Package ‘nuggets’

February 5, 2026

Title Extensible Framework for Data Pattern Exploration
Version 2.1.2

Date 2026-02-04

Maintainer Michal Burda <michal.burda@osu.cz>

Description A framework for systematic exploration of
association rules (Agrawal et al., 1994, <https://www.vldb.org/conf/1994/P487.PDF>),
contrast patterns (Chen, 2022, <doi:10.48550/arXiv.2209.13556>),
emerging patterns (Dong et al., 1999, <doi:10.1145/312129.312191>),
subgroup discovery (Atzmueller, 2015, <doi:10.1002/widm.1144>),
and conditional correlations (Hajek, 1978, <doi:10.1007/978-3-642-66943-9>).
User-defined functions may also be supplied to guide custom pattern searches.
Supports both crisp (Boolean) and fuzzy data. Generates candidate conditions
expressed as elementary conjunctions, evaluates them on a dataset, and
inspects the induced sub-data for statistical, logical, or structural
properties such as associations, correlations, or contrasts. Includes methods
for visualization of logical structures and supports interactive exploration
through integrated Shiny applications.

URL https://beerda.github.io/nuggets/,
https://github.com/beerda/nuggets/

BugReports https://github.com/beerda/nuggets/issues/
License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Language en-US

Depends R (>=4.4.0)

Imports classlnt, cli, dplyr, fastmatch, generics, ggplot2, grid,
lifecycle, methods, purrr, Rcpp, rlang, stats, stringr, tibble,
tidyr, tidyselect, utils

LinkingTo cli, Repp, testthat

SystemRequirements C++17

https://www.vldb.org/conf/1994/P487.PDF
https://doi.org/10.48550/arXiv.2209.13556
https://doi.org/10.1145/312129.312191
https://doi.org/10.1002/widm.1144
https://doi.org/10.1007/978-3-642-66943-9
https://beerda.github.io/nuggets/
https://github.com/beerda/nuggets/
https://github.com/beerda/nuggets/issues/

2 Contents

Suggests arules, DT, htmltools, htmlwidgets, jsonlite, shiny, shinyjs,
shinyWidgets, testthat (>= 3.0.0), xml2, withr, knitr,
rmarkdown

Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation yes

Author Michal Burda [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4182-4407>)

Repository CRAN
Date/Publication 2026-02-05 08:30:07 UTC

Contents
add_interest.assoCiationS e e e e e e e e e e e e 3
asSOCIAtION_MALIIX v v e e e e e e e e e e e e e e e 6
bound_range L. e e e e e 7
cluster_associationso e e e e e e e e 8
dig . . . e 10
dig_associations e e e 15
dig_baseline_contrasts e 18
dig_complement_contrasts e 22
dig_correlations e 26
dig_grid L 28
dig_paired_baseline_contrasts 32
dig_tautologies e e 36
explore.associations e 38
fire e e e 39
format_condition e e e e 40
geom_diamond L. oL e 41
is_almost_constant e e e e e e e e e 43
1s_condition e e e e e e 45
1S_degree e e e e e 46
is_logicalish e 47
IS_NUZEEL . . v o ot e e e e e e e e e e e 47
IS_SUDSEt e e e e e 48
NUZEEL . o v v o e 49
parse_condition L e e e e e e 51
Partition L. e e e e e e e e e 52
remove_almost_constanto e e e e e e e e 56
remove_ill_conditions e e 57
shorten_condition e e 58
values e e e e 59
var_grid e 60
VAL _NAMES . o v v v v o e e e e e e e e e e e e e 63

which_antichain e 64

https://orcid.org/0000-0002-4182-4407

add_interest.associations 3

Index 65

add_interest.associations
Add additional interest measures for association rules

Description

[Experimental]

This function calculates various additional interest measures for association rules based on their
contingency table counts.

Usage
S3 method for class 'associations'
add_interest(x, measures = NULL, smooth_counts = @, p = 0.5, ...)
add_interest(x, ...)

Arguments
X A nugget of flavour associations, typically created with dig_associations().
measures A character vector specifying which interest measures to calculate. If NULL (the

default), all supported measures are calculated. See the Details section for the
list of supported measures.

smooth_counts A non-negative numeric value specifying the amount of Laplace smoothing to
apply to the contingency table counts before calculating the interest measures.
Default is @ (no smoothing). Positive values add the specified amount to each of
the counts (pp, pn, np, nn), which can help avoid issues with undefined measures
due to zero counts. Use smooth_counts =1 for standard Laplace smoothing.
Use smooth_counts = 0.5 for Haldane-Anscombe smoothing, which is often
used for odds ratio estimation and in chi-squared tests.

p A numeric value in the range [0, 1] representing the conditional probability
of the consequent being true given that the antecedent is true. This parameter

is used in the calculation of GUHA quantifiers "1ci”, "uci”, "dlci”, "duci”,
"lce", and "uce". The default value is @. 5.

Currently unused.

Details

The input nugget object must contain the columns pp (positive antecedent & positive consequent),
pn (positive antecedent & negative consequent), np (negative antecedent & positive consequent),
and nn (negative antecedent & negative consequent), representing the counts from the contingency
table. These columns are automatically produced by dig_associations().

The supported interest measures that can be calculated include:

* Founded GUHA (General Unary Hypothesis Automaton) quantifiers:

add_interest.associations

— "fi" - Founded Implication, which equals to the "confidence” measure calculated au-
tomatically by dig_associations().

— "dfi" - Double Founded Implication computed as pp/(pp + pn + np)
— "fe" - Founded Equivalence computed as (pp + nn)/(pp + pn + np + nn)

* GUHA quantifiers based on binomial tests - these measures require the additional parameter
p, which represents the conditional probability of the consequent being true given that the
antecedent is true under the null hypothesis. The measures are computed as one-sided p-
values from the Clopper-Pearson confidence interval for the binomial proportion:

— "lci” - Lower Critical Implication computed as PP 7" Apptp)!)!pi(l — p)pprpn—i

i=pp i!(pp+pn—i

pp _ (pp+pn)! i1 . \pp+pn—i

i=0 W(pptpn—i)iP (1-p)

pp+pn+np _ (pp+pn+np)! i(l_
i=pp (pp+pntnp—i) P

— "uci” - Upper Critical Implication computed as

— "dlci” - Double Lower Critical Implication computed as »
p)pp+pn+np—i

pp (ppt+pntnp)! pi (1

— "duci” - Double Upper Critical Implication computed as » ;. 7 (T E—

p)pp+pn+np—i

pp+pn+np+nn _ (pptpntnptnn)! pi(l—

n n . .
— "lce" - Lower Critical Equivalence computed as Zi:pp Py ————

p)pp+pn+np+nn—i

pp (ppt+pn+tnp+nn)! i(l_)pp+pn+np+nn—i
i=0 (pptpntnptnn—i)P p

— "uce" - Upper Critical Equivalence computed as)
* measures adopted from the arules package:

— "added_value” - Added Value, see https://mhahsler.github.io/arules/docs/measures#
addedvalue for details

— "casual_confidence"” - Casual Confidence, see https://mhahsler.github.io/arules/
docs/measures#casualconfidence for details

— "casual_support” - Casual Support, see https://mhahsler.github.io/arules/docs/
measurestcasualsupport for details

— "centered_confidence"” - Centered Confidence, see https://mhahsler.github.io/
arules/docs/measures#centeredconfidence for details

— "certainty"” - Certainty Factor, see https://mhahsler.github.io/arules/docs/
measures#certainty for details

— "collective_strength” - Collective Strength, see https://mhahsler.github.io/
arules/docs/measures#collectivestrength for details

— "confirmed_confidence" - Descriptive Confirmed Confidence, see https://mhahsler.
github.io/arules/docs/measures#confirmedconfidence for details

— "conviction"” - Conviction, see https://mhahsler.github.io/arules/docs/measures#
conviction for details

— "cosine" - Cosine, see https://mhahsler.github.io/arules/docs/measures#cosine
for details

— "counterexample” - Example and Counter-Example Rate, see https://mhahsler.github.
io/arules/docs/measuresffcounterexample for details

— "doc" - Difference of Confidence, see https://mhahsler.github.io/arules/docs/
measurest#doc for details

— "gini" - Gini Index, see https://mhahsler.github.io/arules/docs/measures#gini
for details

https://mhahsler.github.io/arules/docs/measures#addedvalue
https://mhahsler.github.io/arules/docs/measures#addedvalue
https://mhahsler.github.io/arules/docs/measures#casualconfidence
https://mhahsler.github.io/arules/docs/measures#casualconfidence
https://mhahsler.github.io/arules/docs/measures#casualsupport
https://mhahsler.github.io/arules/docs/measures#casualsupport
https://mhahsler.github.io/arules/docs/measures#centeredconfidence
https://mhahsler.github.io/arules/docs/measures#centeredconfidence
https://mhahsler.github.io/arules/docs/measures#certainty
https://mhahsler.github.io/arules/docs/measures#certainty
https://mhahsler.github.io/arules/docs/measures#collectivestrength
https://mhahsler.github.io/arules/docs/measures#collectivestrength
https://mhahsler.github.io/arules/docs/measures#confirmedconfidence
https://mhahsler.github.io/arules/docs/measures#confirmedconfidence
https://mhahsler.github.io/arules/docs/measures#conviction
https://mhahsler.github.io/arules/docs/measures#conviction
https://mhahsler.github.io/arules/docs/measures#cosine
https://mhahsler.github.io/arules/docs/measures#counterexample
https://mhahsler.github.io/arules/docs/measures#counterexample
https://mhahsler.github.io/arules/docs/measures#doc
https://mhahsler.github.io/arules/docs/measures#doc
https://mhahsler.github.io/arules/docs/measures#gini

add_interest.associations 5

— "imbalance" - Imbalance Ratio, see https://mhahsler.github.io/arules/docs/
measures#imbalance for details

— "implication_index" - Implication Index, see https://mhahsler.github.io/arules/
docs/measuresttimplicationindex for details

— "importance” - Importance, see https://mhahsler.github.io/arules/docs/measures#
importance for details

— "j_measure"” - J-Measure, see https://mhahsler.github.io/arules/docs/measures#
jmeasure for details

— "jaccard" - Jaccard Coefficient, see https://mhahsler.github.io/arules/docs/
measures#jaccard for details

— "kappa" - Kappa, see https://mhahsler.github.io/arules/docs/measurestkappa
for details

— "kulczynski” - Kulczynski, see https://mhahsler.github.io/arules/docs/measures#
kulczynski for details

— "lambda" - Lambda, see https://mhahsler.github.io/arules/docs/measurest#lambda
for details

— "least_contradiction” - Least Contradiction, see https://mhahsler.github.io/
arules/docs/measures#leastcontradiction for details

— "lerman” - Lerman Similarity, see https://mhahsler.github.io/arules/docs/measures#
lerman for details

— "leverage" - Leverage, see https://mhahsler.github.io/arules/docs/measures#
leverage for details

— "maxconfidence” - Max Confidence, see https://mhahsler.github.io/arules/docs/
measures#maxconfidence for details

— "mutual_information” - Mutual Information, see https://mhahsler.github.io/arules/
docs/measures#tmutualinformation for details

— "odds_ratio" - Odds Ratio, see https://mhahsler.github.io/arules/docs/measures#
oddsratio for details

— "phi" - Phi Correlation Coefficient, see https://mhahsler.github.io/arules/docs/
measures#phi for details

— "ralambondrainy” - Ralambondrainy, see https://mhahsler.github.io/arules/docs/
measures#ralambondrainy for details

— "relative_risk"” - Relative Risk, see https://mhahsler.github.io/arules/docs/
measurest#relativerisk for details

— "rule_power_factor"” - Rule Power Factor, see https://mhahsler.github.io/arules/
docs/measuresttrulepowerfactor for details

— "sebag" - Sebag-Schoenauer, see https://mhahsler.github.io/arules/docs/measures#
sebag for details

— "varying_liaison” - Varying Rates Liaison, see https://mhahsler.github.io/arules/
docs/measures#varyingliaison for details

— "yule_q" - Yule’s Q,see https://mhahsler.github.io/arules/docs/measures#yuleq
for details

— "yule_y" -Yule’s Y,see https://mhahsler.github.io/arules/docs/measures#yuley
for details

https://mhahsler.github.io/arules/docs/measures#imbalance
https://mhahsler.github.io/arules/docs/measures#imbalance
https://mhahsler.github.io/arules/docs/measures#implicationindex
https://mhahsler.github.io/arules/docs/measures#implicationindex
https://mhahsler.github.io/arules/docs/measures#importance
https://mhahsler.github.io/arules/docs/measures#importance
https://mhahsler.github.io/arules/docs/measures#jmeasure
https://mhahsler.github.io/arules/docs/measures#jmeasure
https://mhahsler.github.io/arules/docs/measures#jaccard
https://mhahsler.github.io/arules/docs/measures#jaccard
https://mhahsler.github.io/arules/docs/measures#kappa
https://mhahsler.github.io/arules/docs/measures#kulczynski
https://mhahsler.github.io/arules/docs/measures#kulczynski
https://mhahsler.github.io/arules/docs/measures#lambda
https://mhahsler.github.io/arules/docs/measures#leastcontradiction
https://mhahsler.github.io/arules/docs/measures#leastcontradiction
https://mhahsler.github.io/arules/docs/measures#lerman
https://mhahsler.github.io/arules/docs/measures#lerman
https://mhahsler.github.io/arules/docs/measures#leverage
https://mhahsler.github.io/arules/docs/measures#leverage
https://mhahsler.github.io/arules/docs/measures#maxconfidence
https://mhahsler.github.io/arules/docs/measures#maxconfidence
https://mhahsler.github.io/arules/docs/measures#mutualinformation
https://mhahsler.github.io/arules/docs/measures#mutualinformation
https://mhahsler.github.io/arules/docs/measures#oddsratio
https://mhahsler.github.io/arules/docs/measures#oddsratio
https://mhahsler.github.io/arules/docs/measures#phi
https://mhahsler.github.io/arules/docs/measures#phi
https://mhahsler.github.io/arules/docs/measures#ralambondrainy
https://mhahsler.github.io/arules/docs/measures#ralambondrainy
https://mhahsler.github.io/arules/docs/measures#relativerisk
https://mhahsler.github.io/arules/docs/measures#relativerisk
https://mhahsler.github.io/arules/docs/measures#rulepowerfactor
https://mhahsler.github.io/arules/docs/measures#rulepowerfactor
https://mhahsler.github.io/arules/docs/measures#sebag
https://mhahsler.github.io/arules/docs/measures#sebag
https://mhahsler.github.io/arules/docs/measures#varyingliaison
https://mhahsler.github.io/arules/docs/measures#varyingliaison
https://mhahsler.github.io/arules/docs/measures#yuleq
https://mhahsler.github.io/arules/docs/measures#yuley

6 association_matrix

All the above measures are primarily intended for use with binary (logical) data. While they can be
computed for numerical data as well, their interpretations may not be meaningful in that context -
users should exercise caution when applying these measures to non-binary data.

Many measures are based on the contingency table counts, and some may be undefined for certain
combinations of counts (e.g., division by zero). This issue can be mitigated by applying smoothing
using the smooth_counts argument.

Value

An S3 object which is an instance of associations and nugget classes and which is a tibble
containing all the columns of the input nugget x, plus additional columns for each of the requested
interest measures.

Author(s)
Michal Burda

See Also

dig_associations()

Examples

d <- partition(mtcars, .breaks = 2)
rules <- dig_associations(d,
antecedent = !starts_with("mpg"),
consequent = starts_with("mpg"),
min_support = 0.3,
min_confidence = 0.8)
rules <- add_interest(rules,
measures = c("conviction”, "leverage", "jaccard"))

association_matrix Create an association matrix from a nugget of flavour associations.

Description

The association matrix is a matrix where rows correspond to antecedents, columns correspond to
consequents, and the values are taken from a specified column of the nugget. Missing values are
filled with zeros.

A pair of antecedent and consequent must be unique in the nugget. If there are multiple rows with
the same pair, an error is raised.

Usage
association_matrix(
X’
value,
error_context = list(arg_x = "x", arg_value = "value"”, call = current_env())

)

bound_range 7

Arguments
X A nugget of flavour associations.
value A tidyselect expression (see tidyselect syntax) specifying the column to use for

filling the matrix values.

error_context A list of details to be used in error messages. It must contain: - arg_x: the name
of the x argument; - arg_value: the name of the value argument; - call: an
environment in which to evaluate the error messages. Defaults to the current
environment.

Value

A numeric matrix with row names corresponding to antecedents and column names corresponding
to consequents. Values are taken from the column specified by value. Missing values are filled
with zeros.

Author(s)

Michal Burda

Examples

d <- partition(mtcars, .breaks = 2)

rules <- dig_associations(d,
antecedent = everything(),
consequent = everything(),
min_support = 0.3)

association_matrix(rules, confidence)

bound_range Bound a range of numeric values

Description

This function computes the range of numeric values in a vector and adjusts the bounds to "nice"
rounded numbers. Specifically, it rounds the lower bound downwards (similar to floor()) and the
upper bound upwards (similar to ceiling()) to the specified number of digits. This can be useful
when preparing data ranges for axis labels, plotting, or reporting. The function returns a numeric
vector of length two, containing the adjusted lower and upper bounds.

Usage

bound_range(x, digits = @, na_rm = FALSE)

https://tidyselect.r-lib.org/articles/syntax.html

8 cluster_associations

Arguments
X A numeric vector to be bounded.
digits An integer scalar specifying the number of digits to round the bounds to. A
positive value determines the number of decimal places used. A negative value
rounds to the nearest 10, 100, etc. If digits is NULL, no rounding is performed
and the exact range is returned.
na_rm A logical flag indicating whether NA values should be removed before computing
the range. If TRUE, the range is computed from non-NA values only. If FALSE and
x contains any NA values, the function returns c(NA, NA).
Value

A numeric vector of length two with the rounded lower and upper bounds of the range of x. The
lower bound is always rounded down, and the upper bound is always rounded up. If x is NULL or
has length zero, the function returns NULL.

Author(s)
Michal Burda

See Also

floor(), ceiling()

Examples

bound_range(c(1.9, 2, 3.1), digits = 0) # returns c(1, 4)
bound_range(c(190, 200, 301), digits = -2) # returns c(100, 400)

cluster_associations Cluster association rules

Description

This function clusters association rules based on the selected numeric attribute by (e.g., confidence
or lift) and summarizes the clusters. The clustering is performed using the k-means algorithm.

Each cluster is represented by a label consisting of the number of rules in the cluster and the most
common predicates in the antecedents of those rules.

Usage

cluster_associations(
X,
n,
by,
algorithm = "Hartigan-Wong",
predicates_in_label = 2

cluster_associations 9

Arguments
X A nugget of flavour associations, typically the output of dig_associations().
n The number of clusters to create. Must be a positive integer.
by A tidyselect expression (see tidyselect syntax) specifying the numeric column
to use for clustering.
algorithm The k-means algorithm to use. One of "Hartigan-Wong" (the default), "L1loyd",

"Forgy", or "MacQueen”. See stats: :kmeans() for details.
predicates_in_label

The number of most common predicates to include in the cluster label. The
default is 2.

Value
A tibble with one row per (cluster, consequent) pair. The columns are:

e cluster: the cluster number;

e cluster_label: a label for the cluster, consisting of the number of rules in the cluster and
the most common predicates in the antecedents of those rules;

* consequent: consequents of the rules;

* other numeric columns from the input nugget, aggregated by mean within each cluster.

Author(s)
Michal Burda

See Also

dig_associations(), association_matrix() stats::kmeans()

Examples

Prepare the data

cars <- mtcars |>
partition(cyl, vs:gear, .method = "dummy”) |>
partition(carb, .method = "crisp”, .breaks = c(@, 3, 10)) |>
partition(mpg, disp:qgsec, .method = "triangle”, .breaks = 3)

Search for associations

rules <- dig_associations(cars,
antecedent = everything(),
consequent = everything(),
max_length = 3,
min_support = 0.2)

Cluster the found rules
clu <- cluster_associations(rules, 10, "lift")

Print the number of clusters
length(unique(clu$cluster))

https://tidyselect.r-lib.org/articles/syntax.html

10 dig

Not run:
Plot the clustered rules
library(ggplot2)

ggplot(clu) +
aes(x = cluster_label, y = consequent, color = lift, size = support) +
geom_point() +
xlab("predicates in antecedent groups”) +
scale_y_discrete(limits = rev) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

End(Not run)

dig Search for patterns of a custom type

Description

A general function for searching for patterns of a custom type. The function allows selection of
columns of x to be used as condition predicates. It enumerates all possible conditions in the form
of elementary conjunctions of selected predicates, and for each condition executes a user-defined
callback function f. The callback is expected to perform some analysis and return an object (often
a list) representing a pattern or patterns related to the condition. The results of all calls are returned
as a list.

The callback function f may accept a number of arguments (see f argument description). The
algorithm automatically provides condition-related information to f based on which arguments are
present.

In addition to conditions, the function can evaluate focus predicates (foci). Foci are specified sepa-
rately and are tested within each generated condition. Extra information about them is then passed
to f.

Restrictions may be imposed on generated conditions, such as:

* minimum and maximum condition length (min_length, max_length);
* minimum condition support (min_support);

* minimum focus support (min_focus_support), i.e. support of rows where both the condition
and the focus hold.

Usage

dig(
X,
f,
condition = everything(),
focus = NULL,
disjoint = var_names(colnames(x)),
excluded = NULL,

dig 11

min_length = 0,

max_length = Inf,

min_support = 0,

min_focus_support = 0,

min_conditional_focus_support = 0,

max_support = 1,

filter_empty_foci = FALSE,

t_norm = "goguen”,

max_results = Inf,

verbose = FALSE,

threads 1L,

error_context = list(arg_x = "x", arg_f = "f", arg_condition = "condition”, arg_focus =
"focus", arg_disjoint = "disjoint”, arg_excluded = "excluded”, arg_min_length =
"min_length”, arg_max_length = "max_length"”, arg_min_support = "min_support”,
arg_min_focus_support = "min_focus_support”, arg_min_conditional_focus_support =

"min_conditional_focus_support”, arg_max_support = "max_support”,
arg_filter_empty_foci = "filter_empty_foci”, arg_t_norm = "t_norm”, arg_max_results =
"max_results”, arg_verbose = "verbose”,

arg_threads = "threads”, call =
current_env())

Arguments

X A matrix or data frame. If a matrix, it must be numeric (double) or logical. If a
data frame, all columns must be numeric (double) or logical.

f A callback function executed for each generated condition. It may declare any
subset of the arguments listed below. The algorithm detects which arguments
are present and provides only those values to f. This design allows the user to
control both the amount of information received and the computational cost, as
some arguments are more expensive to compute than others. The function f is
expected to return an object (typically a list) representing a pattern or patterns
related to the condition. The results of all calls of f are collected and returned as
a list. Possible arguments are: condition, sum, support, indices, weights,
pp, pn, Np, nn, or foci_supports (deprecated), which are thoroughly described
below in the "Details" section.

condition tidyselect expression (see tidyselect syntax) specifying columns of x to use as
condition predicates

focus tidyselect expression (see tidyselect syntax) specifying columns of x to use as
focus predicates

disjoint An atomic vector (length = number of columns in x) defining groups of predi-
cates. Columns in the same group cannot appear together in a condition. With
data from partition(), use var_names() on column names to construct disjoint.

excluded NULL or a list of character vectors, each representing an implication formula. In
each vector, all but the last element form the antecedent and the last element
is the consequent. These formulae are treated as tautologies and used to filter
out generated conditions. If a condition contains both the antecedent and the

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

12

min_length

max_length

min_support

dig

consequent of any such formula, it is not passed to the callback function f.
Likewise, if a condition contains the antecedent, the corresponding focus (the
consequent) is not passed to f.

Minimum number of predicates in a condition required to trigger the callback f.
Must be > 0. If set to 0, the empty condition also triggers the callback.

Maximum number of predicates allowed in a condition. Conditions longer than
max_length are not generated. If Inf, the only limit is the total number of
available predicates. Must be > 0 and > min;ength. This setting strongly
influences both the number of generated conditions and the speed of the search.

Minimum support of a condition required to trigger f. Support is the relative
frequency of the condition in x. For logical data, this is the proportion of rows
where all condition predicates are TRUE. For numeric (double) data, support is
the mean (over all rows) of the products of predicate values. Must be in [0, 1].
If a condition’s support falls below min_support, recursive generation of its
extensions is stopped. Thus, min_support directly affects search speed and the
number of callback calls.

min_focus_support

Minimum support of a focus required for it to be passed to f. For logical data,
this is the proportion of rows where both the condition and the focus are TRUE.
For numeric (double) data, support is computed as the mean (over all rows)
of a t-norm of predicate values (the t-norm is selected by t_norm). Must be
in [0,1]. Foci with support below this threshold are excluded. Together with
filter_empty_foci, this parameter influences both search speed and the num-
ber of triggered calls of f.

min_conditional_focus_support

max_support

Minimum conditional support of a focus within a condition. Defined as the rela-
tive frequency of rows where the focus is TRUE among those where the condition
is TRUE. If sum (see support in Details) is the number of rows (or sum of truth
degrees for fuzzy data) satisfying the condition, and pp (see pp[i] in Details)
is the sum of truth degrees where both the condition and the focus hold, then
conditional support is pp/sum. Must be in [0, 1]. Foci below this threshold are
not passed to f. Together with filter_empty_foci, this parameter influences
search speed and the number of callback calls.

Maximum support of a condition to trigger f. Conditions with support above
this threshold are skipped, but recursive generation of their supersets continues.
Must be in [0, 1].

filter_empty_foci

t_norm

max_results

Logical; controls whether f is triggered for conditions with no remaining foci
after filtering by min_focus_support or min_conditional_focus_support.
If TRUE, f is called only when at least one focus remains. If FALSE, f is called
regardless.

T-norm used for conjunction of weights: "goedel” (minimum), "goguen” (prod-
uct), or "lukas” (Lukasiewicz).

Maximum number of results (objects returned by the callback f) to store and
return in the output list. When this limit is reached, generation of further condi-
tions stops. Use a positive integer to enable early stopping; set to Inf to remove
the cap.

dig 13

verbose Logical; if TRUE, print progress messages.
threads Number of threads for parallel computation.

error_context A list of details to be used when constructing error messages. This is mainly

useful when dig() is called from another function and errors should refer to the
caller’s argument names rather than those of dig(). The list must contain:

* arg_x —name of the argument x as a character string

* arg_f —name of the argument f as a character string

* arg_condition —name of the argument condition

* arg_focus — name of the argument focus

* arg_disjoint — name of the argument disjoint

* arg_excluded — name of the argument excluded

e arg_min_length — name of the argument min_length

e arg_max_length — name of the argument max_length

* arg_min_support —name of the argument min_support

e arg_min_focus_support — name of the argument min_focus_support

e arg_min_conditional_focus_support —name of the argument min_conditional_focus_suppor

* arg_max_support — name of the argument max_support

e arg_filter_empty_foci — name of the argument filter_empty_foci

e arg_t_norm— name of the argument t_norm

e arg_threads — name of the argument threads

* call - environment in which to evaluate error messages

Details

Let P be the set of condition predicates selected by condition and E be the set of focus predicates
selected by focus. The function generates all possible conditions as elementary conjunctions of
distinct predicates from P. These conditions are filtered using disjoint, excluded, min_length,
max_length, min_support, and max_support.

For each remaining condition, all foci from E are tested and filtered using min_focus_support
and min_conditional_focus_support. If at least one focus remains (or if filter_empty_foci
= FALSE), the callback f is executed with details of the condition and foci. Results of all calls are
collected and returned as a list.

Let C be a condition (C' C P), F the set of filtered foci (F' C E), R the set of rows of x, and pc(r)
the truth degree of condition C' on row r. The parameters passed to f are defined as:
* condition: a named integer vector of column indices representing the predicates of C.
Names correspond to column names.

* sum: a numeric scalar value of the number of rows satisfying C' for logical data, or the sum of
truth degrees for fuzzy data, sum =) __p pc(r).

* support: a numeric scalar value of relative frequency of rows satisfying C, supp = sum/|R).

* pp, pn, np, nn: a numeric vector of entries of a contingency table for C' and F’, satisfying the
Ruspini condition pp + pn + np + nn = |R|. The i-th elements of these vectors correspond
to the i-th focus F;; from F' and are defined as:

— ppli]: rows satisfying both C and F;, pp; = 3, c p ionr, (7).

14
— pnlil: rows satisfying C' but not Fj, pn; = > pc(r) — ppi.
— np[il: rows satisfying F; but not C, np; = > . p pr, (1) — ppi-
— nn[i]: rows satisfying neither C nor F;, nn, = |R| — (pp; + pni + np;).
Value
A list of results returned by the callback function f.
Author(s)
Michal Burda
See Also
partition(), var_names(), dig_grid()
Examples

library(tibble)

Prepare iris data
d <- partition(iris, .breaks = 2)

Simple callback: return formatted condition names

dig(x = d,
f = function(condition) format_condition(names(condition)),
min_support = 0.5)

Callback returning condition and support
res <- dig(x = d,

f = function(condition, support) {
list(condition = format_condition(names(condition)),
support = support)
}7

min_support = 0.5)
do.call(rbind, lapply(res, as_tibble))

Within each condition, evaluate also supports of columns starting with
"Species”
res <- dig(x = d,
f = function(condition, support, pp) {
c(list(condition = format_condition(names(condition))),
list(condition_support = support),
as.list(pp / nrow(d)))

b

condition = !starts_with("”Species"”),

focus = starts_with("Species”),

min_support = 0.5,

min_focus_support = @)
do.call(rbind, lapply(res, as_tibble))

Multiple patterns per condition based on foci

dig

dig_associations 15

res <- dig(x = d,
f = function(condition, support, pp) {
lapply(seq_along(pp), function(i) {
list(condition = format_condition(names(condition)),
condition_support = support,
focus = names(pp)[i],
focus_support = pp[[i]] / nrow(d))
»
i
condition = !starts_with("Species”),
focus = starts_with("Species”),
min_support = 0.5,
min_focus_support = 0)

Flatten result and convert to tibble
res <- unlist(res, recursive = FALSE)
do.call(rbind, lapply(res, as_tibble))

dig_associations Search for association rules

Description

[Experimental]
Association rules identify conditions (anfecedents) under which a specific feature (consequent) is
present very often.

Scheme: A => C

If condition A is satisfied, then the feature C is present very often.
Example: university_edu & middle_age & IT_industry => high_income

People in middle age with university education working in IT industry have very likely a
high income.

Antecedent A is usually a set of predicates, and consequent C is a single predicate.

For the following explanations we need a mathematical function supp(I), which is defined for a
set I of predicates as a relative frequency of rows satisfying all predicates from I. For logical data,
supp(I) equals to the relative frequency of rows, for which all predicates i1, o, . . . , i, from I are
TRUE. For numerical (double) input, supp(I) is computed as the mean (over all rows) of truth
degrees of the formula i_1 AND i_2 AND ... AND i_n, where AND is a triangular norm selected
by the t_norm argument.

Association rules are characterized with the following quality measures.
Length of a rule is the number of elements in the antecedent.
Coverage of a rule is equal to supp(A).

Consequent support of a rule is equal to supp({c}).

16 dig_associations

Support of a rule is equal to supp(A U {c}).
Confidence of a rule is the fraction supp(A)/supp(A U {c}).

Lift of a rule is the ratio of its support to the expected support assuming antecedent and consequent
are independent, i.e., supp(A U {c})/(supp(A) * supp({c})).

Usage

dig_associations(

X,

antecedent = everything(),

consequent = everything(),

disjoint = var_names(colnames(x)),

excluded = NULL,

min_length = oL,

max_length = Inf,

min_coverage = 0,

min_support = 0,

min_confidence = 0,

contingency_table = deprecated(),

t_norm = "goguen”,

max_results = Inf,

verbose = FALSE,

threads = 1,

error_context = list(arg_x = "x", arg_antecedent = "antecedent”, arg_consequent =
"consequent”, arg_disjoint = "disjoint"”, arg_excluded = "excluded”, arg_min_length =
"min_length”, arg_max_length = "max_length", arg_min_coverage = "min_coverage",

arg_min_support = "min_support”, arg_min_confidence = "min_confidence”,
arg_contingency_table = "contingency_table”, arg_t_norm = "t_norm”, arg_max_results =
"max_results”, arg_verbose = "verbose”, arg_threads = "threads", call =
current_env())
)
Arguments
X a matrix or data frame with data to search in. The matrix must be numeric
(double) or logical. If x is a data frame then each column must be either numeric
(double) or logical.
antecedent a tidyselect expression (see tidyselect syntax) specifying the columns to use in
the antecedent (left) part of the rules
consequent a tidyselect expression (see tidyselect syntax) specifying the columns to use in
the consequent (right) part of the rules
disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.
excluded NULL or a list of character vectors, where each character vector contains the

names of columns that must not appear together in a single antecedent.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

dig_associations

min_length

max_length

min_coverage

min_support

min_confidence

17

the minimum length, i.e., the minimum number of predicates in the antecedent,
of a rule to be generated. Value must be greater or equal to 0. If 0, rules with
empty antecedent are generated in the first place.

The maximum length, i.e., the maximum number of predicates in the antecedent,
of a rule to be generated. If equal to Inf, the maximum length is limited only by
the number of available predicates.

the minimum coverage of a rule in the dataset x. (See Description for the defi-
nition of coverage.)

the minimum support of a rule in the dataset x. (See Description for the defini-
tion of support.)

the minimum confidence of a rule in the dataset x. (See Description for the
definition of confidence.)

contingency_table

t_norm

max_results

verbose

threads

error_context

(Deprecated. Contingency table is always added to the result.) A logical value
indicating whether to provide a contingency table for each rule. If TRUE, the
columns pp, pn, np, and nn are added to the output table. These columns contain
the number of rows satisfying the antecedent and the consequent, the antecedent
but not the consequent, the consequent but not the antecedent, and neither the
antecedent nor the consequent, respectively.

a t-norm used to compute conjunction of weights. It must be one of "goedel”
(minimum t-norm), "goguen” (product t-norm), or "lukas” (Lukasiewicz t-
norm).

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical value indicating whether to print progress messages.
the number of threads to use for parallel computation.

a named list providing context for error messages. This is mainly useful when
dig_associations() is called from another function and you want error mes-
sages to refer to the argument names of that calling function. The list must
contain the following elements:

* arg_x - name of the argument x

e arg_antecedent - name of the argument antecedent

e arg_consequent - name of the argument consequent

* arg_disjoint - name of the argument disjoint

* arg_excluded - name of the argument excluded

e arg_min_length - name of the argument min_length

* arg_max_length - name of the argument max_length

* arg_min_coverage - name of the argument min_coverage

* arg_min_support - name of the argument min_support

e arg_min_confidence - name of the argument min_confidence

* arg_contingency_table - name of the argument contingency_table

18 dig_baseline_contrasts

* arg_t_norm - name of the argument t_norm
* arg_max_results - name of the argument max_results
* arg_verbose - name of the argument verbose

* arg_threads - name of the argument threads

Value

An S3 object, which is an instance of associations and nugget classes, and which is a tibble with
found patterns and computed quality measures.

Author(s)
Michal Burda

See Also

partition(), var_names(), dig()

Examples

d <- partition(mtcars, .breaks = 2)
dig_associations(d,
antecedent = !starts_with("mpg"),
consequent = starts_with("mpg"),
min_support = 0.3,
min_confidence = 0.8)

dig_baseline_contrasts
Search for conditions that yield in statistically significant one-sample
test in selected variables.

Description

[Experimental]

Baseline contrast patterns identify conditions under which a specific feature is significantly different
from a given value by performing a one-sample statistical test.

Scheme: var !'=0 | C

Variable var is (in average) significantly different from 0 under the condition C.
Example: (measure_error != 0 | measure_tool_A

If measuring with measure tool A, the average measure error is significantly different from
0.

dig_baseline_contrasts 19

The baseline contrast is computed using a one-sample statistical test, which is specified by the
method argument. The function computes the contrast between all variables specified by the vars
argument. Baseline contrasts are computed in sub-data corresponding to conditions generated from
the condition columns. Function dig_baseline_contrasts() supports crisp conditions only,
i.e., the condition columns in x must be logical.

Usage

dig_baseline_contrasts(
X,
condition = where(is.logical),
vars = where(is.numeric),
disjoint = var_names(colnames(x)),
excluded = NULL,
min_length = oL,
max_length = Inf,
min_support = 0,
max_support 1,

method = "t",
alternative = "two.sided”,
ho = 0,

conf_level = 0.95,
max_p_value = 0.05,
wilcox_exact = FALSE,
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,

threads = 1
)
Arguments

X a matrix or data frame with data to search the patterns in.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

vars a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

excluded NULL or a list of character vectors, where each character vector contains the

names of columns that must not appear together in a single condition.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

20

min_length

max_length

min_support

max_support

method

alternative

ho

conf_level

max_p_value

wilcox_exact

wilcox_correct

wilcox_tol_root

dig_baseline_contrasts

the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox", for non-parametric test on equality in position.

J

indicates the alternative hypothesis and must be one of "two.sided"”, "greater’
or "less”. "greater"” corresponds to positive association, "less” to negative
association.

a numeric value specifying the null hypothesis for the test. For the "t" method,
it is the value of the mean. For the "wilcox” method, it is the value of the
median. The default value is O.

a numeric value specifying the level of the confidence interval. The default value
is 0.95.

the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

(used for the "wilcox"” method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

(used for the "wilcox" method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

(used for the "wilcox"” method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() and its tol.root argument for more information.

wilcox_digits_rank

max_results

(used for the "wilcox"” method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() andits digits.rank argument
for more information.

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops

dig_baseline_contrasts

verbose

threads

Value

21

generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical scalar indicating whether to print progress messages.

the number of threads to use for parallel computation.

An S3 object which is an instance of baseline_contrasts and nugget classes and which is a
tibble with found patterns in rows. The following columns are always present:

condition

support

var
estimate
statistic
p_value

n
conf_int_lo
conf_int_hi

alternative

method

comment

the condition of the pattern as a character string in the form {p1 & p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

the name of the contrast variable.

the estimated mean or median of variable var.

the statistic of the selected test.

the p-value of the underlying test.

the number of rows in the sub-data corresponding to the condition.
the lower bound of the confidence interval of the estimate.

the upper bound of the confidence interval of the estimate.

a character string indicating the alternative hypothesis. The value must be one
of "two.sided", "greater”, or "less".

a character string indicating the method used for the test.

a character string with additional information about the test (mainly error mes-
sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.
stderr the standard error of the mean.
Author(s)
Michal Burda
See Also

dig_paired_baseline_contrasts(),dig_complement_contrasts(),dig(),dig_grid(), stats::t.test(),
stats::wilcox.test()

22 dig_complement_contrasts

Examples

d <- partition(mtcars, .breaks = 2, .keep = TRUE)
dig_baseline_contrasts(d,
condition = where(is.logical),
vars = where(is.numeric),
min_support = 0.3,
max_length = 2)

dig_complement_contrasts
Search for conditions that provide significant differences in selected
variables to the rest of the data table

Description

[Experimental]

Complement contrast patterns identify conditions under which there is a significant difference in
some numerical variable between elements that satisfy the identified condition and the rest of the
data table.

Scheme: (var | C) != (var | not C)

There is a statistically significant difference in variable var between group of elements that
satisfy condition C and a group of elements that do not satisfy condition C.

Example: (life_expectancy | smoker) < (life_expectancy | non-smoker)

The life expectancy in people that smoke cigarettes is in average significantly lower than in
people that do not smoke.

The complement contrast is computed using a two-sample statistical test, which is specified by
the method argument. The function computes the complement contrast in all variables specified
by the vars argument. Complement contrasts are computed based on sub-data corresponding to
conditions generated from the condition columns and the rest of the data table. Function #’
dig_complement_contrasts() supports crisp conditions only, i.e., the condition columns in x
must be logical.

Usage

dig_complement_contrasts(
X,
condition = where(is.logical),
vars = where(is.numeric),
disjoint = var_names(colnames(x)),
excluded = NULL,
min_length = oL,
max_length = Inf,
min_support = 0,

dig_complement_contrasts 23

max_support

1 - min_support,

method = "t",
alternative = "two.sided",
ho = if (method == "var") 1 else 0,

conf_level = 0.95,
max_p_value
t_var_equal = FALSE,
wilcox_exact
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,

threads =

Arguments

X

condition

vars

disjoint

excluded

min_length

max_length

min_support

max_support

method

1L

0.05,

= FALSE,

a matrix or data frame with data to search the patterns in.

a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

NULL or a list of character vectors, where each character vector contains the
names of columns that must not appear together in a single condition.

the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox”, for non-parametric test on equality in position, and "var”
for F-test on comparison of variances of two populations.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

24

alternative

he

conf_level

max_p_value

t_var_equal

wilcox_exact

wilcox_correct

wilcox_tol_root

dig_complement_contrasts

indicates the alternative hypothesis and must be one of "two.sided”, "greater”
or "less”. "greater” corresponds to positive association, "less” to negative
association.

a numeric value specifying the null hypothesis for the test. For the "t" method,
it is the difference in means. For the "wilcox"” method, it is the difference in
medians. For the "var” method, it is the hypothesized ratio of the population
variances. The default value is 1 for "var"” method, and O otherwise.

anumeric value specifying the level of the confidence interval. The default value
is 0.95.

the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

(used for the "t" method only) a logical value indicating whether the variances
of the two samples are assumed to be equal. If TRUE, the pooled variance is used
to estimate the variance in the t-test. If FALSE, the Welch (or Satterthwaite) ap-
proximation to the degrees of freedom is used. See t. test() and its var.equal
argument for more information.

(used for the "wilcox"” method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

(used for the "wilcox"” method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

(used for the "wilcox"” method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() and its tol.root argument for more information.

wilcox_digits_rank

max_results

verbose

threads

Value

(used for the "wilcox" method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() andits digits.rank argument
for more information.

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical scalar indicating whether to print progress messages.

the number of threads to use for parallel computation.

An S3 object which is an instance of complement_contrasts and nugget classes and which is a
tibble with found patterns in rows. The following columns are always present:

dig_complement_contrasts 25

condition the condition of the pattern as a character string in the form {p1 &p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

support the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

var the name of the contrast variable.

estimate the estimate value (see the underlying test.

statistic the statistic of the selected test.

p_value the p-value of the underlying test.

n_x the number of rows in the sub-data corresponding to the condition.

n_y the number of rows in the sub-data corresponding to the negation of the condi-

conf_int_lo

conf_int_hi

tion.
the lower bound of the confidence interval of the estimate.

the upper bound of the confidence interval of the estimate.

alternative a character string indicating the alternative hypothesis. The value must be one
of "two.sided"”, "greater”, or "less".

method a character string indicating the method used for the test.

comment a character string with additional information about the test (mainly error mes-

sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.
stderr the standard error of the mean difference.
Author(s)
Michal Burda
See Also

dig_baseline_contrasts(), dig_paired_baseline_contrasts(),dig(), dig_grid(), stats::t.test(),
stats::wilcox.test(), stats::var.test()

Examples

d <- partition(mtcars, .breaks = 2, .keep = TRUE)
dig_complement_contrasts(d,
condition = where(is.logical),
vars = where(is.numeric),
min_support = 0.3,
max_length = 2)

26 dig_correlations

dig_correlations Search for conditional correlations

Description

[Experimental]

Conditional correlations are patterns that identify strong relationships between pairs of numeric
variables under specific conditions.

Scheme: xvar ~yvar | C

xvar and yvar highly correlates in data that satisfy the condition C.

Example: study_time ~ test_score | hard_exam

For hard exams, the amount of study time is highly correlated with the obtained exam’s fest
score.

The function computes correlations between all combinations of xvars and yvars columns of x in
multiple sub-data corresponding to conditions generated from condition columns.

Usage

dig_correlations(
X,
condition = where(is.logical),
xvars = where(is.numeric),
yvars = where(is.numeric),
disjoint = var_names(colnames(x)),
excluded = NULL,

method = "pearson”,
alternative = "two.sided",
exact = NULL,

min_length = oL,
max_length = Inf,
min_support = 0,
max_support 1,
max_results = Inf,
verbose = FALSE,

threads = 1
)
Arguments
X a matrix or data frame with data to search in.
condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as

condition predicates

https://tidyselect.r-lib.org/articles/syntax.html

dig_correlations

xvars

yvars

disjoint

excluded

method

alternative

exact

min_length

max_length

min_support

max_support

max_results

verbose

threads

Value

27

a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of correlations

a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of correlations

an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

NULL or a list of character vectors, where each character vector contains the
names of columns that must not appear together in a single condition.

a character string indicating which correlation coefficient is to be used for the
test. One of "pearson”, "kendall”, or "spearman”

n

indicates the alternative hypothesis and must be one of "two.sided”, "greater
or "less"”. "greater" corresponds to positive association, "less" to negative
association.

a logical indicating whether an exact p-value should be computed. Used for
Kendall’s tau and Spearman’s rho. See stats: :cor.test() for more informa-
tion.

the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical scalar indicating whether to print progress messages.

the number of threads to use for parallel computation.

An S3 object which is an instance of correlations and nugget classes and which is tibble with

found patterns.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

28

Author(s)

Michal Burda

See Also

dig(), stats::cor.test()

Examples

convert iris$Species into dummy logical variables
d <- partition(iris, Species)

find conditional correlations between all pairs of numeric variables
dig_correlations(d,

condition = where(is.logical),

xvars = Sepal.Length:Petal.Width,

yvars = Sepal.Length:Petal.Width)

With “condition = NULL", dig_correlations() computes correlations between
all pairs of numeric variables on the whole dataset only, which is an
alternative way of computing the correlation matrix
dig_correlations(iris,

condition = NULL,

xvars = Sepal.Length:Petal.Width,

yvars = Sepal.Length:Petal.Width)

dig_grid

dig_grid Search for grid-based rules

Description

[Experimental]

This function creates a grid column names specified by xvars and yvars (see var_grid()). Af-
ter that, it enumerates all conditions created from data in x (by calling dig()) and for each such
condition and for each row of the grid of combinations, a user-defined function f is executed on
each sub-data created from x by selecting all rows of x that satisfy the generated condition and by

selecting the columns in the grid’s row.

Function is useful for searching for patterns that are based on the relationships between pairs of

columns, such as in dig_correlations().

Usage

dig_grid(
X!
f,
condition = where(is.logical),
xvars = where(is.numeric),

dig_grid 29

yvars = where(is.numeric),

disjoint = var_names(colnames(x)),

excluded = NULL,

allow = "all",

na_rm = FALSE,

type = "crisp”,

min_length = oL,

max_length = Inf,

min_support = 0,

max_support = 1,

max_results = Inf,

verbose = FALSE,

threads = 1L,

error_context = list(arg_x = "x", arg_f = "f", arg_condition = "condition”, arg_xvars =
"xvars", arg_yvars = "yvars", arg_disjoint = "disjoint", arg_excluded = "excluded”,
arg_allow = "allow”, arg_na_rm = "na_rm"”, arg_type = "type", arg_min_length =
"min_length”, arg_max_length = "max_length”, arg_min_support = "min_support”,
arg_max_support = "max_support”, arg_max_results = "max_results”, arg_verbose =

"verbose", arg_threads = "threads”, call = current_env())

Arguments

a matrix or data frame with data to search in.

the callback function to be executed for each generated condition. The argu-
ments of the callback function differ based on the value of the type argument
(see below):

 If type = "crisp” (that is, boolean), the callback function f must accept a
single argument pd of type data. frame with single (if yvars == NULL) or
two (if yvars != NULL) columns, accessible as pd[[1]1] and pd[[2]]. Data
frame pd is a subset of the original data frame x with all rows that satisfy
the generated condition. Optionally, the callback function may accept an
argument nd that is a subset of the original data frame x with all rows that
do not satisfy the generated condition.

o If type = "fuzzy", the callback function f must accept an argument d
of type data.frame with single (if yvars ==NULL) or two (if yvars !=
NULL) columns, accessible as d[[1]] and d[[2]], and a numeric argument
weights with the same length as the number of rows in d. The weights
argument contains the truth degree of the generated condition for each row
of d. The truth degree is a number in the interval [0, 1] that represents the
degree of satisfaction of the condition in the original data row.

In all cases, the function must return a list of scalar values, which will be con-
verted into a single row of result of final tibble.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use
as condition predicates. The selected columns must be logical or numeric. If
numeric, fuzzy conditions are considered.

xvars a tidyselect expression (see tidyselect syntax) specifying the columns of x, whose
names will be used as a domain for combinations use at the first place (xvar)

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

30

yvars

disjoint

excluded

allow

na_rm

type

min_length

max_length

min_support

max_support

max_results

verbose
threads

error_context

dig_grid

NULL or a tidyselect expression (see tidyselect syntax) specifying the columns
of x, whose names will be used as a domain for combinations use at the second
place (yvar)

an atomic vector of size equal to the number of columns of x that specifies the
groups of predicates: if some elements of the disjoint vector are equal, then
the corresponding columns of x will NEITHER be present together in a single
condition NOR in a single combination of xvars and yvars. If x is prepared
with partition(), using the var_names() function on x’s column names is a
convenient way to create the disjoint vector.

NULL or a list of character vectors, where each character vector contains the
names of columns that must not appear together in a single condition.

a character string specifying which columns are allowed to be selected by xvars
and yvars arguments. Possible values are:

* "all” - all columns are allowed to be selected
* "numeric” - only numeric columns are allowed to be selected

a logical value indicating whether to remove rows with missing values from
sub-data before the callback function f is called

a character string specifying the type of conditions to be processed. The "crisp”
type accepts only logical columns as condition predicates. The "fuzzy" type ac-
cepts both logical and numeric columns as condition predicates where numeric
data are in the interval [0, 1]. The callback function f differs based on the value
of the type argument (see the description of f above).

the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

the maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical scalar indicating whether to print progress messages.
the number of threads to use for parallel computation.

a list of details to be used in error messages. This argument is useful when
dig_grid() is called from another function to provide error messages, which

https://tidyselect.r-lib.org/articles/syntax.html

dig_grid 31

refer to arguments of the calling function. The list must contain the following
elements:

* arg_x - the name of the argument x as a character string

* arg_condition - the name of the argument condition as a character string
* arg_xvars - the name of the argument xvars as a character string

e arg_yvars - the name of the argument yvars as a character string

* call - an environment in which to evaluate the error messages.

Value

An S3 object, which is an instance of nugget class, and which is a tibble with found patterns. Each
row represents a single call of the callback function f.

Author(s)
Michal Burda

See Also

dig(), var_grid(); see also dig_correlations() and dig_paired_baseline_contrasts(), as
they are using this function internally.

Examples

x*x Example of crisp (boolean) patterns:
dichotomize iris$Species
crisplris <- partition(iris, Species)

a simple callback function that computes mean difference of “xvar™ and “yvar"
f <= function(pd) {
list(m = mean(pdC[11] - pd[[21]1),
n = nrow(pd))
}

call f() for each condition created from column "Species”
dig_grid(crisplIris,

f,

condition = starts_with("Species"”),

xvars = starts_with("Sepal”),

yvars = starts_with("Petal”),

type = "crisp”)

x*x Example of fuzzy patterns:

create fuzzy sets from Sepal columns

fuzzylris <- partition(iris,
starts_with("Sepal”),
.method = "triangle”,
.breaks = 3)

a simple callback function that computes a weighted mean of a difference of
“xvar® and “yvar®

32

dig_paired_baseline_contrasts

f <- function(d, weights) {
list(m = weighted.mean(d[[1]] - d[[2]], w = weights),
w = sum(weights))

}

call f() for each fuzzy condition created from column fuzzy sets whose
names start with "Sepal”
dig_grid(fuzzylIris,

f,

condition = starts_with("Sepal"”),

xvars = Petal.Length,

yvars = Petal.Width,

type = "fuzzy")

dig_paired_baseline_contrasts
Search for conditions that provide significant differences between
paired variables

Description

[Experimental]

Paired baseline contrast patterns identify conditions under which there is a significant difference in
some statistical feature between two paired numeric variables.

Scheme: (xvar -yvar) !=0 | C

There is a statistically significant difference between paired variables xvar and yvar under
the condition C.

Example: (daily_ice_cream_income - daily_tea_income) > @ | sunny

Under the condition of sunny weather, the paired test shows that daily ice-cream income is
significantly higher than the daily tea income.

The paired baseline contrast is computed using a paired version of a statistical test, which is speci-
fied by the method argument. The function computes the paired contrast between all pairs of vari-
ables, where the first variable is specified by the xvars argument and the second variable is specified
by the yvars argument. Paired baseline contrasts are computed in sub-data corresponding to con-
ditions generated from the condition columns. Function dig_paired_baseline_contrasts()
supports crisp conditions only, i.e., the condition columns in x must be logical.

Usage

dig_paired_baseline_contrasts(
X!
condition = where(is.logical),
xvars = where(is.numeric),
yvars = where(is.numeric),

dig_paired_baseline_contrasts 33

disjoint =
excluded =

min_length =

max_length

va
NU

min_support =

max_support

method = "t"

alternative
ho = 0,

conf_level
max_p_value
t_var_equal

r_names(colnames(x)),
LL,
oL,
Inf,
9,
1,

"two.sided”,
0.95,

1,
FALSE,

wilcox_exact = FALSE,
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,

threads = 1

Arguments

X

condition

xvars

yvars

disjoint

excluded

min_length

max_length

min_support

a matrix or data frame with data to search the patterns in.

a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

NULL or a list of character vectors, where each character vector contains the
names of columns that must not appear together in a single condition.

the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

34

max_support

method

alternative

he

conf_level

max_p_value

t_var_equal

wilcox_exact

wilcox_correct

wilcox_tol_root

dig_paired_baseline_contrasts

condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox”, for non-parametric test on equality in position.

indicates the alternative hypothesis and must be one of "two.sided”, "greater”
or "less"”. "greater" corresponds to positive association, "less"” to negative
association.

a numeric value specifying the null hypothesis for the test. For the "t"” method,
it is the difference in means. For the "wilcox” method, it is the difference in
medians. The default value is 0.

anumeric value specifying the level of the confidence interval. The default value
is 0.95.

the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

(used for the "t" method only) a logical value indicating whether the variances
of the two samples are assumed to be equal. If TRUE, the pooled variance is used
to estimate the variance in the t-test. If FALSE, the Welch (or Satterthwaite) ap-
proximation to the degrees of freedom is used. See t. test() and its var.equal
argument for more information.

(used for the "wilcox"” method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

(used for the "wilcox" method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

(used for the "wilcox” method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() andits tol.root argument for more information.

wilcox_digits_rank

max_results

verbose
threads

(used for the "wilcox"” method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() andits digits.rank argument
for more information.

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical scalar indicating whether to print progress messages.

the number of threads to use for parallel computation.

dig_paired_baseline_contrasts 35

Value

An S3 object which is an instance of paired_baseline_contrasts and nugget classes and which
is a tibble with found patterns in rows. The following columns are always present:

condition the condition of the pattern as a character string in the form {p1 &p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

support the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

xvar the name of the first variable in the contrast.

yvar the name of the second variable in the contrast.

estimate the estimated difference of variable var.

statistic the statistic of the selected test.

p_value the p-value of the underlying test.

n the number of rows in the sub-data corresponding to the condition.

conf_int_lo the lower bound of the confidence interval of the estimate.

conf_int_hi the upper bound of the confidence interval of the estimate.

alternative a character string indicating the alternative hypothesis. The value must be one
of "two.sided"”, "greater”, or "less".

method a character string indicating the method used for the test.

comment a character string with additional information about the test (mainly error mes-

sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.
stderr the standard error of the mean difference.
Author(s)

Michal Burda

See Also

dig_baseline_contrasts(), dig_complement_contrasts(),dig(),dig_grid(), stats::t.test(),
stats::wilcox.test()

Examples

Compute ratio of sepal and petal length and width for iris dataset
crisplris <- iris

crispIris$Sepal.Ratio <- iris$Sepal.Length / iris$Sepal.Width
crispIris$Petal.Ratio <- iris$Petal.Length / iris$Petal.Width

Create predicates from the Species column
crisplris <- partition(crisplIris, Species)

36 dig_tautologies

Compute paired contrasts for ratios of sepal and petal length and width
dig_paired_baseline_contrasts(crisplris,

condition = where(is.logical),

xvars = Sepal.Ratio,

yvars = Petal.Ratio,

method = "t",

min_support = 0.1)

dig_tautologies Find tautologies or "almost tautologies" in a dataset
Description
This function finds tautologies in a dataset, i.e., rules of the form {a1 & a2 & ... & an} => {c}

where al, a2, ..., an are antecedents and c is a consequent. The intent of searching for tautologies
is to find rules that are always true, which may be used for filtering of further generated conditions.
The resulting rules may be used as a basis for the list of excluded formulae (see the excluded
argument of dig()).

The search for tautologies is performed by iteratively searching for rules with increasing length
of the antecedent. Rules found in previous iterations are used as excluded argument in the next
iteration.

Usage

dig_tautologies(
X,
antecedent = everything(),
consequent = everything(),
disjoint = var_names(colnames(x)),
max_length = Inf,
min_coverage = 0,
min_support = 0,
min_confidence = 0,
contingency_table = deprecated(),
t_norm = "goguen"”,
max_results = Inf,
verbose = FALSE,

threads = 1
)
Arguments
X a matrix or data frame with data to search in. The matrix must be numeric
(double) or logical. If x is a data frame then each column must be either numeric
(double) or logical.
antecedent a tidyselect expression (see tidyselect syntax) specifying the columns to use in

the antecedent (left) part of the rules

https://tidyselect.r-lib.org/articles/syntax.html

dig_tautologies

consequent

disjoint

max_length

min_coverage

min_support

min_confidence

37

a tidyselect expression (see tidyselect syntax) specifying the columns to use in
the consequent (right) part of the rules

an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

The maximum length, i.e., the maximum number of predicates in the antecedent,
of a rule to be generated. If equal to Inf, the maximum length is limited only by
the number of available predicates.

the minimum coverage of a rule in the dataset x. (See Description for the defi-
nition of coverage.)

the minimum support of a rule in the dataset x. (See Description for the defini-
tion of support.)

the minimum confidence of a rule in the dataset x. (See Description for the
definition of confidence.)

contingency_table

t_norm

max_results

verbose

threads

Value

(Deprecated.) A logical value indicating whether to provide a contingency table
for each rule. If TRUE, the columns pp, pn, np, and nn are added to the output
table. These columns contain the number of rows satisfying the antecedent and
the consequent, the antecedent but not the consequent, the consequent but not
the antecedent, and neither the antecedent nor the consequent, respectively.

a t-norm used to compute conjunction of weights. It must be one of "goedel”
(minimum t-norm), "goguen” (product t-norm), or "lukas” (Lukasiewicz t-
norm).

the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

a logical value indicating whether to print progress messages.

the number of threads to use for parallel computation.

An S3 object which is an instance of associations and nugget classes and which is a tibble with
found tautologies in the format equal to the output of dig_associations().

Author(s)
Michal Burda

Examples

d <- partition(mtcars, .breaks = 2)
dig_tautologies(d,

https://tidyselect.r-lib.org/articles/syntax.html

38 explore.associations

antecedent = everything(),
consequent = everything(),
min_confidence = 0.99)

explore.associations Show interactive application to explore association rules

Description

[Experimental]

Launches an interactive Shiny application for visual exploration of mined association rules. The
explorer provides tools for inspecting rule quality, comparing interestingness measures, and inter-
actively filtering subsets of rules. When the original dataset is supplied, the application also allows
for contextual exploration of rules with respect to the underlying data.

Usage
S3 method for class 'associations'
explore(x, data = NULL, ...)
Arguments
X An object of S3 class associations, typically created with dig_associations().
data An optional data frame containing the dataset from which the rules were mined.

Providing this enables additional contextual features in the explorer, such as
examining supporting records.

Currently ignored.

Value

An object of class shiny.appobj representing the Shiny application. When "printed" in an interac-
tive R session, the application is launched immediately in the default web browser.

Author(s)

Michal Burda

See Also

dig_associations()

fire 39

Examples
Not run:
data("iris")
convert all columns into dummy logical variables
part <- partition(iris, .breaks = 3)

find association rules
rules <- dig_associations(part)

launch the interactive explorer
explore(rules, data = part)

End(Not run)

fire Obtain truth-degrees of conditions

Description

Given a data frame or matrix of truth values for predicates, compute the truth values of a set of
conditions expressed as elementary conjunctions.

Each element of condition must be a character string of the format "{p1,p2,p3}", where "p1”,
"p2", and "p3" are predicate names. The data object x must contain columns whose names corre-
spond exactly to all predicates referenced in the conditions. Each condition is evaluated for every
row of x as a conjunction of its predicates, with the conjunction operation determined by the t_norm
argument. An empty condition ("{}") is always evaluated as 1 (i.e., fully true).

Usage
fire(x, condition, t_norm = "goguen")
Arguments
X A matrix or data frame containing predicate truth values. If x is a matrix, it must
be numeric (double) or logical. If x is a data frame, all columns must be numeric
(double) or logical.
condition A character vector of conditions, each formatted according to format_condition().
For example, "{p1,p2,p33}" represents a condition composed of three predi-
cates "p1”, "p2", and "p3". Every predicate mentioned in condition must be
present as a column in x.
t_norm A string specifying the triangular norm (t-norm) used to compute conjunctions

of predicate values. Must be one of "goedel” (minimum t-norm), "goguen"
(product t-norm), or "lukas” (Lukasiewicz t-norm).

40 format_condition

Value

A numeric matrix with entries in the interval [0, 1] giving the truth degrees of the conditions. The
matrix has nrow(x) rows and length(condition) columns. The element in row i and column j
corresponds to the truth degree of the j-th condition evaluated on the i-th row of x.

Author(s)
Michal Burda

See Also

format_condition(), partition()

Examples

d <- data.frame(

a=c(l, 0.8, 0.5, 0.2, 0),

b =c(0.5 1, 0.5, 9, 1),

c =1c(0.9, 0.9, 0.1, 0.8, 0.7)
)

Evaluate conditions with different t-norms

fire(d, c("{a,c}", "{}", "{a,b,c}"), t_norm = "goguen”)
fire(d, c("{a,c}", "{a,b}"), t_norm = "goedel")
fire(d, c("{b,c}"), t_norm = "lukas")

format_condition Format a vector of predicates into a condition string

Description

Convert a character vector of predicate names into a standardized string representation of a con-
dition. Predicates are concatenated with commas and enclosed in curly braces. This formatting
ensures consistency when storing or comparing conditions in other functions.

Usage

format_condition(condition)

Arguments
condition A character vector of predicate names to be formatted. If NULL or of length zero,
the result is "{}", representing an empty condition that is always true.
Value

A character scalar containing the formatted condition string.

geom_diamond 41

Author(s)

Michal Burda

See Also

parse_condition(), fire()

Examples

format_condition(NULL)
format_condition(character(0))

format_condition(c("a", "b", "c"))
geom_diamond Geom for drawing diamond plots of lattice structures
Description

Create a custom ggplot2 geom for visualizing lattice structures as diamond plots. This geom is
particularly useful for displaying association rules and their ancestor—descendant relationships in a
clear, compact graphical form.

In a diamond plot, nodes (diamonds) represent items or conditions within the lattice, while edges
denote inclusion (subset) relationships between them. The geom combines node and edge rendering
with flexible control over aesthetics such as labels, color, and size.

Usage

geom_diamond(
mapping = NULL,

data = NULL,
stat = "identity",
position = "identity",

na.rm = FALSE,
linetype = "solid",
linewidth = NA,

nudge_x = 0,
nudge_y = 0.125,
show.legend = NA,
inherit.aes = TRUE,

42 geom_diamond

Arguments

mapping Aesthetic mappings, usually created with ggplot2: :aes().

data A data frame representing the lattice structure to plot.

stat Statistical transformation to apply; defaults to "identity”.

position Position adjustment for the geom; defaults to "identity".

na.rm Logical; if TRUE, missing values are silently removed.

linetype Line type for edges; defaults to "solid".

linewidth Width of edges connecting parent and child nodes. If set to NA, edge widths are
determined by the linewidth aesthetic. If no aesthetic is provided, a default
width of 0.5 is used.

nudge_x Horizontal nudge applied to labels.

nudge_y Vertical nudge applied to labels.

show. legend Logical; whether to include a legend. Defaults to FALSE.
inherit.aes Logical; whether to inherit aesthetics from the plot. Defaults to TRUE.
Additional arguments passed to ggplot2: :layer().

Details

Concept overview

A lattice represents inclusion relationships between conditions. Each node corresponds to a condi-
tion, and a line connects a condition to its direct descendants:

{a} <- ancestor (parent)
/ N\
{a,b} {a,c} <- direct descendants (children)
\ /
{a,b,c} <- leaf condition

The layout positions broader (more general) conditions above their descendants. This helps visual-
ize hierarchical structures such as those produced by association rule mining or subset lattices.

Supported aesthetics
¢ condition — character vector of conditions formatted with format_condition(). Each con-

dition defines one node in the lattice. The hierarchy is determined by subset inclusion: a
condition X is a descendant of Y if Y C X. Each condition must be unique.

» label — optional text label for each node. If omitted, the condition string is used.
* colour — border color of the node.

e fill — interior color of the node.

* size —size of nodes.

* shape — node shape.

* alpha — transparency of nodes.

* stroke — border line width of nodes.

e linewidth — edge width between parent and child nodes, computed as the difference of this
aesthetic between them.

is_almost_constant 43

Value

A ggplot?2 layer object that adds a diamond lattice visualization to an existing plot.

Author(s)
Michal Burda

Examples

Not run:
library(ggplot2)

Prepare data by partitioning numeric columns into fuzzy or crisp sets
part <- partition(iris, .breaks = 3)

Find all antecedents with "Sepal” for rules with consequent "Species=setosa”
rules <- dig_associations(part,
antecedent = starts_with("Sepal”),
consequent = ~Species=setosa’,
min_length = 0,
max_length = Inf,
min_coverage = 0,
min_support = 0,
min_confidence = 0,
measures = c("1ift", "conviction"),
max_results = Inf)

Add abbreviated labels for readability
rules$abbrev <- shorten_condition(rules$antecedent)

Plot the lattice of rules as a diamond diagram
ggplot(rules) +
aes(condition = antecedent,
fill = confidence,
linewidth = confidence,
size = coverage,
label = abbrev) +
geom_diamond()

End(Not run)

is_almost_constant Test whether a vector is almost constant

Description

Check if a vector contains (almost) the same value in the majority of its elements. The function
returns TRUE if the proportion of the most frequent value in x is greater than or equal to the specified
threshold.

44 is_almost_constant

This is useful for detecting low-variability or degenerate variables, which may be uninformative in
modeling or analysis.

Usage

is_almost_constant(x, threshold = 1, na_rm = FALSE)

Arguments
X A vector to be tested.
threshold A numeric scalar in the interval [0, 1] specifying the minimum required propor-
tion of the most frequent value. Defaults to 1.
na_rm Logical; if TRUE, NA values are removed before computing proportions. If FALSE,
NA is treated as an ordinary value, so a large number of NAs can cause the function
to return TRUE.
Value

A logical scalar. Returns TRUE in the following cases:

* x is empty or has length one.
* x contains only NA values.

» The proportion of the most frequent value in x is greater than or equal to threshold. Other-
wise, returns FALSE.

Author(s)

Michal Burda

See Also

remove_almost_constant(), unique(), table()

Examples

is_almost_constant(1)

is_almost_constant(1:10)

is_almost_constant(c(NA, NA, NA), na_rm = TRUE)
is_almost_constant(c(NA, NA, NA), na_rm = FALSE)
is_almost_constant(c(NA, NA, NA, 1, 2), threshold = @.5, na_rm = FALSE)
is_almost_constant(c(NA, NA, NA, 1, 2), threshold = 0.5, na_rm = TRUE)

is_condition 45

is_condition Check whether a list of character vectors contains valid conditions

Description

A valid condition is a character vector of predicate names, where each predicate corresponds to a
column name in a given data frame or matrix. This function verifies that each element of a list x
contains only valid predicates that match column names of data.

Special cases:

* An empty character vector (character(@)) is considered a valid condition and always passes
the check.

* A NULL element is treated the same as an empty character vector, i.e., it is also a valid condi-
tion.

Usage

is_condition(x, data)

Arguments

X A list of character vectors, each representing a condition.

data A matrix or data frame whose column names define valid predicates.
Value

A logical vector with one element for each condition in x. An element is TRUE if the corresponding
condition is valid, i.e. all of its predicates are column names of data. Otherwise, it is FALSE.

Author(s)
Michal Burda

See Also

remove_ill_conditions(), format_condition()

Examples

d <- data.frame(foo = 1:5, bar = 1:5, blah = 1:5)

is_condition(list("foo0"), d)
is_condition(list(c("bar"”, "blah"), NULL, c("foo", "bzz")), d)

46 is_degree

is_degree Test whether an object contains numeric values from the interval [0, 1]

Description
Check if the input consists only of numeric values between 0 and 1, inclusive. This is often useful
when validating truth degrees, membership values in fuzzy sets, or probabilities.

Usage

is_degree(x, na_rm = FALSE)

Arguments
X The object to be tested. Can be a numeric vector, matrix, or array.
na_rm Logical; whether to ignore NA values. If TRUE, NAs are treated as valid values. If
FALSE and x contains any NAs, the function immediately returns FALSE.
Value

A logical scalar. Returns TRUE if all (non-NA) elements of x are numeric and lie within the closed
interval [0, 1]. Returns FALSE if:

* x contains any NA values and na_rm = FALSE

* any element is outside the interval [0, 1]

* X is not numeric

* x is empty (length(x) == 0)

Author(s)
Michal Burda

See Also

is.numeric()

Examples

is_degree(0.5)

is_degree(c(0, 0.2, 1))

is_degree(c(0.5, NA), na_rm = TRUE) # TRUE
is_degree(c(0.5, NA), na_rm = FALSE) # FALSE
is_degree(c(-0.1, 0.5)) # FALSE
is_degree(numeric(0)) # FALSE

is_logicalish 47

is_logicalish Check if an object is logical or numeric with only Os and 1s

Description

Check if an object is logical or numeric with only Os and 1s

Usage

is_logicalish(x)

Arguments

X An R object to check.

Value

A logical value indicating whether x is logical or numeric containing only Os and 1s.

Author(s)
Michal Burda

Examples

returns TRUE
returns TRUE
returns TRUE
returns FALSE
returns FALSE

is_logicalish(c(TRUE, FALSE, NA))
is_logicalish(c(@, 1, 1, @, NA))
is_logicalish(c(0.0, 1.0, NA))
is_logicalish(c(@, 0.5, 1))
is_logicalish("TRUE")

o o o

is_nugget Test whether an object is a nugget

Description

Check if the given object is a nugget, i.e. an object created by nugget (). If a flavour is specified,
the function returns TRUE only if the object is a nugget of the given flavour.

Technically, nuggets are implemented as S3 objects. An object is considered a nugget if it inherits
from the S3 class "nugget”. It is a nugget of a given flavour if it inherits from both the specified
flavour class and the "nugget” class.

Usage

is_nugget(x, flavour = NULL)

48 is_subset

Arguments
X An object to be tested.
flavour Optional character string specifying the required flavour of the nugget. If NULL
(default), the function checks only whether x is a nugget of any flavour.
Value

A logical scalar: TRUE if x is a nugget (and of the specified flavour, if given), otherwise FALSE.

Author(s)
Michal Burda

See Also

nugget ()

Examples

d <- partition(mtcars, .breaks = 2)

rules <- dig_associations(d, min_support = 0.3)
is_nugget(rules)

is_nugget(rules, "associations"”)
is_nugget(mtcars)

is_subset Determine whether one vector is a subset of another

Description
Check if all elements of x are also contained in y. This is equivalent to testing whether setdiff(x,
y) is empty.

Usage

is_subset(x, y)

Arguments
The first vector.
y The second vector.
Details

* If x is empty, the result is always TRUE (the empty set is a subset of any set).
* If y is empty and x is not, the result is FALSE.
* Duplicates in x are ignored; only set membership is tested.

* NA values are treated as ordinary elements. In particular, NA in x is considered a subset element
only if NA is also present in y.

nugget 49

Value

A logical scalar. Returns TRUE if x is a subset of y, i.e. all elements of x are also elements of y.
Returns FALSE otherwise.

Author(s)
Michal Burda

See Also

generics::setdiff(), generics::intersect(), generics: :union()

Examples

is_subset(1:3, 1:5) # TRUE

is_subset(c(2, 5), 1:4) # FALSE

is_subset(numeric(@), 1:5) # TRUE

is_subset(1:3, numeric(@)) # FALSE

is_subset(c(1, NA), c(1, 2, NA)) # TRUE

is_subset(c(NA), 1:5) # FALSE

nugget Create a nugget object of a given flavour

Description

Construct a nugget object, which is an S3 object used to store and represent results (e.g., rules or
patterns) in the nuggets framework.

A nugget is technically a tibble (or data frame) that inherits from both the "nugget" class and, op-
tionally, a flavour-specific S3 class. This allows distinguishing different types of nuggets (flavours)
while still supporting generic methods for all nuggets.

Usage

nugget(x, flavour, call_function, call_data, call_args)

Arguments
X An object with rules or patterns, typically a tibble or data frame. If NULL, it will
be converted to an empty tibble.
flavour A character string specifying the flavour of the nugget, or NULL if no flavour

should be assigned. If given, the returned object will inherit from both "nugget”
and the specified flavour class.

call_function A character scalar giving the name of the function that created the nugget. Stored
as an attribute for provenance.

50 nugget

call_data A list containing information about the data that was passed to the function
which created the nugget. Stored as an attribute for reproducibility.

call_args A list of arguments that were passed to the function which created the nugget.
Stored as an attribute for reproducibility.

Details
Each nugget stores additional provenance information in attributes:

* "call_function” — the name of the function that created the nugget.

e "call_args" — the list of arguments passed to that function.

These attributes make it possible to reconstruct or track how the nugget was created, which supports
reproducibility, transparency, and debugging. For example, one can inspect attr(n, "call_args")
to recover the original parameters used to mine the patterns.

Value
A tibble object that is an S3 subclass of "nugget” and, if specified, the given flavour class. The

object also contains attributes "call_function” and "call_args” describing its provenance.

Author(s)

Michal Burda

See Also

is_nugget()

Examples

df <- data.frame(lhs = c("a", "b"), rhs = c("c", "d"))
n <- nugget(df,

flavour = "rules”,
call_function = "example_function”,
call_data = list(ncol = 2,
nrow = 2,
colnames = c("lhs"”, "rhs")),

call_args = list(data = "mydata”))

inherits(n, "nugget") # TRUE
inherits(n, "rules") # TRUE
attr(n, "call_function”) # "dig_example_function”
attr(n, "call_args") # list(data = "mydata”)

parse_condition 51

parse_condition Convert condition strings into lists of predicate vectors

Description

Parse a character vector of conditions into a list of predicate vectors. Each element of the list
corresponds to one condition. A condition is a string of predicates separated by commas and en-
closed in curly braces, as produced by format_condition(). The function splits each string into
its component predicates.

If multiple vectors of conditions are provided via . . ., they are combined element-wise. The result
is a single list where each element is formed by merging the predicates from the corresponding
elements of all input vectors. If the input vectors differ in length, shorter ones are recycled.

Empty conditions ("{3}") are parsed as empty character vectors (character(9)).

Usage
parse_condition(..., .sort = FALSE)
Arguments
One or more character vectors of conditions to be parsed.
.sort Logical flag indicating whether the predicates in each result should be sorted
alphabetically. Defaults to FALSE.
Value

A list of character vectors, where each element corresponds to one condition and contains the parsed
predicates.

Author(s)
Michal Burda

See Also

format_condition(), is_condition(), fire()

Examples
parse_condition(c("{a}", "{x=1, z=2, y=3}", "{3}")
Merge conditions from multiple vectors element-wise

parse_condition(c("{b}", "{x=1, z=2, y=3}", "{q}", "{}"),
c("(a}", "{v=lo, w=11}", ()", "{r,s,t}"))

Sorting predicates within each condition
parse_condition("{z,y,x}", .sort = TRUE)

52 partition

partition Convert columns of a data frame to Boolean or fuzzy sets (triangular,
trapezoidal, or raised-cosine)

Description

Transform selected columns of a data frame into either dummy logical variables or membership
degrees of fuzzy sets, while leaving all remaining columns unchanged. Each transformed column
typically produces multiple new columns in the output.

These transformations are most often used as a preprocessing step before calling dig() or one of its
derivatives, such as dig_correlations(), dig_paired_baseline_contrasts(),ordig_associations().

The transformation depends on the column type:

* logical column x is expanded into two logical columns: x=TRUE and x=FALSE;
* factor column x with levels 11, 12, 13 becomes three logical columns: x=11, x=12, and x=13;
* numeric column x is transformed according to .method:

— .method = "dummy"”: the column is treated as a factor with one level per unique value,
then expanded into dummy columns;

— .method = "crisp"”: the column is discretized into intervals (defined by .breaks, .style,
and .style_params) and expanded into dummy columns representing those intervals;

— .method = "triangle” or .method = "raisedcos": the column is converted into one or
more fuzzy sets, each represented by membership degrees in [0, 1] (triangular or raised-
cosine shaped).

Details of numeric transformations are controlled by .breaks, .labels, .style, .style_params,
.right, .span, and .inc.

Usage

partition(
.data,
.what = everything(),
.breaks = NULL,
.labels = NULL,
.na = TRUE,
.keep = FALSE,
.method = "crisp”,
.style = "equal”,
.style_params = list(),
.right = TRUE,
.span = 1,
.inc =1

partition

Arguments

.data
.what

.breaks

.labels

.ha

.keep
.method

.style

.style_params

.right

.span

.inc

Details

53

A data frame to be processed.

A tidyselect expression (see tidyselect syntax) selecting the columns to trans-
form.

Additional tidyselect expressions selecting more columns.

Ignored if .method = "dummy”. For other methods, either an integer (number of
intervals/sets) or a numeric vector of breakpoints.

Optional character vector with labels used for new column names. If NULL,
labels are generated automatically.

If TRUE, adds an extra logical column for each source column containing NA
values (e.g., x=NA).

If TRUE, keep original columns in the output.

n on

Transformation method for numeric columns: "dummy”,
or "raisedcos”.

n o n

crisp”, "triangle”,

Controls how breakpoints are determined when .breaks is an integer. Val-
ues correspond to methods in classInt::classIntervals(), e.g., "equal”,
"quantile”, "kmeans"”, "sd", "hclust"”, "bclust”, "fisher”, "jenks", "dpih”,
"headtails”, "maximum”, "box". Defaults to "equal”. Used only if .method
="crisp" and .breaks is a single integer.

A named list of parameters passed to the interval computation method specified
by .style. Used only if .method = "crisp” and .breaks is an integer.

For "crisp”, whether intervals are right-closed and left-open (TRUE), or left-
closed and right-open (FALSE).

Number of consecutive breaks forming a set. For "crisp”, controls inter-
val width. For "triangle"/"raisedcos”, .span =1 produces triangular sets,
.span = 2 trapezoidal sets.

Step size for shifting breaks when generating successive sets. With .inc =1, all
possible sets are created; larger values skip sets.

* Crisp partitioning is efficient and works well when attributes have distinct categories or clear

boundaries.

» Fuzzy partitioning is recommended for modeling gradual changes or uncertainty, allowing
smooth category transitions at a higher computational cost.

Value

A tibble with . data transformed into Boolean or fuzzy predicates.

Crisp transformation of numeric data

For .method = "crisp”, numeric columns are discretized into a set of dummy logical variables,
each representing one interval of values.

https://tidyselect.r-lib.org/articles/syntax.html

partition

» If .breaks is an integer, it specifies the number of intervals into which the column should be
divided. The intervals are determined using the .style and .style_params arguments, al-
lowing not only equal-width but also data-driven breakpoints (e.g., quantile or k-means based).
The first and last intervals automatically extend to infinity.

e If .breaks is a numeric vector, it specifies interval boundaries directly. Infinite values are

allowed.

The .style argument defines how breakpoints are computed when .breaks is an integer. Sup-
ported methods (from classInt::classIntervals()) include:
* "equal” — equal-width intervals across the column range (default);

* "quantile” — equal-frequency intervals (see quantile() for additional parameters that may
be passed through .style_params; note that the probs parameter is set automatically and
should not be included in . style_params);

* "kmeans" — intervals found by 1D k-means clustering (see kmeans () for additional parame-
ters);

e "sd" —intervals based on standard deviations from the mean;
* "hclust"” — hierarchical clustering intervals (see hclust () for additional parameters);

e "bclust” — model-based clustering intervals (see e1071: :bclust() for additional parame-
ters);

* "fisher"” /" jenks" — Fisher—Jenks optimal partitioning;

e "dpih" — kernel-based density partitioning (see KernSmooth: :dpih() for additional param-
eters);

* "headtails"” — head/tails natural breaks;

* "maximum” — maximization-based partitioning;

* "box" — breaks at boxplot hinges.
Additional parameters for these methods can be passed through . style_params, which should be
a named list of arguments accepted by the respective algorithm in classInt::classIntervals().

For example, when .style = "kmeans”, one can specify .style_params =1list(algorithm=
"Lloyd") to request Lloyd’s algorithm for k-means clustering.

With .span=1 and .inc =1, the generated intervals are consecutive and non-overlapping. For
example, with .breaks =c(1, 3, 5, 7, 9, 11) and .right = TRUE, the intervals are (1; 3], (3; 5],
(5;7], (7;9], and (9; 11]. If . right = FALSE, the intervals are left-closed: [1;3), [3;5), etc.

Larger .span values produce overlapping intervals. For example, with .span=2, .inc =1, and
.right = TRUE, intervals are (1; 5], (3;7], (5;9], (7; 11].

The . inc argument controls how far the window shifts along . breaks.

e .span=1, .inc=2 — (1;3], (5; 7], (9; 11].
e .span=2, .inc =3 — (1;5], (9;11].

partition 55

Fuzzy transformation of numeric data

For .method = "triangle” or .method = "raisedcos”, numeric columns are converted into fuzzy
membership degrees in [0, 1].

* If .breaks is an integer, it specifies the number of fuzzy sets.

 If .breaks is a numeric vector, it directly defines fuzzy set boundaries. Infinite values produce

open-ended sets.

With .span =1, each fuzzy set is defined by three consecutive breaks: membership is O outside
the outer breaks, rises to 1 at the middle break, then decreases back to 0 — yielding triangular or
raised-cosine sets.

With .span > 1, fuzzy sets use four consecutive breaks: membership increases between the first
two, remains 1 between the middle two, and decreases between the last two — creating trapezoidal
sets. Border shapes are linear for .method = "triangle"” and cosine for .method = "raisedcos”.

The . inc argument defines the step between break windows:
e .span=1, .inc=1—(1;3;5), (3;5;7), (5;7;9), (7;9; 11).
e .span=2,.inc=1—(1;3;5;7), (3;5;7;9), (5;7;9; 11).
e .span=1, .inc=3 — (1;3;5), (7;9;11).

Author(s)
Michal Burda

Examples

Crisp transformation using equal-width bins
partition(C02, conc, .method = "crisp”, .breaks = 4)

Crisp transformation using quantile-based bins
partition(C02, conc, .method = "crisp”, .breaks = 4, .style = "quantile")

Crisp transformation using k-means clustering for breakpoints
partition(C02, conc, .method = "crisp”, .breaks = 4, .style = "kmeans")

Crisp transformation using Lloyd algorithm for k-means clustering for breakpoints
partition(C02, conc, .method = "crisp”, .breaks = 4, .style = "kmeans”,
.style_params = list(algorithm = "Lloyd"))

Fuzzy triangular transformation (default)
partition(C02, conc:uptake, .method = "triangle”, .breaks = 3)

Raised-cosine fuzzy sets
partition(C02, conc:uptake, .method = "raisedcos”, .breaks = 3)

Overlapping trapezoidal fuzzy sets (Ruspini condition)
partition(C02, conc:uptake, .method = "triangle”, .breaks = 3,

.span = 2, .inc = 2)

Different settings per column

56 remove_almost_constant

Cco2 |>
partition(Plant:Treatment) |>
partition(conc,
.method = "raisedcos”,
.breaks = c(-Inf, 95, 175, 350, 675, 1000, Inf)) |>
partition(uptake,

.method = "triangle”,
.breaks = c(-Inf, 7.7, 28.3, 45.5, Inf),
.labels = c("low”, "medium”, "high"))

remove_almost_constant
Remove almost constant columns from a data frame

Description

Test all columns specified by .what and remove those that are almost constant. A column is con-
sidered almost constant if the proportion of its most frequent value is greater than or equal to the
threshold specified by . threshold. See is_almost_constant() for further details.

Usage

remove_almost_constant(
.data,
.what = everything(),

.threshold = 1,

.na_rm = FALSE,
.verbose = FALSE

)
Arguments
.data A data frame.
.what A tidyselect expression (see tidyselect syntax) specifying the columns to pro-
cess.
. Additional tidyselect expressions selecting more columns.
.threshold Numeric scalar in the interval [0, 1] giving the minimum required proportion of
the most frequent value for a column to be considered almost constant.
.na_rm Logical; if TRUE, NA values are removed before computing proportions. If FALSE,
NA is treated as a regular value. See is_almost_constant() for details.
.verbose Logical; if TRUE, print a message listing the removed columns.
Value

A data frame with all selected columns removed that meet the definition of being almost constant.

https://tidyselect.r-lib.org/articles/syntax.html

remove_ill_conditions 57

Author(s)
Michal Burda

See Also

is_almost_constant(), remove_ill_conditions()

Examples

d <- data.frame(al = 1:10,
a2 = c(1:9, NA),
b1 = "b",
b2 = NA,
cl = rep(c(TRUE, FALSE), 5),
c2 = rep(c(TRUE, NA), 5),
d = c(rep(TRUE, 4), rep(FALSE, 4), NA, NA))

Remove columns that are constant (threshold = 1)
remove_almost_constant(d, .threshold = 1.0, .na_rm = FALSE)
remove_almost_constant(d, .threshold = 1.0, .na_rm = TRUE)

Remove columns where the majority value occurs in >= 50% of rows
remove_almost_constant(d, .threshold = 0.5, .na_rm = FALSE)
remove_almost_constant(d, .threshold = 0.5, .na_rm = TRUE)

Restrict check to a subset of columns
remove_almost_constant(d, al:b2, .threshold = 0.5, .na_rm = TRUE)

remove_ill_conditions Remove invalid conditions from a list

Description

From a given list of character vectors, remove those elements that are not valid conditions.

A valid condition is a character vector of predicates, where each predicate corresponds to a column
name in the supplied data frame or matrix. Empty character vectors and NULL elements are also
considered valid conditions.

Usage

remove_ill_conditions(x, data)

Arguments

X A list of character vectors, each representing a condition.

data A matrix or data frame whose column names define valid predicates.

58 shorten_condition

Details

This function acts as a simple filter around is_condition(). It checks each element of x against
the column names of data and removes those that contain invalid predicates. The result preserves
only valid conditions and discards the invalid ones.

Value

A list containing only those elements of x that are valid conditions.

Author(s)
Michal Burda

See Also

is_condition()

Examples
d <- data.frame(foo = 1:5, bar = 1:5, blah = 1:5)
conds <- list(c("foo", "bar"), "blah", "invalid”, character(@), NULL)

remove_ill_conditions(conds, d)
keeps "foo”,"bar"”; "blah"; empty; NULL

shorten_condition Shorten predicates within conditions

Description

This function takes a character vector of conditions and shortens the predicates within each condi-
tion according to a specified method.

Each element of x must be a condition formatted as a string, e.g. "{a=1,b=100,c=3}" (see format_condition()).
The function then shortens the predicates in each condition based on the selected method:
* "letters”: predicates are replaced with single letters from the English alphabet, starting with
A for the first distinct predicate;
* "abbrev4": predicates are abbreviated to at most 4 characters using base: :abbreviate();
* "abbrev8": predicates are abbreviated to at most 8 characters using base: :abbreviate();

* "none”: no shortening is applied; predicates remain unchanged.

Usage

shorten_condition(x, method = "letters")

values 59

Arguments
X A character vector of conditions, each formatted as a string (e.g., "{a=1,b=100,c=3}").
method A character scalar specifying the shortening method. Must be one of "letters”,
"abbrev4"”, "abbrev8”, or "none"”. Defaults to "letters”.
Details

Predicate shortening is useful for visualization or reporting, especially when original predicate
names are long or complex. Note that shortening is applied consistently across all conditions in
X.

Value

A character vector of conditions with predicates shortened according to the specified method.

Author(s)
Michal Burda

See Also

format_condition(), parse_condition(), is_condition(), remove_ill_conditions(), base::abbreviate()

Examples
shorten_condition(c("{a=1,b=100,c=3}", "{a=2}", "{b=100,c=3}"),
method = "letters”)

shorten_condition(c("{helloWorld=1}", "{helloWorld=2}", "{c=3,helloWorld=13}"),
method = "abbrev4")

shorten_condition(c("{helloWorld=1}", "{helloWorld=2}", "{c=3,helloWorld=13}"),
method = "abbrev8")

shorten_condition(c("{helloWorld=1}", "{helloWorld=23}"),
method = "none")

values Extract values from predicate names

Description

This function extracts the value part from a character vector of predicate names. Each element of
x is expected to follow the pattern <varname>=<value>, where <varname> is a variable name and
<value> is the associated value.

If an element does not contain an equal sign (=), the function returns an empty string for that
element.

60 var_grid

Usage

values(x)

Arguments

X A character vector of predicate names.

Details

This function is the counterpart to var_names(), which extracts the variable part of predicates.
Together, var_names () and values() provide a convenient way to split predicate strings into their
variable and value components.

Value

A character vector containing the <value> parts of predicate names in x. Elements without an
equal sign return an empty string. If x is NULL, the function returns NULL. If x is an empty vector
(character(@)), the function returns an empty vector (character(0)).

Author(s)
Michal Burda

See Also

var_names ()

Examples
values(c("a=1", "a=2", "b=x", "b=y"))

returns C(”‘I”, "2”, ”X", uyn)

values(c("a", "b=3"))
returns c("", "3")

var_grid Create a tibble of combinations of selected column names

Description
The xvars and yvars arguments are tidyselect expressions (see tidyselect syntax) that specify the
columns of x whose names will be used to form combinations.

If yvars is NULL, the function creates a tibble with one column, var, enumerating all column names
selected by the xvars expression.

If yvars is not NULL, the function creates a tibble with two columns, xvar and yvar, whose rows
enumerate all combinations of column names specified by xvars and yvars.

https://tidyselect.r-lib.org/articles/syntax.html

var_grid 61

It is allowed to specify the same column in both xvars and yvars. In such cases, self-combinations
(a column paired with itself) are removed from the result.

In other words, the function creates a grid of all possible pairs (zz,yy) where xx € zvars, yy €
yvars, and xx # yy.

Usage
var_grid(
X’
xvars = everything(),
yvars = everything(),
allow = "all",

disjoint = var_names(colnames(x)),
xvar_name = if (quo_is_null(enquo(yvars))) "var
yvar_name = "yvar”,
error_context = list(arg_x = "x", arg_xvars = "xvars", arg_yvars = "yvars"”, arg_allow =
"allow"”, arg_disjoint = "disjoint”, arg_xvar_name = "xvar_name", arg_yvar_name =
"yvar_name"”, call = current_env())

n

else "xvar”,

)
Arguments
X A data frame or matrix.
xvars A tidyselect expression specifying the columns of x whose names will be used
in the first position (xvar) of the combinations.
yvars NULL or a tidyselect expression specifying the columns of x whose names will
be used in the second position (yvar) of the combinations.
allow A character string specifying which columns may be selected by xvars and
yvars. Possible values are:
e "all” — all columns may be selected;
* "numeric” — only numeric columns may be selected.
disjoint An atomic vector of length equal to the number of columns in x that specifies
disjoint groups of predicates. Columns belonging to the same group (i.e. having
the same value in disjoint) will not appear together in a single combination of
xvars and yvars. Ignored if yvars is NULL.
Xvar_name A character string specifying the name of the first column (xvar) in the output
tibble.
yvar_name A character string specifying the name of the second column (yvar) in the output

tibble. This column is omitted if yvars is NULL.

error_context A list providing details for error messages. This is useful when var_grid() is
called from another function, allowing error messages to reference the caller’s
argument names. The list must contain:
* arg_x —name of the argument x;
* arg_xvars —name of the argument xvars;
e arg_yvars —name of the argument yvars;

62 var_grid
e arg_allow —name of the argument allow;
* arg_xvar_name — name of the xvar column in the output;
e arg_yvar_name — name of the yvar column in the output;
* call — the calling environment for evaluating error messages.
Details

var_grid() is typically used when a function requires a systematic list of variables or variable pairs
to analyze. For example, it can be used to generate all pairs of variables for correlation, association,
or contrast analysis. The flexibility of xvars and yvars makes it possible to restrict the grid to
specific subsets of variables while ensuring that invalid or redundant combinations (e.g., self-pairs
or disjoint groups) are excluded automatically.

The allow argument can be used to restrict the selection of columns to numeric columns only. This
is useful when the resulting variable combinations will be used in analyses that require numeric
data, such as correlation or contrast tests.

The disjoint argument allows specifying groups of columns that should not appear together in a
single combination. This is useful when certain columns represent mutually exclusive categories
or measurements that should not be analyzed together. For example, if disjoint groups columns
by measurement type, the function will ensure that no combination includes two columns from the
same type.

Value

If yvars is NULL, a tibble with a single column (var). If yvars is not NULL, a tibble with two
columns (xvar, yvar) enumerating all valid combinations of column names selected by xvars and
yvars. The order of variables in the result follows the order in which they are selected by xvars
and yvars.

Author(s)

Michal Burda

Examples

Grid of all pairwise column combinations in CO02
var_grid(C02)

Grid of combinations where the first column is Plant, Type, or Treatment,
and the second column is conc or uptake
var_grid(C02, xvars = Plant:Treatment, yvars = conc:uptake)

Prevent variables from the same disjoint group from being paired together
d <- data.frame(a = 1:5, b = 6:10, ¢ = 11:15, d = 16:20)
Group (a, b) together and (c, d) together
var_grid(d, xvars = everything(), yvars = everything(),
disjoint = c(1, 1, 2, 2))

var_names 63

var_names Extract variable names from predicate names

Description

This function extracts the variable part from a character vector of predicate names. Each element of
x is expected to follow the pattern <varname>=<value>, where <varname> is a variable name and
<value> is the associated value.

If an element does not contain an equal sign (=), the entire string is returned unchanged.

Usage

var_names (x)

Arguments

X A character vector of predicate names.

Details

This function is the counterpart to values(), which extracts the value part of predicates. Together,
var_names() and values() provide a convenient way to split predicate strings into their variable
and value components.

Value

A character vector containing the <varname> parts of predicate names in x. If an element does not
contain =, the entire string is returned as is. If x is NULL, the function returns NULL. If x has length
zero (character(@)), the function returns character(9).

Author(s)
Michal Burda

See Also

values()

Examples

var_names(c("a=1", "a=2", "b=x", "b=y"))

returns c("a”", "a", "b", "b")
var_names(c("a", "b=3"))
returns c("a", "b")

var_names(character(0))
returns character(90)

64 which_antichain

var_names (NULL)
returns character(0)

which_antichain Return indices of first elements of the list, which are incomparable
with preceding elements.

Description

The function returns indices of elements from the given list x, which are incomparable (i.e., it is
neither subset nor superset) with any preceding element. The first element is always selected. The
next element is selected only if it is incomparable with all previously selected elements.

Usage

which_antichain(x, distance = 0)

Arguments
X a list of integerish vectors
distance a non-negative integer, which specifies the allowed discrepancy between com-
pared sets
Value

an integer vector of indices of selected (incomparable) elements.

Author(s)
Michal Burda

Examples

Create a list of integerish vectors
x <= list(c(1, 2), c(1, 2, 3), c(2, 3), c(1, 3), c(4, 5))

Find incomparable elements
which_antichain(x)

Index

add_interest
(add_interest.associations), 3
add_interest.associations, 3
association_matrix, 6
association_matrix(), 9

base: :abbreviate(), 58, 59
bound_range, 7

ceiling(), 7, 8
classInt::classIntervals(), 53, 54
cluster_associations, 8

dig, 10
dig(Q), 18, 21, 25, 28, 31, 35, 36, 52
dig_associations, 15
dig_associations(), 3, 4,6, 9, 37, 38, 52
dig_baseline_contrasts, 18
dig_baseline_contrasts(), 25, 35
dig_complement_contrasts, 22
dig_complement_contrasts(), 21, 35
dig_correlations, 26
dig_correlations(), 28, 31, 52
dig_grid, 28
dig_grid(), 14, 21, 25, 35
dig_paired_baseline_contrasts, 32
dig_paired_baseline_contrasts(), 21, 25,
31,52
dig_tautologies, 36

e1071: :bclust(), 54
explore.associations, 38

fire, 39

fire(), 41,51

floor(),7, 8

format_condition, 40

format_condition(), 39, 40, 42, 45, 51, 58,
59

generics::intersect(), 49

65

generics::setdiff (), 49
generics::union(), 49
geom_diamond, 41
ggplot2::aes(), 42
ggplot2::layer(), 42

hclust(), 54

is.numeric(), 46
is_almost_constant, 43
is_almost_constant(), 56, 57
is_condition, 45
is_condition(), 51, 58, 59
is_degree, 46
is_logicalish, 47
is_nugget, 47
is_nugget(), 50
is_subset, 48

KernSmooth: :dpih(), 54
kmeans (), 54

nugget, 49
nugget (), 47, 48

parse_condition, 51

parse_condition(), 41, 59

partition, 52

partition(), 11, 14, 16, 18, 19, 23, 27, 30,
33,37,40

quantile(), 54

remove_almost_constant, 56
remove_almost_constant(), 44
remove_ill_conditions, 57
remove_ill_conditions(), 45, 57, 59

shorten_condition, 58
stats::cor.test(), 27, 28
stats: :kmeans(), 9

66 INDEX

stats::t.test(), 21, 25, 35
stats::var.test(), 25
stats::wilcox.test(), 21, 25, 35

t.test(), 21, 24, 25, 34, 35
table(), 44

unique(), 44

values, 59

values(), 63

var_grid, 60

var_grid(), 28, 31

var_names, 63

var_names(), 11, 14, 16, 18, 19, 23, 27, 30,
33,37, 60

which_antichain, 64
wilcox.test(), 20, 24, 34

	add_interest.associations
	association_matrix
	bound_range
	cluster_associations
	dig
	dig_associations
	dig_baseline_contrasts
	dig_complement_contrasts
	dig_correlations
	dig_grid
	dig_paired_baseline_contrasts
	dig_tautologies
	explore.associations
	fire
	format_condition
	geom_diamond
	is_almost_constant
	is_condition
	is_degree
	is_logicalish
	is_nugget
	is_subset
	nugget
	parse_condition
	partition
	remove_almost_constant
	remove_ill_conditions
	shorten_condition
	values
	var_grid
	var_names
	which_antichain
	Index

