
Package ‘qryflow’
February 6, 2026

Title Execute Multi-Step 'SQL' Workflows

Version 0.2.0

Description Execute multi-step 'SQL' workflows by
leveraging specially formatted comments to define and control
execution. This enables users to mix queries, commands, and metadata
within a single script. Results are returned as named objects for use
in downstream workflows.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports DBI

Suggests knitr, rmarkdown, RSQLite, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://christian-million.github.io/qryflow/,

https://github.com/christian-million/qryflow

BugReports https://github.com/christian-million/qryflow/issues

NeedsCompilation no

Author Christian Million [aut, cre, cph]

Maintainer Christian Million <christianmillion93@gmail.com>

Repository CRAN

Date/Publication 2026-02-05 23:50:02 UTC

Contents
collapse_sql_lines . 2
example_db_connect . 3
example_sql_path . 3
extract_all_tags . 4

1

https://christian-million.github.io/qryflow/
https://github.com/christian-million/qryflow
https://github.com/christian-million/qryflow/issues

2 collapse_sql_lines

is_tag_line . 5
ls_qryflow_handlers . 6
new_qryflow_chunk . 7
qryflow . 8
qryflow_default_type . 9
qryflow_execute . 9
qryflow_handler_exists . 10
qryflow_parse . 11
qryflow_parser_exists . 12
qryflow_results . 12
qryflow_run . 13
read_sql_lines . 14
register_qryflow_type . 15
validate_qryflow_handler . 16
validate_qryflow_parser . 17

Index 18

collapse_sql_lines Collapse SQL lines into single character

Description

A thin wrapper around paste0(x, collapse = '\\n') to standardize the way qryflow collapses
SQL lines.

Usage

collapse_sql_lines(x)

Arguments

x character vector of SQL lines

Value

a character vector of length 1

Examples

path <- example_sql_path()

lines <- read_sql_lines(path)

sql <- collapse_sql_lines(lines)

example_db_connect 3

example_db_connect Create an example in-memory database

Description

This function creates a connection to an in-memory SQLite database, with the option to add a table
to the database. This function is intended to facilitate examples, vignettes, and package tests.

Usage

example_db_connect(df = NULL)

Arguments

df Optional data.frame to add to the database.

Value

connection from DBI::dbConnect()

Examples

con <- example_db_connect(mtcars)

x <- DBI::dbGetQuery(con, "SELECT * FROM mtcars;")

head(x)

DBI::dbDisconnect(con)

example_sql_path Get path to qryflow example SQL scripts

Description

qryflow provides example SQL scripts in its inst/sql directory. Use this function to retrieve the
path to an example script. This function is intended to facilitate examples, vignettes, and package
tests.

Usage

example_sql_path(path = "mtcars.sql")

Arguments

path filename of the example script.

4 extract_all_tags

Value

path to example SQL script

Examples

path <- example_sql_path("mtcars.sql")

file.exists(path)

extract_all_tags Extract tagged metadata from a SQL chunk

Description

extract_all_tags() scans SQL for specially formatted comment tags (e.g., -- @tag: value)
and returns them as a named list. This is exported with the intent to be useful for users extending
qryflow. It’s typically used against a single SQL chunk, such as one parsed from a .sql file.

Additional helpers like extract_tag(), extract_name(), and extract_type() provide conve-
nient access to specific tag values. subset_tags() lets you filter or exclude tags by name.

Usage

extract_all_tags(text, tag_pattern = "^\\s*--\\s*@([^:]+):\\s*(.*)$")

extract_tag(text, tag)

extract_name(text)

extract_type(text)

subset_tags(tags, keep, negate = FALSE)

Arguments

text A character vector of SQL lines or a file path to a SQL script.

tag_pattern A regular expression for extracting tags. Defaults to lines in the form -- @tag: value.

tag A character string naming the tag to extract (used in extract_tag()).

tags A named list of tags, typically from extract_all_tags(). Used in subset_tags().

keep A character vector of tag names to keep or exclude in subset_tags().

negate Logical; if TRUE, subset_tags() returns all tags except those listed in keep.

is_tag_line 5

Details

The formal type of a qryflow SQL chunk is determined by extract_type() using a prioritized
approach:

1. If the chunk includes an explicit -- @type: tag, its value is used directly as the chunk type.

2. If the @type: tag is absent, qryflow searches for other tags (e.g., @query:, @exec:) that
correspond to registered chunk types through ls_qryflow_types(). The first matching tag
found defines the chunk type.

3. If neither an explicit @type: tag nor any recognized tag is present, the chunk type falls back
to the default type returned by qryflow_default_type().

Value

• extract_all_tags(): A named list of all tags found in the SQL chunk.

• extract_tag(), extract_name(), extract_type(): A single tag value (character or NULL).

• subset_tags(): A filtered named list of tags or NULL if none remain.

See Also

qryflow_parse(), ls_qryflow_types(), qryflow_default_type()

Examples

filepath <- example_sql_path('mtcars.sql')
parsed <- qryflow_parse(filepath)

chunk <- parsed$chunks[[1]]
tags <- extract_all_tags(chunk$sql)

extract_name(chunk$sql)
extract_type(chunk$sql)
subset_tags(tags, keep = c("query"))

is_tag_line Detect the presence of a properly structured tagline

Description

Checks whether a specially structured comment line if formatted in the way that qryflow expects.

Usage

is_tag_line(line)

Arguments

line A character vector to check. It is a vectorized function.

6 ls_qryflow_handlers

Details

Tag lines should look like this: -- @key: value

• Begins with an inline comment (--)

• An @ precedes a tag type (e.g., type, name, query, exec) and is followed by a colon (:)

• A value is provided

Value

Logical. Indicating whether each line matches tag specification.

Examples

a <- "-- @query: df_mtcars"
b <- "-- @exec: prep_tbl"
c <- "-- @type: query"

lines <- c(a, b, c)

is_tag_line(lines)

ls_qryflow_handlers List currently registered chunk types

Description

Helper function to access the names of the currently registered chunk types. Functions available for
accessing just the parsers or just the handlers.

Usage

ls_qryflow_handlers()

ls_qryflow_parsers()

ls_qryflow_types()

Details

ls_qryflow_types is implemented to return the union of the results of ls_qryflow_parsers and
ls_qryflow_handlers. It’s expected that a both a parser and a handler exist for each type. If this
assumption is violated, the ls_qryflow_types may suggest otherwise.

Value

Character vector of registered chunk types

new_qryflow_chunk 7

Examples

ls_qryflow_types()

new_qryflow_chunk Create an instance of the qryflow_chunk class

Description

Create an instance of the qryflow_chunk class

Usage

new_qryflow_chunk(
type = character(),
name = character(),
sql = character(),
tags = NULL,
results = NULL

)

Arguments

type Character indicating the type of chunk (e.g., "query", "exec")

name Name of the chunk

sql SQL statement associated with chunk

tags Optional, additional tags included in chunk

results Optional, filled in after chunk execution

Details

Exported for users intending to extend qryflow. Subsequent processes rely on the structure of a
qryflow_chunk.

Value

An list-like object of class qryflow_chunk

Examples

chunk <- new_qryflow_chunk("query", "df_name", "SELECT * FROM mtcars;")

8 qryflow

qryflow Run a multi-step SQL workflow and return query results

Description

qryflow() is the main entry point to the qryflow package. It executes a SQL workflow defined in
a tagged .sql script or character string and returns query results as R objects.

The SQL script can contain multiple steps tagged with @query or @exec. Query results are captured
and returned as a named list, where names correspond to the @query tags.

Usage

qryflow(con, sql, ..., simplify = TRUE)

Arguments

con A database connection from DBI::dbConnect()

sql A file path to a .sql workflow or a character string containing SQL code.

... Additional arguments passed to qryflow_run() or qryflow_results().

simplify Logical; if TRUE (default), a list of length 1 is simplified to the single result
object.

Details

This is a wrapper around the combination of qryflow_run(), which always provides a list of results
and metadata, and qryflow_results(), which filters the output of qryflow_run() to only include
the results of the SQL.

Value

A named list of query results, or a single result if simplify = TRUE and only one chunk exists.

See Also

qryflow_run(), qryflow_results()

Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

results <- qryflow(con, filepath)

head(results$df_mtcars)

DBI::dbDisconnect(con)

qryflow_default_type 9

qryflow_default_type Access the default qryflow chunk type

Description

Retrieves the value from the option qryflow.default.type, if set. Otherwise returns "query",
which is the officially supported default type. If any value is supplied to the function, it returns that
value.

Usage

qryflow_default_type(type = getOption("qryflow.default.type", "query"))

Arguments

type Optional. The type you want to return.

Value

Character. If set, result from qryflow.default.type option, otherwise "query" or value passed to
type

Examples

x <- getOption("qryflow.default.type", "query")

y <- qryflow_default_type()

identical(x, y)

qryflow_execute Execute a parsed qryflow SQL workflow

Description

qryflow_execute() takes a parsed workflow object (as returned by qryflow_parse()), executes
each chunk (e.g., @query, @exec), and collects the results and timing metadata.

This function is used internally by qryflow_run(), but can be called directly in concert with
qryflow_parse() if you want to manually control parsing and execution.

Usage

qryflow_execute(con, x, ..., source = NULL)

10 qryflow_handler_exists

Arguments

con A database connection from DBI::dbConnect()

x A parsed qryflow workflow object, typically created by qryflow_parse()

... Reserved for future use.

source Optional; a character string indicating the source SQL to include in metadata.

Value

An object of class qryflow_result, containing executed chunks with results and a meta field that
includes timing and source information.

See Also

qryflow_run(), qryflow_parse()

Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

parsed <- qryflow_parse(filepath)

executed <- qryflow_execute(con, parsed, source = filepath)

DBI::dbDisconnect(con)

qryflow_handler_exists

Check existence of a given handler in the registry

Description

Checks whether the specified handler exists in the handler registry environment.

Usage

qryflow_handler_exists(type)

Arguments

type chunk type to check (e.g., "query", "exec")

Value

Logical. Does type exist in the handler registry?

qryflow_parse 11

See Also

qryflow_parser_exists() for the parser equivalent.

Examples

qryflow_handler_exists("query")

qryflow_parse Parse a SQL workflow into tagged chunks

Description

qryflow_parse() reads a SQL workflow file or character vector and parses it into discrete tagged
chunks based on @query, @exec, and other custom markers.

Usage

qryflow_parse(sql)

Arguments

sql A file path to a SQL workflow file, or a character vector containing SQL lines.

Details

This function is used internally by qryflow_run(), but can also be used directly to preprocess or
inspect the structure of a SQL workflow.

Value

An object of class qryflow_workflow, which is a structured list of SQL chunks and metadata.

See Also

qryflow(), qryflow_run(), qryflow_execute()

Examples

filepath <- example_sql_path("mtcars.sql")

parsed <- qryflow_parse(filepath)

12 qryflow_results

qryflow_parser_exists Check existence of a given parser in the registry

Description

Checks whether the specified parser exists in the parser registry environment.

Usage

qryflow_parser_exists(type)

Arguments

type chunk type to check (e.g., "query", "exec")

Value

Logical. Does type exist in the parser registry?

See Also

qryflow_handler_exists() for the handler equivalent.

Examples

qryflow_parser_exists("query")

qryflow_results Extract results from a qryflow_workflow object

Description

qryflow_results() retrieves the query results from a list returned by qryflow_run(), typically
one that includes parsed and executed SQL chunks.

Usage

qryflow_results(x, ..., simplify = FALSE)

Arguments

x Results from qryflow_run(), usually containing a mixture of qryflow_chunk
objects.

... Reserved for future use.

simplify Logical; if TRUE, simplifies the result to a single object if only one query chunk
is present. Defaults to FALSE.

qryflow_run 13

Value

A named list of query results, or a single result object if simplify = TRUE and only one result is
present.

See Also

qryflow(), qryflow_run()

Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

obj <- qryflow_run(con, filepath)

results <- qryflow_results(obj)

DBI::dbDisconnect(con)

qryflow_run Parse and execute a tagged SQL workflow

Description

qryflow_run() reads a SQL workflow from a file path or character string, parses it into tagged
statements, and executes those statements against a database connection.

This function is typically used internally by qryflow(), but can also be called directly for more
control over workflow execution.

Usage

qryflow_run(con, sql, ...)

Arguments

con A database connection from DBI::dbConnect()

sql A character string representing either the path to a .sql file or raw SQL content.

... Additional arguments passed to qryflow_execute().

Value

A list representing the evaluated workflow, containing query results, execution metadata, or both,
depending on the contents of the SQL script.

See Also

qryflow(), qryflow_results(), qryflow_execute(), qryflow_parse()

14 read_sql_lines

Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

obj <- qryflow_run(con, filepath)

objdf_mtcarssql
objdf_mtcarsresults

results <- qryflow_results(obj)

head(resultsdf_mtcarsresults)

DBI::dbDisconnect(con)

read_sql_lines Standardizes lines read from string, character vector, or file

Description

This is a generic function to ensure lines read from a file, a single character vector, or already parsed
lines return the same format. This helps avoid re-reading entire texts by enabling already read lines
to pass easily.

This is useful for folks who may want to extend qryflow.

Usage

read_sql_lines(x)

Arguments

x a filepath or character vector containing SQL

Value

A qryflow_sql object (inherits from character) with a length equal to the number of lines read

Examples

From a file
path <- example_sql_path()
read_sql_lines(path)

From a single string
sql <- "SELECT *
FROM mtcars;"
read_sql_lines(sql)

register_qryflow_type 15

From a character
lines <- c("SELECT *", "FROM mtcars;")
read_sql_lines(lines)

register_qryflow_type Register custom chunk types

Description

Use these functions to register the parsers and handlers associated with custom types. register_qryflow_type
is a wrapper around both register_qryflow_parser and register_qryflow_handler.

Usage

register_qryflow_type(type, parser, handler, overwrite = FALSE)

register_qryflow_parser(type, parser, overwrite = FALSE)

register_qryflow_handler(type, handler, overwrite = FALSE)

Arguments

type Character indicating the chunk type (e.g., "exec", "query")

parser A function to parse the SQL associated with the type. Must accept arguments
"x" and "..." and return a qryflow_chunk object.

handler A function to execute the SQL associated with the type. Must accept arguments
"chunk", "con", and "...".

overwrite Logical. Overwrite existing parser and handler, if exists?

Details

To avoid manually registering your custom type each session, consider adding the registration code
to your .Rprofile or creating a package that leverages .onLoad()

Value

Logical. Indicating whether types were successfully registered.

Examples

Create custom parser
custom_parser <- function(x, ...){

Custom parsing code will go here

new_qryflow_chunk(type = "custom", name = name, sql = sql_txt, tags = tags)
}

Create custom handler

16 validate_qryflow_handler

custom_handler <- function(con, chunk, ...){
Custom execution code will go here...
return(result)

}

Register Separately
register_qryflow_parser("custom", custom_parser, overwrite = TRUE)

register_qryflow_handler("custom", custom_handler, overwrite = TRUE)

Register Simultaneously
register_qryflow_type("query-send", custom_parser, custom_handler, overwrite = TRUE)

validate_qryflow_handler

Ensure correct handler structure

Description

This function checks that the passed object is a function and contains the arguments "chunk", "con,
and "..." - in that order. This is to help ensure users only register valid handlers.

Usage

validate_qryflow_handler(handler)

Arguments

handler object to check

Value

Logical. Generates an error if the object does not pass all the criteria.

See Also

validate_qryflow_parser() for the parser equivalent.

Examples

custom_func <- function(con, chunk, ...){

Parsing Code Goes Here

}

validate_qryflow_handler(custom_func)

validate_qryflow_parser 17

validate_qryflow_parser

Ensure correct parser structure

Description

This function checks that the passed object is a function and contains the arguments "x" and "..." -
in that order. This is to help ensure users only register valid parsers.

Usage

validate_qryflow_parser(parser)

Arguments

parser object to check

Value

Logical. Generates an error if the object does not pass all the criteria.

See Also

validate_qryflow_handler() for the handler equivalent.

Examples

custom_func <- function(x, ...){

Parsing Code Goes Here

}
validate_qryflow_parser(custom_func)

Index

.onLoad(), 15

collapse_sql_lines, 2

DBI::dbConnect(), 3, 8, 10, 13

example_db_connect, 3
example_sql_path, 3
extract_all_tags, 4
extract_name (extract_all_tags), 4
extract_tag (extract_all_tags), 4
extract_type (extract_all_tags), 4

is_tag_line, 5

ls_qryflow_handlers, 6
ls_qryflow_parsers

(ls_qryflow_handlers), 6
ls_qryflow_types (ls_qryflow_handlers),

6
ls_qryflow_types(), 5

new_qryflow_chunk, 7

qryflow, 8
qryflow(), 11, 13
qryflow_default_type, 9
qryflow_default_type(), 5
qryflow_execute, 9
qryflow_execute(), 11, 13
qryflow_handler_exists, 10
qryflow_handler_exists(), 12
qryflow_parse, 11
qryflow_parse(), 5, 9, 10, 13
qryflow_parser_exists, 12
qryflow_parser_exists(), 11
qryflow_results, 12
qryflow_results(), 8, 13
qryflow_run, 13
qryflow_run(), 8–13

read_sql_lines, 14
register_qryflow_handler

(register_qryflow_type), 15
register_qryflow_parser

(register_qryflow_type), 15
register_qryflow_type, 15

subset_tags (extract_all_tags), 4

validate_qryflow_handler, 16
validate_qryflow_handler(), 17
validate_qryflow_parser, 17
validate_qryflow_parser(), 16

18

	collapse_sql_lines
	example_db_connect
	example_sql_path
	extract_all_tags
	is_tag_line
	ls_qryflow_handlers
	new_qryflow_chunk
	qryflow
	qryflow_default_type
	qryflow_execute
	qryflow_handler_exists
	qryflow_parse
	qryflow_parser_exists
	qryflow_results
	qryflow_run
	read_sql_lines
	register_qryflow_type
	validate_qryflow_handler
	validate_qryflow_parser
	Index

