Package ‘manydist’

February 4, 2026

Type Package
Title Unbiased Distances for Mixed-Type Data
Version 0.4.9

Maintainer Angelos Markos <amarkos@gmail.com>

Description A comprehensive framework for calculating unbiased distances in datasets

containing mixed-type variables (numerical and categorical). The package implements
a general formulation that ensures multivariate additivity and commensurability,
meaning that variables contribute equally to the overall distance regardless of

their type, scale, or distribution. Supports multiple distance measures including
Gower's distance, Euclidean distance, Manhattan distance, and various categorical
variable distances such as simple matching, Eskin, occurrence frequency, and
association-based distances. Provides tools for variable scaling (standard

deviation, range, robust range, and principal component scaling), and handles

both independent and association-based category dissimilarities. Implements
methods to correct for biases that typically arise from different variable types,
distributions, and number of categories. Particularly useful for cluster analysis,

data visualization, and other distance-based methods when working with mixed data.
Methods based on van de Velden et al. (2024) <doi:10.48550/arXiv.2411.00429>

* “Unbiased mixed variables distance".

Imports entropy, Matrix, fastDummies, data.table, philentropy,

cluster, purrr, dplyr, tidyr, forcats, tibble, magrittr, fpc,
recipes, rsample, Rfast, readr, distances

Depends R (>=4.1.0)
Suggests palmerpenguins
License GPL-3
Encoding UTF-8
LazyData true

NeedsCompilation no
Author Alfonso Iodice D'Enza [aut],

Angelos Markos [aut, cre],
Michel van de Velden [aut],
Carlo Cavicchia [aut]

https://doi.org/10.48550/arXiv.2411.00429

2 cdist

Repository CRAN
Date/Publication 2026-02-04 10:00:14 UTC

Contents
CiSt . . . e e e e e 2
fifa nl s 5
mdist e e e e 6
ndiSt . . . e 8

Index 12

cdist Calculation of Pairwise Distances for Categorical Data
Description

Computes a distance matrix for categorical variables with support for validation data, multiple
distance metrics, and variable weighting. The function implements various distance calculation
approaches as described in van de Velden et al. (2024), including commensurable distances and
supervised options when response variable is provided.

Usage

cdist(x, response = NULL, validate_x = NULL, method = "tot_var_dist”,
commensurable = TRUE, weights = 1)

Arguments
X A data frame or matrix of categorical variables (factors).
response Optional response variable for supervised distance calculations. Default is NULL.
validate_x Optional validation data frame or matrix. If provided, distances are computed
between observations in validate_x and x. Default is NULL.
method Character string or vector specifying the distance metric(s). Options include:

e "tot_var_dist": Total variation distance (default)

e "HL", "HLeucl": Hennig-Liao distance

e "cat_dis": Category-based dissimilarity

* "mca”: Multiple correspondence analysis based

e "st_dev": Standard deviation based

e "matching”, "eskin", "iof", "of": Various coefficients
e "goodall_3", "goodall_4": Goodall-based distances

e "gifi_chi2": Gifi chi-square distance

e "lin": Lin’s similarity measure

non

e "var_entropy", "var_mutability": Variability-based measures

cdist 3

* "supervised”, "supervised_full”: Response-guided distances
* "le_and_ho": Le and Ho distance
* Additional methods from philentropy package

Can be a single string or vector for different methods per variable.

commensurable Logical. If TRUE, standardizes each variable’s distance matrix by dividing by its
mean distance. Default is FALSE.

weights Numeric vector or matrix of weights. If vector, must have length equal to num-
ber of variables. If matrix, must match the dimension of level-wise distances.
Default is 1 (equal weighting).

Details

The cdist function provides a comprehensive framework for categorical distance calculations:

» Supports multiple distance calculation methods that can be specified globally or per variable
* Handles validation data through validate_x parameter

* Implements supervised distances when response variable is provided

* Supports commensurable distances for better comparability across variables

* Provides flexible weighting schemes at variable and level granularity

Important notes:

* Input variables are automatically converted to factors with dropped unused levels

« Different methods per variable is not supported for "none”, "st_dev”, "HL", "cat_dis",
"HLeucl”, "mca”

* Weight vector length must match the number of variables when specified as a vector

¢ Variables should be factors; numeric variables will cause errors

Value
A list containing:

distance_mat Matrix of pairwise distances. If validate_x is provided, rows correspond to
validation observations and columns to training observations.

delta Matrix or list of matrices containing level-wise distances for each variable.
delta_names Vector of level names used in the delta matrices.
References

van de Velden, M., Iodice D’Enza, A., Markos, A., Cavicchia, C. (2024). (Un)biased distances for
mixed-type data. arXiv preprint. Retrieved from https://arxiv.org/abs/2411.00429.

See Also

mdist for mixed-type data distances, ndist for continuous data distances

https://arxiv.org/abs/2411.00429

4 cdist

Examples

library(palmerpenguins)
library(rsample)

Prepare data with complete cases for both categorical variables and response

complete_vars <- c("species”, "island"”, "sex", "body_mass_g")
penguins_complete <- penguins[complete.cases(penguins[, complete_vars]),]
penguins_cat <- penguins_complete[, c("species”, "island"”, "sex")]

response <- penguins_complete$body_mass_g

Create training-test split

set.seed(123)

penguins_split <- initial_split(penguins_cat, prop = 0.8)
tr_penguins <- training(penguins_split)

ts_penguins <- testing(penguins_split)

response_tr <- response[penguins_split$in_id]

response_ts <- response[-penguins_split$in_id]

Basic usage
result <- cdist(tr_penguins)

With validation data

val_result <- cdist(x = tr_penguins,
validate_x = ts_penguins,
method = "tot_var_dist")

...and commensurability

val_result_COMM <- cdist(x = tr_penguins,
validate_x = ts_penguins,
method = "tot_var_dist”,
commensurable = TRUE)

Supervised distance with response variable

sup_result <- cdist(x = tr_penguins,
response = response_tr,
method = "supervised”)

Supervised with validation data

sup_val_result <- cdist(x = tr_penguins,
validate_x = ts_penguins,
response = response_tr,
method = "supervised”)

Commensurable distances with custom weights

comm_result <- cdist(tr_penguins,
commensurable = TRUE,
weights = c(2, 1, 1))

Different methods per variable
multi_method <- cdist(tr_penguins,
method = c("matching”, "goodall_3", "tot_var_dist"))

fifa_nl 5

fifa_nl FIFA 21 Player Data - Dutch League

Description

The fifa_nl dataset contains information on players in the Dutch League from the FIFA 21 video
game. This dataset includes various attributes of players, such as demographics, club details, skill
ratings, and physical characteristics.

Usage
data("fifa_nl")

Format
A data frame with observations on various attributes describing the players.

player_positions Primary playing positions of the player.

nationality The country the player represents.

team_position Player’s assigned position within their club.

club_name Name of the club the player is part of.

work_rate The player’s work rate, describing defensive and attacking intensity.
weak_foot Skill rating for the player’s non-dominant foot, ranging from 1 to 5.

skill_moves Skill moves rating, indicating technical skill and ability to perform complex moves,
onascale of 1 to 5.

international_reputation Player’s reputation on an international scale, from 1=local to 3=global
star.

body_type Body type of the player (Lean, Normal, Stocky.
preferred_foot Dominant foot of the player, either Left or Right.
age Age of the player in years.

height_cm Height of the player in centimeters.

weight_kg Weight of the player in kilograms.

overall Overall skill rating of the player out of 100.

potential Potential skill rating the player may achieve in the future.
value_eur Estimated market value of the player in Euros.

wage_eur Player’s weekly wage in Euros.

release_clause_eur Release clause value in Euros, which other clubs must pay to buy out the
player’s contract.

pace Speed rating of the player out of 100.
shooting Shooting skill rating out of 100.
passing Passing skill rating out of 100.
dribbling Dribbling skill rating out of 100.
defending Defending skill rating out of 100.
physic Physicality rating out of 100.

6 mdist

Details

This dataset provides a snapshot of player attributes and performance indicators as represented in
FIFA 21 for players in the Dutch League. It can be used to analyze player characteristics, compare
skills across players, and explore potential relationships among variables such as age, position, and
various skill ratings.

References

Stefano Leone. (2021). FIFA 21 Complete Player Dataset. Retrieved from https://www.kaggle.
com/datasets/stefanoleone992/fifa-21-complete-player-dataset.

Examples

data(fifa_nl)
summary (fifa_nl)

mdist Calculation of Pairwise Distances for Mixed-Type Data

Description

Computes pairwise distances between observations described by numeric and/or categorical at-
tributes, with support for validation data. The function provides options for computing independent,
dependent, and practice-based distances as defined in van de Velden et al. (2024), with support for
various continuous and categorical distance metrics, scaling, and commensurability adjustments.

Usage
mdist(x, validate_x = NULL, response = NULL, distance_cont = "manhattan”,
distance_cat = "tot_var_dist"”, commensurable = TRUE, scaling_cont = "none"”,
ncomp = ncol(x), threshold = NULL, preset = "custom")
Arguments
X A dataframe or tibble containing continuous (coded as numeric), categorical
(coded as factors), or mixed-type variables.
validate_x Optional validation data with the same structure as x. If provided, distances are
computed between observations in validate_x and x. Default is NULL.
response An optional factor for supervised distance calculation in categorical variables,

applied only if distance_cat = "supervised”. Default is NULL.

distance_cont Character string specifying the distance metric for continuous variables. Options
include "manhattan” (default) and "euclidean”.

distance_cat Character string specifying the distance metric for categorical variables. Options
include "tot_var_dist"” (default), "HL", "HLeucl”, cat_dis, mca, st_dev,
"matching”, "eskin”, "iof", "of", "goodall_3", "goodall_4", "gifi_chi2",

"1lin", "var_entropy”, "var_mutability"”, "supervised”, "supervised_full”,
"le_and_ho" and all the options in the package philentropy.

https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset
https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset

mdist

commensurable

scaling_cont

ncomp

threshold

preset

Value

Logical. If TRUE, the function adjusts each variable’s contribution to ensure
equal average influence in the overall distance. Default is FALSE.

Character string specifying the scaling method for continuous variables. Options
include "none” (default), "std", "range"”, "pc_scores”, and "robust”.

Integer specifying the number of components to retain when scaling_cont =
"pc_scores”. Default is ncol (x).

Numeric value specifying the percentage of variance explained by retained com-
ponents when scaling_cont = "pc_scores”. Overrides ncomp if specified.
Default is NULL.

Character string specifying pre-defined combinations of arguments. Options
include:

» "custom” (default): Use specified distance metrics and parameters

e "gower": Gower’s distance for mixed data

e "unbiased_dependent”: Commensurable distance

* "euclidean_onehot": Euclidean distance on one-hot encoded categorical
and standardized continuous

A matrix of pairwise distances. If validate_x is provided, rows correspond to validation observa-
tions and columns to training observations.

References

van de Velden, M., Iodice D’Enza, A., Markos, A., Cavicchia, C. (2024). (Un)biased distances for
mixed-type data. arXiv preprint. Retrieved from https://arxiv.org/abs/2411.00429.

See Also

cdist for categorical-only distances, ndist for continuous-only distances

Examples

library(palmerpenguins)

library(rsample)

Prepare complete data
pengmix <- palmerpenguins::penguins[complete.cases(palmerpenguins::penguins),]

Create training-test split

set.seed(123)

pengmix_split <- initial_split(pengmix, prop = 0.8)
tr_pengmix <- training(pengmix_split)
ts_pengmix <- testing(pengmix_split)

Example 1: Basic usage with validation data
dist_matrix <- mdist(x = tr_pengmix,

validate_x = ts_pengmix)

https://arxiv.org/abs/2411.00429

ndist

Example 2: Gower preset with validation

dist_gower <- mdist(x = tr_pengmix,
validate_x = ts_pengmix,
preset = "gower",
commensurable = TRUE)

Example 3: Euclidean one-hot preset with validation
dist_onehot <- mdist(x = tr_pengmix,

validate_x = ts_pengmix,

preset = "euclidean_onehot")

Example 4: Custom preset with standardization
dist_custom <- mdist(x = tr_pengmix,
validate_x = ts_pengmix,

preset = "custom”,
distance_cont = "manhattan”,
distance_cat = "matching”,
commensurable = TRUE,
scaling_cont = "std")

Example 5: PCA-based scaling with threshold
dist_pca <- mdist(x = tr_pengmix,
validate_x = ts_pengmix,
distance_cont = "euclidean”,
scaling_cont = "pc_scores”,
threshold = 0.85)

Example 6: Categorical variables only

cat_vars <- c("species”, "island"”, "sex")

dist_cat <- mdist(tr_pengmix[, cat_vars],
validate_x = ts_pengmix[, cat_vars],
distance_cat = "tot_var_dist")

Example 7: Continuous variables only
num_vars <- c("bill_length_mm", "bill_depth_mm",
"flipper_length_mm", "body_mass_g")
dist_cont <- mdist(tr_pengmix[, num_vars],
validate_x = ts_pengmix[, num_vars],
distance_cont = "manhattan”,
scaling_cont = "std")

Example 8: Supervised distance with response

response_tr <- tr_pengmix$body_mass_g

dist_sup <- mdist(tr_pengmix,
validate_x = ts_pengmix,
response = response_tr,
distance_cat = "supervised")

ndist Calculation of Pairwise Distances for Continuous Data

ndist 9

Description

Computes a distance matrix for continuous data with support for multiple distance metrics, scaling
methods, dimensionality reduction, and validation data. The function implements various distance
calculation approaches as described in van de Velden et al. (2024), including options for commen-
surable distances and variable weighting.

Usage

ndist(x, validate_x = NULL, commensurable = TRUE, method = "manhattan",
sig = NULL, scaling = "none"”, ncomp = ncol(x), threshold = NULL,
weights = rep(1, ncol(x)))

Arguments

X A data frame or matrix of continuous input variables.

validate_x Optional data frame or matrix for validation data. If provided, distances are
computed between observations in validate_x and x. Default is NULL.

commensurable Logical. If TRUE, standardizes each variable’s distance matrix by dividing by its
mean distance, making distances comparable across variables. Default is FALSE.

method Character string specifying the distance metric. Options include "manhattan”,
"euclidean”, and "mahalanobis”. Default is "manhattan”.

sig Covariance matrix to be used when method = "mahalanobis”. If NULL, com-
puted from the data. Default is NULL.

scaling Character string specifying the scaling method. Options:
* "none": No scaling
e "std": Standardization (zero mean, unit variance)
* "range”: Min-max scaling to [0,1]
* "pc_scores”: PCA-based dimensionality reduction
e "robust"”: Robust scaling using median and IQR
Default is "none”.

ncomp Number of principal components to retain when scaling = "pc_scores”. De-
fault is the number of columns in x.

threshold Proportion of variance to retain when scaling = "pc_scores”. If specified,
overrides ncomp. Default is NULL.

weights Numeric vector of weights for each variable. Must have length equal to the
number of variables in x. Default is a vector of ones.

Details

The ndist function provides a comprehensive framework for distance calculations in continuous
data:

* When validate_x is provided, computes distances between observations in validate_x and
X.

 Supports multiple scaling methods that can be applied before distance calculation.

10 ndist

* PCA-based dimensionality reduction can be controlled either by number of components or
variance threshold.

» For Mahalanobis distance, handles singular covariance matrices with appropriate error mes-
sages.

* Implements commensurable distances for better comparability across variables.

Warning: The function validates:

* Weight vector length must match the number of variables
» Covariance matrix singularity for Mahalanobis distance

» Compatibility of x and validate_x dimensions

Value
A distance matrix where element [i,j] represents the distance between:

* observation i and j of x if validate_x is NULL

* observation i of validate_x and observation j of x if validate_x is provided

References

van de Velden, M., Iodice D’Enza, A., Markos, A., Cavicchia, C. (2024). (Un)biased distances for
mixed-type data. arXiv preprint. Retrieved from https://arxiv.org/abs/2411.00429.

See Also

mdist for mixed-type data distances, cdist for categorical data distances.

Examples

library(palmerpenguins)
library(rsample)

penguins_cont <- palmerpenguins::penguins[, c("bill_length_mm",
"bill_depth_mm"”, "flipper_length_mm", "body_mass_g")]
penguins_cont <- penguins_cont[complete.cases(penguins_cont),]

Basic usage
dist_matrix <- ndist(penguins_cont)

Commensurable distances with standardization

dist_matrix <- ndist(penguins_cont,
commensurable = TRUE,
scaling = "std")

PCA-based dimensionality reduction

dist_matrix <- ndist(penguins_cont,
scaling = "pc_scores”,
threshold = 0.95)

https://arxiv.org/abs/2411.00429

ndist

Mahalanobis distance
dist_matrix <- ndist(penguins_cont,
method = "mahalanobis")

Weighted Euclidean distance

dist_matrix <- ndist(penguins_cont,
method = "euclidean”,
weights = c(1, 0.5, 2, 1))

Training-test split example with validation data
set.seed(123)

Create training-test split using rsample

penguins_split <- initial_split(penguins_cont, prop = 0.8)
tr_penguins <- training(penguins_split)

ts_penguins <- testing(penguins_split)

Basic usage with training data only
dist_matrix <- ndist(tr_penguins)

Computing distances between test and training sets
val_dist_matrix <- ndist(x = tr_penguins,
validate_x = ts_penguins,
method = "euclidean”)

Using validation data with standardization
val_dist_matrix_std <- ndist(x = tr_penguins,
validate_x = ts_penguins,
scaling = "std",
method = "manhattan”)

Validation with PCA and commensurability
val_dist_matrix_pca <- ndist(x = tr_penguins,
validate_x = ts_penguins,
scaling = "pc_scores”,
ncomp = 2,
commensurable = TRUE)

Validation with robust scaling and custom weights
val_dist_matrix_robust <- ndist(x = tr_penguins,
validate_x = ts_penguins,

scaling = "robust”,
weights = c(1, 0.5, 2, 1))

Mahalanobis distance with validation data

val_dist_matrix_mahal <- ndist(x = tr_penguins,
validate_x = ts_penguins,
method = "mahalanobis”)

11

Index

x datasets
fifa_nl, 5

cdist, 2,7, 10
fifa_nl, 5
mdist, 3, 6, 10

ndist, 3,7, 8

12

	cdist
	fifa_nl
	mdist
	ndist
	Index

