Package ‘qryflow’

February 6, 2026
Title Execute Multi-Step 'SQL' Workflows
Version 0.2.0

Description Execute multi-step 'SQL' workflows by
leveraging specially formatted comments to define and control
execution. This enables users to mix queries, commands, and metadata
within a single script. Results are returned as named objects for use
in downstream workflows.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports DBI

Suggests knitr, rmarkdown, RSQLite, testthat (>= 3.0.0)
Config/testthat/edition 3

VignetteBuilder knitr

URL https://christian-million.github.io/qryflow/,
https://github.com/christian-million/qryflow

BugReports https://github.com/christian-million/qryflow/issues
NeedsCompilation no

Author Christian Million [aut, cre, cph]

Maintainer Christian Million <christianmillion93@gmail.com>
Repository CRAN

Date/Publication 2026-02-05 23:50:02 UTC

Contents

collapse_sql_lines
example_db_connect
example_sql_path L
extract_all_tags

https://christian-million.github.io/qryflow/
https://github.com/christian-million/qryflow
https://github.com/christian-million/qryflow/issues

2 collapse_sql_lines
is_tag line e e e e e 5
Is_gryflow_handlers 6
new_qryflow_chunk L oL 7
qryflow . . e 8
gryflow_default_type 9
gryflow_execute e e e e e 9
gryflow_handler_exists L 10
gryflow_parse 11
gryflow_parser_exists 12
gryflow_results L e e e e e e 12
gryflow_run 13
read_sql_lines 14
register_qryflow_type 15
validate_qryflow_handler 16
validate_qryflow_parser. 17

Index 18

collapse_sql_lines Collapse SQL lines into single character

Description

A thin wrapper around paste@(x, collapse = '\\n') to standardize the way qryflow collapses
SQL lines.

Usage

collapse_sql_lines(x)

Arguments

X

Value

character vector of SQL lines

a character vector of length 1

Examples

path <- example_sqgl_path()

lines <- read_sql_lines(path)

sql <- collapse_sql_lines(lines)

example_db_connect 3

example_db_connect Create an example in-memory database

Description

This function creates a connection to an in-memory SQLite database, with the option to add a table
to the database. This function is intended to facilitate examples, vignettes, and package tests.

Usage

example_db_connect (df = NULL)

Arguments

df Optional data.frame to add to the database.

Value

connection from DBI: :dbConnect ()
Examples
con <- example_db_connect(mtcars)
x <- DBI::dbGetQuery(con, "SELECT x FROM mtcars;")
head(x)

DBI::dbDisconnect(con)

example_sql_path Get path to qryflow example SOL scripts

Description

qryflow provides example SQL scripts in its inst/sql directory. Use this function to retrieve the
path to an example script. This function is intended to facilitate examples, vignettes, and package
tests.

Usage
example_sql_path(path = "mtcars.sql")

Arguments

path filename of the example script.

4 extract_all_tags

Value

path to example SQL script

Examples

path <- example_sql_path("mtcars.sql")

file.exists(path)

extract_all_tags Extract tagged metadata from a SQL chunk
Description
extract_all_tags() scans SQL for specially formatted comment tags (e.g., -— @tag: value)

and returns them as a named list. This is exported with the intent to be useful for users extending
gryflow. It’s typically used against a single SQL chunk, such as one parsed from a . sql file.

Additional helpers like extract_tag(), extract_name(), and extract_type() provide conve-
nient access to specific tag values. subset_tags() lets you filter or exclude tags by name.

Usage

extract_all_tags(text, tag_pattern = ""\\sx--\\sx@([*:]1+):\\s*(.*)$")
extract_tag(text, tag)

extract_name(text)

extract_type(text)

subset_tags(tags, keep, negate = FALSE)

Arguments
text A character vector of SQL lines or a file path to a SQL script.
tag_pattern A regular expression for extracting tags. Defaults to lines in the form -- @tag: value.
tag A character string naming the tag to extract (used in extract_tag()).
tags A named list of tags, typically from extract_all_tags(). Used in subset_tags().
keep A character vector of tag names to keep or exclude in subset_tags().

negate Logical; if TRUE, subset_tags() returns all tags except those listed in keep.

is_tag_line 5

Details

The formal type of a qryflow SQL chunk is determined by extract_type() using a prioritized
approach:
1. If the chunk includes an explicit -- @type: tag, its value is used directly as the chunk type.

2. If the @type: tag is absent, qryflow searches for other tags (e.g., @query:, @exec:) that
correspond to registered chunk types through 1s_qryflow_types(). The first matching tag
found defines the chunk type.

3. If neither an explicit @type: tag nor any recognized tag is present, the chunk type falls back
to the default type returned by qryflow_default_type().
Value

* extract_all_tags(): A named list of all tags found in the SQL chunk.
* extract_tag(), extract_name(), extract_type(): A single tag value (character or NULL).

* subset_tags(): A filtered named list of tags or NULL if none remain.

See Also

gryflow_parse(), 1s_qryflow_types(), gryflow_default_type()

Examples

filepath <- example_sql_path('mtcars.sql')
parsed <- qryflow_parse(filepath)

chunk <- parsed$chunks[[1]]
tags <- extract_all_tags(chunk$sqgl)

extract_name(chunk$sql)
extract_type(chunk$sqgl)
subset_tags(tags, keep = c("query"))

is_tag_line Detect the presence of a properly structured tagline

Description

Checks whether a specially structured comment line if formatted in the way that qryflow expects.

Usage

is_tag_line(line)

Arguments

line A character vector to check. It is a vectorized function.

6 Is_gryflow_handlers

Details

Tag lines should look like this: -- @key: value

* Begins with an inline comment (--)
* An @ precedes a tag type (e.g., type, name, query, exec) and is followed by a colon (:)

* A value is provided

Value

Logical. Indicating whether each line matches tag specification.

Examples
a <- "-- @query: df_mtcars”
b <- "-- @exec: prep_tbl”
c <- "-- @type: query”

lines <- c(a, b, ¢)

is_tag_line(lines)

1s_qgryflow_handlers List currently registered chunk types

Description
Helper function to access the names of the currently registered chunk types. Functions available for
accessing just the parsers or just the handlers.

Usage
1s_gryflow_handlers()

1s_qgryflow_parsers()
1s_qgryflow_types()

Details

1s_gryflow_types is implemented to return the union of the results of 1s_qryflow_parsers and
1s_gryflow_handlers. It’s expected that a both a parser and a handler exist for each type. If this
assumption is violated, the 1s_qryflow_types may suggest otherwise.

Value

Character vector of registered chunk types

new_qryflow_chunk 7

Examples

1s_qgryflow_types()

new_qryflow_chunk Create an instance of the qryflow_chunk class

Description

Create an instance of the qryflow_chunk class

Usage

new_gryflow_chunk(
type = character(),
name = character(),
sql = character(),

tags = NULL,
results = NULL
)
Arguments
type Character indicating the type of chunk (e.g., "query", "exec")
name Name of the chunk
sql SQL statement associated with chunk
tags Optional, additional tags included in chunk
results Optional, filled in after chunk execution
Details

Exported for users intending to extend qryflow. Subsequent processes rely on the structure of a
qryflow_chunk.

Value

An list-like object of class gryflow_chunk

Examples

chunk <- new_qgryflow_chunk("query”, "df_name"”, "SELECT * FROM mtcars;")

8 qryflow

gryflow Run a multi-step SOQL workflow and return query results

Description
gryflow() is the main entry point to the qryflow package. It executes a SQL workflow defined in
a tagged . sql script or character string and returns query results as R objects.

The SQL script can contain multiple steps tagged with @query or @exec. Query results are captured
and returned as a named list, where names correspond to the @query tags.

Usage
gryflow(con, sql, ..., simplify = TRUE)
Arguments
con A database connection from DBI: : dbConnect ()
sql A file path to a . sql workflow or a character string containing SQL code.
Additional arguments passed to qryflow_run() or qryflow_results().
simplify Logical; if TRUE (default), a list of length 1 is simplified to the single result
object.
Details

This is a wrapper around the combination of qryflow_run(), which always provides a list of results
and metadata, and qryflow_results(), which filters the output of qryflow_run() to only include
the results of the SQL.

Value

A named list of query results, or a single result if simplify = TRUE and only one chunk exists.

See Also

gryflow_run(), gryflow_results()
Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

results <- gryflow(con, filepath)

head(results$df_mtcars)

DBI::dbDisconnect(con)

qryflow_default_type 9

gryflow_default_type Access the default gryflow chunk type

Description
Retrieves the value from the option qryflow.default. type, if set. Otherwise returns "query",
which is the officially supported default type. If any value is supplied to the function, it returns that
value.

Usage

gryflow_default_type(type = getOption("qryflow.default.type”, "query"))

Arguments

type Optional. The type you want to return.

Value

Character. If set, result from qryflow.default. type option, otherwise "query" or value passed to
type

Examples
x <- getOption("qryflow.default.type”, "query")
y <- gryflow_default_type()

identical(x, y)

gryflow_execute Execute a parsed gryflow SQL workflow

Description

gryflow_execute() takes a parsed workflow object (as returned by qryflow_parse()), executes
each chunk (e.g., @query, @exec), and collects the results and timing metadata.

This function is used internally by qryflow_run(), but can be called directly in concert with
gryflow_parse() if you want to manually control parsing and execution.

Usage

gryflow_execute(con, x, ..., source = NULL)

10 qryflow_handler_exists

Arguments
con A database connection from DBI: : dbConnect ()
X A parsed qryflow workflow object, typically created by qryflow_parse()
Reserved for future use.
source Optional; a character string indicating the source SQL to include in metadata.
Value

An object of class qryflow_result, containing executed chunks with results and a meta field that
includes timing and source information.

See Also

gryflow_run(), gryflow_parse()
Examples
con <- example_db_connect(mtcars)
filepath <- example_sql_path("mtcars.sql")
parsed <- qryflow_parse(filepath)
executed <- gryflow_execute(con, parsed, source = filepath)

DBI::dbDisconnect(con)

gryflow_handler_exists
Check existence of a given handler in the registry

Description

Checks whether the specified handler exists in the handler registry environment.

Usage

gryflow_handler_exists(type)

Arguments

non

type chunk type to check (e.g., "query", "exec")

Value

Logical. Does type exist in the handler registry?

qryflow_parse 11

See Also

gryflow_parser_exists() for the parser equivalent.

Examples

gryflow_handler_exists("query"”)

gryflow_parse Parse a SQL workflow into tagged chunks

Description

gryflow_parse() reads a SQL workflow file or character vector and parses it into discrete tagged
chunks based on @query, @exec, and other custom markers.
Usage

gryflow_parse(sql)

Arguments

sql A file path to a SQL workflow file, or a character vector containing SQL lines.

Details

This function is used internally by qryflow_run(), but can also be used directly to preprocess or
inspect the structure of a SQL workflow.

Value

An object of class qryflow_workflow, which is a structured list of SQL chunks and metadata.

See Also

gryflow(), gryflow_run(), gryflow_execute()

Examples

filepath <- example_sql_path("mtcars.sql"”)

parsed <- qryflow_parse(filepath)

12

qryflow_results

gryflow_parser_exists Check existence of a given parser in the registry

Description

Checks whether the specified parser exists in the parser registry environment.

Usage

gryflow_parser_exists(type)

Arguments

type chunk type to check (e.g., "query", "exec"

Value

Logical. Does type exist in the parser registry?

See Also

gryflow_handler_exists() for the handler equivalent.

Examples

gryflow_parser_exists("query")

gryflow_results Extract results from a qryflow_workflow object

Description

gryflow_results() retrieves the query results from a list returned by qryflow_run(), typically

one that includes parsed and executed SQL chunks.

Usage
gryflow_results(x, ..., simplify = FALSE)
Arguments
X Results from gryflow_run(), usually containing a mixture of qryflow_chunk
objects.
. Reserved for future use.
simplify Logical; if TRUE, simplifies the result to a single object if only one query chunk

is present. Defaults to FALSE.

qryflow_run 13

Value

A named list of query results, or a single result object if simplify = TRUE and only one result is
present.

See Also
gryflow(), gryflow_run()

Examples
con <- example_db_connect(mtcars)
filepath <- example_sql_path("mtcars.sql"”)
obj <- gryflow_run(con, filepath)
results <- gryflow_results(obj)

DBI::dbDisconnect(con)

gryflow_run Parse and execute a tagged SQL workflow

Description
gryflow_run() reads a SQL workflow from a file path or character string, parses it into tagged
statements, and executes those statements against a database connection.

This function is typically used internally by qryflow(), but can also be called directly for more
control over workflow execution.

Usage
gryflow_run(con, sql, ...)
Arguments
con A database connection from DBI : : dbConnect ()
sql A character string representing either the path to a . sql file or raw SQL content.
Additional arguments passed to qryflow_execute().
Value

A list representing the evaluated workflow, containing query results, execution metadata, or both,
depending on the contents of the SQL script.

See Also
gryflow(), gryflow_results(), qryflow_execute(), qryflow_parse()

14 read_sql_lines
Examples

con <- example_db_connect(mtcars)

filepath <- example_sql_path("mtcars.sql")

obj <- gryflow_run(con, filepath)

objdf_mtcarssql
objdf_mtcarsresults

results <- gryflow_results(obj)
head(resultsdf_mtcarsresults)

DBI: :dbDisconnect(con)

read_sql_lines Standardizes lines read from string, character vector, or file

Description

This is a generic function to ensure lines read from a file, a single character vector, or already parsed
lines return the same format. This helps avoid re-reading entire texts by enabling already read lines
to pass easily.

This is useful for folks who may want to extend qryflow.

Usage

read_sql_lines(x)

Arguments

X a filepath or character vector containing SQL

Value

A gryflow_sql object (inherits from character) with a length equal to the number of lines read

Examples

From a file #i#it#
path <- example_sqgl_path()
read_sql_lines(path)

From a single string
sql <- "SELECT =

FROM mtcars;"”
read_sql_lines(sql)

register_qryflow_type 15

From a character #it#it#
lines <- c("SELECT =", "FROM mtcars;")
read_sqgl_lines(lines)

register_qgryflow_type Register custom chunk types

Description

Use these functions to register the parsers and handlers associated with custom types. register_qryflow_type
is a wrapper around both register_qryflow_parser and register_qryflow_handler.

Usage

register_qryflow_type(type, parser, handler, overwrite = FALSE)
register_qryflow_parser(type, parser, overwrite = FALSE)

register_qryflow_handler(type, handler, overwrite = FALSE)

Arguments
type Character indicating the chunk type (e.g., "exec", "query")
parser A function to parse the SQL associated with the type. Must accept arguments
"x" and "..." and return a qryflow_chunk object.
handler A function to execute the SQL associated with the type. Must accept arguments
"chunk", "con", and "...".
overwrite Logical. Overwrite existing parser and handler, if exists?
Details

To avoid manually registering your custom type each session, consider adding the registration code
to your .Rprofile or creating a package that leverages .onLoad()

Value

Logical. Indicating whether types were successfully registered.

Examples

Create custom parser
custom_parser <- function(x, ...){
Custom parsing code will go here

new_gryflow_chunk(type = "custom”, name = name, sql = sql_txt, tags = tags)

}

Create custom handler ###i##

16 validate_qryflow_handler

custom_handler <- function(con, chunk, ...){
Custom execution code will go here...
return(result)

}

Register Separately #it#i##
register_qryflow_parser(”custom”, custom_parser, overwrite = TRUE)

register_gryflow_handler(”custom”, custom_handler, overwrite = TRUE)

Register Simultaneously #i#t###
register_gryflow_type("query-send”, custom_parser, custom_handler, overwrite = TRUE)

validate_qgryflow_handler
Ensure correct handler structure

Description

This function checks that the passed object is a function and contains the arguments "chunk", "con,
and "..." - in that order. This is to help ensure users only register valid handlers.

Usage
validate_qgryflow_handler (handler)

Arguments

handler object to check

Value

Logical. Generates an error if the object does not pass all the criteria.

See Also

validate_qryflow_parser() for the parser equivalent.

Examples

custom_func <- function(con, chunk, ...){

Parsing Code Goes Here

validate_qgryflow_handler(custom_func)

validate_qryflow_parser 17

validate_qgryflow_parser
Ensure correct parser structure

Description

This function checks that the passed object is a function and contains the arguments "x" and "..." -
in that order. This is to help ensure users only register valid parsers.

Usage

validate_qgryflow_parser(parser)

Arguments

parser object to check

Value

Logical. Generates an error if the object does not pass all the criteria.

See Also

validate_qryflow_handler () for the handler equivalent.
Examples
custom_func <- function(x, ...){
Parsing Code Goes Here

}

validate_qgryflow_parser(custom_func)

Index

.onLoad(), 15
collapse_sql_lines, 2
DBI::dbConnect(), 3,8, 10, 13

example_db_connect, 3
example_sql_path, 3
extract_all_tags, 4

extract_name (extract_all_tags), 4
extract_tag (extract_all_tags), 4
extract_type (extract_all_tags), 4

is_tag_line, 5

1s_gryflow_handlers, 6

1s_qgryflow_parsers
(1s_qgryflow_handlers), 6

1s_gryflow_types (1s_qryflow_handlers),
6

1s_gryflow_types(), 5

new_gryflow_chunk, 7

gryflow, 8

gryflow(), 11, 13
gryflow_default_type, 9
gryflow_default_type(), 5
gryflow_execute, 9
gryflow_execute(), 11, 13
gryflow_handler_exists, 10
gryflow_handler_exists(), /2
gryflow_parse, 11
gryflow_parse(), 5,9, 10, 13
gryflow_parser_exists, 12
gryflow_parser_exists(), 11/
gryflow_results, 12
gryflow_results(), 8, 13
gryflow_run, 13
gryflow_run(), 8-13

18

read_sql_lines, 14
register_qryflow_handler
(register_gryflow_type), 15
register_qryflow_parser
(register_gryflow_type), 15
register_gryflow_type, 15

subset_tags (extract_all_tags), 4

validate_gryflow_handler, 16
validate_qryflow_handler(), 17
validate_qgryflow_parser, 17
validate_qryflow_parser(), 16

	collapse_sql_lines
	example_db_connect
	example_sql_path
	extract_all_tags
	is_tag_line
	ls_qryflow_handlers
	new_qryflow_chunk
	qryflow
	qryflow_default_type
	qryflow_execute
	qryflow_handler_exists
	qryflow_parse
	qryflow_parser_exists
	qryflow_results
	qryflow_run
	read_sql_lines
	register_qryflow_type
	validate_qryflow_handler
	validate_qryflow_parser
	Index

