1 an Interval object (for int_overlaps(), int_aligns())
int2 an Interval object (for int_overlaps(), int_aligns())
times A vector of POSIXct, POSIXIt or Date class date-times (for int_diff())
Details

Intervals are time spans bound by two real date-times. Intervals can be accurately converted to either
period or duration objects using as.period(), as.duration(). Since an interval is anchored to
a fixed history of time, both the exact number of seconds that passed and the number of variable
length time units that occurred during the interval can be calculated.

Value

interval() — Interval object.

int_start() and int_end() return a POSIXct date object when used as an accessor. Nothing
when used as a setter.

int_length() — numeric length of the interval in seconds. A negative number connotes a negative
interval.

int_flip() — flipped interval object

int_shift() — an Interval object

int_overlaps() —logical, TRUE if intl and int2 overlap by at least one second. FALSE otherwise
int_aligns() —logical, TRUE if intl and int2 begin or end on the same moment. FALSE otherwise

int_diff () —interval object that contains the n-1 intervals between the n date-time in times

30

See Also

Interval, as.interval (), %within%

Examples

interval (ymd(20090201), ymd(20090101))

datel <- ymd_hms("2009-03-08 01:59:59")

date2 <- ymd_hms("2000-02-29 12:00:00")
interval(date2, datel)

interval(datel, date2)

span <- interval(ymd(20090101), ymd(20090201))

ISO Intervals

interval ("2007-03-01T713:00:00Z/2008-05-11T715:30:00Z")
interval ("2007-03-01T13:00:00Z/P1Y2M10DT2H30M")
interval ("P1Y2M10DT2H30M/2008-05-11T15:30:00Z")
interval ("2008-05-11/P2H30M")

More permissive parsing (as long as there are no intermittent / characters)

interval(”2008 05 11/P2hours 3@minutes”)
interval(”@8 @5 11/P 2h 30m")

is.interval(period(months = 1, days = 15)) # FALSE

is.interval(interval (ymd(20090801), ymd(20090809))) # TRUE

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_start(int)

int_start(int) <- ymd("2001-06-01")

int

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_end(int)

int_end(int) <- ymd("2002-06-01")

int

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_length(int)

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_flip(int)

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_shift(int, duration(days = 11))

int_shift(int, durationChours = -1))

int1 <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-06-01"))
int3 <- interval(ymd("2003-01-01"), ymd("2004-01-01"))

int_overlaps(intl1, int2) # TRUE

int_overlaps(int1, int3) # FALSE

int <- interval(ymd("2002-01-01"), ymd("2001-01-01"))
int_standardize(int)

int1 <- interval(ymd("2001-01-01"), ymd("”2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-01-01"))

interval

Interval-class 31

int3 <- interval(ymd("2003-01-01"), ymd("2004-01-01"))

int_aligns(int1, int2) # TRUE
int_aligns(int1, int3) # FALSE
dates <- now() + days(1:10)
int_diff(dates)

Interval-class Interval class

Description

Interval is an S4 class that extends the Timespan class. An Interval object records one or more
spans of time. Intervals record these timespans as a sequence of seconds that begin at a specified
date. Since intervals are anchored to a precise moment of time, they can accurately be converted
to Period or Duration class objects. This is because we can observe the length in seconds of each
period that begins on a specific date. Contrast this to a generalized period, which may not have a
consistent length in seconds (e.g. the number of seconds in a year will change if it is a leap year).

Details
Intervals can be both negative and positive. Negative intervals progress backwards from the start
date; positive intervals progress forwards.

Interval class objects have two slots: .Data, a numeric object equal to the number of seconds in the
interval; and start, a POSIXct object that specifies the time when the interval starts.

is.Date Various date utilities

Description

Date() mirrors primitive constructors in base R (double(), character() etc.)

Usage

is.Date(x)

Date(length = QL)

NA_Date_
Arguments
X an R object
length A non-negative number specifying the desired length. Supplying an argument

of length other than one is an error.

32 is.difftime

Format

An object of class Date of length 1.

See Also

is.instant(), is.timespan(), is.POSIXt(), POSIXct()

Examples

is.Date(as.Date("2009-08-03")) # TRUE
is.Date(difftime(now() + 5, now())) # FALSE

is.difftime Is x a difftime object?

Description

Is x a difftime object?

Usage

is.difftime(x)

Arguments

X an R object

Value

TRUE if x is a difftime object, FALSE otherwise.

See Also

is.instant(), is.timespan(), is.interval(), is.period().

Examples

is.difftime(as.Date("2009-08-03")) # FALSE
is.difftime(make_difftime(days = 12.4)) # TRUE

is.instant 33

is.instant Is x a date-time object?

Description
An instant is a specific moment in time. Most common date-time objects (e.g, POSIXct, POSIXIt,
and Date objects) are instants.

Usage

is.instant(x)
is.timepoint(x)

Arguments

X an R object

Value

TRUE if x is a POSIXct, POSIXIt, or Date object, FALSE otherwise.

See Also

is.timespan(), is.POSIXt(), is.Date()

Examples

is.instant(as.Date("2009-08-03")) # TRUE
is.timepoint(5) # FALSE

is.POSIXt Various POSIX utilities

Description

POSIXct() mirrors primitive constructors in base R (double(), character() etc.)

Usage
is.POSIXt(x)

is.POSIX1t(x)
is.POSIXct(x)
POSIXct(length = oL, tz = "UTC")

NA_POSIXct_

34 is.timespan

Arguments
X an R object
length A non-negative number specifying the desired length. Supplying an argument
of length other than one is an error.
tz a timezone (defaults to "utc")
Format

An object of class POSIXct (inherits from POSIXt) of length 1.

Value

TRUE if x is a POSIXct or POSIXIt object, FALSE otherwise.

See Also

is.instant(), is.timespan(), is.Date()

Examples

is.POSIXt(as.Date(”2009-08-03"))
is.POSIXt(as.POSIXct("2009-08-03"))

is.timespan Is x a length of time?

Description

Is x a length of time?

Usage

is.timespan(x)

Arguments

X an R object

Value

TRUE if x is a period, interval, duration, or difftime object, FALSE otherwise.

See Also

is.instant(), is.duration(), is.difftime(), is.period(), is.interval()

lakers 35

Examples

is.timespan(as.Date("2009-08-03")) # FALSE
is.timespan(duration(second = 1)) # TRUE

lakers Lakers 2008-2009 basketball data set

Description

This data set contains play by play statistics of each Los Angeles Lakers basketball game in the
2008-2009 season. Data includes the date, opponent, and type of each game (home or away). Each
play is described by the time on the game clock when the play was made, the period in which the
play was attempted, the type of play, the player and team who made the play, the result of the play,
and the location on the court where each play was made.

References

Originally taken from www.basketballgeek.com/data/.

leap_year Is a year a leap year?

Description

If x is a recognized date-time object, leap_year will return whether x occurs during a leap year. If x
is a number, it is interpreted as a year in the Gregorian calendar and leap_year returns TRUE if it is
a leap year.

Usage
leap_year(date)

Arguments

date a date-time object or a year

Value

TRUE if x is a leap year, FALSE otherwise

Examples

X <- as.Date("2009-08-02")
leap_year(x) # FALSE
leap_year(2009) # FALSE
leap_year(2008) # TRUE
leap_year(1900) # FALSE
leap_year(2000) # TRUE

36 make_datetime

local_time Get local time from a date-time vector.

Description

local_time retrieves day clock time in specified time zones. Computation is vectorized over both
dt and tz arguments, the shortest is recycled in accordance with standard R rules.

Usage

local_time(dt, tz = NULL, units = "secs")

Arguments
dt a date-time object.
tz a character vector of timezones for which to compute the local time.
units passed directly to as.difftime().

Examples

X <- ymd_hms(c("2009-08-07 01:02:03", "2009-08-07 10:20:30"))

local_time(x, units = "secs”)

local_time(x, units = "hours")

local_time(x, "Europe/Amsterdam”)

local_time(x, "Europe/Amsterdam”) == local_time(with_tz(x, "Europe/Amsterdam”))

X <- ymd_hms("2009-08-07 01:02:03")
local_time(x, c("America/New_York"”, "Europe/Amsterdam”, "Asia/Shanghai”), unit = "hours")

make_datetime Efficient creation of date-times from numeric representations

Description

make_datetime() is a very fast drop-in replacement for base: : ISOdate () and base: : ISOdatetime().
make_date () produces objects of class Date.

Usage
make_datetime(
year = 1970L,
month = 1L,
day = 1L,
hour = oL,
min = 0L,

sec = 0,

make_difftime 37

tz = "UTC”

make_date(year = 1970L, month = 1L, day = 1L)

Arguments

year numeric year

month numeric month

day numeric day

hour numeric hour

min numeric minute

sec numeric second

tz time zone. Defaults to UTC.
Details

Input vectors are silently recycled. All inputs except sec are silently converted to integer vectors;
sec can be either integer or double.

Examples

make_datetime(year = 1999, month = 12, day = 22, sec = 10)
make_datetime(year = 1999, month = 12, day = 22, sec = c(10, 11))

make_difftime Create a difftime object.

Description

make_difftime() creates a difftime object with the specified number of units. Entries for different
units are cumulative. difftime displays durations in various units, but these units are estimates given
for convenience. The underlying object is always recorded as a fixed number of seconds.

Usage
make_difftime(num = NULL, units = "auto”, ...)
Arguments
num Optional number of seconds
units a character vector that lists the type of units to use for the display of the re-

turn value (see examples). If units is "auto" (the default) the display units are
computed automatically. This might create undesirable effects when converting
difftime objects to numeric values in data processing.

a list of time units to be included in the difftime and their amounts. Seconds,
minutes, hours, days, and weeks are supported. Normally only one of num or
. are present. If both are present, the difftime objects are concatenated.

38 minute

Details

Conceptually, difftime objects are a type of duration. They measure the exact passage of time but do
not always align with measurements made in larger units of time such as hours, months and years.
This is because the length of larger time units can be affected by conventions such as leap years and
Daylight Savings Time. lubridate provides a second class for measuring durations, the Duration
class.

Value

a difftime object

See Also

duration(), as.duration()

Examples

make_difftime(1)

make_difftime(60)
make_difftime(3600)

make_difftime (3600, units = "minute”)
Time difference of 60 mins

make_difftime(second = 90)
Time difference of 1.5 mins
make_difftime(minute = 1.5)
Time difference of 1.5 mins

make_difftime(second = 3, minute = 1.5, hour = 2, day = 6, week = 1)
Time difference of 13.08441 days

make_difftime(hour = 1, minute = -60)

Time difference of @ secs

make_difftime(day = -1)

Time difference of -1 days

make_difftime (120, day = -1, units = "minute”)

Time differences in mins

minute Get/set minutes component of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

minute(x)

minute(x) <- value

month 39

Arguments

X a date-time object

value numeric value to be assigned
Value

the minutes element of x as a decimal number

Examples

x <- ymd("2012-03-26")
minute(x)

minute(x) <- 1
minute(x) <- 61
minute(x) > 2

month Get/set months component of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage
month(x, label = FALSE, abbr = TRUE, locale = Sys.getlocale("LC_TIME"))

month(x) <- value

Arguments
X a date-time object
label logical. TRUE will display the month as a character string such as "January."
FALSE will display the month as a number.
abbr logical. FALSE will display the month as a character string label, such as "Jan-
uvary". TRUE will display an abbreviated version of the label, such as "Jan".
abbr is disregarded if label = FALSE.
locale for month, locale to use for month names. Default to current locale.
value a numeric object
Value

If label = FALSE: month as number (1-12, 1 = January, 12 = December), otherwise as an ordered
factor.

40 ms

Examples

X <- ymd("2012-03-26")
month(x)

month(x) <- 1

month(x) <- 13
month(x) > 3

month(ymd(080101))

month(ymd(080101), label = TRUE)
month(ymd(080101), label = TRUE, abbr = FALSE)
month(ymd(080101) + months(@:11), label = TRUE)

ms Parse periods with hour, minute, and second components

Description

Transforms a character or numeric vector into a period object with the specified number of hours,
minutes, and seconds. hms() recognizes all non-numeric characters except ’-’ as separators (’-’ is
used for negative durations). After hours, minutes and seconds have been parsed, the remaining
input is ignored.

Usage
ms(..., quiet = FALSE, roll = FALSE)
hm(..., quiet = FALSE, roll = FALSE)
hms(..., quiet = FALSE, roll = FALSE)
Arguments
a character vector of hour minute second triples
quiet logical. If TRUE, function evaluates without displaying customary messages.
roll logical. If TRUE, smaller units are rolled over to higher units if they exceed the
conventional limit. For example, hms(”01:59:120", roll = TRUE) produces
period "2H 1M 0S".
Value

a vector of period objects

See Also
hm(), ms()

now 41

Examples

ms(c(”09:10", "09:02", "1:10"))
ms("7 6")
ms("6,5")
hm(c(”09:10", "09:02", "1:10"))
hm("7 6")
hm("6,5")

X <= ¢("09:10:01", "09:10:02", "09:10:03")
hms (x)

hms("7 6 5", "3:23:::2", "2 : 23 : 33", "Finished in 9 hours, 20 min and 4 seconds")

now The current day and time

Description

The current day and time

Usage
now(tzone = "")
today(tzone = "")
Arguments
tzone a character vector specifying which time zone you would like the current time
in. tzone defaults to your computer’s system timezone. You can retrieve the
current time in the Universal Coordinated Time (UTC) with now("UTC").
Value

now - the current datetime as a POSIXct object

Examples
now()
now("GMT")
now("")
now() == now() # would be TRUE if computer processed both at the same instant

now() < now() # TRUE

now() > now() # FALSE

today ()

today ("GMT")

today() == today("GMT") # not always true
today() < as.Date("”2999-01-01") # TRUE (so far)

42 parse_date_time

origin 1970-01-01 UTC

Description

Origin is the date-time for 1970-01-01 UTC in POSIXct format. This date-time is the origin for the
numbering system used by POSIXct, POSIXIt, chron, and Date classes.

Usage
origin
Format

An object of class POSIXct (inherits from POSIXt) of length 1.

Examples

origin

parse_date_time User friendly date-time parsing functions

Description

parse_date_time() parses an input vector into POSIXct date-time object. It differs from base: : strptime()

in two respects. First, it allows specification of the order in which the formats occur without the
need to include separators and the % prefix. Such a formatting argument is referred to as "order".
Second, it allows the user to specify several format-orders to handle heterogeneous date-time char-
acter representations.

parse_date_time2() is a fast C parser of numeric orders.

fast_strptime() is a fast C parser of numeric formats only that accepts explicit format arguments,
just like base: :strptime().

Usage

parse_date_time(
X,
orders,
tz = "UTC",
truncated = 0,
quiet = FALSE,
locale = Sys.getlocale("LC_TIME"),
select_formats = .select_formats,
exact = FALSE,

parse_date_time 43

train = TRUE,
drop = FALSE

)

parse_date_time2(
X,
orders,
tz = "UTC",
exact = FALSE,
1t = FALSE,
cutoff_2000 = 68L

)

fast_strptime(x, format, tz = "UTC", 1t = TRUE, cutoff_2000 = 68L)

Arguments

X a character or numeric vector of dates

orders a character vector of date-time formats. Each order string is a series of format-
ting characters as listed in base: :strptime() but might not include the "%"
prefix. For example, "ymd" will match all the possible dates in year, month,
day order. Formatting orders might include arbitrary separators. These are dis-
carded. See details for the implemented formats. If multiple order strings are
supplied, they are applied in turn for parse_date_time2() and fast_strptime().
For parse_date_time () the order of applied formats is determined by select_formats
parameter.

tz a character string that specifies the time zone with which to parse the dates

truncated integer, number of formats that can be missing. The most common type of irreg-
ularity in date-time data is the truncation due to rounding or unavailability of the
time stamp. If the truncated parameter is non-zero parse_date_time() also
checks for truncated formats. For example, if the format order is "ymdHMS"
and truncated = 3, parse_date_time() will correctly parse incomplete date-
times like 2012-06-01 12:23, 2012-06-01 12 and 2012-06-01. NOTE: The
ymd () family of functions is based on base: : strptime() which currently fails
to parse %Y-%m formats.

quiet logical. If TRUE, progress messages are not printed, and No formats found error
is suppressed and the function simply returns a vector of NAs. This mirrors the
behavior of base R functions base: :strptime() and base: :as.POSIXct().

locale locale to be used, see locales. On Linux systems you can use system("locale
-a") to list all the installed locales.

select_formats A function to select actual formats for parsing from a set of formats which
matched a training subset of x. It receives a named integer vector and returns a
character vector of selected formats. Names of the input vector are formats (not
orders) that matched the training set. Numeric values are the number of dates
(in the training set) that matched the corresponding format. You should use this
argument if the default selection method fails to select the formats in the right
order. By default the formats with most formatting tokens (%) are selected and
%Y counts as 2.5 tokens (so that it has a priority over %y%m). See examples.

44 parse_date_time

exact logical. If TRUE, the orders parameter is interpreted as an exact base: : strptime()
format and no training or guessing are performed (i.e. train, drop parameters
are ignored).

train logical, default TRUE. Whether to train formats on a subset of the input vector.
As aresult the supplied orders are sorted according to performance on this train-
ing set, which commonly results in increased performance. Please note that even
when train = FALSE (and exact = FALSE) guessing of the actual formats is still
performed on the training set (a pseudo-random subset of the original input vec-
tor). This might result in A11 formats failed to parse error. See notes
below.

drop logical, default FALSE. Whether to drop formats that didn’t match on the train-
ing set. If FALSE, unmatched on the training set formats are tried as a last resort
at the end of the parsing queue. Applies only when train = TRUE. Setting this
parameter to TRUE might slightly speed up parsing in situations involving many
formats. Prior to v1.7.0 this parameter was implicitly TRUE, which resulted in
occasional surprising behavior when rare patterns where not present in the train-
ing set.

1t logical. If TRUE, returned object is of class POSIXIt, and POSIXct otherwise.
For compatibility with base: : strptime() the defaultis TRUE for fast_strptime()
and FALSE for parse_date_time2().

cutoff_2000 integer. For y format, two-digit numbers smaller or equal to cutoff_2000 are
parsed as though starting with 20, otherwise parsed as though starting with 19.
Available only for functions relying on lubridates internal parser.

format a vector of formats. If multiple formats supplied they are applied in turn till
success. The formats should include all the separators and each format letter
must be prefixed with %, just as in the format argument of base: :strptime().

Details

When several format-orders are specified, parse_date_time() selects (guesses) format-orders
based on a training subset of the input strings. After guessing the formats are ordered accord-
ing to the performance on the training set and applied recursively on the entire input vector. You
can disable training with train = FALSE.

parse_date_time(), and all derived functions, such as ymd_hms(), ymd(), etc., will drop into
fast_strptime() instead of base: :strptime () whenever the guessed from the input data formats
are all numeric.

The list below contains formats recognized by lubridate. For numeric formats leading Os are op-
tional. As compared to base: :strptime(), some of the formats are new or have been extended for
efficiency reasons. These formats are marked with "(*)" below. Fast parsers parse_date_time2()
and fast_strptime() accept only formats marked with "(!)".

a Abbreviated weekday name in the current locale. (Also matches full name)

A Full weekday name in the current locale. (Also matches abbreviated name).
You don’t need to specify a and A formats explicitly. Wday is automatically handled if
preproc_wday = TRUE

b (!) Abbreviated or full month name in the current locale. The C parser currently understands only
English month names.

parse_date_time 45

B (!) Same as b.

d (!) Day of the month as decimal number (01-31 or 0-31)

H (!) Hours as decimal number (00-24 or 0-24).

I (!) Hours as decimal number (01-12 or 1-12).

j Day of year as decimal number (001-366 or 1-366).

g (!*) Quarter (1-4). The quarter month is added to the parsed month if m element is present.

m (!*) Month as decimal number (01-12 or 1-12). For parse_date_time also matches abbreviated
and full months names as b and B formats. C parser understands only English month names.

M (!) Minute as decimal number (00-59 or 0-59).

p (!) AM/PM indicator in the locale. Commonly used in conjunction with I and not with H. But
lubridate’s C parser accepts H format as long as hour is not greater than 12. C parser under-
stands only English locale AM/PM indicator.

S (!) Second as decimal number (00—61 or 0-61), allowing for up to two leap-seconds (but POSIX-
compliant implementations will ignore leap seconds).

0S Fractional second.

U Week of the year as decimal number (00-53 or 0-53) using Sunday as the first day 1 of the week
(and typically with the first Sunday of the year as day 1 of week 1). The US convention.

w Weekday as decimal number (0-6, Sunday is 0).

W Week of the year as decimal number (0053 or 0-53) using Monday as the first day of week (and
typically with the first Monday of the year as day 1 of week 1). The UK convention.

y (!*) Year without century (00-99 or 0-99). In parse_date_time() also matches year with cen-
tury (Y format).

Y (!) Year with century.

z (1*) ISO8601 signed offset in hours and minutes from UTC. For example -0800, -08: 00 or -08,
all represent 8 hours behind UTC. This format also matches the Z (Zulu) UTC indicator.
Because base: :strptime() doesn’t fully support ISO8601 this format is implemented as an
union of 4 formats: Ou (Z), Oz (-0800), OO (-08:00) and Oo (-08). You can use these formats
as any other but it is rarely necessary. parse_date_time2() and fast_strptime() support
all of these formats.

Om (!*) Matches numeric month and English alphabetic months (Both, long and abbreviated forms).
Op (!*) Matches AM/PM English indicator.

r (*) Matches Ip and H orders.

R (*) Matches HM andIMp orders.

T (*) Matches IMSp, HMS, and HMOS orders.

Value

a vector of POSIXct date-time objects

46 parse_date_time

Note

parse_date_time() (and the derivatives ymd(), ymd_hms(), etc.) relies on a sparse guesser that
takes at most 501 elements from the supplied character vector in order to identify appropriate for-
mats from the supplied orders. If you get the error Al11 formats failed to parse and you
are confident that your vector contains valid dates, you should either set exact argument to TRUE
or use functions that don’t perform format guessing (fast_strptime(), parse_date_time2() or
base::strptime()).

For performance reasons, when timezone is not UTC, parse_date_time2() and fast_strptime()
perform no validity checks for daylight savings time. Thus, if your input string contains an invalid
date time which falls into DST gap and 1t = TRUE you will get an POSIX1t object with a non-
existent time. If 1t = FALSE your time instant will be adjusted to a valid time by adding an hour.
See examples. If you want to get NA for invalid date-times use fit_to_timeline() explicitly.

See Also

base: :strptime(), ymd(), ymd_hms ()

Examples

*x orders are much easier to write **

x <- ¢c("09-01-01", "@9-01-02", "@9-01-03")
parse_date_time(x, "ymd")

parse_date_time(x, "y m d")

parse_date_time(x, "%y%m%d")

"2009-01-01 UTC" "2009-01-02 UTC" "2009-01-03 UTC"

xx heterogeneous date-times *x*
x <= c("09-01-01", "090102", "@9-01 03", "09-01-03 12:02")
parse_date_time(x, c("ymd", "ymd HM"))

*x different ymd orders *x*

X <- c("2009-01-01", "02022010", "02-02-2010")
parse_date_time(x, c("dmY”, "ymd"))

"2009-01-01 UTC" "2010-02-02 UTC" "2010-02-02 UTC"

*x truncated time-dates **
X <= ¢("2011-12-31 12:59:59", "2010-01-01 12:11", "2010-01-01 12", "2010-01-01")
parse_date_time(x, "Ymd HMS", truncated = 3)

x* specifying exact formats and avoiding training and guessing **
parse_date_time(x, c("%m-%d-%y", "%m%d%y", "%m-%d-%y %H:%M"), exact = TRUE)
parse_date_time(c('12/17/1996 04:00:00','4/18/1950 0130"'),

c('%m/%d/%Y %I:%M:%S", "'%m/%d/%Y %H%M'), exact = TRUE)

xx quarters and partial dates *x
parse_date_time(c("2016.2", "2016-04"), orders = "Yq")
parse_date_time(c("2016", "2016-04"), orders = c("Y", "Ym"))

x* fast parsing **
Not run:
options(digits.secs = 3)

period 47

random times between 1400 and 3000
tt <- as.character(.POSIXct(runif (1000, -17987443200, 32503680000)))
tt <- rep.int(tt, 1000)

system.time(out <- as.POSIXct(tt, tz = "UTC"))

system.time(outl <- ymd_hms(tt)) # constant overhead on long vectors
system.time(out2 <- parse_date_time2(tt, "YmdHMOS"))
system.time(out3 <- fast_strptime(tt, "%Y-%m-%d %H:%M:%0S"))

all.equal(out, outl)

all.equal(out, out2)

all.equal(out, out3)
End(Not run)
*x how to use “select_formats™ argument xx
By default %Y has precedence:
parse_date_time(c("”27-09-13", "27-09-2013"), "dmy")
to give priority to %y format, define your own select_format function:
my_select <- function(trained, drop=FALSE, ...){

n_fmts <- nchar(gsub("[*%]1", "", names(trained))) + grepl("%y", names(trained))*1.5

names(trained[which.max(n_fmts) 1)

3
parse_date_time(c("27-09-13", "27-09-2013"), "dmy", select_formats = my_select)

xx invalid times with "fast"” parsing **

parse_date_time("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York")
parse_date_time2("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York")
parse_date_time2("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York", 1t = TRUE)
period Create or parse period objects
Description

period() creates or parses a period object with the specified values.

Usage

period(num = NULL, units = "second”, ...)
is.period(x)
seconds(x = 1)

minutes(x = 1)

48

hours(x = 1)

days(x = 1)

weeks(x = 1)
years(x = 1)
milliseconds(x
microseconds(x

nanoseconds (x

picoseconds(x

period

D

D
D
D)

S3 method for class 'numeric'
months(x, abbreviate)

Arguments

num

units

abbreviate

Details

a numeric or character vector. A character vector can specify periods in a conve-
nient shorthand format or ISO 8601 specification. All unambiguous name units
and abbreviations are supported, "m" stands for months, "M" for minutes unless
ISO 8601 "P" modifier is present (see examples). Fractional units are supported
but the fractional part is always converted to seconds.

a character vector that lists the type of units to be used. The units in units are
matched to the values in num according to their order. When num is character,
this argument is ignored.

a list of time units to be included in the period and their amounts. Seconds,
minutes, hours, days, weeks, months, and years are supported. Normally only
one of num or . . . are present. If both are present, the periods are concatenated.

Any R object for is.periods and a numeric value of the number of units for
elementary constructors. With the exception of seconds(), x must be an integer.

Ignored. For consistency with S3 generic in base namespace.

Within a Period object, time units do not have a fixed length (except for seconds) until they are
added to a date-time. The length of each time unit will depend on the date-time to which it is added.
For example, a year that begins on 2009-01-01 will be 365 days long. A year that begins on 2012-
01-01 will be 366 days long. When math is performed with a period object, each unit is applied
separately. How the length of a period is distributed among its units is non-trivial. For example,
when leap seconds occur 1 minute is longer than 60 seconds.

Periods track the change in the "clock time" between two date-times. They are measured in common
time related units: years, months, days, hours, minutes, and seconds. Each unit except for seconds
must be expressed in integer values.

period 49

Besides the main constructor and parser period(), period objects can also be created with the spe-
cialized functions years(), months(), weeks(), days(), hours(), minutes(), and seconds().
These objects can be added to and subtracted to date-times to create a user interface similar to object
oriented programming.

Note: Arithmetic with periods can result in undefined behavior when non-existent dates are in-
volved (such as February 29th in non-leap years). Please see Period for more details and %m+% and
add_with_rollback() for alternative operations.

Value

a period object

See Also
Period, period(), %m+%, add_with_rollback()

Examples

Separate period and units vectors

period(c(90, 5), c("second”, "minute"))

"5M 90S"

period(-1, "days")

period(c(3, 1, 2, 13, 1), c("second”, "minute”, "hour"”, "day", "week"))
period(c(1, -60), c("hour”, "minute"))

period(@, "second")

Units as arguments

period(second = 90, minute = 5)

period(day = -1)

period(second = 3, minute = 1, hour = 2, day = 13, week = 1)

period(hour = 1, minute = -60)

period(second = 0)

period(c(1, -60), c("hour”, "minute"), hour = c(1, 2), minute = c(3, 4))

Lubridate style parsing

period("2M 1sec")

period(”2hours 2minutes 1second”)

period(”2d 2H 2M 25")

period(”2days 2hours 2mins 2secs”)

period("2 days, 2 hours, 2 mins, 2 secs"”)

Missing numerals default to 1. Repeated units are added up.
period("day day")

ISO 8601 parsing

period("P10M23DT23H") # M stands for months

period("10DT1eM") # M stands for minutes

period("P3Y6M4DT12H30M5S") # M for both minutes and months
period("P23DT60QH 20min 100 sec”) # mixing ISO and lubridate style parsing

50 period_to_seconds

Comparison with characters (from v1.6.0)
period("day 2 sec") > "day 1sec”
Elementary Constructors

x <- ymd("2009-08-03")
x + days(1) + hours(6) + minutes(30)
x + days(100) - hours(8)

class(as.Date("2009-08-09") + days(1)) # retains Date class
as.Date("2009-08-09") + hours(12)
class(as.Date("2009-08-09") + hours(12))

converts to POSIXt class to accomodate time units

years(1) - months(7)
c(1:3) * hours(1)
hours(1:3)

sequencing
y <- ymd(090101) # "2009-01-01 CST"
y + months(@:11)

compare DST handling to durations

boundary <- ymd_hms("2009-03-08 ©1:59:59", tz = "America/Chicago”)
boundary + days(1) # period

boundary + ddays(1) # duration

is.period(as.Date("2009-08-03")) # FALSE

is.period(period(months = 1, days = 15)) # TRUE

period_to_seconds Contrive a period to/from a given number of seconds

Description

period_to_seconds() approximately converts a period to seconds assuming there are 365.25 days
in a calendar year and 365.25/12 days in a month.

seconds_to_period() create a period that has the maximum number of non-zero elements (days,
hours, minutes, seconds). This computation is exact because it doesn’t involve years or months.

Usage

period_to_seconds(x)

seconds_to_period(x)

Arguments

X A numeric object. The number of seconds to coerce into a period.

pretty_dates 51

Value

A number (period) that roughly equates to the period (seconds) given.

pretty_dates Computes attractive axis breaks for date-time data

Description

pretty_dates() identifies which unit of time the sub-intervals should be measured in to provide
approximately n breaks, then chooses a "pretty" length for the sub-intervals and sets start and end
points that 1) span the entire range of the data, and 2) allow the breaks to occur on important date-
times (i.e. on the hour, on the first of the month, etc.)

Usage
pretty_dates(x, n, ...)
Arguments
X a vector of POSIXct, POSIXIt, Date, or chron date-time objects
n integer value of the desired number of breaks
additional arguments to pass to function
Value

a vector of date-times that can be used as axis tick marks or bin breaks

Examples

x <- seq.Date(as.Date("2009-08-02"), by = "year”, length.out = 2)
pretty_dates(x, 12)

quarter Get the fiscal quarter and semester of a date-time

Description

Quarters divide the year into fourths. Semesters divide the year into halfs.

52 rollbackward

Usage

quarter(
X,
type = "quarter”,
fiscal_start =1,
with_year = identical(type, "year.quarter")

)

semester(x, with_year = FALSE)

Arguments
X a date-time object of class POSIXct, POSIXIt, Date, chron, yearmon, yearqtr,
700, zooreg, timeDate, xts, its, ti, jul, timeSeries, fts or anything else that can be
converted with as.POSIXIt
type the format to be returned for the quarter. Can be one one of "quarter" - return

numeric quarter (default), "year.quarter” return the ending year and quarter as
a number of the form year.quarter, "date_first" or "date_last" - return the date
at the quarter’s start or end, "year_start/end" - return a full description of the
quarter as a string which includes the start and end of the year (ex. "2020/21
Q1").

fiscal_start numeric indicating the starting month of a fiscal year.

with_year logical indicating whether or not to include the quarter or semester’s year (dep-
recated; use the type parameter instead).
Value
numeric or a vector of class POSIXct if type argument is date_first or date_last. When type
is year.quarter the year returned is the end year of the financial year.

Examples

x <- ymd(c("2012-03-26", "2012-05-04", "2012-09-23", "2012-12-31"))

quarter(x)
quarter(x, type = "year.quarter")
quarter(x, type = "year.quarter"”, fiscal_start = 11)

quarter(x, type = "date_first”, fiscal_start = 11)
quarter(x, type = "date_last”, fiscal_start = 11)
semester(x)

semester(x, with_year = TRUE)

rollbackward Roll backward or forward a date the previous, current or next month

round_date 53

Description

rollbackward() changes a date to the last day of the previous month or to the first day of the
month. rollforward() rolls to the last day of the current month or to the first day of the next month.
Optionally, the new date can retain the same hour, minute, and second information. rollback() is
a synonym for rollbackward().

Usage

rollbackward(dates, roll_to_first = FALSE, preserve_hms = TRUE)
rollback(dates, roll_to_first = FALSE, preserve_hms = TRUE)

rollforward(dates, roll_to_first = FALSE, preserve_hms = TRUE)

Arguments

dates A POSIXct, POSIXIt or Date class object.
roll_to_first Rollback to the first day of the month instead of the last day of the month

preserve_hms Retains the same hour, minute, and second information? If FALSE, the new date
will be at 00:00:00.

Value

A date-time object of class POSIXIt, POSIXct or Date, whose day has been adjusted to the last day
of the previous month, or to the first day of the month.

Examples

date <- ymd("2010-03-03")
rollbackward(date)

dates <- date + months(0:2)
rollbackward(dates)

date <- ymd_hms("2010-03-03 12:44:22")

rollbackward(date)

rollbackward(date, roll_to_first = TRUE)

rollbackward(date, preserve_hms = FALSE)

rollbackward(date, roll_to_first = TRUE, preserve_hms = FALSE)

round_date Round, floor and ceiling methods for date-time objects

54 round_date

Description

round_date() takes a date-time object and time unit, and rounds it to the nearest value of the
specified time unit. For rounding date-times which are exactly halfway between two consec-
utive units, the convention is to round up. Note that this is in line with the behavior of R’s
base: :round.POSIXt() function but does not follow the convention of the base base: : round()
function which "rounds to the even digit", as per IEC 60559.

Rounding to the nearest unit or multiple of a unit is supported. All meaningful specifications in the
English language are supported - secs, min, mins, 2 minutes, 3 years etc.

Rounding to fractional seconds is also supported. Please note that rounding to fractions smaller than
1 second can lead to large precision errors due to the floating point representation of the POSIXct
objects. See examples.

floor_date() takes a date-time object and rounds it down to the nearest boundary of the specified
time unit.

ceiling_date() takes a date-time object and rounds it up to the nearest boundary of the specified

time unit.
Usage
round_date(
X’
unit = "second”,
week_start = getOption("”lubridate.week.start”, 7)
)
floor_date(
X’
unit = "seconds”,
week_start = getOption("”lubridate.week.start”, 7)
)
ceiling_date(
X,
unit = "seconds”,

change_on_boundary = NULL,
week_start = getOption("lubridate.week.start”, 7)

)
Arguments
X a vector of date-time objects
unit astring, Period object or a date-time object. When a singleton string, it specifies

a time unit or a multiple of a unit to be rounded to. Valid base units are second,
minute, hour, day, week, month, bimonth, quarter, season, halfyear and
year. Arbitrary unique English abbreviations as in the period() constructor
are allowed. Rounding to multiples of units (except weeks) is supported.

When unit is a Period object, it is first converted to a string representation
which might not be in the same units as the constructor. For example weeks (1)

round_date 55

is converted to "7d OH OM 0S". Thus, always check the string representation of
the period before passing to this function.

When unit is a date-time object rounding is done to the nearest of the elements
in unit. If range of unit vector does not cover the range of x ceiling_date()
and floor_date() round to the max(x) and min(x) for elements that fall out-
side of range(unit).

week_start week start day (Default is 7, Sunday. Set lubridate.week.start to override).
Full or abbreviated names of the days of the week can be in English or as pro-
vided by the current locale.

change_on_boundary
if this is NULL (the default), instants on the boundary remain unchanged, but
Date objects are rounded up to the next boundary. If this is TRUE, instants on
the boundary are rounded up to the next boundary. If this is FALSE, nothing on
the boundary is rounded up at all. This was the default for lubridate prior to
v1.6.0. See section Rounding Up Date Objects below for more details.

Details

In lubridate, functions that round date-time objects try to preserve the class of the input object
whenever possible. This is done by first rounding to an instant, and then converting to the original
class as per usual R conventions.

Value

When unit is a string, return a Date object if x is a Date and unit is larger or equal than "day",
otherwise a POSIXct object. When unit is a date-time object, return a date-time object of the same
class and same time zone as unit.

Rounding Up Date Objects

By default, rounding up Date objects follows 3 steps:

1. Convert to an instant representing lower bound of the Date: 2000-01-01 —> 2000-01-01 00:00: 00
2. Round up to the next closest rounding unit boundary. For example, if the rounding unit is
month then next closest boundary of 2000-01-01 is 2000-02-01 00:00: 00.

The motivation for this is that the "partial" 2000-01-01 is conceptually an interval (2000-01-01 00:00: 00
— 2000-01-02 00:00:00) and the day hasn’t started clocking yet at the exact boundary
00:00:00. Thus, it seems wrong to round a day to its lower boundary.

Behavior on the boundary can be changed by setting change_on_boundary to TRUE or FALSE.

3. If the rounding unit is smaller than a day, return the instant from step 2 (POSIXct), otherwise
convert to and return a Date object.

See Also

base: :round()

56 round_date

Examples

print fractional seconds
options(digits.secs = 6)

X <- ymd_hms("2009-08-03 12:01:59.23")
round_date(x, ".5s")

round_date(x, "sec")

round_date(x, "second")

round_date(x, "minute"”)

round_date(x, "5 mins")

round_date(x, "hour")

round_date(x, "2 hours")

round_date(x, "day")

round_date(x, "week")

round_date(x, "month")

round_date(x, "bimonth")

round_date(x, "quarter"”) == round_date(x, "3 months")
round_date(x, "halfyear")
round_date(x, "year")

x <- ymd_hms("2009-08-03 12:01:59.23")
floor_date(x, ".1s")
floor_date(x, "second")
floor_date(x, "minute")
floor_date(x, "hour™)
floor_date(x, "day")
floor_date(x, "week")
floor_date(x, "month")
floor_date(x, "bimonth")
floor_date(x, "quarter")
floor_date(x, "season")
floor_date(x, "halfyear")
floor_date(x, "year")

x <- ymd_hms("2009-08-03 12:01:59.23")

ceiling_date(x, ".1 sec"”) # imprecise representation at 0.1 sec !!!
ceiling_date(x, "second")

ceiling_date(x, "minute")

ceiling_date(x, "5 mins")

ceiling_date(x, "hour")

ceiling_date(x, "day")

ceiling_date(x, "week")

ceiling_date(x, "month")

ceiling_date(x, "bimonth") == ceiling_date(x, "2 months")
ceiling_date(x, "quarter")

ceiling_date(x, "season")

ceiling_date(x, "halfyear")

ceiling_date(x, "year")

Period unit argument
floor_date(x, days(2))
floor_date(x, years(1))

second 57

As of R 3.4.2 POSIXct printing of fractional numbers is wrong
as.POSIXct("2009-08-03 12:01:59.3") ## -> "2009-08-03 12:01:59.2 CEST”
ceiling_date(x, ".1 sec") ## -> "2009-08-03 12:01:59.2 CEST"

behaviour of ~change_on_boundary"”

As per default behaviour “NULL™, instants on the boundary remain the
same but dates are rounded up

ceiling_date(ymd_hms("2000-01-01 00:00:00"), "month")
ceiling_date(ymd("2000-01-01"), "month")

If “TRUE™, both instants and dates on the boundary are rounded up

ceiling_date(ymd_hms("2000-01-01 00:00:00"), "month"”, change_on_boundary = TRUE)
ceiling_date(ymd("2000-01-01"), "month")

If “FALSE™, both instants and dates on the boundary remain the same
ceiling_date(ymd_hms("2000-01-01 00:00:00"), "month", change_on_boundary = FALSE)

ceiling_date(ymd("2000-01-01"), "month")

x <- ymd_hms("2000-01-01 00:00:00")
ceiling_date(x, "month")
ceiling_date(x, "month", change_on_boundary = TRUE)

For Date objects first day of the month is not on the
"boundary”. change_on_boundary applies to instants only.
x <- ymd("”2000-01-01")

ceiling_date(x, "month")

ceiling_date(x, "month", change_on_boundary = TRUE)

second Get/set seconds component of a date-time

Description
Date-time must be a POSIXct, POSIXIt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

second(x)
second(x) <- value

Arguments

X a date-time object

value numeric value to be assigned

58 stamp

Value

the seconds element of x as a decimal number

Examples

X <- ymd("2012-03-26")
second(x)

second(x) <- 1
second(x) <- 61
second(x) > 2

stamp Format dates and times based on human-friendly templates

Description

Stamps are just like format (), but based on human-friendly templates like "Recorded at 10 am,
September 2002" or "Meeting, Sunday May 1, 2000, at 10:20 pm".

Usage

stamp(
X,
orders = lubridate_formats,
locale = Sys.getlocale("LC_TIME"),
quiet = FALSE,
exact = FALSE
)

stamp_date(x, locale = Sys.getlocale("LC_TIME"), quiet = FALSE)

stamp_time(x, locale = Sys.getlocale("LC_TIME"), quiet = FALSE)

Arguments

X a character vector of templates.

orders orders are sequences of formatting characters which might be used for disam-
biguation. For example "ymd hms", "aym" etc. See guess_formats() for a list
of available formats.

locale locale in which x is encoded. On Linux-like systems use locale -a in the ter-
minal to list available locales.

quiet whether to output informative messages.

exact logical. If TRUE, the orders parameter is interpreted as an exact base: :strptime()

format and no format guessing is performed.

timespan 59

Details

stamp() is a stamping function date-time templates mainly, though it correctly handles all date
and time formats as long as they are unambiguous. stamp_date(), and stamp_time() are the
specialized stamps for dates and times (MHS). These function might be useful when the input
template is unambiguous and matches both a time and a date format.

Lubridate tries hard to guess the formats, but often a given format can be interpreted in multiple
ways. One way to deal with such cases is to provide unambiguous formats like 22/05/81 instead of
10/05/81 for d/m/y format. Another way is to use a more specialized stamp_date and stamp_time.
The core function stamp() prioritizes longer date-time formats.

If x is a vector of values lubridate will choose the format which "fits" x the best. Note that longer
formats are preferred. If you have "22:23:00 PM" then "HMSp" format will be given priority to
shorter "HMS" order which also fits the supplied string.

Finally, you can give desired format order directly as orders argument.

Value

a function to be applied on a vector of dates

See Also

guess_formats(), parse_date_time(), strptime()

Examples

D <- ymd("2010-04-05") - days(1:5)

stamp(”March 1, 1999") (D)

sf <- stamp(”"Created on Sunday, Jan 1, 1999 3:34 pm")

sf(D)

stamp(”Jan 01") (D)

stamp(”Sunday, May 1, 2000", locale = "C")(D)

stamp(”Sun Aug 5") (D) #=> "Sun Aug 04" "Sat Aug 04" "Fri Aug 04" "Thu Aug 04" "Wed Aug 03"
stamp(”12/31/99") (D) #=> "06/09/11"

stamp(”Sunday, May 1, 2000 22:10", locale = "C")(D)
stamp("2013-01-01T06:00:00Z") (D)
stamp(”2013-01-01T00:00:00-06") (D)
stamp("2013-01-01T00:00:00-08:00") (force_tz(D, "America/Chicago”))

timespan Description of time span classes in lubridate

Description

A time span can be measured in three ways: as a duration, an interval, or a period.

¢ durations record the exact number of seconds in a time span. They measure the exact passage
of time but do not always align with human measurements like hours, months and years.

60 time_length

* periods record the change in the clock time between two date-times. They are measured in
human units: years, months, days, hours, minutes, and seconds.

* intervals are time spans bound by two real date-times. Intervals can be accurately converted
to periods and durations.

Examples

duration(3690, "seconds")

period(3690, "seconds")

period(second = 30, minute = 1, hour = 1)

interval (ymd_hms("2009-08-09 13:01:30"), ymd_hms("2009-08-09 12:00:00"))

date <- ymd_hms("2009-03-08 01:59:59") # DST boundary
date + days(1)
date + ddays(1)

date2 <- ymd_hms("2000-02-29 12:00:00")
date2 + years(1)
self corrects to next real day

date3 <- ymd_hms("2009-01-31 01:00:00")
date3 + c(0:11) * months(1)

span <- date2 %--% date # creates interval
date <- ymd_hms("2009-01-01 00:00:00")
date + years(1)

date - days(3) + hours(6)

date + 3 x seconds(10)

months(6) + days(1)

time_length Compute the exact length of a time span

Description

Compute the exact length of a time span

Usage

time_length(x, unit = "second”)

S4 method for signature 'Interval'

time_length(x, unit = "second")
Arguments
X a duration, period, difftime or interval

unit a character string that specifies with time units to use

tz 61

Details

When x is an Interval object and unit are years or months, time_length() takes into account the
fact that all months and years don’t have the same number of days.

When x is a Duration, Period or difftime() object, length in months or years is based on their
most common lengths in seconds (see timespan()).

Value
the length of the interval in the specified unit. A negative number connotes a negative interval or
duration

See Also

timespan()

Examples

int <- interval(ymd("”1980-01-01"), ymd("2014-09-18"))
time_length(int, "week")

Exact age
time_length(int, "year")

Age at last anniversary
trunc(time_length(int, "year"))

Example of difference between intervals and durations
int <- interval(ymd(”1900-01-01"), ymd("1999-12-31"))
time_length(int, "year")

time_length(as.duration(int), "year")

tz Get/set time zone component of a date-time

Description

Conveniently get and set the time zone of a date-time.
tz<-is an alias for force_tz(), which preserves the local time, creating a different instant in time.
Use with_tz() if you want keep the instant the same, but change the printed representation.

Usage

tz(x)

tz(x) <- value

62 week

Arguments
X A date-time vector, usually of class POSIXct or POSIX1t.
value New value of time zone.

Value

nn

A character vector of length 1. An empty string ("") represents your current time zone.

For backward compatibility, the time zone of a date, NA, or character vector is "UTC".

Valid time zones

Time zones are stored in system specific database, so are not guaranteed to be the same on every
system (however, they are usually pretty similar unless your system is very out of date). You can
see a complete list with OlsonNames ().

See Also

See DateTimeClasses for a description of the underlying tzone attribute..

Examples

x <=y <- ymd_hms("2012-03-26 10:10:00", tz = "UTC")
tz(x)

Note that setting tz() preserved the clock time, which implies
that the actual instant in time is changing

tz(y) <- "Pacific/Auckland”

y

X -y

This is the same as force_tz()
force_tz(x, "Pacific/Auckland”)

Use with_tz() if you want to change the time zone, leave
the instant in time the same
with_tz(x, "Pacific/Auckland”)

week Get/set weeks component of a date-time

Description

week () returns the number of complete seven day periods that have occurred between the date and
January 1st, plus one.

isoweek () returns the week as it would appear in the ISO 8601 system, which uses a reoccurring
leap week.

epiweek() is the US CDC version of epidemiological week. It follows same rules as isoweek ()
but starts on Sunday. In other parts of the world the convention is to start epidemiological weeks on
Monday, which is the same as isoweek.

with_tz 63

Usage

week (x)

week(x) <- value

isoweek(x)
epiweek(x)
Arguments
X a date-time object. Must be a POSIXct, POSIXIt, Date, chron, yearmon, yearqtr,
700, zooreg, timeDate, xts, its, ti, jul, timeSeries, or fts object.
value a numeric object
Value

the weeks element of x as an integer number

References

https://en.wikipedia.org/wiki/ISO_week_date

See Also

isoyear()

Examples

X <- ymd("2012-03-26")
week (x)

week(x) <- 1

week(x) <- 54

week(x) > 3

with_tz Get date-time in a different time zone

Description

with_tz returns a date-time as it would appear in a different time zone. The actual moment of time
measured does not change, just the time zone it is measured in. with_tz defaults to the Universal
Coordinated time zone (UTC) when an unrecognized time zone is inputted. See Sys.timezone()
for more information on how R recognizes time zones.

https://en.wikipedia.org/wiki/ISO_week_date

64 year

Usage

with_tz(time, tzone = "", ...)

Default S3 method:

with_tz(time, tzone = "", ...)
Arguments
time a POSIXct, POSIXIt, Date, chron date-time object or a data.frame object. When

a data.frame all POSIXt elements of a data.frame are processed with with_tz()
and new data.frame is returned.

tzone a character string containing the time zone to convert to. R must recognize the
name contained in the string as a time zone on your system.

Parameters passed to other methods.

Value

a POSIXct object in the updated time zone

See Also

force_tz()

Examples

X <- ymd_hms("2009-08-07 00:00:01", tz = "America/New_York")
with_tz(x, "GMT")

year Get/set years component of a date-time

Description

Date-time must be a POSIXct, POSIXIt, Date, Period or any other object convertible to POSIXIt.
isoyear() returns years according to the ISO 8601 week calendar.

epiyear () returns years according to the epidemiological week calendars.
Usage

year(x)

year(x) <- value

isoyear(x)

epiyear(x)

ymd 65

Arguments
X a date-time object
value a numeric object
Details

year does not yet support years before O C.E.

Value

the years element of x as a decimal number

References

https://en.wikipedia.org/wiki/ISO_week_date

Examples

X <- ymd("2012-03-26")
year(x)

year(x) <- 2001
year(x) > 1995

ymd Parse dates with year, month, and day components

Description

Transforms dates stored in character and numeric vectors to Date or POSIXct objects (see tz ar-
gument). These functions recognize arbitrary non-digit separators as well as no separator. As long
as the order of formats is correct, these functions will parse dates correctly even when the input
vectors contain differently formatted dates. See examples.

Usage

ymd(
quiet = FALSE,
tz = NULL,
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

ydm(
quiet = FALSE,
tz = NULL,

https://en.wikipedia.org/wiki/ISO_week_date

66

locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

mdy (
quiet = FALSE,
tz = NULL,
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

myd (
quiet = FALSE,
tz = NULL,
locale = Sys.getlocale("LC_TIME"),
truncated = @

)

dmy (
quiet = FALSE,
tz = NULL,
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

dym(
quiet = FALSE,
tz = NULL,
locale = Sys.getlocale("LC_TIME"),
truncated = @

)

yq(..., quiet = FALSE, tz

ym(..., quiet = FALSE, tz

my(..., quiet = FALSE, tz = NULL, locale

Arguments

NULL, locale

NULL, locale

ymd

Sys.getlocale("LC_TIME"))
Sys.getlocale("LC_TIME"))

Sys.getlocale("LC_TIME"))

a character or numeric vector of suspected dates

quiet

logical. If TRUE, function evaluates without displaying customary messages.

tz Time zone indicator. If NULL (default), a Date object is returned. Otherwise a
POSIXct with time zone attribute set to tz.

ymd 67

locale locale to be used, see locales. On Linux systems you can use system(”locale
-a") to list all the installed locales.
truncated integer. Number of formats that can be truncated.
Details

In case of heterogeneous date formats, the ymd() family guesses formats based on a subset of
the input vector. If the input vector contains many missing values or non-date strings, the sub-
set might not contain meaningful dates and the date-time format won’t be guessed resulting in
All formats failed to parse error. In such cases please see parse_date_time() for a more
flexible parsing interface.

If the truncated parameter is non-zero, the ymd() functions also check for truncated formats. For
example, ymd () with truncated = 2 will also parse incomplete dates like 2012-06 and 2012.

NOTE: The ymd() family of functions is based on parse_date_time() and thus directly drop
to the internal C parser for numeric months, but uses base: :strptime() for alphabetic months.
This implies that some of base: :strptime()’s limitations are inherited by lubridate’s parser. For
example, truncated formats (like %Y-%b) will not be parsed. Numeric truncated formats (like %Y-%m)
are handled correctly by lubridate’s C parser.

As of version 1.3.0, lubridate’s parse functions no longer return a message that displays which
format they used to parse their input. You can change this by setting the lubridate.verbose
option to TRUE with options(lubridate.verbose = TRUE).

Value

a vector of class POSIXct if tz argument is non-NULL or Date if tz is NULL (default)

See Also

parse_date_time() for an even more flexible low level mechanism.

Examples

x <= c("09-01-01", "09-01-02", "09-01-03")
ymd(x)

x <- c("2009-01-01", "2009-01-02", "2009-01-03")
ymd (x)

ymd (090101, 90102)

now() > ymd(20090101)

TRUE

dmy (010210)

mdy (010210)

yq('2014.2")
heterogeneous formats in a single vector:
x <- c(20090101, "2009-01-02", "2009 @1 03", "2009-1-4",

"2009-1, 5", "Created on 2009 1 6", "200901 !!! @7")
ymd(x)

What lubridate might not handle:

68 ymd_hms

Extremely weird cases when one of the separators is "" and some of the
formats are not in double digits might not be parsed correctly:

Not run: ymd("201002-01", "201002-1", "20102-1")

dmy("@312-2010", "312-2010")

End(Not run)

ymd_hms Parse date-times with year, month, and day, hour, minute, and second
components.

Description

Transform dates stored as character or numeric vectors to POSIXct objects. The ymd_hms () family
of functions recognizes all non-alphanumeric separators (with the exception of "." if frac = TRUE)
and correctly handles heterogeneous date-time representations. For more flexibility in treatment of
heterogeneous formats, see low level parser parse_date_time().

Usage
ymd_hms (

quiet = FALSE,

tz = "UTC",

locale = Sys.getlocale("LC_TIME"),
truncated = 0

ymd_hm(
quiet = FALSE,
tz = "UTC”,
locale = Sys.getlocale("LC_TIME"),
truncated = @

ymd_h (
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

dmy_hms (

L

quiet = FALSE,

ymd_hms

tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

dmy_hm(
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

dmy_h(
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

mdy_hms (
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

mdy_hm(
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

mdy_h (
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

ydm_hms (

L

quiet = FALSE,

69

70

ymd_hms

tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

ydm_hm(
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)

ydm_h(
quiet = FALSE,
tz = "UTC",
locale = Sys.getlocale("LC_TIME"),
truncated = 0

)
Arguments
a character vector of dates in year, month, day, hour, minute, second format
quiet logical. If TRUE, function evaluates without displaying customary messages.
tz a character string that specifies which time zone to parse the date with. The
string must be a time zone that is recognized by the user’s OS.
locale locale to be used, see locales. On Linux systems you can use system("locale
-a") to list all the installed locales.
truncated integer, indicating how many formats can be missing. See details.
Details

The ymd_hms () functions automatically assign the Universal Coordinated Time Zone (UTC) to the
parsed date. This time zone can be changed with force_tz().

The most common type of irregularity in date-time data is the truncation due to rounding or unavail-
ability of the time stamp. If the truncated parameter is non-zero, the ymd_hms () functions also
check for truncated formats. For example, ymd_hms () with truncated = 3 will also parse incom-
plete dates like 2012-06-01 12:23, 2012-06-01 12 and 2012-06-01. NOTE: The ymd() family
of functions is based on base: :strptime() which currently fails to parse %y-%m formats.

In case of heterogeneous date formats the ymd_hms() family guesses formats based on a subset
of the input vector. If the input vector contains many missing values or non-date strings, the sub-
set might not contain meaningful dates and the date-time format won’t be guessed resulting in
All formats failed to parse error. In such cases please see parse_date_time() for a more
flexible parsing interface.

As of version 1.3.0, lubridate’s parse functions no longer return a message that displays which
format they used to parse their input. You can change this by setting the lubridate.verbose
option to TRUE with options(lubridate.verbose = TRUE).

ymd_hms

Value

a vector of POSIXct date-time objects

See Also

* ymd(), hms ()
* parse_date_time() for the underlying mechanism

Examples

X <= ¢c("2010-04-14-04-35-59", "2010-04-01-12-00-00")
ymd_hms (x)
X <= ¢c("2011-12-31 12:59:59", "2010-01-01 12:00:00")
ymd_hms (x)

*x heterogeneous formats *x
X <- c(20100101120101, "2009-01-02 12-01-02", "2009.01.03 12:01:03",
"2009-1-4 12-1-4",
"2009-1, 5 12:1, 5",
"200901-08 1201-08",
"2009 arbitrary 1 non-decimal 6 chars 12 in between 1 !!! 6",
"OR collapsed formats: 20090107 120107 (as long as prefixed with zeros)",
"Automatic wday, Thu, detection, 10-01-10 10:01:10 and p format: AM",
"Created on 10-01-11 at 10:01:11 PM")
ymd_hms (x)

*x fractional seconds **

op <- options(digits.secs=3)
dmy_hms("20/2/06 11:16:16.683")
options(op)

xx different formats for 1S08601 timezone offset **
ymd_hms(c("2013-01-24 19:39:07.880-0600",

"2013-01-24 19:39:07.880", "2013-01-24 19:39:07.880-06:00",
"2013-01-24 19:39:07.880-06", "2013-01-24 19:39:07.8802"))

*x internationalization **

Not run:

X_RO <- "Ma 2012 august 14 11:28:30 "
ymd_hms(x_RO, locale = "ro_RO.utf8")

End(Not run)

*x truncated time-dates **

X <= ¢("2011-12-31 12:59:59", "2010-01-01 12:11", "2010-01-01 12", "2010-01-01")
ymd_hms(x, truncated = 3)

X <= ¢("2011-12-31 12:59", "2010-01-01 12", "2010-01-01")

ymd_hm(x, truncated = 2)

*x What lubridate might not handle **

Extremely weird cases when one of the separators is and some of the

formats are not in double digits might not be parsed correctly:

nn

71

72 %m+%

Not run:
ymd_hm("20100201 07-01", "20100201 @7-1", "20100201 7-01")
End(Not run)

%m+% Add and subtract months to a date without exceeding the last day of
the new month

Description

Adding months frustrates basic arithmetic because consecutive months have different lengths. With
other elements, it is helpful for arithmetic to perform automatic roll over. For example, 12:00:00
+ 61 seconds becomes 12:01:01. However, people often prefer that this behavior NOT occur with
months. For example, we sometimes want January 31 + 1 month = February 28 and not March 3.
%m+% performs this type of arithmetic. Date %m+% months(n) always returns a date in the nth month
after Date. If the new date would usually spill over into the n + 1th month, %m+% will return the last
day of the nth month (rollback()). Date %m-% months(n) always returns a date in the nth month
before Date.

Usage

el %m+% e2

add_with_rollback(el, e2, roll_to_first = FALSE, preserve_hms = TRUE)

Arguments
el A period or a date-time object of class POSIXIt, POSIXct or Date.
e2 A period or a date-time object of class POSIXIt, POSIXct or Date. Note that

one of el and e2 must be a period and the other a date-time object.

roll_to_first rollback to the first day of the month instead of the last day of the previous
month (passed to rollback())

preserve_hms retains the same hour, minute, and second information? If FALSE, the new date
will be at 00:00:00 (passed to rollback())

Details

%m+% and %m-% handle periods with components less than a month by first adding/subtracting months
and then performing usual arithmetic with smaller units.

%m+% and %m-% should be used with caution as they are not one-to-one operations and results for
either will be sensitive to the order of operations.

Value

A date-time object of class POSIXIt, POSIXct or Date

%within% 73

Examples

jan <- ymd_hms("2010-01-31 03:04:05")

jan + months(1:3) # Feb 31 and April 31 returned as NA
NA "2010-03-31 03:04:05 UTC" NA

jan %m+% months(1:3) # No rollover

leap <- ymd("2012-02-29")
"2012-02-29 UTC"

leap %m+% years(1)

leap %m+% years(-1)

leap %m-% years(1)

X <- ymd_hms("2019-01-29 01:02:03")

add_with_rollback(x, months(1))

add_with_rollback(x, months(1), preserve_hms = FALSE)

add_with_rollback(x, months(1), roll_to_first = TRUE)

add_with_rollback(x, months(1), roll_to_first = TRUE, preserve_hms = FALSE)

%within% Does a date (or interval) fall within an interval?

Description

Check whether a lies within the interval b, inclusive of the endpoints.

Usage

a %within% b

Arguments
a An interval or date-time object.
b Either an interval vector, or a list of intervals.
If b is an interval (or interval vector) it is recycled to the same length as a. If
b is a list of intervals, a is checked if it falls within any of the intervals, i.e. a
%within% list(int1, int2) is equivalent to a %within% int1 | a %within%
int2.
Value

A logical vector.

Examples

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-01-01"))

ymd(”2001-05-03") %within% int # TRUE

74

int2 %within% int # TRUE
ymd(”1999-01-01") %within% int # FALSE

recycling (carefully note the difference between using a vector of
intervals and list of intervals for the second argument)
dates <- ymd(c("2014-12-20", "2014-12-30", "2015-01-01", "2015-01-03"))
blackout_vector <- c(

interval (ymd(”2014-12-30"), ymd("2014-12-31")),

interval (ymd(”2014-12-30"), ymd("2015-01-03"))
)

dates %within% blackout_vector

within ANY of the intervals of a list
dates <- ymd(c(”2014-12-20", "2014-12-30", "2015-01-01", "2015-01-03"))
1st <- list(

interval (ymd("2014-12-30"), ymd("2014-12-31")),

interval (ymd("2014-12-30"), ymd("2015-01-03"))

)
dates %within% 1st

interval within a list of intervals
int <- interval(
ymd("2014-12-20", "2014-12-30"),
ymd("2015-01-01", "2015-01-03")
)

int %within% 1st

% within %

Index

x POSIXt * classes
ymd_hms, 68 as.duration, 4

* chron as.interval, 5
am, 4 as.period, 6
as.duration, 4 duration, 17
as.interval, 5 make_difftime, 37
as.period, 6 period, 47
date, 11 timespan, 59
date_decimal, 13 * datasets
DateTimeUpdate, 12 is.Date, 31
day, 14 is.POSIXt, 33
decimal_date, 16 * data
dst, 17 lakers, 35
duration, 17 origin, 42
force_tz, 22 + dplot
hour, 27 pretty_dates, 51
is.Date, 31 * logic
is.difftime, 32 is.Date, 31
is.instant, 33 is.difftime, 32
is.POSIXt, 33 is.instant, 33
is.timespan, 34 is.POSIXt, 33
leap_year, 35 is.timespan, 34
make_difftime, 37 leap_year, 35
minute, 38 * manip
month, 39 as.duration, 4
now, 41 as.interval, 5
origin, 42 as.period, 6
parse_date_time, 42 date, 11
period, 47 date_decimal, 13
pretty_dates, 51 DateTimeUpdate, 12
round_date, 53 day, 14
second, 57 decimal_date, 16
time_length, 60 force_tz, 22
timespan, 59 hour, 27
tz, 61 minute, 38
week, 62 month, 39
with_tz, 63 round_date, 53
year, 64 second, 57
ymd, 65 tz, 61

75

76

week, 62

with_tz, 63

year, 64
+ math

time_length, 60
+ methods

as.duration, 4

as.interval, 5

as.period, 6

date, 11

date_decimal, 13

day, 14

decimal_date, 16

dst, 17

hour, 27

minute, 38

month, 39

second, 57

time_length, 60

tz, 61

year, 64
* parse

ymd_hms, 68
* period

ms, 40

time_length, 60
+ utilities

date, 11

day, 14

dst, 17

hour, 27

minute, 38

month, 39

now, 41

pretty_dates, 51

second, 57

tz, 61

week, 62

year, 64
%=% (interval), 28
%m+% , ANY , ANY-method (%m+%), 72
%m+%,ANY ,Duration-method (%m+%), 72
%m+%,ANY, Interval-method (%m+%), 72
%m+%,ANY , Period-method (%m+%), 72
%m+%,Duration, ANY-method (%m+%), 72
%m+%, Interval , ANY-method (%m+%), 72
%m+%,Period, ANY-method (%m+%), 72
%»m=% (%m+%), 72

%m-

%, ANY, ANY-method (%m+%), 72

INDEX

%m=%,ANY ,Duration-method (%m+%), 72
%m=%,ANY , Interval-method (%m+%), 72

%m-%,ANY,Period-method (%m+%), 72

%m=%,Duration, ANY-method (%m+%), 72
%m=%,Interval, ANY-method (%m+%), 72

%m-%,Period, ANY-method (%m+%), 72

%within%,ANY, Interval-method

(%within%), 73

%within%,Date,list-method (%within%), 73
%within%,Interval,Interval-method

%within%,Interval,list-method

(%within%), 73

(%within%), 73

%within%,POSIXt,list-method (%within%),

73

%m+%, 49,72
%within, 30, 73

add_with_rollback (%m+%), 72
add_with_rollback(), 49
am, 4

as

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

.Date(), 9
as.
as.
as.
as.

difftime(), 36
duration, 4
duration(), 6, 19, 29, 38
duration,character-method
(as.duration), 4
duration,difftime-method
(as.duration), 4
duration,Duration-method
(as.duration), 4
duration,Interval-method
(as.duration), 4
duration,logical-method
(as.duration), 4
duration,numeric-method
(as.duration), 4
duration,Period-method
(as.duration), 4
interval, 5
interval(), 5, 7, 30
interval,difftime-method
(as.interval), 5
interval,Duration-method
(as.interval), 5
interval,Interval-method
(as.interval), 5

INDEX

as.interval,logical-method
(as.interval), 5
as.interval,numeric-method
(as.interval), 5
as.interval,Period-method
(as.interval), 5
as.interval,POSIXt-method
(as.interval), 5
as.period, 6
as.period(), 6, 29
as.period,character-method (as.period),
6
as.period,difftime-method (as.period), 6
as.period,Duration-method (as.period), 6
as.period,Interval-method (as.period), 6
as.period,logical-method (as.period), 6
as.period,numeric-method (as.period), 6
as.period,Period-method (as.period), 6
as.POSIXct(), 9
as_date, 8
as_date,ANY-method (as_date), 8
as_date,character-method (as_date), 8
as_date,numeric-method (as_date), 8
as_date,POSIXt-method (as_date), 8
as_datetime (as_date), 8
as_datetime,ANY-method (as_date), 8
as_datetime,character-method (as_date),
8
as_datetime,Date-method (as_date), 8
as_datetime,numeric-method (as_date), 8
as_datetime,POSIXt-method (as_date), 8

base: :as.POSIXct(), 43

base: :IS0date(), 36

base: :ISOdatetime(), 36

base: :round(), 54, 55

base: :round.POSIXt(), 54

base: :strptime(), 4246, 58, 67, 70

ceiling_date (round_date), 53
character(), 31, 33
cyclic_encoding, 10

Date, 9, 72

Date (is.Date), 31
date, 11
Date(), 31

date<- (date), 11
date_decimal, 13

77

DateTimeClasses, 62
DateTimeUpdate, 12

day, 14

day<- (day), 14

days (period), 47

days(), 49
days_in_month, 16

ddays (duration), 17
ddays(), 19
decimal_date, 16

dhours (duration), 17
diff(), 28

difftime(), 61
dmicroseconds (duration), 17
dmilliseconds (duration), 17
dminutes (duration), 17
dminutes(), 19

dmonths (duration), 17

dmy (ymd), 65

dmy_h (ymd_hms), 68

dmy_hm (ymd_hms), 68
dmy_hms (ymd_hms), 68
dnanoseconds (duration), 17
double(), 31, 33
dpicoseconds (duration), 17
dseconds (duration), 17
dseconds(), 19

dst, 17
Duration, 5, 7, 19, 31,61
duration, 17, 59
duration(), 5, 38
Duration-class, 20
durations (Duration-class), 20
dweeks (duration), 17
dweeks(), 19

dyears (duration), 17

dym (ymd), 65

epiweek (week), 62
epiyear (year), 64

fast_strptime (parse_date_time), 42
fit_to_timeline, 21
fit_to_timeline(), 46
floor_date, 10

floor_date (round_date), 53
force_tz, 22

force_tz(), 61, 64, 70

force_tzs (force_tz), 22

78

format(), 58
format_IS08601, 24
format_IS08601,Date-method
(format_IS08601), 24
format_IS08601,Duration-method
(format_IS08601), 24
format_IS08601,Interval-method
(format_IS08601), 24
format_IS086@1,Period-method
(format_IS08601), 24
format_IS0860@1,POSIXt-method
(format_IS08601), 24

guess_formats, 25
guess_formats(), 58, 59

hm (ms), 40

hm(), 40

hms (ms), 40

hms (), 71

hour, 27

hour<- (hour), 27
hours (period), 47
hours(), 49

instant (is.instant), 33
instants (is.instant), 33
int_aligns (interval), 28
int_diff (interval), 28
int_end (interval), 28
int_end<- (interval), 28
int_flip (interval), 28
int_length (interval), 28
int_overlaps (interval), 28
int_shift (interval), 28
int_standardize (interval), 28
int_start (interval), 28
int_start<- (interval), 28
Interval, 28-30, 61
interval, 28

interval(), 6
Interval-class, 31
intervals, 60

intervals (Interval-class), 31
is.Date, 31
is.Date(), 33, 34
is.difftime, 32
is.difftime(), 34
is.duration (duration), 17

INDEX

is.duration(), 34
is.instant, 33
is.instant(), 32, 34
is.interval (interval), 28
is.interval(), 32, 34
is.period (period), 47
is.period(), 32, 34
is.POSIXct (is.POSIXt), 33
is.POSIX1t (is.POSIXt), 33
is.POSIXt, 33
is.POSIXt(), 32, 33
is.timepoint (is.instant), 33
is.timespan, 34
is.timespan(), 32-34
isoweek (week), 62

isoyear (year), 64
isoyear(), 63

lakers, 35
leap_year, 35
local_time, 36
local_time(), 24
locales, 43,67, 70

m+ (%m+%), 72

m- (%m+%), 72

make_date (make_datetime), 36
make_datetime, 36
make_difftime, 37

mday (day), 14

mday<- (day), 14

mdy (ymd), 65

mdy_h (ymd_hms), 68
mdy_hm (ymd_hms), 68
mdy_hms (ymd_hms), 68
microseconds (period), 47
milliseconds (period), 47
minute, 38

minute<- (minute), 38
minutes (period), 47
minutes(), 49

month, 39

month<- (month), 39
months(), 49
months.numeric (period), 47
ms, 40

ms(), 40

my (ymd), 65

myd (ymd), 65

INDEX

NA_Date_ (is.Date), 31
NA_POSIXct_ (is.POSIXt), 33
nanoseconds (period), 47
now, 41

OlsonNames(), 9, 62
origin, 42

parse_date_time, 42
parse_date_time(), 59, 67, 68, 70, 71
parse_date_time2 (parse_date_time), 42
Period, 5, 7, 20, 31,49, 61
period, 10, 47, 60
period(), 7, 49, 54
period_to_seconds, 50

periods (period), 47

picoseconds (period), 47

pm (am), 4

POSIXct, 71, 72

POSIXct (is.POSIXt), 33
POSIXct(), 32, 33

POSIX1t, 72

POSIXt, 9

pretty_dates, 51

gday (day), 14
gday<- (day), 14
quarter, 51

rollback (rollbackward), 52
rollback(), 72
rollbackward, 52

rollforward (rollbackward), 52
round_date, 53

second, 57
second<- (second), 57
seconds (period), 47
seconds(), 49
seconds_to_period (period_to_seconds),
50
semester (quarter), 51
stamp, 58
stamp_date, 59
stamp_date (stamp), 58
stamp_time, 59
stamp_time (stamp), 58
strptime(), 59
Sys.timezone(), 63

79

time_length, 60

time_length, Interval-method
(time_length), 60

Timespan, 20, 31

timespan, 59

timespan(), 61

timespans (timespan), 59

today (now), 41

tz, 61

tz<-(tz), 61

update.POSIXt (DateTimeUpdate), 12

wday (day), 14
wday<- (day), 14
week, 62

week<- (week), 62
weeks (period), 47
weeks (), 49
with_tz, 63
with_tz(), 24,61

yday (day), 14
yday<- (day), 14

ydm (ymd), 65

ydm_h (ymd_hms), 68
ydm_hm (ymd_hms), 68
ydm_hms (ymd_hms), 68
year, 64

year<- (year), 64
years (period), 47
years(), 49

ym (ymd), 65

ymd, 65

ymd(), 46, 71

ymd_h (ymd_hms), 68
ymd_hm (ymd_hms), 68
ymd_hms, 68
ymd_hms (), 46

yq (ymd), 65

	am
	as.duration
	as.interval
	as.period
	as_date
	cyclic_encoding
	date
	DateTimeUpdate
	date_decimal
	day
	days_in_month
	decimal_date
	dst
	duration
	Duration-class
	fit_to_timeline
	force_tz
	format_ISO8601
	guess_formats
	hour
	interval
	Interval-class
	is.Date
	is.difftime
	is.instant
	is.POSIXt
	is.timespan
	lakers
	leap_year
	local_time
	make_datetime
	make_difftime
	minute
	month
	ms
	now
	origin
	parse_date_time
	period
	period_to_seconds
	pretty_dates
	quarter
	rollbackward
	round_date
	second
	stamp
	timespan
	time_length
	tz
	week
	with_tz
	year
	ymd
	ymd_hms
	m+
	within
	Index

