
Package ‘mpathr’
February 5, 2026

Title Easily Handling Data from the ‘m-Path’ Platform

Version 1.0.4

Description Provides tools for importing and cleaning Experience Sampling
Method (ESM) data collected via the 'm-Path' platform. The goal is
to provide with a few utility functions to be able to read and perform
some common operations in ESM data collected through the 'm-Path'
platform (<https://m-path.io/landing/>). Functions include raw data
handling, format standardization, and basic data checks, as well as to
calculate the response rate in data from ESM studies.

License GPL (>= 3)

URL https://m-path.io, https://github.com/m-path-io/mpathr

BugReports https://github.com/m-path-io/mpathr/issues

Depends R (>= 4.1.0)

Imports cli, dplyr, ggplot2, jsonlite, lifecycle, lubridate, readr,
rlang, tidyr

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Merijn Mestdagh [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5077-861X>),

Lara Navarrete [aut],
Koen Niemeijer [aut] (ORCID: <https://orcid.org/0000-0002-0816-534X>),
m-Path Software [cph]

Maintainer Merijn Mestdagh <merijn.mestdagh@m-path.io>

Repository CRAN

Date/Publication 2026-02-05 11:40:02 UTC

1

https://m-path.io/landing/
https://m-path.io
https://github.com/m-path-io/mpathr
https://github.com/m-path-io/mpathr/issues
https://orcid.org/0000-0001-5077-861X
https://orcid.org/0000-0002-0816-534X

2 example_data

Contents
example_data . 2
extract_app_usage . 4
mpath_example . 6
plot_response_rate . 7
read_mpath . 8
response_rate . 9
timestamps_to_datetime . 10
write_mpath . 12

Index 14

example_data Example m-path data

Description

Contains the preprocessed example data for an m-path research study.

In the study, 20 participants completed 11 beeps over the course of 10 days. The study consisted of:

• An intake questionnaire, that participants answered at the study’s start.

• A main questionnaire (10 times per day), where participants answered questions about their
emotions and context at the time.

• An evening questionnaire (once, at the end of the day), about their emotions and activities
throughout the day.

Each row corresponds to one beep sent during the study.

Usage

example_data

Format

A data frame with 1980 rows and 47 columns:

participant Participant identifier.

code Code the participants used to sign up for the study.

questionnaire The questionnaire that participants answered in that beep (it can be the main or the
evening questionnaire).

scheduled Time stamp for when the notification was scheduled for, in unix time.

sent Time stamp for when the notification was sent, in unix time.

start Time stamp for when the notification was answered, in unix time. If the notification was
never answered, this value is an NA.

stop Time stamp for when the notification was completed, in unix time. If the notification was
never answered, this value is an NA.

example_data 3

phone_server_offset The difference between the phone time and the server time.

obs_n Observation number for each participant. Goes from 1 (first observation), to 110 (last ob-
servation of the study).

day_n Day number of the study, for the participant. Goes from 1 to 10.

obs_n_day Observation number within the day (for each participant). Goes from 1 to 11.

answered Logical, whether the beep was answered or not.

bpm_day Average heart rate per day. Note that unlike the rest of the variables, this corresponds to
simulated data.

gender Participant’s gender. 1 means ’Male’, 2 means ’Female’, 3 ’Other’.

gender_string Participant’s gender, as a string.

age Participant’s age in years.

life_satisfaction Composite variable corresponding to participant’s life satisfaction according to
the Satisfaction With Life Scale (SWLS).

neuroticism Composite variable corresponding to participant’s neuroticism according to the Big
Five Inventory (BFI).

slider_happy Participants’ self-reported happiness at the time of the beep. From 0 (not happy at
all) to 100 (very happy).

slider_sad Participants’ self-reported sadness at the time of the beep. From 0 (not sad at all) to 100
(very sad).

slider_angry Participants’ self-reported anger at the time of the beep. From 0 (not angry at all) to
100 (very angry).

slider_relaxed Participants’ self-reported relaxation at the time of the beep. From 0 (not relaxed
at all) to 100 (very relaxed).

slider_anxious Participants’ self-reported anxiety at the time of the beep. From 0 (not anxious at
all) to 100 (very anxious).

slider_energetic Participants’ self-reported energy at the time of the beep. From 0 (not energetic
at all) to 100 (very energetic).

slider_tired Participants’ self-reported tiredness at the time of the beep. From 0 (not tired at all) to
100 (very tired).

location_index Index corresponding to the participant’s answer to the question "Where are you
now?", from a list of multiple options.

location_string Text corresponding to the participant’s selected location at the time of the beep.

company_index Index corresponding to the participant’s answer to the question "With whom are
you right now?", from a list of multiple options.

company_string Text corresponding to the participant’s selected company at the time of the beep.

activity_index Index corresponding to the participant’s answer to the question "What are you doing
now?", from a list of multiple options.

activity_string Text corresponding to the participant’s selected activity at the time of the beep.

step_count Step count between the previous answered beep and the current beep

evening_slider_happy Participants’ happiness during the day, from 0 (not happy at all) to 100
(very happy).

4 extract_app_usage

evening_slider_sad Participants’ sadness during the day, from 0 (not sad at all) to 100 (very sad).

evening_slider_angry Participants’ anger during the day, from 0 (not angry at all) to 100 (very
angry).

evening_slider_relaxed Participants’ relaxation during the day, from 0 (not relaxed at all) to 100
(very relaxed).

evening_slider_anxious Participants’ anxiety during the day, from 0 (not anxious at all) to 100
(very anxious).

evening_slider_energetic Participants’ energy during the day, from 0 (not energetic at all) to 100
(very energetic).

evening_slider_tired Participants’ tiredness during the day, from 0 (not tired at all) to 100 (very
tired).

evening_stressful Participant’s answer to whether something stressful had happened during the
day. 1 means ’yes’, 0 means ’no’.

evening_positive Participant’s answer to whether something positive had happened during the day.
1 means ’yes’, 0 means ’no’.

positive_description Explanation of the positive event (if participants responded ’yes’ to the pre-
vious question).

stressful_description Explanation of the stressful event (if participants responded ’yes’ to the pre-
vious question).

evening_activity_index Index corresponding to the participant’s answer(s) to the question "What
activities did you do today?", from a list of multiple options.

evening_activity_string Text corresponding to the participant’s selected activities during the day.

delay_start_min Delay in minutes between the scheduled beep and the time the participants started
the beep.

delay_end_min Time in minutes the participants took to fill in the beep (difference between the
columns start and stop).

extract_app_usage Extract App Usage from Paired Name/Value Columns

Description

[Experimental]
Parses app names and usage values into structured usage data, with start and end timestamps and
usage durations for both "Far" and "Near" windows.

The input can be formatted in two ways:

• If the data is in its raw form (e.g. imported from CSV via read.csv()), both app_names and
app_values should be character vectors where each element is a comma-separated string.

• If the data was imported via read_mpath(), then app_names should be a list of character
vectors, and app_values should be a list of integer vectors.

The function expects that each app is associated with exactly six values: startTimeFar, endTimeFar,
usageFar, startTimeNear, endTimeNear, usageNear.

extract_app_usage 5

Usage

extract_app_usage(app_names, app_values)

Arguments

app_names Either a character vector (comma-separated strings) or a list of character vectors,
one per row.

app_values Either a character vector (comma-separated strings) or a list of numeric vectors,
one per row. Each block of 6 values corresponds to one app’s usage record.

Value

A list of tibbles (one per input row). Each tibble contains one or more rows:

• app: App name

• startTimeFar, endTimeFar: POSIXct timestamps (UTC)

• usageFar: Integer usage during the far window

• startTimeNear, endTimeNear: POSIXct timestamps (UTC)

• usageNear: Integer usage during the near window

Time windows

Each measurement of app usage includes two time windows: a "near: window that captures recent
app activity (typically ending around the time of the ESM beep), and a "far" window that covers the
24 hours prior to the near window. For both windows, Android automatically provides a start time,
an end time, and the total usage in seconds during that period. These time ranges are determined
by the operating system and may vary across apps and across measurements. Because the start
and end times of these app usage windows rarely align exactly with the time between ESM beeps,
interpreting the values requires caution as the window may include usage that occurred before the
last beep To draw meaningful conclusions about app use between two beeps, it is important to
consider which time windows and how much each window overlaps with that interval. Differences
in the length and timing of these windows can affect your interpretation and should be accounted
for in your analysis.

Examples

Using character input (e.g., raw from CSV)
app_names <- c("foo", "foo,bar")
app_values <- c(

"1000,2000,1,3000,4000,2",
"4000,5000,3,6000,7000,4,8000,9000,5,10000,11000,6"

)
extract_app_usage(app_names, app_values)

Using list-column input (e.g., from read_mpath())
app_names <- list("foo", c("foo", "bar"))
app_values <- list(

c(1000,2000,1,3000,4000,2),
c(4000,5000,3,6000,7000,4,8000,9000,5,10000,11000,6)

6 mpath_example

)
extract_app_usage(app_names, app_values)

You can also use this function within a tidyverse pipeline:
library(dplyr)
tibble(app_name = app_names, app_value = app_values) |>

mutate(usage = extract_app_usage(app_name, app_value))

mpath_example Get path to m-Path example data

Description

This function provides an easy way to access the m-Path example files.

Usage

mpath_example(file = NULL)

Arguments

file the name of the file to be accessed. If NULL, the function will return a list of all
the example files.

Value

a character string with the path to the m-Path example data

Examples

Example 1: access 'example_basic.csv' data

mpath_example('example_basic.csv') # returns the full path to the file
'example_basic.csv'

Example 2: list all the example files

mpath_example() # returns the example files as a vector

plot_response_rate 7

plot_response_rate Plots response rate per day (and per participant)

Description

This function returns a ggplot object with the response rate per day (x axis) and participant (color).
Note that instead of using calendar dates, the function returns a plot grouped by the day inside the
study for the participant.

Usage

plot_response_rate(data, valid_col, participant_col, time_col)

Arguments

data data frame with data

valid_col name of the column that stores whether the beep was answered or not

participant_col

name of the column that stores the participant id (or equivalent)

time_col name of the column that stores the time of the beep

Value

a ggplot object with the response rate per day (x axis) and participant (color)

Examples

load data
data(example_data)

make plot with plot_response_rate
plot_response_rate(data = example_data,
time_col = sent,
participant_col = participant,
valid_col = answered)
The resulting ggplot object can be formatted using ggplot2 functions (see ggplot2
documentation).

8 read_mpath

read_mpath Read m-Path data

Description

[Stable]

This function reads an m-Path CSV file into a tibble, an extension of a data.frame.

Usage

read_mpath(file, meta_data, warn_changed_columns = TRUE)

Arguments

file A string with the path to the m-Path file.

meta_data A string with the path to the meta data file.
warn_changed_columns

Warn if the question text, type of question, or type of answer has changed during
the study. Default is TRUE and may print up to 50 warnings.

Details

Note that this function has been tested with the meta data version v.1.1, so it is advised to use that
version of the meta data. In the m-Path dashboard, change the version in ’Export data’ > "export
version".

Value

A tibble with the m-Path data.

See Also

write_mpath() for saving the data back to a CSV file.

Examples

We can use the function mpath_examples to get the path to the example data
basic_path <- mpath_example(file ="example_basic.csv")
meta_path <- mpath_example("example_meta.csv")

data <- read_mpath(file = basic_path,
meta_data = meta_path)

response_rate 9

response_rate Calculate response rate

Description

Calculate response rate

Usage

response_rate(
data,
valid_col,
participant_col,
time_col = NULL,
period_start = NULL,
period_end = NULL

)

Arguments

data data frame with data

valid_col name of the column that stores whether the beep was answered or not
participant_col

name of the column that stores the participant id (or equivalent)

time_col optional: name of the column that stores the time of the beep, as a ’POSIXct’
object.

period_start string representing the starting date to calculate response rates (optional). Ac-
cepts dates in the following formats: yyyy-mm-dd oryyyy/mm/dd.

period_end period end to calculate response rates (optional).

Value

a data frame with the response rate for each participant, and the number of beeps used to calculate
the response rate

Examples

Example 1: calculate response rates for the whole study
Get example data
data(example_data)

Calculate response rate for each participant

We don't specify time_col, period_start or period_end.
Response rates will be based on all the participant's data
response_rate <- response_rate(data = example_data,

valid_col = answered,

10 timestamps_to_datetime

participant_col = participant)

Example 2: calculate response rates for a specific time period
data(example_data)

Calculate response rate for each participant between dates
response_rate <- response_rate(data = example_data,

valid_col = answered,
participant_col = participant,
time_col = sent,
period_start = '2024-05-15',
period_end = '2024-05-31')

Get participants with a response rate below 0.5
response_rate[response_rate$response_rate < 0.5,]

timestamps_to_datetime

Convert m-Path timestamps to a date time format

Description

[Stable]

m-Path timestamps are based on the participant’s local time zone, and when converted to R datetime
format, they are interpreted as being in Coordinated Universal Time (UTC), previously known
Greenwich Mean Time (GMT). This function allows for the conversion of m-Path timestamps to
datetime, and optionally allows for the specification of a UTC offset or a forced time zone.

Usage

timestamps_to_datetime(x, tz_offset = NULL, force_tz = NULL)

Arguments

x A vector of timestamps to be transformed to datetime.

tz_offset A numeric value to be added to the timestamps before transforming to datetime.
This is typically derived from the timeZoneOffset column from m-Path data.
This is only useful when you want to compare timestamps in an absolute manner
or link it to external data sources.

force_tz A string specifying the time zone to force the timestamps to. This is useful when
the data is to be compared to other data sources that are in a different time zone.
Note that this will not change the actual time of the timestamp, but only the time
zone that is displayed. A list of time zones can be used in OlsonNames().

timestamps_to_datetime 11

Details

This function has three use cases:

1. The most common use case: You have only ESM data and want to work in each participant’s
local time zone. In this case, the tz_offset and force_tz should be left empty. This is likely
the right use case for you.

2. You have ESM data and external data (e.g. sensing data or data from a multi-lab study) that
you want to match based on their time stamp. The external data is likely in UTC while m-Path
data is in the participant’s local time zone. In this case, you should specify the tz_offset
argument to convert the local time stamps to true UTC time. However, this will change the
time stamp to UTC so you will lose the ability to work in the local time zone.

3. This is a more specialised version of use case 2, namely when you are certain that every
participant lives in the same time zone and there not been any changes in daylight savings
time. In this case, you can specify the force_tz argument to set the same time zone for all
participants. This will not change the displayed time (11AM will stay 11AM) but will change
the underlying time zone.

Value

A vector of POSIXct objects representing the timestamps in the UTC time zone. The time zone may
differ if force_tz is specified.

Background

Timestamps in m-Path, like those in timeStampScheduled and timeStampStart, are a variation
on UNIX timestamps, defined as the number of seconds since January 1, 1970, at 00:00:00. How-
ever, unlike standard UNIX timestamps (which use UTC), m-Path timestamps are based on the
participant’s local time zone. This is because we are generally interested in time from the par-
ticipant’s perspective and not in an absolute sense compared to other participants. Unfortunately,
having multiple time zones in a single column is a not possible in R, which is why all time zones
are (incorrectly) displayed as UTC.

When converted to R datetime format, they may display as UTC, which could lead to confusion.
This typically isn’t an issue when analyzing ESM data within the participant’s local context, but
it can affect comparisons with other data sources. For accurate cross-referencing with other data,
consider specifying the UTC offset to correctly adjust for the participant’s local time. Alternatively,
you can force the timestamps to display in a specific time zone using the force_tz argument.

Examples

data <- read_mpath(
mpath_example("example_basic.csv"),
mpath_example("example_meta.csv")

)[1:10,]

The most common use case for this function: Convert
`timeStampStart` to datetime. Remember that these are in the
local time zone, but R displays them as being in UTC.
timestamps_to_datetime(data$timeStampStart)

12 write_mpath

Convert `timeStampStop` to datetime, but as being the correct
value in UTC.
timestamps_to_datetime(

x = data$timeStampStop,
tz_offset = data$timeZoneOffset

)

Let's convert `timeStampSent` to datetime, but this time we want to
force the time zone to be in "America/New_York" as we know all
participants were in this time zone and so we can link with other
data that is also in New York's time zone.
timestamps_to_datetime(

x = data$timeStampSent,
force_tz = "America/New_York"

)

write_mpath Write m-Path data to a CSV file

Description

[Experimental]
Save a data frame or tibble to a CSV file in the same format as the downloaded data from the m-Path
website. This function is useful when you have made modifications to the original data and would
like to save it in the same format. Note that reading back the data using read_mpath() may not
always work, as the data may no longer be in line with the meta data of the original data file.

Usage

write_mpath(x, file, .progress = TRUE)

Arguments

x A data frame or tibble to write to disk.

file File or connection to write to.

.progress Logical indicating whether to show a progress bar. Default is TRUE.

Details

Even though saving a data frame to a CSV file may seem trivial, there are several issues that need
to be addressed when saving m-Path data. The main issue is that m-Path data contains list columns
that need to be "collapsed" to a single string before they can be saved to a CSV file. This function
collapses most list columns to a single string using paste() with commas as a delimiter of the
values. However, for columns that contain strings, this is not possible as the strings themselves
may contains commas as well. To address this, the function converts all character columns to JSON
strings using jsonlite::toJSON() before saving them to disk.

While write_mpath() aims to provide a similar CSV file as the m-Path dashboard, we cannot
provide any guarantees that the data can be read back using read_mpath(), especially when the

write_mpath 13

data has been modified. If you want to save the data to use it at a later point in R (even when
transferring it to another computer), we recommend using saveRDS() or save() instead.

Note that the resulting data file may not exactly be equal to the original, even if it was not modified
after reading it with read_mpath(). The main reason is that CSV files from the m-Path dashboard
do not contain all necessary file delimiters corresponding to the number of rows in the data. This
function, however, does contain the correct number of file delimiters which makes the files slightly
bigger compared to the original file.

Value

Returns x invisibly.

See Also

read_mpath() to read m-Path data into R.

Examples

data <- read_mpath(
mpath_example("example_basic.csv"),
mpath_example("example_meta.csv")

)

write_mpath(data, "data.csv")

Index

∗ datasets
example_data, 2

example_data, 2
extract_app_usage, 4

jsonlite::toJSON(), 12

mpath_example, 6

OlsonNames(), 10

paste(), 12
plot_response_rate, 7

read.csv(), 4
read_mpath, 8
read_mpath(), 4, 12, 13
response_rate, 9

save(), 13
saveRDS(), 13

tibble, 8
timestamps_to_datetime, 10

write_mpath, 12
write_mpath(), 8

14

	example_data
	extract_app_usage
	mpath_example
	plot_response_rate
	read_mpath
	response_rate
	timestamps_to_datetime
	write_mpath
	Index

