
Package ‘plotly’
January 24, 2026

Title Create Interactive Web Graphics via 'plotly.js'

Version 4.12.0

License MIT + file LICENSE

Description
Create interactive web graphics from 'ggplot2' graphs and/or a custom interface to the (MIT-
licensed) JavaScript library 'plotly.js' inspired by the grammar of graphics.

URL https://plotly-r.com, https://github.com/plotly/plotly.R,

https://plotly.com/r/

BugReports https://github.com/plotly/plotly.R/issues

Depends R (>= 3.5.0), ggplot2 (>= 3.0.0)

Imports tools, scales, httr (>= 1.3.0), jsonlite (>= 1.6), magrittr,
digest, viridisLite, base64enc, htmltools (>= 0.3.6),
htmlwidgets (>= 1.5.2.9001), tidyr (>= 1.0.0), RColorBrewer,
dplyr, vctrs, tibble, lazyeval (>= 0.2.0), rlang (>= 1.0.0),
crosstalk, purrr, data.table, promises

Suggests MASS, maps, hexbin, ggthemes, GGally, ggalluvial, testthat,
knitr, shiny (>= 1.1.0), shinytest2, curl, rmarkdown, Cairo,
broom, webshot, listviewer, dendextend, sf, png, IRdisplay,
processx, plotlyGeoAssets, forcats, withr, palmerpenguins,
rversions, reticulate, rsvg, ggridges

LazyData true

RoxygenNote 7.3.3

Encoding UTF-8

Config/Needs/check tidyverse/ggplot2, ggobi/GGally, rcmdcheck,
devtools, reshape2, s2

NeedsCompilation no

Author Carson Sievert [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4958-2844>),

Chris Parmer [aut],
Toby Hocking [aut],
Scott Chamberlain [aut],

1

https://plotly-r.com
https://github.com/plotly/plotly.R
https://plotly.com/r/
https://github.com/plotly/plotly.R/issues
https://orcid.org/0000-0002-4958-2844

2 Contents

Karthik Ram [aut],
Marianne Corvellec [aut] (ORCID:

<https://orcid.org/0000-0002-1994-3581>),
Pedro Despouy [aut],
Salim Brüggemann [ctb] (ORCID: <https://orcid.org/0000-0002-5329-5987>),
Plotly Technologies Inc. [cph]

Maintainer Carson Sievert <cpsievert1@gmail.com>

Repository CRAN

Date/Publication 2026-01-24 07:50:02 UTC

Contents
add_annotations . 3
add_data . 4
add_fun . 5
add_trace . 5
animation_opts . 10
api_create . 12
as.widget . 15
as_widget . 15
attrs_selected . 16
bbox . 16
colorbar . 17
config . 18
embed_notebook . 19
event_data . 20
event_register . 21
event_unregister . 21
export . 22
geom2trace . 23
get_figure . 23
gg2list . 24
ggplotly . 25
group2NA . 27
hide_colorbar . 28
hide_guides . 28
hide_legend . 29
highlight . 29
highlight_key . 32
hobbs . 32
knit_print.api_grid . 33
knit_print.api_grid_local . 33
knit_print.api_plot . 34
last_plot . 34
layout . 35
mic . 35
offline . 36

https://orcid.org/0000-0002-1994-3581
https://orcid.org/0000-0002-5329-5987

add_annotations 3

orca . 36
partial_bundle . 39
plotly-shiny . 40
plotlyProxy . 41
plotly_build . 42
plotly_data . 43
plotly_empty . 46
plotly_example . 46
plotly_IMAGE . 47
plotly_json . 48
plotly_POST . 48
plot_dendro . 49
plot_geo . 50
plot_ly . 51
plot_mapbox . 54
print.api . 55
print.api_grid . 56
print.api_grid_local . 56
print.api_plot . 57
rangeslider . 57
raster2uri . 58
remove_typedarray_polyfill . 59
res_mn . 60
save_image . 60
schema . 62
showRGB . 63
signup . 63
style . 64
subplot . 65
TeX . 67
toRGB . 68
toWebGL . 69
to_basic . 69
wind . 70

Index 71

add_annotations Add an annotation(s) to a plot

Description

Add an annotation(s) to a plot

Usage

add_annotations(p, text = NULL, ..., data = NULL, inherit = TRUE)

4 add_data

Arguments

p a plotly object

text annotation text (required).

... these arguments are documented at https://github.com/plotly/plotly.js/
blob/master/src/components/annotations/attributes.js

data a data frame.

inherit inherit attributes from plot_ly()?

Author(s)

Carson Sievert

add_data Add data to a plotly visualization

Description

Add data to a plotly visualization

Usage

add_data(p, data = NULL)

Arguments

p a plotly visualization

data a data frame.

Examples

plot_ly() %>% add_data(economics) %>% add_trace(x = ~date, y = ~pce)

https://github.com/plotly/plotly.js/blob/master/src/components/annotations/attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/annotations/attributes.js

add_fun 5

add_fun Apply function to plot, without modifying data

Description

Useful when you need two or more layers that apply a summary statistic to the original data.

Usage

add_fun(p, fun, ...)

Arguments

p a plotly object.

fun a function. Should take a plotly object as input and return a modified plotly
object.

... arguments passed to fun.

add_trace Add trace(s) to a plotly visualization

Description

Add trace(s) to a plotly visualization

Usage

add_trace(p, ..., data = NULL, inherit = TRUE)

add_markers(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE)

add_text(
p,
x = NULL,
y = NULL,
z = NULL,
text = NULL,
...,
data = NULL,
inherit = TRUE

)

add_paths(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE)

add_lines(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE)

6 add_trace

add_segments(
p,
x = NULL,
y = NULL,
xend = NULL,
yend = NULL,
...,
data = NULL,
inherit = TRUE

)

add_polygons(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE)

add_sf(p, ..., x = ~x, y = ~y, data = NULL, inherit = TRUE)

add_table(p, ..., rownames = TRUE, data = NULL, inherit = TRUE)

add_ribbons(
p,
x = NULL,
ymin = NULL,
ymax = NULL,
...,
data = NULL,
inherit = TRUE

)

add_image(p, z = NULL, colormodel = NULL, ..., data = NULL, inherit = TRUE)

add_area(p, r = NULL, theta = NULL, t = NULL, ..., data = NULL, inherit = TRUE)

add_pie(p, values = NULL, labels = NULL, ..., data = NULL, inherit = TRUE)

add_bars(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE)

add_histogram(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE)

add_histogram2d(
p,
x = NULL,
y = NULL,
z = NULL,
...,
data = NULL,
inherit = TRUE

)

add_trace 7

add_histogram2dcontour(
p,
x = NULL,
y = NULL,
z = NULL,
...,
data = NULL,
inherit = TRUE

)

add_heatmap(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE)

add_contour(p, z = NULL, ..., data = NULL, inherit = TRUE)

add_boxplot(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE)

add_surface(p, z = NULL, ..., data = NULL, inherit = TRUE)

add_mesh(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE)

add_scattergeo(p, ...)

add_choropleth(p, z = NULL, ..., data = NULL, inherit = TRUE)

Arguments

p a plotly object

... Arguments (i.e., attributes) passed along to the trace type. See schema() for
a list of acceptable attributes for a given trace type (by going to traces ->
type -> attributes). Note that attributes provided at this level may over-
ride other arguments (e.g. plot_ly(x = 1:10, y = 1:10, color = I("red"),
marker = list(color = "blue"))).

data A data frame (optional) or crosstalk::SharedData object.

inherit inherit attributes from plot_ly()?

x the x variable.

y the y variable.

z a numeric matrix (unless add_image(), which wants a raster object, see as.raster()).

text textual labels.

xend "final" x position (in this context, x represents "start")

yend "final" y position (in this context, y represents "start")

rownames whether or not to display the rownames of data.

ymin a variable used to define the lower boundary of a polygon.

ymax a variable used to define the upper boundary of a polygon.

colormodel Sets the colormodel for image traces if z is not a raster object. If z is a raster
object (see as.raster()), the 'rgba' colormodel is always used.

8 add_trace

r Sets the radial coordinates.

theta Sets the angular coordinates.

t Deprecated. Use theta instead.

values the value to associated with each slice of the pie.

labels the labels (categories) corresponding to values.

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

https://plotly.com/r/

https://plotly.com/r/reference/

See Also

plot_ly()

Examples

the `plot_ly()` function initiates an object, and if no trace type
is specified, it sets a sensible default
p <- plot_ly(economics, x = ~date, y = ~uempmed)
p

some `add_*()` functions are a specific case of a trace type
for example, `add_markers()` is a scatter trace with mode of markers
add_markers(p)

scatter trace with mode of text
add_text(p, text = "%")

scatter trace with mode of lines
add_paths(p)

like `add_paths()`, but ensures points are connected according to `x`
add_lines(p)

if you prefer to work with plotly.js more directly, can always
use `add_trace()` and specify the type yourself
add_trace(p, type = "scatter", mode = "markers+lines")

mappings provided to `plot_ly()` are "global", but can be overwritten
plot_ly(economics, x = ~date, y = ~uempmed, color = I("red"), showlegend = FALSE) %>%

add_lines() %>%
add_markers(color = ~pop)

https://plotly-r.com/overview.html
https://plotly.com/r/
https://plotly.com/r/reference/

add_trace 9

a number of `add_*()` functions are special cases of the scatter trace
plot_ly(economics, x = ~date) %>%

add_ribbons(ymin = ~pce - 1e3, ymax = ~pce + 1e3)

use `group_by()` (or `group2NA()`) to apply visual mapping
once per group (e.g. one line per group)
txhousing %>%

group_by(city) %>%
plot_ly(x = ~date, y = ~median) %>%
add_lines(color = I("black"))

Not run:
use `add_sf()` or `add_polygons()` to create geo-spatial maps
http://blog.cpsievert.me/2018/03/30/visualizing-geo-spatial-data-with-sf-and-plotly/
if (requireNamespace("sf", quietly = TRUE)) {

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
plot_ly() %>% add_sf(data = nc)

}

univariate summary statistics
plot_ly(mtcars, x = ~factor(vs), y = ~mpg) %>%

add_boxplot()
plot_ly(mtcars, x = ~factor(vs), y = ~mpg) %>%

add_trace(type = "violin")

`add_histogram()` does binning for you...
mtcars %>%

plot_ly(x = ~factor(vs)) %>%
add_histogram()

...but you can 'pre-compute' bar heights in R
mtcars %>%

dplyr::count(vs) %>%
plot_ly(x = ~vs, y = ~n) %>%
add_bars()

the 2d analogy of add_histogram() is add_histogram2d()/add_histogram2dcontour()
library(MASS)
(p <- plot_ly(geyser, x = ~waiting, y = ~duration))
add_histogram2d(p)
add_histogram2dcontour(p)

the 2d analogy of add_bars() is add_heatmap()/add_contour()
(i.e., bin counts must be pre-specified)
den <- kde2d(geyser$waiting, geyser$duration)
p <- plot_ly(x = den$x, y = den$y, z = den$z)
add_heatmap(p)
add_contour(p)

`add_table()` makes it easy to map a data frame to the table trace type
plot_ly(economics) %>%

add_table()

10 animation_opts

pie charts!
ds <- data.frame(labels = c("A", "B", "C"), values = c(10, 40, 60))
plot_ly(ds, labels = ~labels, values = ~values) %>%

add_pie() %>%
layout(title = "Basic Pie Chart using Plotly")

data(wind)
plot_ly(wind, r = ~r, theta = ~t) %>%

add_area(color = ~nms) %>%
layout(
polar = list(

radialaxis = list(ticksuffix = "%"),
angularaxis = list(rotation = 90)

)
)

--
3D chart types
--
plot_ly(z = ~volcano) %>%

add_surface()
plot_ly(x = c(0, 0, 1), y = c(0, 1, 0), z = c(0, 0, 0)) %>%

add_mesh()

End(Not run)

animation_opts Animation configuration options

Description

Animations can be created by either using the frame argument in plot_ly() or the (unofficial)
frame ggplot2 aesthetic in ggplotly(). By default, animations populate a play button and slider
component for controlling the state of the animation (to pause an animation, click on a relevant
location on the slider bar). Both the play button and slider component transition between frames
according rules specified by animation_opts().

Usage

animation_opts(
p,
frame = 500,
transition = frame,
easing = "linear",
redraw = TRUE,
mode = "immediate"

)

animation_opts 11

animation_slider(p, hide = FALSE, ...)

animation_button(p, ..., label)

Arguments

p a plotly object.

frame The amount of time between frames (in milliseconds). Note that this amount
should include the transition.

transition The duration of the smooth transition between frames (in milliseconds).

easing The type of transition easing. See the list of options here https://github.com/
plotly/plotly.js/blob/master/src/plots/animation_attributes.js

redraw Trigger a redraw of the plot at completion of the transition? A redraw may
significantly impact performance, but may be necessary to update graphical el-
ements that can’t be transitioned.

mode Describes how a new animate call interacts with currently-running animations.
If immediate, current animations are interrupted and the new animation is started.
If next, the current frame is allowed to complete, after which the new animation
is started. If afterall all existing frames are animated to completion before the
new animation is started.

hide remove the animation slider?

... for animation_slider, attributes are passed to a special layout.sliders object
tied to the animation frames. The definition of these attributes may be found here
https://github.com/plotly/plotly.js/blob/master/src/components/sliders/
attributes.js For animation_button, arguments are passed to a special lay-
out.updatemenus button object tied to the animation https://github.com/
plotly/plotly.js/blob/master/src/components/updatemenus/attributes.
js

label a character string used for the animation button’s label

Author(s)

Carson Sievert

Examples

df <- data.frame(
x = c(1, 2, 2, 1, 1, 2),
y = c(1, 2, 2, 1, 1, 2),
z = c(1, 1, 2, 2, 3, 3)

)
plot_ly(df) %>%

add_markers(x = 1.5, y = 1.5) %>%
add_markers(x = ~x, y = ~y, frame = ~z)

it's a good idea to remove smooth transitions when there is
no relationship between objects in each view

https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js
https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/sliders/attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/sliders/attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/updatemenus/attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/updatemenus/attributes.js
https://github.com/plotly/plotly.js/blob/master/src/components/updatemenus/attributes.js

12 api_create

plot_ly(mtcars, x = ~wt, y = ~mpg, frame = ~cyl) %>%
animation_opts(transition = 0)

works the same way with ggplotly
if (interactive()) {

p <- ggplot(txhousing, aes(month, median)) +
geom_line(aes(group = year), alpha = 0.3) +
geom_smooth() +
geom_line(aes(frame = year, ids = month), color = "red") +
facet_wrap(~ city)

ggplotly(p, width = 1200, height = 900) %>%
animation_opts(1000)

}

#' # for more, see https://plotly.com/r/animating-views.html

api_create Tools for working with plotly’s REST API (v2)

Description

Convenience functions for working with version 2 of plotly’s REST API. Upload R objects to a
plotly account via api_create() and download plotly objects via api_download_plot()/api_download_grid().
For anything else, use api().

Usage

api_create(
x = last_plot(),
filename = NULL,
fileopt = c("overwrite", "new"),
sharing = c("public", "private", "secret"),
...

)

S3 method for class 'plotly'
api_create(
x = last_plot(),
filename = NULL,
fileopt = "overwrite",
sharing = "public",
...

)

S3 method for class 'ggplot'

api_create 13

api_create(
x = last_plot(),
filename = NULL,
fileopt = "overwrite",
sharing = "public",
...

)

S3 method for class 'data.frame'
api_create(x, filename = NULL, fileopt = "overwrite", sharing = "public", ...)

api_download_plot(id, username)

api_download_grid(id, username)

api(endpoint = "/", verb = "GET", body = NULL, ...)

Arguments

x An R object to hosted on plotly’s web platform. Can be a plotly/ggplot2 object
or a data.frame.

filename character vector naming file(s). If x is a plot, can be a vector of length 2 naming
both the plot AND the underlying grid.

fileopt character string describing whether to "overwrite" existing files or ensure "new"
file(s) are always created.

sharing If ’public’, anyone can view this graph. It will appear in your profile and can
appear in search engines. You do not need to be logged in to Plotly to view this
chart. If ’private’, only you can view this plot. It will not appear in the Plotly
feed, your profile, or search engines. You must be logged in to Plotly to view
this graph. You can privately share this graph with other Plotly users in your
online Plotly account and they will need to be logged in to view this plot. If
’secret’, anyone with this secret link can view this chart. It will not appear in the
Plotly feed, your profile, or search engines. If it is embedded inside a webpage
or an IPython notebook, anybody who is viewing that page will be able to view
the graph. You do not need to be logged in to view this plot.

... For api(), these arguments are passed onto httr::RETRY(). For api_create(),
these arguments are included in the body of the HTTP request.

id a filename id.

username a plotly username.

endpoint the endpoint (i.e., location) for the request. To see a list of all available end-
points, call api(). Any relevant query parameters should be included here (see
examples).

verb name of the HTTP verb to use (as in, httr::RETRY()).

body body of the HTTP request(as in, httr::RETRY()). If this value is not already
converted to JSON (via jsonlite::toJSON()), it uses the internal to_JSON()
to ensure values are "automatically unboxed" (i.e., vec.

14 api_create

Author(s)

Carson Sievert

See Also

signup()

Examples

Not run:

--
api_create() makes it easy to upload ggplot2/plotly objects
and/or data frames to your plotly account
--

A data frame creates a plotly "grid". Printing one will take you
to the it's web address so you can start creating!
(m <- api_create(mtcars))

A plotly/ggplot2 object create a plotly "plot".
p <- plot_ly(mtcars, x = ~factor(vs))
(r <- api_create(p))

api_create() returns metadata about the remote "file". Here is
one way you could use that metadata to download a plot for local use:
fileID <- strsplit(r$file$fid, ":")[[1]]
layout(

api_download_plot(fileID[2], fileID[1]),
title = sprintf("Local version of this plot", r$file$web_url)

)

--
The api() function provides a low-level interface for performing
any action at any endpoint! It always returns a list.
--

list all the endpoints
api()

search the entire platform!
api("search?q=overdose")
api("search?q=plottype:pie trump fake")

these examples will require a user account
usr <- Sys.getenv("plotly_username", NA)
if (!is.na(usr)) {

your account info
api(sprintf("users/%s", usr))
your folders/files
api(sprintf("folders/home?user=%s", usr))

as.widget 15

}

Retrieve a specific file
api("files/cpsievert:14681")

change the filename
(note: this won't work unless you have proper credentials to the relevant account)
api("files/cpsievert:14681", "PATCH", list(filename = "toy file"))

Copy a file
api("files/cpsievert:14681/copy", "POST")

Create a folder
api("folders", "POST", list(path = "/starts/at/root/and/ends/here"))

End(Not run)

as.widget Convert a plotly object to an htmlwidget object

Description

This function was deprecated in 4.0.0, as plotly objects are now htmlwidget objects, so there is no
need to convert them.

Usage

as.widget(x, ...)

Arguments

x a plotly object.

... other options passed onto htmlwidgets::createWidget

as_widget Convert a list to a plotly htmlwidget object

Description

Convert a list to a plotly htmlwidget object

Usage

as_widget(x, ...)

16 bbox

Arguments

x a plotly object.

... other options passed onto htmlwidgets::createWidget

Examples

trace <- list(x = 1, y = 1)
obj <- list(data = list(trace), layout = list(title = "my plot"))
as_widget(obj)

attrs_selected Specify attributes of selection traces

Description

By default the name of the selection trace derives from the selected values.

Usage

attrs_selected(opacity = 1, ...)

Arguments

opacity a number between 0 and 1 specifying the overall opacity of the selected trace

... other trace attributes attached to the selection trace.

Author(s)

Carson Sievert

bbox Estimate bounding box of a rotated string

Description

Estimate bounding box of a rotated string

Usage

bbox(txt = "foo", angle = 0, size = 12)

colorbar 17

Arguments

txt a character string of length 1

angle sets the angle of the tick labels with respect to the horizontal (e.g., tickangle
of -90 draws the tick labels vertically)

size vertical size of a character

References

https://www.dropbox.com/s/nc6968prgw8ne4w/bbox.pdf?dl=0

colorbar Modify the colorbar

Description

Modify the colorbar

Usage

colorbar(p, ..., limits = NULL, which = 1)

Arguments

p a plotly object

... arguments are documented here https://plotly.com/r/reference/#scatter-marker-colorbar.

limits numeric vector of length 2. Set the extent of the colorbar scale.

which colorbar to modify? Should only be relevant for subplots with multiple color-
bars.

Author(s)

Carson Sievert

Examples

p <- plot_ly(mtcars, x = ~wt, y = ~mpg, color = ~cyl)

pass any colorbar attribute --
https://plotly.com/r/reference/#scatter-marker-colorbar
colorbar(p, len = 0.5)

Expand the limits of the colorbar
colorbar(p, limits = c(0, 20))
values outside the colorbar limits are considered "missing"
colorbar(p, limits = c(5, 6))

https://plotly.com/r/reference/#scatter-marker-colorbar

18 config

also works on colorbars generated via a z value
corr <- cor(diamonds[vapply(diamonds, is.numeric, logical(1))])
plot_ly(x = rownames(corr), y = colnames(corr), z = corr) %>%
add_heatmap() %>%
colorbar(limits = c(-1, 1))

config Set the default configuration for plotly

Description

Set the default configuration for plotly

Usage

config(
p,
...,
cloud = FALSE,
showSendToCloud = cloud,
locale = NULL,
mathjax = NULL

)

Arguments

p a plotly object

... these arguments are documented at https://github.com/plotly/plotly.js/
blob/master/src/plot_api/plot_config.js

cloud deprecated. Use showSendToCloud instead.
showSendToCloud

include the send data to cloud button?

locale locale to use. See here for more info.

mathjax add MathJax rendering support. If "cdn", mathjax is loaded externally (meaning
an internet connection is needed for TeX rendering). If "local", the PLOTLY_MATHJAX_PATH
environment variable must be set to the location (a local file path) of MathJax.
IMPORTANT: plotly uses SVG-based mathjax rendering which doesn’t play
nicely with HTML-based rendering (e.g., rmarkdown documents and shiny
apps). To leverage both types of rendering, you must <iframe> your plotly
graph(s) into the larger document (see here for an rmarkdown example and
here for a shiny example).

Author(s)

Carson Sievert

https://github.com/plotly/plotly.js/blob/master/src/plot_api/plot_config.js
https://github.com/plotly/plotly.js/blob/master/src/plot_api/plot_config.js
https://github.com/plotly/plotly.js/tree/master/dist#to-include-localization
https://github.com/plotly/plotly.js/tree/master/dist#to-support-mathjax
https://github.com/plotly/plotly.R/blob/master/inst/examples/rmd/MathJax/index.Rmd
https://github.com/plotly/plotly.R/blob/master/inst/examples/rmd/MathJax/index.Rmd

embed_notebook 19

Examples

remove the plotly logo and collaborate button from modebar
config(plot_ly(), displaylogo = FALSE, collaborate = FALSE)

enable mathjax
see more examples at https://plotly.com/r/LaTeX/
plot_ly(x = c(1, 2, 3, 4), y = c(1, 4, 9, 16)) %>%

layout(title = TeX("\\text{Some mathjax: }\\alpha+\\beta x")) %>%
config(mathjax = "cdn")

change the language used to render date axes and on-graph text
(e.g., modebar buttons)
today <- Sys.Date()
x <- seq.Date(today, today + 360, by = "day")
p <- plot_ly(x = x, y = rnorm(length(x))) %>%

add_lines()

japanese
config(p, locale = "ja")
german
config(p, locale = "de")
spanish
config(p, locale = "es")
chinese
config(p, locale = "zh-CN")

embed_notebook Embed a plot as an iframe into a Jupyter Notebook

Description

Embed a plot as an iframe into a Jupyter Notebook

Usage

embed_notebook(x, width = NULL, height = NULL, file = NULL)

Arguments

x a plotly object

width attribute of the iframe. If NULL, the width in plot_ly is used. If that is also
NULL, ’100%’ is the default.

height attribute of the iframe. If NULL, the height in plot_ly is used. If that is also
NULL, ’400px’ is the default.

file deprecated.

20 event_data

Author(s)

Carson Sievert

event_data Access plotly user input event data in shiny

Description

This function must be called within a reactive shiny context.

Usage

event_data(
event = c("plotly_hover", "plotly_unhover", "plotly_click", "plotly_doubleclick",

"plotly_selected", "plotly_selecting", "plotly_brushed", "plotly_brushing",
"plotly_deselect", "plotly_relayout", "plotly_restyle", "plotly_legendclick",
"plotly_legenddoubleclick", "plotly_clickannotation", "plotly_afterplot",
"plotly_sunburstclick"),

source = "A",
session = shiny::getDefaultReactiveDomain(),
priority = c("input", "event")

)

Arguments

event The type of plotly event. All supported events are listed in the function signature
above (i.e., the usage section).

source a character string of length 1. Match the value of this string with the source
argument in plot_ly() (or ggplotly()) to respond to events emitted from that
specific plot.

session a shiny session object (the default should almost always be used).

priority the priority of the corresponding shiny input value. If equal to "event", then
event_data() always triggers re-execution, instead of re-executing only when
the relevant shiny input value changes (the default).

Author(s)

Carson Sievert

References

• https://plotly-r.com/linking-views-with-shiny.html#shiny-plotly-inputs

• https://plotly.com/javascript/plotlyjs-function-reference/

See Also

event_register, event_unregister

https://plotly-r.com/linking-views-with-shiny.html#shiny-plotly-inputs
https://plotly.com/javascript/plotlyjs-function-reference/

event_register 21

Examples

Not run:
plotly_example("shiny", "event_data")

End(Not run)

event_register Register a shiny input value

Description

Register a shiny input value

Usage

event_register(p, event = NULL)

Arguments

p a plotly object.

event The type of plotly event. All supported events are listed in the function signature
above (i.e., the usage section).

Author(s)

Carson Sievert

See Also

event_data

event_unregister Un-register a shiny input value

Description

Un-register a shiny input value

Usage

event_unregister(p, event = NULL)

Arguments

p a plotly object.

event The type of plotly event. All supported events are listed in the function signature
above (i.e., the usage section).

22 export

Author(s)

Carson Sievert

See Also

event_data

export Export a plotly graph to a static file

Description

This function is deprecated, use save_image instead.

Usage

export(p = last_plot(), file = "plotly.png", selenium = NULL, ...)

Arguments

p a plotly or ggplot object.

file a filename. The file type is inferred from the file extension. Valid extensions
include ’jpeg’ | ’png’ | ’webp’ | ’svg’ | ’pdf’

selenium used only when p is a WebGL plot or the output format is ’webp’ or ’svg’.
Should be an object of class "rsClientServer" returned by RSelenium::rsDriver.

... if p is non-WebGL and the output file format is jpeg/png/pdf arguments are
passed along to webshot::webshot(). Otherwise, they are ignored.

Details

For SVG plots, a screenshot is taken via webshot::webshot(). Since phantomjs (and hence
webshot) does not support WebGL, the RSelenium package is used for exporting WebGL plots.

Author(s)

Carson Sievert

geom2trace 23

geom2trace Convert a "basic" geoms to a plotly.js trace.

Description

This function makes it possible to convert ggplot2 geoms that are not included with ggplot2 itself.
Users shouldn’t need to use this function. It exists purely to allow other package authors to write
their own conversion method(s).

Usage

geom2trace(data, params, p)

Arguments

data the data returned by plotly::to_basic.

params parameters for the geom, statistic, and ’constant’ aesthetics

p a ggplot2 object (the conversion may depend on scales, for instance).

get_figure Request a figure object

Description

Deprecated: see api_download_plot().

Usage

get_figure(username, id)

Arguments

username corresponding username for the figure.

id of the Plotly figure.

24 gg2list

gg2list Convert a ggplot to a list.

Description

Convert a ggplot to a list.

Usage

gg2list(
p,
width = NULL,
height = NULL,
tooltip = "all",
dynamicTicks = FALSE,
layerData = 1,
originalData = TRUE,
source = "A",
...

)

Arguments

p ggplot2 plot.

width Width of the plot in pixels (optional, defaults to automatic sizing).

height Height of the plot in pixels (optional, defaults to automatic sizing).

tooltip a character vector specifying which aesthetic tooltips to show in the tooltip.
The default, "all", means show all the aesthetic tooltips (including the unofficial
"text" aesthetic).

dynamicTicks accepts the following values: FALSE, TRUE, "x", or "y". Dynamic ticks are
useful for updating ticks in response to zoom/pan/filter interactions; however,
there is no guarantee they reproduce axis tick text as they would appear in the
static ggplot2 image.

layerData data from which layer should be returned?

originalData should the "original" or "scaled" data be returned?

source a character string of length 1. Match the value of this string with the source
argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

... currently not used

Value

a ’built’ plotly object (list with names "data" and "layout").

ggplotly 25

ggplotly Convert ggplot2 to plotly

Description

This function converts a ggplot2::ggplot() object to a plotly object.

Usage

ggplotly(
p = ggplot2::last_plot(),
width = NULL,
height = NULL,
tooltip = "all",
dynamicTicks = FALSE,
layerData = 1,
originalData = TRUE,
source = "A",
...

)

Arguments

p a ggplot object.

width Width of the plot in pixels (optional, defaults to automatic sizing).

height Height of the plot in pixels (optional, defaults to automatic sizing).

tooltip a character vector specifying which aesthetic mappings to show in the tooltip.
The default, "all", means show all the aesthetic mappings (including the unof-
ficial "text" aesthetic). The order of variables here will also control the order
they appear. For example, use tooltip = c("y", "x", "colour") if you want
y first, x second, and colour last.

dynamicTicks should plotly.js dynamically generate axis tick labels? Dynamic ticks are useful
for updating ticks in response to zoom/pan interactions; however, they can not
always reproduce labels as they would appear in the static ggplot2 image.

layerData data from which layer should be returned?

originalData should the "original" or "scaled" data be returned?

source a character string of length 1. Match the value of this string with the source
argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

... arguments passed onto methods.

26 ggplotly

Details

Conversion of relative sizes depends on the size of the current graphics device (if no device is open,
width/height of a new (off-screen) device defaults to 640/480). In other words, height and width
must be specified at runtime to ensure sizing is correct. For examples on how to specify the output
container’s height/width in a shiny app, see plotly_example("shiny", "ggplotly_sizing").

Author(s)

Carson Sievert

References

https://plotly.com/ggplot2/

See Also

plot_ly()

Examples

Not run:
simple example
ggpenguins <- qplot(bill_length_mm , body_mass_g,
data = palmerpenguins::penguins, color = species)
ggplotly(ggpenguins)

data(canada.cities, package = "maps")
viz <- ggplot(canada.cities, aes(long, lat)) +

borders(regions = "canada") +
coord_equal() +
geom_point(aes(text = name, size = pop), colour = "red", alpha = 1/2)

ggplotly(viz, tooltip = c("text", "size"))

linked scatterplot brushing
d <- highlight_key(mtcars)
qplot(data = d, x = mpg, y = wt) %>%

subplot(qplot(data = d, x = mpg, y = vs)) %>%
layout(title = "Click and drag to select points") %>%
highlight("plotly_selected")

more brushing (i.e. highlighting) examples
demo("crosstalk-highlight-ggplotly", package = "plotly")

client-side linked brushing in a scatterplot matrix
highlight_key(palmerpenguins::penguins) %>%

GGally::ggpairs(aes(colour = Species), columns = 1:4) %>%
ggplotly(tooltip = c("x", "y", "colour")) %>%
highlight("plotly_selected")

End(Not run)

https://plotly.com/ggplot2/

group2NA 27

group2NA Separate groups with missing values

Description

This function is used internally by plotly, but may also be useful to some power users. The details
section explains when and why this function is useful.

Usage

group2NA(
data,
groupNames = "group",
nested = NULL,
ordered = NULL,
retrace.first = inherits(data, "GeomPolygon")

)

Arguments

data a data frame.

groupNames character vector of grouping variable(s)

nested other variables that group should be nested (i.e., ordered) within.

ordered a variable to arrange by (within nested & groupNames). This is useful primarily
for ordering by x

retrace.first should the first row of each group be appended to the last row? This is useful
for enclosing polygons with lines.

Details

If a group of scatter traces share the same non-positional characteristics (i.e., color, fill, etc), it is
more efficient to draw them as a single trace with missing values that separate the groups (instead
of multiple traces), In this case, one should also take care to make sure connectgaps is set to FALSE.

Value

a data.frame with rows ordered by: nested, then groupNames, then ordered. As long as groupNames
contains valid variable names, new rows will also be inserted to separate the groups.

Examples

note the insertion of new rows with missing values
group2NA(mtcars, "vs", "cyl")

need to group lines by city somehow!
plot_ly(txhousing, x = ~date, y = ~median) %>% add_lines()

https://plotly.com/r/reference/#scatter-connectgaps

28 hide_guides

instead of using group_by(), you could use group2NA()
tx <- group2NA(txhousing, "city")
plot_ly(tx, x = ~date, y = ~median) %>% add_lines()

add_lines() will ensure paths are sorted by x, but this is equivalent
tx <- group2NA(txhousing, "city", ordered = "date")
plot_ly(tx, x = ~date, y = ~median) %>% add_paths()

hide_colorbar Hide color bar(s)

Description

Hide color bar(s)

Usage

hide_colorbar(p)

Arguments

p a plotly object.

See Also

hide_legend()

Examples

p <- plot_ly(mtcars, x = ~wt, y = ~cyl, color = ~cyl)
hide_colorbar(p)

hide_guides Hide guides (legends and colorbars)

Description

Hide guides (legends and colorbars)

Usage

hide_guides(p)

hide_legend 29

Arguments

p a plotly object.

See Also

hide_legend(), hide_colorbar()

hide_legend Hide legend

Description

Hide legend

Usage

hide_legend(p)

Arguments

p a plotly object.

See Also

hide_colorbar()

Examples

p <- plot_ly(mtcars, x = ~wt, y = ~cyl, color = ~factor(cyl))
hide_legend(p)

highlight Query graphical elements in multiple linked views

Description

This function sets a variety of options for brushing (i.e., highlighting) multiple plots. These op-
tions are primarily designed for linking multiple plotly graphs, and may not behave as expected
when linking plotly to another htmlwidget package via crosstalk. In some cases, other htmlwidgets
will respect these options, such as persistent selection in leaflet (see demo("highlight-leaflet",
package = "plotly")).

30 highlight

Usage

highlight(
p,
on = "plotly_click",
off,
persistent = getOption("persistent", FALSE),
dynamic = FALSE,
color = NULL,
selectize = FALSE,
defaultValues = NULL,
opacityDim = getOption("opacityDim", 0.2),
selected = attrs_selected(),
debounce = 0,
...

)

Arguments

p a plotly visualization.

on turn on a selection on which event(s)? To disable on events altogether, use NULL.
Currently the following are supported:

• 'plotly_click'

• 'plotly_hover'

• 'plotly_selected': triggered through rectangular (layout.dragmode =
’select’) or lasso (layout.dragmode = ’lasso’) brush.

off turn off a selection on which event(s)? To disable off events altogether, use
NULL. Currently the following are supported:

• 'plotly_doubleclick': triggered on a double mouse click while (lay-
out.dragmode = ’zoom’) or (layout.dragmode = ’pan’)

• 'plotly_deselect': triggered on a double mouse click while (layout.dragmode
= ’select’) or (layout.dragmode = ’lasso’)

• 'plotly_relayout': triggered whenever axes are rescaled (i.e., clicking
the home button in the modebar) or whenever the height/width of the plot
changes.

persistent should selections persist (i.e., accumulate)? We often refer to the default (FALSE)
as a ’transient’ selection mode; which is recommended, because one may switch
from ’transient’ to ’persistent’ selection by holding the shift key.

dynamic should a widget for changing selection colors be included?

color character string of color(s) to use for highlighting selections. See toRGB() for
valid color specifications. If NULL (the default), the color of selected marks are
not altered.

selectize whether or not to render a selectize.js widget for selecting highlight_key()
values. A list of additional selectize.js options may also be provided. The label
used for this widget should be set via the groupName argument of highlight_key().

highlight 31

defaultValues a vector of values for setting a "default selection". These values should match
the key attribute.

opacityDim a number between 0 and 1 used to reduce the opacity of non-selected traces (by
multiplying with the existing opacity).

selected attributes of the selection, see attrs_selected().

debounce amount of time to wait before firing an event (in milliseconds). The default
of 0 means do not debounce at all. Debouncing is mainly useful when on =
"plotly_hover" to avoid firing too many events when users clickly move the
mouse over relevant graphical marks.

... currently not supported.

Author(s)

Carson Sievert

References

https://plotly-r.com/client-side-linking.html

See Also

attrs_selected()

Examples

These examples are designed to show you how to highlight/brush a *single*
view. For examples of multiple linked views, see `demo(package = "plotly")`

d <- highlight_key(txhousing, ~city)
p <- ggplot(d, aes(date, median, group = city)) + geom_line()
gg <- ggplotly(p, tooltip = "city")
highlight(gg, dynamic = TRUE)

supply custom colors to the brush
cols <- toRGB(RColorBrewer::brewer.pal(3, "Dark2"), 0.5)
highlight(gg, on = "plotly_hover", color = cols, dynamic = TRUE)

Use attrs_selected() for complete control over the selection appearance
note any relevant colors you specify here should override the color argument
s <- attrs_selected(

showlegend = TRUE,
mode = "lines+markers",
marker = list(symbol = "x")

)

highlight(layout(gg, showlegend = TRUE), selected = s)

https://plotly-r.com/client-side-linking.html

32 hobbs

highlight_key Highlight/query data based on primary key

Description

This function simply creates an object of class crosstalk::SharedData. The reason it exists is to make
it easier to teach others how to leverage its functionality in plotly. It also makes it more discoverable
if one is already aware of highlight.

Usage

highlight_key(x, ...)

Arguments

x a plotly visualization or a data.frame.

... arguments passed to crosstalk::SharedData$new()

Value

An object of class crosstalk::SharedData

Author(s)

Carson Sievert

See Also

highlight

hobbs Hobbs data

Description

Description TBD.

Usage

hobbs

Format

A data frame with three variables: r, t, nms.

knit_print.api_grid 33

knit_print.api_grid Embed a plotly grid as an iframe in a knitr doc

Description

Embed a plotly grid as an iframe in a knitr doc

Usage

knit_print.api_grid(x, options, ...)

Arguments

x a plotly figure object

options knitr options.

... placeholder.

References

https://github.com/yihui/knitr/blob/master/vignettes/knit_print.Rmd

knit_print.api_grid_local

Embed a plotly grid as an iframe in a knitr doc

Description

Embed a plotly grid as an iframe in a knitr doc

Usage

knit_print.api_grid_local(x, options, ...)

Arguments

x a plotly figure object

options knitr options.

... placeholder.

References

https://github.com/yihui/knitr/blob/master/vignettes/knit_print.Rmd

34 last_plot

knit_print.api_plot Embed a plotly figure as an iframe in a knitr doc

Description

Embed a plotly figure as an iframe in a knitr doc

Usage

knit_print.api_plot(x, options, ...)

Arguments

x a plotly figure object

options knitr options.

... placeholder.

References

https://github.com/yihui/knitr/blob/master/vignettes/knit_print.Rmd

last_plot Retrieve the last plot to be modified or created.

Description

Retrieve the last plot to be modified or created.

Usage

last_plot()

See Also

ggplot2::last_plot()

layout 35

layout Modify the layout of a plotly visualization

Description

Modify the layout of a plotly visualization

Usage

layout(p, ..., data = NULL)

Arguments

p A plotly object.

... Arguments to the layout object. For documentation, see https://plotly.com/
r/reference/layout/

data A data frame to associate with this layout (optional). If not provided, arguments
are evaluated using the data frame in plot_ly().

Author(s)

Carson Sievert

mic Mic data

Description

Description TBD.

Usage

mic

Format

A data frame with three variables: r, t, nms.

https://plotly.com/r/reference/layout/
https://plotly.com/r/reference/layout/

36 orca

offline Plotly Offline

Description

Deprecated in version 2.0 (offline plots are now the default)

Usage

offline(p, height, width, out_dir, open_browser)

Arguments

p a plotly object

height A valid CSS unit. (like "100\ which will be coerced to a string and have "px"
appended.

width A valid CSS unit. (like "100\ which will be coerced to a string and have "px"
appended.

out_dir a directory to place the visualization. If NULL, a temporary directory is used
when the offline object is printed.

open_browser open the visualization after creating it?

Value

a plotly object of class "offline"

Author(s)

Carson Sievert

orca Static image exporting via orca

Description

This function is deprecated, use save_image() instead.

orca 37

Usage

orca(
p,
file = "plot.png",
format = tools::file_ext(file),
scale = NULL,
width = NULL,
height = NULL,
mathjax = FALSE,
parallel_limit = NULL,
verbose = FALSE,
debug = FALSE,
safe = FALSE,
more_args = NULL,
...

)

orca_serve(
port = 5151,
mathjax = FALSE,
safe = FALSE,
request_limit = NULL,
keep_alive = TRUE,
window_max_number = NULL,
quiet = FALSE,
debug = FALSE,
more_args = NULL,
...

)

Arguments

p a plotly object.

file output filename.

format the output format (png, jpeg, webp, svg, pdf, eps).

scale Sets the image scale. Applies to all output images.

width Sets the image width. If not set, defaults to layout.width value. Applies to all
output images.

height Sets the image height. If not set, defaults to layout.height value. Applies to
all output images.

mathjax whether or not to include MathJax (required to render TeX). If TRUE, the PLOTLY_MATHJAX_PATH
environment variable must be set and point to the location of MathJax (this vari-
able is also used to render TeX in interactive graphs, see config).

parallel_limit Sets the limit of parallel tasks run.

verbose Turn on verbose logging on stdout.

debug Starts app in debug mode and turn on verbose logs on stdout.

38 orca

safe Turns on safe mode: where figures likely to make browser window hang during
image generating are skipped.

more_args additional arguments to pass along to system command. This is useful for speci-
fying display and/or electron options, such as --enable-webgl or --disable-gpu.

... for orca(), additional arguments passed along to processx::run. For orca_serve(),
additional arguments passed along to processx::process.

port Sets the server’s port number.

request_limit Sets a request limit that makes orca exit when reached.

keep_alive Turn on keep alive mode where orca will (try to) relaunch server if process
unexpectedly exits.

window_max_number

Sets maximum number of browser windows the server can keep open at a given
time.

quiet Suppress all logging info.

Methods

The orca_serve() function returns an object with two methods:

export(p, file = "plot.png", format = tools::file_ext(file), scale = NULL, width = NULL, height = NULL)
Export a static image of a plotly graph. Arguments found here are the same as those found in
orca()

close() Close down the orca server and kill the underlying node process.

Fields

The orca_serve() function returns an object with two fields:

port The port number that the server is listening to.

process An R6 class for controlling and querying the underlying node process.

Author(s)

Carson Sievert

Examples

Not run:
NOTE: in a headless environment, you may need to set `more_args="--enable-webgl"`
to export webgl correctly
p <- plot_ly(z = ~volcano) %>% add_surface()
orca(p, "surface-plot.svg")

#' # launch the server
server <- orca_serve()

export as many graphs as you'd like

partial_bundle 39

server$export(qplot(1:10), "test1.pdf")
server$export(plot_ly(x = 1:10, y = 1:10), "test2.pdf")

the underlying process is exposed as a field, so you
have full control over the external process
server$process$is_alive()

convenience method for closing down the server
server$close()

remove the exported files from disk
unlink("test1.pdf")
unlink("test2.pdf")

End(Not run)

partial_bundle Use a partial bundle of plotly.js

Description

Leveraging plotly.js’ partial bundles can lead to smaller file sizes and faster rendering. The full list
of available bundles, and the trace types that they support, are available here

Usage

partial_bundle(p, type = "auto", local = TRUE, minified = TRUE)

Arguments

p a plotly object.

type name of the (partial) bundle. The default, 'auto', attempts to find the smallest
single bundle that can render p. If no single partial bundle can render p, then the
full bundle is used.

local whether or not to download the partial bundle so that it can be viewed later
without an internet connection.

minified whether or not to use a minified js file (non-minified file can be useful for de-
bugging plotly.js)

Details

WARNING: use this function with caution when rendering multiple plotly graphs on a single web-
site. That’s because, if multiple plotly.js bundles are used, the most recent bundle will override the
other bundles. See the examples section for an example.

Author(s)

Carson Sievert

https://github.com/plotly/plotly.js/blob/master/dist/README.md#partial-bundles

40 plotly-shiny

Examples

--
This function is always safe to use when rendering a single
plotly graph. In this case, we get a 3x file reduction.
--

Not run:
library(plotly)
p <- plot_ly(x = 1:10, y = 1:10) %>% add_markers()
save_widget <- function(p, f) {

owd <- setwd(dirname(f))
on.exit(setwd(owd))
htmlwidgets::saveWidget(p, f)
mb <- round(file.info(f)$size / 1e6, 3)
message("File is: ", mb," MB")

}
f1 <- tempfile(fileext = ".html")
f2 <- tempfile(fileext = ".html")
save_widget(p, f1)
save_widget(partial_bundle(p), f2)

--
But, since plotly.js bundles override one another,
be careful when putting multiple graphs in a larger document!
Note how the surface (part of the gl3d bundle) renders, but the
heatmap (part of the cartesian bundle) doesn't...
--

library(htmltools)
p1 <- plot_ly(z = ~volcano) %>%

add_heatmap() %>%
partial_bundle()

p2 <- plot_ly(z = ~volcano) %>%
add_surface() %>%
partial_bundle()

browsable(tagList(p1, p2))

End(Not run)

plotly-shiny Shiny bindings for plotly

Description

Output and render functions for using plotly within Shiny applications and interactive Rmd docu-
ments.

plotlyProxy 41

Usage

plotlyOutput(
outputId,
width = "100%",
height = "400px",
inline = FALSE,
reportTheme = TRUE,
fill = !inline

)

renderPlotly(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like "100%", "400px", "auto") or a number, which
will be coerced to a string and have "px" appended. Note that, for height, using
"auto" or "100%" generally will not work as expected, because of how height is
computed with HTML/CSS.

inline use an inline (span()) or block container (div()) for the output

reportTheme whether or not to report CSS styles (if a sufficient version of shiny and htmlwid-
gets is available).

fill see htmlwidgets::shinyWidgetOutput() for explanation (requires a recent
version of htmlwidgets).

expr An expression that generates a plotly

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

plotlyProxy Modify a plotly object inside a shiny app

Description

Modify a plotly object inside a shiny app

Usage

plotlyProxy(
outputId,
session = shiny::getDefaultReactiveDomain(),
deferUntilFlush = TRUE

)

plotlyProxyInvoke(p, method, ...)

42 plotly_build

Arguments

outputId single-element character vector indicating the output ID map to modify (if in-
voked from a Shiny module, the namespace will be added automatically)

session the Shiny session object to which the map belongs; usually the default value will
suffice.

deferUntilFlush

indicates whether actions performed against this instance should be carried out
right away, or whether they should be held until after the next time all of the
outputs are updated.

p a plotly proxy object (created with plotlyProxy)

method a plotlyjs method to invoke. For a list of options, visit https://plotly.com/
javascript/plotlyjs-function-reference/

... unnamed arguments passed onto the plotly.js method

Examples

if (require("shiny") && interactive()) {
plotly_example("shiny", "proxy_relayout")
plotly_example("shiny", "proxy_mapbox")

}

plotly_build ’Build’ (i.e., evaluate) a plotly object

Description

This generic function creates the list object sent to plotly.js for rendering. Using this function can
be useful for overriding defaults provided by ggplotly/plot_ly or for debugging rendering errors.

Usage

plotly_build(p, registerFrames = TRUE)

Arguments

p a ggplot object, or a plotly object, or a list.

registerFrames should a frame trace attribute be interpreted as frames in an animation?

https://plotly.com/javascript/plotlyjs-function-reference/
https://plotly.com/javascript/plotlyjs-function-reference/

plotly_data 43

Examples

p <- plot_ly(economics, x = ~date, y = ~pce)
the unevaluated plotly object
str(p)
the evaluated data
str(plotly_build(p)xdata)

plotly_data Obtain data associated with a plotly graph

Description

plotly_data() returns data associated with a plotly visualization (if there are multiple data frames,
by default, it returns the most recent one).

Usage

plotly_data(p, id = pxcur_data)

S3 method for class 'plotly'
groups(x)

S3 method for class 'plotly'
ungroup(x, ...)

S3 method for class 'plotly'
group_by(.data, ...)

S3 method for class 'plotly'
mutate(.data, ...)

S3 method for class 'plotly'
do(.data, ...)

S3 method for class 'plotly'
summarise(.data, ...)

S3 method for class 'plotly'
arrange(.data, ...)

S3 method for class 'plotly'
select(.data, ...)

S3 method for class 'plotly'
filter(.data, ...)

44 plotly_data

S3 method for class 'plotly'
distinct(.data, ...)

S3 method for class 'plotly'
slice(.data, ...)

S3 method for class 'plotly'
rename(.data, ...)

S3 method for class 'plotly'
transmute(.data, ...)

S3 method for class 'plotly'
group_by_(.data, ...)

S3 method for class 'plotly'
mutate_(.data, ...)

S3 method for class 'plotly'
do_(.data, ...)

S3 method for class 'plotly'
summarise_(.data, ...)

S3 method for class 'plotly'
arrange_(.data, ...)

S3 method for class 'plotly'
select_(.data, ...)

S3 method for class 'plotly'
filter_(.data, ...)

S3 method for class 'plotly'
distinct_(.data, ...)

S3 method for class 'plotly'
slice_(.data, ...)

S3 method for class 'plotly'
rename_(.data, ...)

S3 method for class 'plotly'
transmute_(.data, ...)

Arguments

p a plotly visualization.

plotly_data 45

id a character string or number referencing an "attribute layer".

x a plotly visualization.

... arguments passed onto the relevant method.

.data a plotly visualization.

Examples

use group_by() to define groups of visual markings
p <- txhousing %>%

group_by(city) %>%
plot_ly(x = ~date, y = ~sales)

p

plotly objects preserve data groupings
groups(p)
plotly_data(p)

dplyr verbs operate on plotly objects as if they were data frames
p <- economics %>%

plot_ly(x = ~date, y = ~unemploy / pop) %>%
add_lines() %>%
mutate(rate = unemploy / pop) %>%
filter(rate == max(rate))

plotly_data(p)
add_markers(p)
layout(p, annotations = list(x = ~date, y = ~rate, text = "peak"))

use group_by() + do() + subplot() for trellis displays
d <- group_by(mpg, drv)
plots <- do(d, p = plot_ly(., x = ~cty, name = ~drv))
subplot(plots[["p"]], nrows = 3, shareX = TRUE)

arrange displays by their mean
means <- summarise(d, mn = mean(cty, na.rm = TRUE))
means %>%

dplyr::left_join(plots) %>%
arrange(mn) %>%
subplot(nrows = NROW(.), shareX = TRUE)

more dplyr verbs applied to plotly objects
p <- mtcars %>%

plot_ly(x = ~wt, y = ~mpg, name = "scatter trace") %>%
add_markers()

p %>% slice(1) %>% plotly_data()
p %>% slice(1) %>% add_markers(name = "first observation")
p %>% filter(cyl == 4) %>% plotly_data()
p %>% filter(cyl == 4) %>% add_markers(name = "four cylinders")

46 plotly_example

plotly_empty Create a complete empty plotly graph.

Description

Useful when used with subplot()

Usage

plotly_empty(...)

Arguments

... arguments passed onto plot_ly()

plotly_example Run a plotly example(s)

Description

Provides a unified interface for running demos, shiny apps, and Rmd documents which are bundled
with the package.

Usage

plotly_example(type = c("demo", "shiny", "rmd"), name, edit = TRUE, ...)

Arguments

type the type of example

name the name of the example (valid names depend on type).

edit whether to open the relevant source files using file.edit. Only relevant if type is
"shiny" or "rmd".

... arguments passed onto the suitable method.

Author(s)

Carson Sievert

plotly_IMAGE 47

plotly_IMAGE Create a static image

Description

The images endpoint turns a plot (which may be given in multiple forms) into an image of the
desired format.

Usage

plotly_IMAGE(
x,
width = 1000,
height = 500,
format = "png",
scale = 1,
out_file,
...

)

Arguments

x either a plotly object or a list.

width Image width in pixels

height Image height in pixels

format The desired image format ’png’, ’jpeg’, ’svg’, ’pdf’, ’eps’, or ’webp’

scale Both png and jpeg formats will be scaled beyond the specified width and height
by this number.

out_file A filename for writing the image to a file.

... arguments passed onto httr::RETRY

Examples

Not run:
p <- plot_ly(x = 1:10)
Png <- plotly_IMAGE(p, out_file = "plotly-test-image.png")
Jpeg <- plotly_IMAGE(p, format = "jpeg", out_file = "plotly-test-image.jpeg")
Svg <- plotly_IMAGE(p, format = "svg", out_file = "plotly-test-image.svg")
Pdf <- plotly_IMAGE(p, format = "pdf", out_file = "plotly-test-image.pdf")

End(Not run)

48 plotly_POST

plotly_json Inspect JSON sent to plotly.js

Description

This function is useful for obtaining/viewing/debugging JSON sent to plotly.js.

Usage

plotly_json(p = last_plot(), jsonedit = interactive(), pretty = TRUE, ...)

Arguments

p a plotly or ggplot object.

jsonedit use listviewer::jsonedit to view the JSON?

pretty adds indentation whitespace to JSON output. Can be TRUE/FALSE or a number
specifying the number of spaces to indent. See jsonlite::prettify.

... other options passed onto listviewer::jsonedit

Examples

plotly_json(plot_ly())
plotly_json(plot_ly(), FALSE)

plotly_POST Create/Modify plotly graphs

Description

Deprecated: see api_create().

Usage

plotly_POST(
x = last_plot(),
filename = NULL,
fileopt = "overwrite",
sharing = c("public", "private", "secret"),
...

)

plot_dendro 49

Arguments

x either a ggplot object, a plotly object, or a list.

filename character string describing the name of the plot in your plotly account. Use / to
specify directories. If a directory path does not exist it will be created. If this
argument is not specified and the title of the plot exists, that will be used for the
filename.

fileopt character string describing whether to create a "new" plotly, "overwrite" an ex-
isting plotly, "append" data to existing plotly, or "extend" it.

sharing If ’public’, anyone can view this graph. It will appear in your profile and can
appear in search engines. You do not need to be logged in to Plotly to view this
chart. If ’private’, only you can view this plot. It will not appear in the Plotly
feed, your profile, or search engines. You must be logged in to Plotly to view
this graph. You can privately share this graph with other Plotly users in your
online Plotly account and they will need to be logged in to view this plot. If
’secret’, anyone with this secret link can view this chart. It will not appear in the
Plotly feed, your profile, or search engines. If it is embedded inside a webpage
or an IPython notebook, anybody who is viewing that page will be able to view
the graph. You do not need to be logged in to view this plot.

... not used

See Also

plot_ly(), signup()

plot_dendro Plot an interactive dendrogram

Description

This function takes advantage of nested key selections to implement an interactive dendrogram.
Selecting a node selects all the labels (i.e. leafs) under that node.

Usage

plot_dendro(d, set = "A", xmin = -50, height = 500, width = 500, ...)

Arguments

d a dendrogram object

set defines a crosstalk group

xmin minimum of the range of the x-scale

height height

width width

... arguments supplied to subplot()

50 plot_geo

Author(s)

Carson Sievert

See Also

plot_ly(), plot_mapbox(), ggplotly()

Examples

Not run:
hc <- hclust(dist(USArrests), "ave")
dend1 <- as.dendrogram(hc)
plot_dendro(dend1, height = 600) %>%

hide_legend() %>%
highlight(persistent = TRUE, dynamic = TRUE)

End(Not run)

plot_geo Initiate a plotly-geo object

Description

Use this function instead of plot_ly() to initialize a plotly-geo object. This enforces the entire
plot so use the scattergeo trace type, and enables higher level geometries like add_polygons() to
work

Usage

plot_geo(data = data.frame(), ..., offline = FALSE)

Arguments

data A data frame (optional).

... arguments passed along to plot_ly().

offline whether or not to include geo assets so that the map can be viewed with or
without an internet connection. The plotlyGeoAssets package is required for
this functionality.

Author(s)

Carson Sievert

See Also

plot_ly(), plot_mapbox(), ggplotly()

plot_ly 51

Examples

map_data("world", "canada") %>%
group_by(group) %>%
plot_geo(x = ~long, y = ~lat) %>%
add_markers(size = I(1))

plot_ly Initiate a plotly visualization

Description

This function maps R objects to plotly.js, an (MIT licensed) web-based interactive charting library.
It provides abstractions for doing common things (e.g. mapping data values to fill colors (via color)
or creating animations (via frame)) and sets some different defaults to make the interface feel more
’R-like’ (i.e., closer to plot() and ggplot2::qplot()).

Usage

plot_ly(
data = data.frame(),
...,
type = NULL,
name,
color,
colors = NULL,
alpha = NULL,
stroke,
strokes = NULL,
alpha_stroke = 1,
size,
sizes = c(10, 100),
span,
spans = c(1, 20),
symbol,
symbols = NULL,
linetype,
linetypes = NULL,
split,
frame,
width = NULL,
height = NULL,
source = "A"

)

https://plotly.com/javascript/

52 plot_ly

Arguments

data A data frame (optional) or crosstalk::SharedData object.
... Arguments (i.e., attributes) passed along to the trace type. See schema() for

a list of acceptable attributes for a given trace type (by going to traces ->
type -> attributes). Note that attributes provided at this level may over-
ride other arguments (e.g. plot_ly(x = 1:10, y = 1:10, color = I("red"),
marker = list(color = "blue"))).

type A character string specifying the trace type (e.g. "scatter", "bar", "box",
etc). If specified, it always creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like split in that it creates one trace for
every unique value.

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. fillcolor, marker.color,
textfont.color, etc.). The mapping from data values to color codes may be con-
trolled using colors and alpha, or avoided altogether via I() (e.g., color =
I("red")). Any color understood by grDevices::col2rgb() may be used in
this way.

colors Either a colorbrewer2.org palette name (e.g. "YlOrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like colorRamp().

alpha A number between 0 and 1 specifying the alpha channel applied to color. De-
faults to 0.5 when mapping to fillcolor and 1 otherwise.

stroke Similar to color, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., marker.line.color and line.color for filled polygons). If not specified, stroke
inherits from color.

strokes Similar to colors, but controls the stroke mapping.
alpha_stroke Similar to alpha, but applied to stroke.
size (Numeric) values mapped to relevant ’fill-size’ attribute(s) (e.g., marker.size,

textfont.size, and error_x.width). The mapping from data values to symbols may
be controlled using sizes, or avoided altogether via I() (e.g., size = I(30)).

sizes A numeric vector of length 2 used to scale size to pixels.
span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., marker.line.width,

line.width for filled polygons, and error_x.thickness) The mapping from data
values to symbols may be controlled using spans, or avoided altogether via I()
(e.g., span = I(30)).

spans A numeric vector of length 2 used to scale span to pixels.
symbol (Discrete) values mapped to marker.symbol. The mapping from data values to

symbols may be controlled using symbols, or avoided altogether via I() (e.g.,
symbol = I("pentagon")). Any pch value or symbol name may be used in this
way.

symbols A character vector of pch values or symbol names.
linetype (Discrete) values mapped to line.dash. The mapping from data values to sym-

bols may be controlled using linetypes, or avoided altogether via I() (e.g.,
linetype = I("dash")). Any lty (see par) value or dash name may be used in
this way.

https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-color
https://plotly.com/r/reference/#scatter-textfont-color
https://plotly.com/r/reference/#scatter-fillcolor
https://plotly.com/r/reference/#scatter-marker-line-color
https://plotly.com/r/reference/#scatter-line-color
https://plotly.com/r/reference/#scatter-marker-size
https://plotly.com/r/reference/#scatter-textfont-size
https://plotly.com/r/reference/#scatter-error_x-width
https://plotly.com/r/reference/#scatter-marker-line-width
https://plotly.com/r/reference/#scatter-line-width
https://plotly.com/r/reference/#scatter-error_x-thickness
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-marker-symbol
https://plotly.com/r/reference/#scatter-line-dash
https://plotly.com/r/reference/#scatter-line-dash

plot_ly 53

linetypes A character vector of lty values or dash names

split (Discrete) values used to create multiple traces (one trace per value).

frame (Discrete) values used to create animation frames.

width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

source a character string of length 1. Match the value of this string with the source
argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless type is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of add_trace() (or similar). A formula must always be used when
referencing column name(s) in data (e.g. plot_ly(mtcars, x = ~wt)). Formulas are optional
when supplying values directly, but they do help inform default axis/scale titles (e.g., plot_ly(x =
mtcars$wt) vs plot_ly(x = ~mtcars$wt))

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

See Also

• For initializing a plotly-geo object: plot_geo()

• For initializing a plotly-mapbox object: plot_mapbox()

• For translating a ggplot2 object to a plotly object: ggplotly()

• For modifying any plotly object: layout(), add_trace(), style()

• For linked brushing: highlight()

• For arranging multiple plots: subplot(), crosstalk::bscols()

• For inspecting plotly objects: plotly_json()

• For quick, accurate, and searchable plotly.js reference: schema()

Examples

Not run:

plot_ly() tries to create a sensible plot based on the information you
give it. If you don't provide a trace type, plot_ly() will infer one.
plot_ly(economics, x = ~pop)
plot_ly(economics, x = ~date, y = ~pop)
plot_ly() doesn't require data frame(s), which allows one to take
advantage of trace type(s) designed specifically for numeric matrices
plot_ly(z = ~volcano)

https://plotly.com/r/reference/#scatter-line-dash
https://plotly-r.com/overview.html

54 plot_mapbox

plot_ly(z = ~volcano, type = "surface")

plotly has a functional interface: every plotly function takes a plotly
object as it's first input argument and returns a modified plotly object
add_lines(plot_ly(economics, x = ~date, y = ~unemploy/pop))

To make code more readable, plotly imports the pipe operator from magrittr
economics %>% plot_ly(x = ~date, y = ~unemploy/pop) %>% add_lines()

Attributes defined via plot_ly() set 'global' attributes that
are carried onto subsequent traces, but those may be over-written
plot_ly(economics, x = ~date, color = I("black")) %>%
add_lines(y = ~uempmed) %>%
add_lines(y = ~psavert, color = I("red"))

Attributes are documented in the figure reference -> https://plotly.com/r/reference
You might notice plot_ly() has named arguments that aren't in this figure
reference. These arguments make it easier to map abstract data values to
visual attributes.
p <- plot_ly(palmerpenguins::penguins, x = ~bill_length_mm, y = ~body_mass_g)
add_markers(p, color = ~bill_depth_mm, size = ~bill_depth_mm)
add_markers(p, color = ~species)
add_markers(p, color = ~species, colors = "Set1")
add_markers(p, symbol = ~species)
add_paths(p, linetype = ~species)

End(Not run)

plot_mapbox Initiate a plotly-mapbox object

Description

Use this function instead of plot_ly() to initialize a plotly-mapbox object. This enforces the entire
plot so use the scattermapbox trace type, and enables higher level geometries like add_polygons()
to work

Usage

plot_mapbox(data = data.frame(), ...)

Arguments

data A data frame (optional).

... arguments passed along to plot_ly(). They should be valid scattermapbox
attributes - https://plotly.com/r/reference/#scattermapbox. Note that
x/y can also be used in place of lat/lon.

https://plotly.com/r/reference/#scattermapbox

print.api 55

Author(s)

Carson Sievert

See Also

plot_ly(), plot_geo(), ggplotly()

Examples

Not run:

plot_mapbox(res_mn)
plot_mapbox(res_mn, color = ~INDRESNAME)

map_data("world", "canada") %>%
group_by(group) %>%
plot_mapbox(x = ~long, y = ~lat) %>%
add_polygons() %>%
layout(
mapbox = list(

center = list(lat = ~median(lat), lon = ~median(long))
)

)

End(Not run)

print.api Print method for a ’generic’ API response

Description

Print method for a ’generic’ API response

Usage

S3 method for class 'api'
print(x, ...)

Arguments

x a list.

... additional arguments (currently ignored)

56 print.api_grid_local

print.api_grid Print a plotly grid object

Description

Print a plotly grid object

Usage

S3 method for class 'api_grid'
print(x, ...)

Arguments

x a plotly grid object

... additional arguments (currently ignored)

print.api_grid_local Print a plotly grid object

Description

Print a plotly grid object

Usage

S3 method for class 'api_grid_local'
print(x, ...)

Arguments

x a plotly grid object

... additional arguments (currently ignored)

print.api_plot 57

print.api_plot Print a plot on plotly’s platform

Description

Print a plot on plotly’s platform

Usage

S3 method for class 'api_plot'
print(x, ...)

Arguments

x a plotly figure object

... additional arguments (currently ignored)

rangeslider Add a range slider to the x-axis

Description

Add a range slider to the x-axis

Usage

rangeslider(p, start = NULL, end = NULL, ...)

Arguments

p plotly object.

start a start date/value.

end an end date/value.

... these arguments are documented here https://plotly.com/r/reference/#layout-xaxis-rangeslider

Author(s)

Carson Sievert

https://plotly.com/r/reference/#layout-xaxis-rangeslider

58 raster2uri

Examples

plot_ly(x = time(USAccDeaths), y = USAccDeaths) %>%
add_lines() %>%
rangeslider()

d <- tibble::tibble(
time = seq(as.Date("2016-01-01"), as.Date("2016-08-31"), by = "days"),
y = rnorm(seq_along(time))
)

plot_ly(d, x = ~time, y = ~y) %>%
add_lines() %>%
rangeslider(d$time[5], d$time[50])

raster2uri Encode a raster object as a data URI

Description

Encode a raster object as a data URI, which is suitable for use with layout() images. This is
especially convenient for embedding raster images on a plot in a self-contained fashion (i.e., so
they don’t depend on external URL links).

Usage

raster2uri(r, ...)

Arguments

r an object coercable to a raster object via as.raster()

... arguments passed onto as.raster().

Author(s)

Carson Sievert

References

https://plotly-r.com/embedding-images.html

https://plotly.com/r/reference/#layout-images
https://plotly-r.com/embedding-images.html

remove_typedarray_polyfill 59

Examples

a red gradient (from ?as.raster)
r <- as.raster(matrix(hcl(0, 80, seq(50, 80, 10)), nrow = 4, ncol = 5))
plot(r)

embed the raster as an image
plot_ly(x = 1, y = 1) %>%

layout(
images = list(list(
source = raster2uri(r),
xref = "paper",
yref = "paper",
x = 0, y = 0,
sizex = 0.5, sizey = 0.5,
xanchor = "left", yanchor = "bottom"

))
)

remove_typedarray_polyfill

Remove TypedArray polyfill

Description

By default, plotly.js’ TypedArray polyfill is included as a dependency, so printing "just works" in
any context. Many users won’t need this polyfill, so this function may be used to remove it and thus
reduce the size of the page.

Usage

remove_typedarray_polyfill(p)

Arguments

p a plotly object

Details

The polyfill seems to be only relevant for those rendering plots via phantomjs and RStudio on some
Windows platforms.

Examples

Not run:
p1 <- plot_ly()
p2 <- remove_typedarray_polyfill(p1)

60 save_image

t1 <- tempfile(fileext = ".html")
htmlwidgets::saveWidget(p1, t1)
file.info(t1)$size
htmlwidgets::saveWidget(p2, t1)
file.info(t1)$size

End(Not run)

res_mn Minnesotan Indian Reservation Lands

Description

Minnesotan Indian Reservation Lands

Usage

res_mn

Format

An sf data frame with 13 features and 5 fields

References

https://www.dot.state.mn.us/maps/gdma/gis-data.html

save_image Save plot as a static image

Description

Static image exporting via the kaleido python package. kaleido() imports kaleido into a reticu-
lated Python session and returns a $transform() method for converting R plots into static images.
save_image() provides a convenience wrapper around kaleido()$transform().

Usage

save_image(p, file, ..., width = NULL, height = NULL, scale = NULL)

kaleido(...)

https://www.dot.state.mn.us/maps/gdma/gis-data.html
https://github.com/plotly/Kaleido/

save_image 61

Arguments

p a plot object.

file a file path with a suitable file extension (png, jpg, jpeg, webp, svg, or pdf).

... not currently used.

width, height The width/height of the exported image in layout pixels. If scale is 1, this will
also be the width/height of the exported image in physical pixels.

scale The scale factor to use when exporting the figure. A scale factor larger than
1.0 will increase the image resolution with respect to the figure’s layout pixel
dimensions. Whereas as scale factor of less than 1.0 will decrease the image
resolution.

Value

For save_image(), the generated file. For kaleido(), an environment that contains:

• transform(): a function to convert plots objects into static images. This function has the
same signature (i.e., arguments) as save_image()

• shutdown(): a function for shutting down any currently running subprocesses that were
launched via transform()

• scope: a reference to the underlying kaleido.scopes.plotly.PlotlyScope python object.
Modify this object to customize the underlying Chromium subprocess and/or configure other
details such as URL to plotly.js, MathJax, etc.

Installation

kaleido() requires the kaleido python package to be usable via the reticulate package. If you’re
starting from scratch, you install eveything you need with the following R code:

install.packages("reticulate")
library(reticulate)
use_python(install_python())
py_install(c("kaleido", "plotly"))

Examples

Not run:
Save a single image
p <- plot_ly(x = 1:10)
tmp <- tempfile(fileext = ".png")
save_image(p, tmp)
file.show(tmp)

Efficiently save multiple images
scope <- kaleido()
for (i in 1:5) {
scope$transform(p, tmp)

}

https://github.com/plotly/Kaleido/

62 schema

Remove and garbage collect to remove
R/Python objects and shutdown subprocesses
rm(scope); gc()

End(Not run)

schema Acquire (and optionally display) plotly’s plot schema

Description

The schema contains valid attributes names, their value type, default values (if any), and min/max
values (if applicable).

Usage

schema(jsonedit = interactive(), ...)

Arguments

jsonedit use listviewer::jsonedit to view the JSON?

... other options passed onto listviewer::jsonedit

Examples

s <- schema()

retrieve acceptable `layout.mapbox.style` values
if (!is.na(Sys.getenv('MAPBOX_TOKEN', NA))) {

styles <- s$layout$layoutAttributes$mapbox$style$values
subplot(

plot_mapbox() %>% layout(mapbox = list(style = styles[3])),
plot_mapbox() %>% layout(mapbox = list(style = styles[5]))

)
}

showRGB 63

showRGB View colors already formatted by toRGB()

Description

Useful for viewing colors after they’ve been converted to plotly.js’ color format – "rgba(255, 255,
255, 1)"

Usage

showRGB(x, ...)

Arguments

x character string specifying color(s).

... arguments passed along to scales::show_col.

Author(s)

Carson Sievert

Examples

showRGB(toRGB(colors()), labels = FALSE)

signup Create a new plotly account.

Description

A sign up interface to plotly through the R Console.

Usage

signup(username, email, save = TRUE)

Arguments

username Desired username.

email Desired email.

save If request is successful, should the username & API key be automatically stored
as an environment variable in a .Rprofile?

64 style

Value

• api_key key to use with the api

• tmp_pw temporary password to access your plotly account

References

https://plotly.com/rest/

Examples

Not run:
You need a plotly username and API key to communicate with the plotly API.

If you don't already have an API key, you can obtain one with a valid
username and email via signup().
s <- signup('anna.lyst', 'anna.lyst@plot.ly')

If you already have a username and API key, please create the following
environment variables:
Sys.setenv("plotly_username" = "me")
Sys.setenv("plotly_api_key" = "mykey")
You can also change the default domain if you have a plotly server.
Sys.setenv("plotly_domain" = "http://mydomain.com")

If you want to automatically load these environment variables when you
start R, you can put them inside your ~/.Rprofile
(see help(.Rprofile) for more details)

End(Not run)

style Modify trace(s)

Description

Modify trace(s) of an existing plotly visualization. Useful when used in conjunction with get_figure().

Usage

style(p, ..., traces = NULL)

Arguments

p A plotly visualization.

... Visual properties.

traces numeric vector. Which traces should be modified? By default, attributes place
in ... will be applied to every trace.

subplot 65

Author(s)

Carson Sievert

See Also

api_download_plot()

Examples

style() is especially useful in conjunction with ggplotly()
It allows you to leverage the underlying plotly.js library to change
the return result of ggplotly()
(p <- ggplotly(qplot(data = mtcars, wt, mpg, geom = c("point", "smooth"))))

removes hoverinfo for the line/ribbon traces (use `plotly_json()` to verify!)
style(p, hoverinfo = "none", traces = c(2, 3))

another example with plot_ly() instead of ggplotly()
marker <- list(

color = "red",
line = list(
width = 20,
color = "black"

)
)
(p <- plot_ly(x = 1:10, y = 1:10, marker = marker))

note how the entire (marker) object is replaced if a list is provided
style(p, marker = list(line = list(color = "blue")))

similar to plotly.js, you can update a particular attribute like so
https://github.com/plotly/plotly.js/issues/1866#issuecomment-314115744
style(p, marker.line.color = "blue")
this clobbers the previously supplied marker.line.color
style(p, marker.line = list(width = 2.5), marker.size = 10)

subplot View multiple plots in a single view

Description

View multiple plots in a single view

66 subplot

Usage

subplot(
...,
nrows = 1,
widths = NULL,
heights = NULL,
margin = 0.02,
shareX = FALSE,
shareY = FALSE,
titleX = shareX,
titleY = shareY,
which_layout = "merge"

)

Arguments

... One of the following

• any number of plotly/ggplot2 objects.
• a list of plotly/ggplot2 objects.
• a tibble with one list-column of plotly/ggplot2 objects.

nrows number of rows for laying out plots in a grid-like structure. Only used if no
domain is already specified.

widths relative width of each column on a 0-1 scale. By default all columns have an
equal relative width.

heights relative height of each row on a 0-1 scale. By default all rows have an equal
relative height.

margin either a single value or four values (all between 0 and 1). If four values are
provided, the first is used as the left margin, the second is used as the right
margin, the third is used as the top margin, and the fourth is used as the bottom
margin. If a single value is provided, it will be used as all four margins.

shareX should the x-axis be shared amongst the subplots?

shareY should the y-axis be shared amongst the subplots?

titleX should x-axis titles be retained?

titleY should y-axis titles be retained?

which_layout adopt the layout of which plot? If the default value of "merge" is used, layout
options found later in the sequence of plots will override options found earlier
in the sequence. This argument also accepts a numeric vector specifying which
plots to consider when merging.

Value

A plotly object

Author(s)

Carson Sievert

TeX 67

Examples

pass any number of plotly objects to subplot()
p1 <- plot_ly(economics, x = ~date, y = ~uempmed)
p2 <- plot_ly(economics, x = ~date, y = ~unemploy)
subplot(p1, p2, p1, p2, nrows = 2, margin = 0.05)

#' # anchor multiple traces on the same legend entry
p1 <- add_lines(p1, color = I("black"), name = "1st", legendgroup = "1st")
p2 <- add_lines(p2, color = I("red"), name = "2nd", legendgroup = "2nd")

subplot(
p1, style(p1, showlegend = FALSE),
p2, style(p2, showlegend = FALSE),
nrows = 2, margin = 0.05

)

or pass a list
economics_long %>%

split(.$variable) %>%
lapply(function(d) plot_ly(d, x = ~date, y = ~value)) %>%
subplot(nrows = NROW(.), shareX = TRUE)

or pass a tibble with a list-column of plotly objects
economics_long %>%

group_by(variable) %>%
do(p = plot_ly(., x = ~date, y = ~value)) %>%
subplot(nrows = NROW(.), shareX = TRUE)

learn more at https://plotly.com/r/subplots/

TeX Render TeX in a plotly graph using MathJax

Description

This function makes it slightly easier to render TeX in a plotly graph – it ensures that MathJax is
included with the final result and also ensures the provided string is surrounded with $ (this is what
plotly.js uses to declare a string as TeX).

Usage

TeX(x)

Arguments

x a character vector

68 toRGB

See Also

config

Examples

plot_ly(x = c(1, 2, 3, 4), y = c(1, 4, 9, 16)) %>%
layout(title = TeX("\\text{Some mathjax: }\\alpha+\\beta x")) %>%
config(mathjax = "cdn")

toRGB Convert R colours to RGBA hexadecimal colour values

Description

Convert R colours to RGBA hexadecimal colour values

Usage

toRGB(x, alpha = 1)

Arguments

x see the col argument in col2rgb for valid specifications

alpha alpha channel on 0-1 scale

Value

hexadecimal colour value (if is.na(x), return "transparent" for compatibility with Plotly)

See Also

showRGB()

Examples

toRGB("steelblue")
[1] "rgba(70,130,180,1)"

m <- list(
color = toRGB("red"),
line = list(

color = toRGB("black"),
width = 19

)
)

toWebGL 69

plot_ly(x = 1, y = 1, marker = m)

toWebGL Convert trace types to WebGL

Description

Convert trace types to WebGL

Usage

toWebGL(p)

Arguments

p a plotly or ggplot object.

Examples

currently no bargl trace type
toWebGL(ggplot() + geom_bar(aes(1:10)))
toWebGL(qplot(1:10, 1:10))

to_basic Convert a geom to a "basic" geom.

Description

This function makes it possible to convert ggplot2 geoms that are not included with ggplot2 itself.
Users shouldn’t need to use this function. It exists purely to allow other package authors to write
their own conversion method(s).

Usage

to_basic(data, prestats_data, layout, params, p, ...)

Arguments

data the data returned by ggplot2::ggplot_build().
prestats_data the data before statistics are computed.
layout the panel layout.
params parameters for the geom, statistic, and ’constant’ aesthetics
p a ggplot2 object (the conversion may depend on scales, for instance).
... currently ignored

70 wind

wind Wind data

Description

Description TBD.

Usage

wind

Format

A data frame with three variables: r, t, nms.

Index

∗ datasets
hobbs, 32
mic, 35
res_mn, 60
wind, 70

add_annotations, 3
add_area (add_trace), 5
add_bars (add_trace), 5
add_boxplot (add_trace), 5
add_choropleth (add_trace), 5
add_contour (add_trace), 5
add_data, 4
add_fun, 5
add_heatmap (add_trace), 5
add_histogram (add_trace), 5
add_histogram2d (add_trace), 5
add_histogram2dcontour (add_trace), 5
add_image (add_trace), 5
add_image(), 7
add_lines (add_trace), 5
add_markers (add_trace), 5
add_mesh (add_trace), 5
add_paths (add_trace), 5
add_pie (add_trace), 5
add_polygons (add_trace), 5
add_polygons(), 50, 54
add_ribbons (add_trace), 5
add_scattergeo (add_trace), 5
add_segments (add_trace), 5
add_sf (add_trace), 5
add_surface (add_trace), 5
add_table (add_trace), 5
add_text (add_trace), 5
add_trace, 5
add_trace(), 53
animation, 51
animation (animation_opts), 10
animation_button (animation_opts), 10
animation_opts, 10

animation_opts(), 10
animation_slider (animation_opts), 10
api (api_create), 12
api_create, 12
api_create(), 48
api_download_grid (api_create), 12
api_download_plot (api_create), 12
api_download_plot(), 23, 65
arrange.plotly (plotly_data), 43
arrange_.plotly (plotly_data), 43
as.raster(), 7, 58
as.widget, 15
as_widget, 15
attrs_selected, 16
attrs_selected(), 31

bbox, 16

colorbar, 17
config, 18, 37, 68
crosstalk::bscols(), 53
crosstalk::SharedData, 7, 32, 52

data.frame, 13
distinct.plotly (plotly_data), 43
distinct_.plotly (plotly_data), 43
do.plotly (plotly_data), 43
do_.plotly (plotly_data), 43

embed_notebook, 19
event_data, 20, 21, 22
event_data(), 20, 24, 25, 53
event_register, 20, 21
event_unregister, 20, 21
export, 22

file.edit, 46
filter.plotly (plotly_data), 43
filter_.plotly (plotly_data), 43
formula, 53

71

72 INDEX

geom2trace, 23
get_figure, 23
get_figure(), 64
gg2list, 24
ggplot2::ggplot(), 25
ggplot2::last_plot(), 34
ggplot2::qplot(), 51
ggplotly, 25
ggplotly(), 10, 20, 50, 53, 55
grDevices::col2rgb(), 52
group2NA, 27
group_by.plotly (plotly_data), 43
group_by_.plotly (plotly_data), 43
groups.plotly (plotly_data), 43

hide_colorbar, 28
hide_colorbar(), 29
hide_guides, 28
hide_legend, 29
hide_legend(), 28, 29
highlight, 29, 32
highlight(), 53
highlight_key, 32
highlight_key(), 30
hobbs, 32
htmlwidgets::shinyWidgetOutput(), 41
httr::RETRY(), 13

I(), 52

jsonlite::prettify, 48
jsonlite::toJSON(), 13

kaleido (save_image), 60
knit_print.api_grid, 33
knit_print.api_grid_local, 33
knit_print.api_plot, 34

last_plot, 34
layout, 35
layout(), 53
listviewer::jsonedit, 48

mic, 35
mutate.plotly (plotly_data), 43
mutate_.plotly (plotly_data), 43

offline, 36
orca, 36
orca_serve (orca), 36

par, 52
partial_bundle, 39
pch, 52
plot(), 51
plot_dendro, 49
plot_geo, 50
plot_geo(), 53, 55
plot_ly, 51
plot_ly(), 4, 7, 8, 10, 20, 26, 35, 46, 49, 50,

54, 55
plot_mapbox, 54
plot_mapbox(), 50, 53
plotly-shiny, 40
plotly_build, 42
plotly_data, 43
plotly_empty, 46
plotly_example, 46
plotly_IMAGE, 47
plotly_json, 48
plotly_json(), 53
plotly_POST, 48
plotlyOutput (plotly-shiny), 40
plotlyProxy, 41
plotlyProxyInvoke (plotlyProxy), 41
print.api, 55
print.api_grid, 56
print.api_grid_local, 56
print.api_plot, 57

rangeslider, 57
raster2uri, 58
remove_typedarray_polyfill, 59
rename.plotly (plotly_data), 43
rename_.plotly (plotly_data), 43
renderPlotly (plotly-shiny), 40
res_mn, 60

save_image, 22, 60
save_image(), 36
schema, 62
schema(), 7, 52, 53
select.plotly (plotly_data), 43
select_.plotly (plotly_data), 43
showRGB, 63
showRGB(), 68
signup, 63
signup(), 14, 49
slice.plotly (plotly_data), 43
slice_.plotly (plotly_data), 43

INDEX 73

style, 64
style(), 53
subplot, 65
subplot(), 46, 49, 53
summarise.plotly (plotly_data), 43
summarise_.plotly (plotly_data), 43

TeX, 37, 67
to_basic, 69
toRGB, 68
toRGB(), 30
toWebGL, 69
transmute.plotly (plotly_data), 43
transmute_.plotly (plotly_data), 43

ungroup.plotly (plotly_data), 43

wind, 70

	add_annotations
	add_data
	add_fun
	add_trace
	animation_opts
	api_create
	as.widget
	as_widget
	attrs_selected
	bbox
	colorbar
	config
	embed_notebook
	event_data
	event_register
	event_unregister
	export
	geom2trace
	get_figure
	gg2list
	ggplotly
	group2NA
	hide_colorbar
	hide_guides
	hide_legend
	highlight
	highlight_key
	hobbs
	knit_print.api_grid
	knit_print.api_grid_local
	knit_print.api_plot
	last_plot
	layout
	mic
	offline
	orca
	partial_bundle
	plotly-shiny
	plotlyProxy
	plotly_build
	plotly_data
	plotly_empty
	plotly_example
	plotly_IMAGE
	plotly_json
	plotly_POST
	plot_dendro
	plot_geo
	plot_ly
	plot_mapbox
	print.api
	print.api_grid
	print.api_grid_local
	print.api_plot
	rangeslider
	raster2uri
	remove_typedarray_polyfill
	res_mn
	save_image
	schema
	showRGB
	signup
	style
	subplot
	TeX
	toRGB
	toWebGL
	to_basic
	wind
	Index

