Package ‘randomizr’

February 2, 2026

Title Easy-to-Use Tools for Common Forms of Random Assignment and
Sampling

Version 1.0.1

Description Generates random assignments for common experimental designs and
random samples for common sampling designs.

URL https://declaredesign.org/r/randomizr/,
https://github.com/DeclareDesign/randomizr

BugReports https://github.com/DeclareDesign/randomizr/issues
Depends R (>=3.5.0)

License MIT + file LICENSE

Encoding UTF-8

Suggests knitr, dplyr, testthat, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation yes

Author Alexander Coppock [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5733-2386>),
Jasper Cooper [ctb] (ORCID: <https://orcid.org/0000-0002-8639-3188>),
Neal Fultz [ctb] (C version of restricted partitions),
Graeme Blair [ctb] (ORCID: <https://orcid.org/0000-0001-9164-2102>)

Maintainer Alexander Coppock <acoppock@gmail.com>
Repository CRAN
Date/Publication 2026-02-02 06:30:31 UTC

Contents

block_and_cluster_ra e e e
block_and_cluster_ra_probabilities L oL
block ra L e
block_ra_probabilities

https://declaredesign.org/r/randomizr/
https://github.com/DeclareDesign/randomizr
https://github.com/DeclareDesign/randomizr/issues
https://orcid.org/0000-0002-5733-2386
https://orcid.org/0000-0002-8639-3188
https://orcid.org/0000-0001-9164-2102

2 block_and cluster ra
cluster_ra e 13
cluster_ra_probabilities 15
cluster_rs L e e e e e e 17
cluster_rs_probabilities 19
COMPIELE_TA o o i e e e e e e e e e 20
complete_ra_probabilities 22
COMPIELE_IS o o o e e e e e e 24
complete_rs_probabilities 26
conduCt_Ta o o o e e e e e e e 27
CUSEOMLTA .+ v v v v v o o e e e e e e e e e e e e 29
custom_ra_probabilities Lo 30
declare_ra e e 31
declare s L s 34
draw IS . . . L s, 36
obtain_condition_probabilities 0oL 38
obtain_inclusion_probabilities o oL oo 41
obtain_num_permutations i e e e e e e e e e e 43
obtain_permutation_matriXo u e e e e e e e e 44
obtain_permutation_probabilities oL L 46
randoOmizZr e e e e e 46
simple_ra L e e e e 47
simple_ra_probabilities 49
SIMPIE_IS o o e 50
simple_rs_probabilities oL 51
strata_and_CIUStEr_I'S e e e e e e e 52
strata_and_cluster_rs_probabilities L L 54
SITALA_TS . . v v e 56
strata_rs_probabilities 58

Index 60

block_and_cluster_ra Blocked and Clustered Random Assignment

Description

A random assignment procedure in which units are assigned as clusters and clusters are nested
within blocks.

Usage

block_and_cluster_ra(

blocks = NULL,
clusters = NULL,
prob = NULL,
prob_unit = NULL,
prob_each = NULL,

= NULL,

block _and_cluster ra 3

m_unit = NULL,

block_m = NULL,
block_m_each = NULL,
block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE

Arguments

blocks A vector of length N that indicates which block each unit belongs to.
clusters A vector of length N that indicates which cluster each unit belongs to.

prob Use for a two-arm design in which either floor(N_clusters_block*prob) or ceil-
ing(N_clusters_block*prob) clusters are assigned to treatment within each block.
The probability of assignment to treatment is exactly prob because with prob-
ability 1-prob, floor(N_clusters_block*prob) clusters will be assigned to treat-
ment and with probability prob, ceiling(N_clusters_block*prob) clusters will be
assigned to treatment. prob must be a real number between 0 and 1 inclusive.
(optional)

prob_unit Use for a two arm design. Must of be of length N. tapply(prob_unit, blocks,
unique) will be passed to block_prob.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of clusters assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

m Use for a two-arm design in which the scalar m describes the fixed number of
clusters assigned in each block. This number does not vary across blocks.

m_unit Use for a two-arm design. Must be of length N. tapply(m_unit, blocks, unique)
will be passed to block_m.

block_m Use for a two-arm design in which block_m describes the number of clusters to
assign to treatment within each block. block_m must be a numeric vector that is
as long as the number of blocks and is in the same order as sort(unique(blocks)).

block_m_each Use for a multi-arm design in which the values of block_m_each determine the
number of clusters assigned to each condition. block_m_each must be a matrix
with the same number of rows as blocks and the same number of columns as
treatment arms. Cell entries are the number of clusters to be assigned to each
treatment arm within each block. The rows should respect the ordering of the
blocks as determined by sort(unique(blocks)). The columns should be in the
order of conditions, if specified.

block_prob Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Must be in the same order as sort(unique(blocks)).
Differs from prob in that the probability of assignment can vary across blocks.

block_and cluster ra

block_prob_each

num_arms

conditions

check_inputs

Value

Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

logical. Defaults to TRUE.

A vector of length N that indicates the treatment condition of each unit.

Examples

clusters <- rep(letters, times=1:26)

blocks <- rep(NA, length(clusters))

blocks[clusters
blocks[clusters
blocks[clusters
blocks[clusters
blocks[clusters

%in% letters[1:5]] <- "block_1"

%in% letters[6:10]] <- "block_2"
%in% letters[11:15]] <- "block_3"
%in% letters[16:20]] <- "block_4"
%in% letters[21:26]1] <- "block_5"

table(blocks, clusters)

Z <- block_and_cluster_ra(blocks = blocks,

table(Z, blocks)

clusters = clusters)

table(Z, clusters)

Z <- block_and_cluster_ra(blocks = blocks,

table(Z, blocks)

clusters = clusters,
num_arms = 3)

table(Z, clusters)

Z <- block_and_cluster_ra(blocks = blocks,

block_and_cluster_ra_probabilities

clusters = clusters,
prob_each = c(.2, .5, .3))

block_m_each <- rbind(c(2, 3),
c(1, 4),
c(3, 2),
c(2, 3),
c(5, 1))

Z <- block_and_cluster_ra(blocks = blocks,
clusters = clusters,
block_m_each = block_m_each)

table(Z, blocks)
table(Z, clusters)

block_and_cluster_ra_probabilities
probabilities of assignment: Blocked and Clustered Random Assign-
ment

Description

probabilities of assignment: Blocked and Clustered Random Assignment

Usage

block_and_cluster_ra_probabilities(
blocks = NULL,
clusters = NULL,
prob = NULL,
prob_unit = NULL,
prob_each = NULL,
m = NULL,
m_unit = NULL,
block_m = NULL,
block_m_each = NULL,
block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE

Arguments

blocks A vector of length N that indicates which block each unit belongs to.

block_and_cluster_ra_probabilities

clusters A vector of length N that indicates which cluster each unit belongs to.

prob Use for a two-arm design in which either floor(N_clusters_block*prob) or ceil-
ing(N_clusters_block*prob) clusters are assigned to treatment within each block.
The probability of assignment to treatment is exactly prob because with prob-
ability 1-prob, floor(N_clusters_block*prob) clusters will be assigned to treat-
ment and with probability prob, ceiling(N_clusters_block*prob) clusters will be
assigned to treatment. prob must be a real number between 0 and 1 inclusive.
(optional)

prob_unit Use for a two arm design. Must of be of length N. tapply(prob_unit, blocks,
unique) will be passed to block_prob.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of clusters assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

m Use for a two-arm design in which the scalar m describes the fixed number of
clusters assigned in each block. This number does not vary across blocks.

m_unit Use for a two-arm design. Must be of length N. tapply(m_unit, blocks, unique)
will be passed to block_m.

block_m Use for a two-arm design in which block_m describes the number of clusters to
assign to treatment within each block. block_m must be a numeric vector that is
as long as the number of blocks and is in the same order as sort(unique(blocks)).

block_m_each Use for a multi-arm design in which the values of block_m_each determine the
number of clusters assigned to each condition. block_m_each must be a matrix
with the same number of rows as blocks and the same number of columns as
treatment arms. Cell entries are the number of clusters to be assigned to each
treatment arm within each block. The rows should respect the ordering of the
blocks as determined by sort(unique(blocks)). The columns should be in the
order of conditions, if specified.

block_prob Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Must be in the same order as sort(unique(blocks)).
Differs from prob in that the probability of assignment can vary across blocks.

block_prob_each

Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

num_arms The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

block_and_cluster_ra_probabilities 7

conditions

check_inputs

Value

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

logical. Defaults to TRUE.

A matrix of probabilities of assignment

Examples

clusters <- rep(letters, times=1:26)
blocks <- rep(NA, length(clusters))

blocks[clusters
blocks[clusters
blocks[clusters
blocks[clusters
blocks[clusters

%in% letters[1:5]] <- "block_1"

%in% letters[6:10]] <- "block_2"
%in% letters[11:15]] <- "block_3"
%in% letters[16:20]] <- "block_4"
%in% letters[21:26]] <- "block_5"

prob_mat <- block_and_cluster_ra_probabilities(clusters = clusters,

head(prob_mat)

blocks = blocks)

prob_mat <- block_and_cluster_ra_probabilities(clusters = clusters,

head(prob_mat)

blocks = blocks,
num_arms = 3)

prob_mat <- block_and_cluster_ra_probabilities(clusters = clusters,

head(prob_mat)

block_m_each <-

blocks = blocks,
prob_each = c(.2, .5, .3))

rbind(c(2, 3),

c(1, 4),
c(3, 2),
c(2, 3),
c(5, 1))

prob_mat <- block_and_cluster_ra_probabilities(clusters = clusters,

head(prob_mat)

blocks = blocks,
block_m_each = block_m_each)

block ra

block_ra

Block Random Assignment

Description

block_ra implements a random assignment procedure in which units that are grouped into blocks
defined by pre-treatment covariates are assigned using complete random assignment within block.
For example, imagine that 50 of 100 men are assigned to treatment and 75 of 200 women are
assigned to treatment.

Usage
block_ra(

blocks = NULL,

prob = NULL,

prob_unit = NULL,
prob_each = NULL,

m = NULL,

m_unit = NULL,
block_m = NULL,

block_m_each

= NULL,

block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,

conditions =
check_inputs

Arguments

blocks

prob

prob_unit

prob_each

NULL,
= TRUE

A vector of length N that indicates which block each unit belongs to. Can be a
character, factor, or numeric vector. (required)

Use for a two-arm design in which either floor(N_block*prob) or ceiling(N_block*prob)
units are assigned to treatment within each block. The probability of assignment

to treatment is exactly prob because with probability 1-prob, floor(N_block*prob)

units will be assigned to treatment and with probability prob, ceiling(N_block*prob)
units will be assigned to treatment. prob must be a real number between 0 and 1
inclusive. (optional)

Use for a two arm design. Must of be of length N. tapply(prob_unit, blocks,
unique) will be passed to block_prob.

Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

block_ra 9

m Use for a two-arm design in which the scalar m describes the fixed number of
units to assign in each block. This number does not vary across blocks.

m_unit Use for a two-arm design. Must be of length N. tapply(m_unit, blocks, unique)
will be passed to block_m.

block_m Use for a two-arm design in which the vector block_m describes the number of
units to assign to treatment within each block. block_m must be a numeric
vector that is as long as the number of blocks and is in the same order as
sort(unique(blocks)).

block_m_each Use for a multi-arm design in which the values of block_m_each determine the
number of units assigned to each condition. block_m_each must be a matrix
with the same number of rows as blocks and the same number of columns as
treatment arms. Cell entries are the number of units to be assigned to each
treatment arm within each block. The rows should respect the ordering of the
blocks as determined by sort(unique(blocks)). The columns should be in the
order of conditions, if specified.

block_prob Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Must be in the same order as sort(unique(blocks)).
Differs from prob in that the probability of assignment can vary across blocks.

block_prob_each
Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

num_arms The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

check_inputs logical. Defaults to TRUE.

Value
A vector of length N that indicates the treatment condition of each unit. Is numeric in a two-arm

trial and a factor variable (ordered by conditions) in a multi-arm trial.

Examples

Two-arm Designs

blocks <- rep(c(”A"”, "B","C"), times = c(50, 100, 200))
Z <- block_ra(blocks = blocks)

10

block ra

table(blocks, Z)

Z <- block_ra(blocks = blocks, prob = .3)
table(blocks, Z)

Z <- block_ra(blocks = blocks, block_prob = c(.1, .2, .3))
table(blocks, Z)

Z <- block_ra(blocks = blocks,
prob_unit = rep(c(.1, .2, .3),
times = c(50, 100, 200)))
table(blocks, Z)

Z <- block_ra(blocks = blocks, m = 20)
table(blocks, Z)

Z <- block_ra(blocks = blocks, block_m = c(20, 30, 40))
table(blocks, Z)

Z <- block_ra(blocks = blocks,
m_unit = rep(c(20, 30, 40),
times = c(50, 100, 200)))
table(blocks, Z)

block_m_each <- rbind(c(25, 25),
c(50, 50),
c(100, 100))

Z <- block_ra(blocks = blocks, block_m_each = block_m_each)
table(blocks, Z)

block_m_each <- rbind(c(10, 40),
c(30, 70),
c(50, 150))

Z <- block_ra(blocks = blocks, block_m_each = block_m_each,
conditions = c("control”, "treatment"))
table(blocks, Z)

Multi-arm Designs
Z <- block_ra(blocks = blocks, num_arms = 3)
table(blocks, Z)

block_m_each <- rbind(c(10, 20, 20),

c(30, 50, 20),

c(50, 75, 75))
Z <- block_ra(blocks = blocks, block_m_each = block_m_each)
table(blocks, Z)

Z <- block_ra(blocks = blocks, block_m_each = block_m_each,
conditions = c("control”, "placebo”, "treatment"”))
table(blocks, Z)

block_ra_probabilities

11

Z <- block_ra(blocks = blocks, prob_each = c(.1, .1, .8))

table(blocks, Z)

block_ra_probabilities

probabilities of assignment: Block Random Assignment

Description

probabilities of assignment: Block Random Assignment

Usage

block_ra_probabilities(
blocks = NULL,

prob = NULL,

prob_unit = NULL,
prob_each = NULL,

m = NULL,

m_unit = NULL,
block_m = NULL,

block_m_each

= NULL,

block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE

Arguments

blocks

prob

prob_unit

A vector of length N that indicates which block each unit belongs to. Can be a
character, factor, or numeric vector. (required)

Use for a two-arm design in which either floor(N_block*prob) or ceiling(N_block*prob)
units are assigned to treatment within each block. The probability of assignment

to treatment is exactly prob because with probability 1-prob, floor(N_block*prob)

units will be assigned to treatment and with probability prob, ceiling(N_block*prob)
units will be assigned to treatment. prob must be a real number between 0 and 1
inclusive. (optional)

Use for a two arm design. Must of be of length N. tapply(prob_unit, blocks,
unique) will be passed to block_prob.

12 block_ra_probabilities

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

m Use for a two-arm design in which the scalar m describes the fixed number of
units to assign in each block. This number does not vary across blocks.

m_unit Use for a two-arm design. Must be of length N. tapply(m_unit, blocks, unique)
will be passed to block_m.

block_m Use for a two-arm design in which the vector block_m describes the number of
units to assign to treatment within each block. block_m must be a numeric
vector that is as long as the number of blocks and is in the same order as
sort(unique(blocks)).

block_m_each Use for a multi-arm design in which the values of block_m_each determine the
number of units assigned to each condition. block_m_each must be a matrix
with the same number of rows as blocks and the same number of columns as
treatment arms. Cell entries are the number of units to be assigned to each
treatment arm within each block. The rows should respect the ordering of the
blocks as determined by sort(unique(blocks)). The columns should be in the
order of conditions, if specified.

block_prob Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Must be in the same order as sort(unique(blocks)).
Differs from prob in that the probability of assignment can vary across blocks.

block_prob_each
Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

num_arms The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

check_inputs logical. Defaults to TRUE.

Value

A matrix of probabilities of assignment

cluster _ra 13

Examples

blocks <- rep(c("A", "B","C"), times = c(50, 100, 200))
prob_mat <- block_ra_probabilities(blocks = blocks)
head(prob_mat)

prob_mat <- block_ra_probabilities(blocks = blocks, m = 20)
head(prob_mat)

block_m_each <- rbind(c(25, 25),
c(50, 50),
c(100, 100))

prob_mat <- block_ra_probabilities(blocks = blocks, block_m_each = block_m_each)
head(prob_mat)

block_m_each <- rbind(c(10, 40),
c(30, 70),
c(50, 150))

prob_mat <- block_ra_probabilities(blocks = blocks,

block_m_each = block_m_each,

conditions = c("control”, "treatment"))
head(prob_mat)

blocks, num_arms = 3)

prob_mat <- block_ra_probabilities(blocks
head(prob_mat)

block_m_each <- rbind(c(10, 20, 20),

c(30, 50, 20),

c(50, 75, 75))
prob_mat <- block_ra_probabilities(blocks = blocks, block_m_each = block_m_each)
head(prob_mat)

prob_mat <- block_ra_probabilities(blocks=blocks, block_m_each=block_m_each,
conditions=c("control”, "placebo”, "treatment"))
head(prob_mat)

prob_mat <- block_ra_probabilities(blocks=blocks, prob_each=c(.1, .1, .8))
head(prob_mat)

cluster_ra Cluster Random Assignment

Description

cluster_ra implements a random assignment procedure in which groups of units are assigned to-
gether (as a cluster) to treatment conditions. This function conducts complete random assignment
at the cluster level, unless simple = TRUE, in which case simple_ra analogues are used.

14 cluster _ra

Usage

cluster_ra(
clusters = NULL,
m = NULL,
m_unit = NULL,
m_each = NULL,
prob = NULL,
prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
simple = FALSE,
check_inputs = TRUE

Arguments

clusters A vector of length N that indicates which cluster each unit belongs to.

m Use for a two-arm design in which m clusters are assigned to treatment and
N_clusters-m clusters are assigned to control. (optional)

m_unit Use for a two-arm design in which exactly unique(m_unit) clusters are assigned
to treatment and the remainder are assigned to control. m_unit must be of length
N and must be the same for all units (optional)

m_each Use for a multi-arm design in which the values of m_each determine the num-
ber of clusters assigned to each condition. m_each must be a numeric vector
in which each entry is a nonnegative integer that describes how many clusters
should be assigned to the 1st, 2nd, 3rd... treatment condition. m_each must sum
to N. (optional)

prob Use for a two-arm design in which either floor(N_clusters*prob) or ceiling(N_clusters*prob)
clusters are assigned to treatment. The probability of assignment to treatment
is exactly prob because with probability 1-prob, floor(N_clusters*prob) clusters
will be assigned to treatment and with probability prob, ceiling(N_clusters*prob)
clusters will be assigned to treatment. prob must be a real number between 0 and
1 inclusive. (optional)

prob_unit Use for a two-arm design. unique(prob_unit) will be passed to the prob argu-
ment and must be the same for all units.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of clusters assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

num_arms The total number of treatment arms. If unspecified, will be determined from the
length of m_each or conditions.

cluster_ra_probabilities

conditions

simple

check_inputs

Value

15

A character vector giving the names of the treatment groups. If unspecified, the

treatment groups will be named T1, T2, T3, etc.

logical, defaults to FALSE. If TRUE, simple random assignment of clusters to
conditions is used. When simple = TRUE, please do not specify m or m_each.

logical. Defaults to TRUE.

A vector of length N that indicates the treatment condition of each unit.

Examples

Two Group Designs
clusters <- rep(letters, times=1:26)

Z <- cluster_ra(clusters = clusters)
table(Z, clusters)

Z <- cluster_ra(clusters = clusters, m = 13)
table(Z, clusters)

Z <- cluster_ra(clusters = clusters, m_each = c(10, 16),

conditions = c("control”, "treatment"))

table(Z, clusters)

Multi-arm Designs
Z <- cluster_ra(clusters = clusters, num_arms = 3)
table(Z, clusters)

Z <- cluster_ra(clusters = clusters, m_each = c(7, 7, 12))
table(Z, clusters)

Z <- cluster_ra(clusters = clusters, m_each = c(7, 7, 12),

conditions = c("control”, "placebo”, "treatment”))

table(Z, clusters)

Z <- cluster_ra(clusters = clusters,

conditions = c("control”, "placebo”, "treatment”))

table(Z, clusters)

cluster_ra_probabilities

probabilities of assignment: Cluster Random Assignment

Description

probabilities of assignment: Cluster Random Assignment

16 cluster_ra_probabilities

Usage

cluster_ra_probabilities(
clusters = NULL,
m = NULL,
m_unit = NULL,
m_each = NULL,
prob = NULL,
prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
simple = FALSE,
check_inputs = TRUE

Arguments

clusters A vector of length N that indicates which cluster each unit belongs to.

m Use for a two-arm design in which m clusters are assigned to treatment and
N_clusters-m clusters are assigned to control. (optional)

m_unit Use for a two-arm design in which exactly unique(m_unit) clusters are assigned
to treatment and the remainder are assigned to control. m_unit must be of length
N and must be the same for all units (optional)

m_each Use for a multi-arm design in which the values of m_each determine the num-
ber of clusters assigned to each condition. m_each must be a numeric vector
in which each entry is a nonnegative integer that describes how many clusters
should be assigned to the 1st, 2nd, 3rd... treatment condition. m_each must sum
to N. (optional)

prob Use for a two-arm design in which either floor(N_clusters*prob) or ceiling(N_clusters*prob)
clusters are assigned to treatment. The probability of assignment to treatment
is exactly prob because with probability 1-prob, floor(N_clusters*prob) clusters
will be assigned to treatment and with probability prob, ceiling(N_clusters*prob)
clusters will be assigned to treatment. prob must be a real number between 0 and
1 inclusive. (optional)

prob_unit Use for a two-arm design. unique(prob_unit) will be passed to the prob argu-
ment and must be the same for all units.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of clusters assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

num_arms The total number of treatment arms. If unspecified, will be determined from the
length of m_each or conditions.

cluster_rs 17

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named T1, T2, T3, etc.

simple logical, defaults to FALSE. If TRUE, simple random assignment of clusters to
conditions is used. When simple = TRUE, please do not specify m or m_each.

check_inputs logical. Defaults to TRUE.

Value

A matrix of probabilities of assignment

Examples

Two Group Designs

clusters <- rep(letters, times = 1:26)

prob_mat <- cluster_ra_probabilities(clusters = clusters)
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters, m = 10)
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters,
m_each = c(9, 17),
conditions = c("control”, "treatment”))

Multi-arm Designs
prob_mat <- cluster_ra_probabilities(clusters = clusters, num_arms = 3)
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters, m_each = c(7, 7, 12))
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters, m_each = c(7, 7, 12),
conditions=c("control”, "placebo”, "treatment"))
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters,
conditions=c("control”, "placebo"”, "treatment"))
head(prob_mat)

prob_mat <- cluster_ra_probabilities(clusters = clusters,
prob_each = c(.1, .2, .7))
head(prob_mat)

cluster_rs Cluster Random Sampling

18 cluster_rs

Description

cluster_rs implements a random sampling procedure in which groups of units are sampled together
(as a cluster). This function conducts complete random sampling at the cluster level, unless simple
= TRUE, in which case simple_rs analogues are used.

Usage

cluster_rs(
clusters = NULL,
n = NULL,
n_unit = NULL,
prob = NULL,
prob_unit = NULL,
simple = FALSE,
check_inputs = TRUE

)
Arguments

clusters A vector of length N that indicates which cluster each unit belongs to.

n Use for a design in which n clusters are sampled. (optional)

n_unit unique(n_unit) will be passed to n. Must be the same for all units (optional)

prob Use for a design in which either floor(N_clusters*prob) or ceiling(N_clusters*prob)
clusters are sampled. The probability of being sampled is exactly prob because
with probability 1-prob, floor(N_clusters*prob) clusters will be sampled and
with probability prob, ceiling(N_clusters*prob) clusters will be sampled. prob
must be a real number between 0 and 1 inclusive. (optional)

prob_unit unique(prob_unit) will be passed to the prob argument and must be the same for
all units.

simple logical, defaults to FALSE. If TRUE, simple random sampling of clusters. When

simple = TRUE, please do not specify n.
check_inputs logical. Defaults to TRUE.

Value

A numeric vector of length N that indicates if a unit is sampled (1) or not (0).
Examples
clusters <- rep(letters, times=1:26)

S <- cluster_rs(clusters = clusters)
table(S, clusters)

S <- cluster_rs(clusters = clusters, n = 13)
table(S, clusters)

cluster_rs_probabilities

19

cluster_rs_probabilities

Inclusion Probabilities: Cluster Sampling

Description

Inclusion Probabilities: Cluster Sampling

Usage

cluster_rs_probabilities(
clusters = NULL,

n = NULL,
n_unit = NULL
prob = NULL,

’

prob_unit = NULL,
simple = FALSE,
check_inputs = TRUE

Arguments

clusters
n
n_unit

prob

prob_unit

simple

check_inputs

Value

A vector of length N that indicates which cluster each unit belongs to.
Use for a design in which n clusters are sampled. (optional)
unique(n_unit) will be passed to n. Must be the same for all units (optional)

Use for a design in which either floor(N_clusters*prob) or ceiling(N_clusters*prob)
clusters are sampled. The probability of being sampled is exactly prob because
with probability 1-prob, floor(N_clusters*prob) clusters will be sampled and
with probability prob, ceiling(N_clusters*prob) clusters will be sampled. prob
must be a real number between 0 and 1 inclusive. (optional)

unique(prob_unit) will be passed to the prob argument and must be the same for
all units.

logical, defaults to FALSE. If TRUE, simple random sampling of clusters. When
simple = TRUE, please do not specify n.

logical. Defaults to TRUE.

A vector length N indicating the probability of being sampled.

Examples

Two Group Designs
clusters <- rep(letters, times = 1:26)

probs <- cluster_
table(probs, clus

rs_probabilities(clusters = clusters)
ters)

20

complete_ra

prob_mat <- cluster_rs_probabilities(clusters = clusters, n = 10)
table(probs, clusters)

prob_mat <- cluster_rs_probabilities(clusters = clusters, prob = .3)
table(probs, clusters)

complete_ra Complete Random Assignment

Description

complete_ra implements a random assignment procedure in which fixed numbers of units are as-
signed to treatment conditions. The canonical example of complete random assignment is a pro-
cedure in which exactly m of N units are assigned to treatment and N-m units are assigned to control.

Users can set the exact number of units to assign to each condition with m or m_each. Alterna-
tively, users can specify probabilities of assignment with prob or prob_each and complete_ra will
infer the correct number of units to assign to each condition. In a two-arm design, complete_ra
will either assign floor(N*prob) or ceiling(N*prob) units to treatment, choosing between these two
values to ensure that the overall probability of assignment is exactly prob. In a multi-arm design,
complete_ra will first assign floor(N*prob_each) units to their respective conditions, then will as-
sign the remaining units using simple random assignment, choosing these second-stage probabilities
so that the overall probabilities of assignment are exactly prob_each.

In most cases, users should specify N and not more than one of m, m_each, prob, prob_each,
Or num_arms.

If only N is specified, a two-arm trial in which N/2 units are assigned to treatment is assumed.
If N is odd, either floor(N/2) units or ceiling(N/2) units will be assigned to treatment.

Usage

complete_ra(
N,
m = NULL,

m_unit = NULL,
m_each = NULL,

prob = NULL,
prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE

complete_ra

Arguments

N

m

m_unit

m_each

prob

prob_unit

prob_each

num_arms

conditions

check_inputs

Value

A vector of length

21

The number of units. N must be a positive integer. (required)

Use for a two-arm design in which m units are assigned to treatment and N-m
units are assigned to control. (optional)

Use for a two-arm design in which exactly unique(m_unit) units are assigned to
treatment and the remainder are assigned to control. m_unit must be of length
N and must be the same for all units (optional)

Use for a multi-arm design in which the values of m_each determine the number
of units assigned to each condition. m_each must be a numeric vector in which
each entry is a nonnegative integer that describes how many units should be
assigned to the Ist, 2nd, 3rd... treatment condition. m_each must sum to N.
(optional)

Use for a two-arm design in which either floor(N*prob) or ceiling(N*prob) units
are assigned to treatment. The probability of assignment to treatment is exactly
prob because with probability 1-prob, floor(N*prob) units will be assigned to
treatment and with probability prob, ceiling(N*prob) units will be assigned to
treatment. prob must be a real number between 0 and 1 inclusive. (optional)

Use for a two-arm design. unique(prob_unit) will be passed to the prob argu-
ment and must be the same for all units.

Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named O (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

logical. Defaults to TRUE.

N that indicates the treatment condition of each unit. Is numeric in a two-arm

trial and a factor variable (ordered by conditions) in a multi-arm trial.

Examples

Two-arm Designs

Z <- complete_ra(N = 100)

table(Z)

22 complete_ra_probabilities

Z <- complete_ra(N = 100, m = 50)
table(Z)

Z <- complete_ra(N = 100, m_unit = rep(50, 100))
table(Z)

Z <- complete_ra(N = 100, prob = .111)
table(Z)

Z <- complete_ra(N = 100, prob_unit = rep(0.1, 100))
table(Z)

Z <- complete_ra(N
table(Z)

100, conditions = c("”control”, "treatment"))

Multi-arm Designs
Z <- complete_ra(N = 100, num_arms = 3)
table(2)

Z <- complete_ra(N = 100, m_each = c(30, 30, 40))
table(2)

Z <- complete_ra(N
table(2)

100, prob_each = c(.1, .2, .7))

Z <- complete_ra(N
table(2)

100, conditions = c("”control”, "placebo”, "treatment"))

Special Cases

Two-arm trial where the conditions are by default "T1" and "T2"
Z <- complete_ra(N = 100, num_arms = 2)

table(Z)

If N =m, assign with 100% probability
complete_ra(N=2, m=2)

Up through randomizr 0.12.0,
complete_ra(N=1, m=1) # assigned with 50% probability
This behavior has been deprecated

complete_ra_probabilities
probabilities of assignment: Complete Random Assignment

Description

probabilities of assignment: Complete Random Assignment

complete_ra_probabilities 23

Usage
complete_ra_probabilities(
N,
m = NULL,

m_unit = NULL,
m_each = NULL,

prob = NULL,
prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE

Arguments

N The number of units. N must be a positive integer. (required)

m Use for a two-arm design in which m units are assigned to treatment and N-m
units are assigned to control. (optional)

m_unit Use for a two-arm design in which exactly unique(m_unit) units are assigned to
treatment and the remainder are assigned to control. m_unit must be of length
N and must be the same for all units (optional)

m_each Use for a multi-arm design in which the values of m_each determine the number
of units assigned to each condition. m_each must be a numeric vector in which
each entry is a nonnegative integer that describes how many units should be
assigned to the Ist, 2nd, 3rd... treatment condition. m_each must sum to N.
(optional)

prob Use for a two-arm design in which either floor(N*prob) or ceiling(N*prob) units
are assigned to treatment. The probability of assignment to treatment is exactly
prob because with probability 1-prob, floor(N*prob) units will be assigned to
treatment and with probability prob, ceiling(N*prob) units will be assigned to
treatment. prob must be a real number between 0 and 1 inclusive. (optional)

prob_unit Use for a two-arm design. unique(prob_unit) will be passed to the prob argu-
ment and must be the same for all units.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

num_arms The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in

24 complete_rs

which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

check_inputs logical. Defaults to TRUE.

Value

A matrix of probabilities of assignment

Examples

2-arm designs
prob_mat <- complete_ra_probabilities(N=100)
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, m=50)
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, prob = .3)
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, m_each = c(30, 70),
conditions = c("control”, "treatment"”))
head(prob_mat)

Multi-arm Designs
prob_mat <- complete_ra_probabilities(N=100, num_arms=3)
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, m_each=c(30, 30, 40))
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, m_each=c(30, 30, 40),
conditions=c("control”, "placebo”, "treatment"))
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, conditions=c("control”, "placebo”, "treatment”))
head(prob_mat)

prob_mat <- complete_ra_probabilities(N=100, prob_each = c(.2, .7, .1))
head(prob_mat)

complete_rs Complete Random Sampling

Description

complete_rs implements a random sampling procedure in which fixed numbers of units are sam-
pled. The canonical example of complete random sampling is a procedure in which exactly n of N

complete_rs 25

units are sampled.

Users can set the exact number of units to sample with n. Alternatively, users can specify the
probability of being sampled with prob and complete_rs will infer the correct number of units to
sample. complete_rs will either sample floor(N*prob) or ceiling(N*prob) units, choosing between
these two values to ensure that the overall probability of being sampled is exactly prob. Users should
specify N and not more than one of n or prob.

If only N is specified, N/2 units will be sampled. If N is odd, either floor(N/2) units or ceiling(N/2)
units will be sampled.

Usage

complete_rs(
N,
n = NULL,
n_unit = NULL,
prob = NULL,
prob_unit = NULL,
check_inputs = TRUE

)
Arguments

N The number of units. N must be a positive integer. (required)

n Use for a design in which exactly n units are sampled. (optional)

n_unit unique(n_unit) will be passed to n. Must be the same for all units (optional)

prob Use for a design in which either floor(N*prob) or ceiling(N*prob) units are sam-
pled. The probability of being sampled is exactly prob because with probability
1-prob, floor(N*prob) units will be sampled and with probability prob, ceil-
ing(N*prob) units will be sampled. prob must be a real number between 0 and
1 inclusive. (optional)

prob_unit unique(prob_unit) will be passed to the prob argument and must be the same for

all units.

check_inputs logical. Defaults to TRUE.

Value

A numeric vector of length N that indicates if a unit is sampled (1) or not (0).

Examples

S <- complete_rs(N = 100)
table(S)

S <- complete_rs(N = 100, n = 50)
table(S)

26 complete_rs_probabilities

S <- complete_rs(N = 100, n_unit = rep(50, 100))
table(S)

S <- complete_rs(N = 100, prob = .111)
table(S)

S <- complete_rs(N = 100, prob_unit = rep(.1, 100))
table(S)

If N =n, sample with 100% probability...
complete_rs(N=2, n=2)

Up through randomizr 0.12.0,
This behavior has been deprecated
complete_rs(N=1, n=1) # sampled with 50% probability

complete_rs_probabilities
Inclusion Probabilities: Complete Random Sampling

Description

Inclusion Probabilities: Complete Random Sampling

Usage

complete_rs_probabilities(
N,
n = NULL,
n_unit = NULL,
prob = NULL,
prob_unit = NULL,
check_inputs = TRUE

)
Arguments
N The number of units. N must be a positive integer. (required)
n Use for a design in which exactly n units are sampled. (optional)
n_unit unique(n_unit) will be passed to n. Must be the same for all units (optional)
prob Use for a design in which either floor(N*prob) or ceiling(N*prob) units are sam-

pled. The probability of being sampled is exactly prob because with probability
1-prob, floor(N*prob) units will be sampled and with probability prob, ceil-
ing(N*prob) units will be sampled. prob must be a real number between 0 and
1 inclusive. (optional)

conduct_ra 27

prob_unit unique(prob_unit) will be passed to the prob argument and must be the same for
all units.

check_inputs logical. Defaults to TRUE.

Value

A vector length N indicating the probability of being sampled.

Examples

probs <- complete_rs_probabilities(N
table(probs)

100)
probs <- complete_rs_probabilities(N = 100, n = 50)
table(probs)

probs <- complete_rs_probabilities(N=100, prob = .3)
table(probs)

conduct_ra Conduct a random assignment

Description

You can either give conduct_ra() an declaration, as created by declare_ra or you can specify the
other arguments to describe a random assignment procedure.

Usage

conduct_ra(
declaration = NULL,
N = NULL,
blocks = NULL,
clusters = NULL,
m = NULL,
m_unit = NULL,
m_each = NULL,
prob = NULL,
prob_unit = NULL,
prob_each = NULL,
block_m = NULL,
block_m_each = NULL,
block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,
conditions = NULL,
simple = FALSE,

28

conduct_ra

permutation_matrix = NULL,
check_inputs = TRUE

)

Arguments

declaration
N

blocks
clusters

m

m_unit

m_each

prob

prob_unit

prob_each

block_m

block_m_each

A random assignment declaration, created by declare_ra.

The number of units. N must be a positive integer. (required)

A vector of length N that indicates which block each unit belongs to.
A vector of length N that indicates which cluster each unit belongs to.

Use for a two-arm design in which m units (or clusters) are assigned to treatment
and N-m units (or clusters) are assigned to control. In a blocked design, exactly
m units in each block will be treated. (optional)

Use for a two-arm trial. Under complete random assignment, must be con-
stant across units. Under blocked random assignment, must be constant within
blocks.

Use for a multi-arm design in which the values of m_each determine the number
of units (or clusters) assigned to each condition. m_each must be a numeric
vector in which each entry is a nonnegative integer that describes how many
units (or clusters) should be assigned to the 1Ist, 2nd, 3rd... treatment condition.
m_each must sum to N. (optional)

Use for a two-arm design in which either floor(N*prob) or ceiling(N*prob) units
(or clusters) are assigned to treatment. The probability of assignment to treat-
ment is exactly prob because with probability 1-prob, floor(N*prob) units (or
clusters) will be assigned to treatment and with probability prob, ceiling(N*prob)
units (or clusters) will be assigned to treatment. prob must be a real number be-
tween 0 and 1 inclusive. (optional)

Use for a two arm design. Must of be of length N. Under simple random as-
signment, can be different for each unit or cluster. Under complete random
assignment, must be constant across units. Under blocked random assignment,
must be constant within blocks.

Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

Use for a two-arm design in which block_m describes the number of units to as-
sign to treatment within each block. Note that in previous versions of randomizr,
block_m behaved like block_m_each.

Use for a multi-arm design in which the values of block_m_each determine the
number of units (or clusters) assigned to each condition. block_m_each must
be a matrix with the same number of rows as blocks and the same number of
columns as treatment arms. Cell entries are the number of units (or clusters) to

custom_ra

block_prob

block_prob_each

num_arms

conditions

simple

29

be assigned to each treatment arm within each block. The rows should respect
the ordering of the blocks as determined by sort(unique(blocks)). The columns
should be in the order of conditions, if specified.

Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Differs from prob in that the probabil-
ity of assignment can vary across blocks.

Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

logical, defaults to FALSE. If TRUE, simple random assignment is used. When
simple = TRUE, please do not specify m, m_each, block_m, or block_m_each.
If simple = TRUE, prob and prob_each may vary by unit.

permutation_matrix

check_inputs

Examples

for custom random assignment procedures.
logical. Defaults to TRUE.

declaration <- declare_ra(N = 100, m_each = c(30, 30, 40))
Z <- conduct_ra(declaration = declaration)

table(Z)

equivalent to

Z <- conduct_ra(N = 100, m_each = c(30, 30, 40))

table(Z)

custom_ra

Custom Random Assignment

Description

TODO

30 custom_ra_probabilities

Usage

custom_ra(permutation_matrix)

Arguments

permutation_matrix
A permutation matrix

Value

A vector of length N that indicates the treatment condition of each unit. Is numeric in a two-arm
trial and a factor variable (ordered by conditions) in a multi-arm trial.

Examples

TODO

custom_ra_probabilities
probabilities of assignment: Custom Random Assignment

Description

probabilities of assignment: Custom Random Assignment

Usage

custom_ra_probabilities(permutation_matrix)

Arguments

permutation_matrix
A permutation matrix

Value

A matrix of probabilities of assignment

Examples

TODO

declare ra

31

declare_ra Declare a random assignment procedure.

Description

Declare a random assignment procedure.

Usage

declare_ra(

)
Arguments

N The number of units. N must be a positive integer. (required)

blocks A vector of length N that indicates which block each unit belongs to.

clusters A vector of length N that indicates which cluster each unit belongs to.

m Use for a two-arm design in which m units (or clusters) are assigned to treatment
and N-m units (or clusters) are assigned to control. In a blocked design, exactly
m units in each block will be treated. (optional)

m_unit Use for a two-arm trial. Under complete random assignment, must be con-
stant across units. Under blocked random assignment, must be constant within
blocks.

m_each Use for a multi-arm design in which the values of m_each determine the number

N = NULL,

blocks = NULL,

clusters = NULL,

m = NULL,

m_unit = NULL,

m_each = NULL,

prob = NULL,

prob_unit = NULL,
prob_each = NULL,
block_m = NULL,
block_m_each = NULL,
block_prob = NULL,
block_prob_each = NULL,
num_arms = NULL,
conditions = NULL,
simple = FALSE,
permutation_matrix = NULL,
check_inputs = TRUE

of units (or clusters) assigned to each condition. m_each must be a numeric
vector in which each entry is a nonnegative integer that describes how many
units (or clusters) should be assigned to the 1st, 2nd, 3rd... treatment condition.

m_each must sum to N. (optional)

32

declare_ra

prob Use for a two-arm design in which either floor(N*prob) or ceiling(N*prob) units
(or clusters) are assigned to treatment. The probability of assignment to treat-
ment is exactly prob because with probability 1-prob, floor(N*prob) units (or
clusters) will be assigned to treatment and with probability prob, ceiling(N*prob)
units (or clusters) will be assigned to treatment. prob must be a real number be-
tween 0 and 1 inclusive. (optional)

prob_unit Use for a two arm design. Must of be of length N. Under simple random as-
signment, can be different for each unit or cluster. Under complete random
assignment, must be constant across units. Under blocked random assignment,
must be constant within blocks.

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

block_m Use for a two-arm design in which block_m describes the number of units to as-
sign to treatment within each block. Note that in previous versions of randomizr,
block_m behaved like block_m_each.

block_m_each Use for a multi-arm design in which the values of block_m_each determine the
number of units (or clusters) assigned to each condition. block_m_each must
be a matrix with the same number of rows as blocks and the same number of
columns as treatment arms. Cell entries are the number of units (or clusters) to
be assigned to each treatment arm within each block. The rows should respect
the ordering of the blocks as determined by sort(unique(blocks)). The columns
should be in the order of conditions, if specified.

block_prob Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Differs from prob in that the probabil-
ity of assignment can vary across blocks.

block_prob_each
Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

num_arms The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

declare ra 33

simple logical, defaults to FALSE. If TRUE, simple random assignment is used. When
simple = TRUE, please do not specify m, m_each, block_m, or block_m_each.
If simple = TRUE, prob and prob_each may vary by unit.

permutation_matrix
for custom random assignment procedures.

check_inputs logical. Defaults to TRUE.

Value

A list of class "declaration". The list has five entries: $ra_function, a function that generates ran-
dom assignments according to the declaration. $ra_type, a string indicating the type of random
assignment used $probabilities_matrix, a matrix with N rows and num_arms columns, describing
each unit’s probabilities of assignment to conditions. $blocks, the blocking variable. $clusters, the
clustering variable.

Examples

The declare_ra function is used in three ways:

1. To obtain some basic facts about a randomization:
declaration <- declare_ra(N=100, m_each=c(30, 30, 40))
declaration

2. To conduct a random assignment:

Z <- conduct_ra(declaration)
table(Z)

3. To obtain observed condition probabilities

probs <- obtain_condition_probabilities(declaration, Z)
table(probs, Z2)

Simple Random Assignment Declarations
declare_ra(N=100, simple = TRUE)
declare_ra(N=100, prob = .4, simple = TRUE)
declare_ra(N=100, prob_each=c(0.3, 0.3, 0.4),
conditions=c("control”, "placebo”, "treatment”), simple=TRUE)
Complete Random Assignment Declarations
declare_ra(N=100)
declare_ra(N=100, m_each = c(30, 70),

conditions = c("control”, "treatment"”))
declare_ra(N=100, m_each=c(30, 30, 40))

Block Random Assignment Declarations

blocks <- rep(c("A”, "B","C"), times = c(50, 100, 200))

34

block_m_each <- rbind(c(10, 40),
c(30, 70),
c(50, 150))
declare_ra(blocks = blocks, block_m_each = block_m_each)

Cluster Random Assignment Declarations

clusters <- rep(letters, times = 1:26)
declare_ra(clusters = clusters)
declare_ra(clusters = clusters, m_each = c(7, 7, 12))

Blocked and Clustered Random Assignment Declarations

clusters <- rep(letters, times=1:26)

blocks <- rep(NA, length(clusters))
blocks[clusters %in% letters[1:5]] <- "block_1"
blocks[clusters %in% letters[6:10]] <- "block_2"
blocks[clusters %in% letters[11:15]] <- "block_3"
blocks[clusters %in% letters[16:20]1] <- "block_4"
blocks[clusters %in% letters[21:26]1] <- "block_5"

table(blocks, clusters)

declare_ra(clusters = clusters, blocks
declare_ra(clusters = clusters, blocks

blocks)

blocks, prob_each = c(.2,

-3

declare_rs

declare_rs Declare a random sampling procedure.

Description

Declare a random sampling procedure.

Usage

declare_rs(
N = NULL,
strata = NULL,
clusters = NULL,
n = NULL,
n_unit = NULL,
prob = NULL,
prob_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
simple = FALSE,

declare_rs

check_inputs

)

Arguments

N
strata
clusters

n

n_unit

prob

prob_unit

strata_n

strata_prob

simple

check_inputs

Value

35

= TRUE

The number of units. N must be a positive integer. (required)
A vector of length N that indicates which stratum each unit belongs to.
A vector of length N that indicates which cluster each unit belongs to.

Use for a design in which n units (or clusters) are sampled. In a stratified design,
exactly n units in each stratum will be sampled. (optional)

Under complete random sampling, must be constant across units. Under strati-
fied random sampling, must be constant within strata.

Use for a design in which either floor(N*prob) or ceiling(N*prob) units (or clus-
ters) are sampled. The probability of being sampled is exactly prob because with
probability 1-prob, floor(N*prob) units (or clusters) will be sampled and with
probability prob, ceiling(N*prob) units (or clusters) will be sampled. prob must
be a real number between 0 and 1 inclusive. (optional)

Must of be of length N. Under simple random sampling, can be different for
each unit or cluster. Under complete random sampling, must be constant across
units. Under stratified random sampling, must be constant within strata.

Use for a design in which strata_n describes the number of units to sample within
each stratum.

Use for a design in which strata_prob describes the probability of being sampled
within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

logical, defaults to FALSE. If TRUE, simple random sampling is used. When
simple = TRUE, please do not specify n or strata_n. When simple = TRUE, prob
may vary by unit.

logical. Defaults to TRUE.

A list of class "declaration”. The list has five entries: $rs_function, a function that generates random
samplings according to the declaration. $rs_type, a string indicating the type of random sampling
used $probabilities_vector, A vector length N indicating the probability of being sampled. $strata,
the stratification variable. $clusters, the clustering variable.

Examples

The declare_rs function is used in three ways:

1. To obtain some basic facts about a sampling procedure:
declaration <- declare_rs(N = 100, n = 30)

declaration

2. To draw a random sample:

36

S <- draw_rs(declaration)
table(S)

3. To obtain inclusion probabilities

probs <- obtain_inclusion_probabilities(declaration)
table(probs, S)

Simple Random Sampling Declarations

declare_rs(N = 100, simple = TRUE)
declare_rs(N = 100, prob = .4, simple = TRUE)

Complete Random Sampling Declarations

declare_rs(N = 100)
declare_rs(N = 100, n = 30)

Stratified Random Sampling Declarations

strata <- rep(c("A", "B","C"), times=c(50, 100, 200))
declare_rs(strata = strata)
declare_rs(strata = strata, prob = .5)

Cluster Random Sampling Declarations

clusters <- rep(letters, times = 1:26)
declare_rs(clusters = clusters)
declare_rs(clusters = clusters, n = 10)

Stratified and Clustered Random Sampling Declarations

clusters <- rep(letters, times = 1:26)

strata <- rep(NA, length(clusters))

stratalclusters %in% letters[1:5]] <- "stratum_1"
stratalclusters %in% letters[6:10]] <- "stratum_2"
stratalclusters %in% letters[11:15]] <- "stratum_3"
stratalclusters %in% letters[16:20]] <- "stratum_4"
stratalclusters %in% letters[21:26]1] <- "stratum_5"

table(strata, clusters)

declare_rs(clusters = clusters, strata = strata)
declare_rs(clusters = clusters, strata = strata, prob = .3)

draw_rs

draw_rs Draw a random sample

draw_rs

Description

37

You can either give draw_rs() an declaration, as created by declare_rs or you can specify the other
arguments to describe a random sampling procedure.

Usage

draw_rs(

declaration

N = NULL,
strata =
clusters
n = NULL,

NULL,

NULL,
NULL,

n_unit = NULL,

prob = NULL,

prob_unit = NULL,

strata_n

NULL,

strata_prob = NULL,
simple = FALSE,

check_inputs

Arguments

declaration
N

strata
clusters

n

n_unit

prob

prob_unit

strata_n

strata_prob

= TRUE

A random sampling declaration, created by declare_rs.

The number of units. N must be a positive integer. (required)

A vector of length N that indicates which stratum each unit belongs to.
A vector of length N that indicates which cluster each unit belongs to.

Use for a design in which n units (or clusters) are sampled. In a stratified design,
exactly n units in each stratum will be sampled. (optional)

Under complete random sampling, must be constant across units. Under strati-
fied random sampling, must be constant within strata.

Use for a design in which either floor(N*prob) or ceiling(N*prob) units (or clus-
ters) are sampled. The probability of being sampled is exactly prob because with
probability 1-prob, floor(N*prob) units (or clusters) will be sampled and with
probability prob, ceiling(N*prob) units (or clusters) will be sampled. prob must
be a real number between 0 and 1 inclusive. (optional)

Must of be of length N. Under simple random sampling, can be different for
each unit or cluster. Under complete random sampling, must be constant across
units. Under stratified random sampling, must be constant within strata.

Use for a design in which strata_n describes the number of units to sample within
each stratum.

Use for a design in which strata_prob describes the probability of being sampled
within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

38

simple

check_inputs

Examples

declaration <- declare_rs(N = 100, n = 30)

obtain_condition_probabilities

logical, defaults to FALSE. If TRUE, simple random sampling is used. When
simple = TRUE, please do not specify n or strata_n. When simple = TRUE, prob

may vary by unit.
logical. Defaults to TRUE.

S <- draw_rs(declaration = declaration)

table(S)

equivalent to

S <- draw_rs(N = 100, n = 30)

table(S)

obtain_condition_probabilities

Obtain the probabilities of units being in the conditions that they are

mn.

Description

You can either give obtain_condition_probabilities() an declaration, as created by declare_ra or
you can specify the other arguments to describe a random assignment procedure.

This function is especially useful when units have different probabilities of assignment and the

analyst plans to use inverse-probability weights.

Usage

obtain_condition_probabilities(

declaration
assignment,
N = NULL,

= NULL,

blocks = NULL,
clusters = NULL,

m = NULL,

m_unit = NULL,
m_each = NULL,

prob = NULL,

prob_unit =
prob_each =

NULL,
NULL,

block_m = NULL,
block_m_each = NULL,

block_prob =

NULL,

block_prob_each = NULL,
num_arms = NULL,

obtain_condition_probabilities 39

conditions =

NULL,

simple = FALSE,
permutation_matrix = NULL,

check_inputs

Arguments

declaration
assignment
N

blocks
clusters

m

m_unit

m_each

prob

prob_unit

prob_each

block_m

= TRUE

A random assignment declaration, created by declare_ra.

A vector of random assignments, often created by conduct_ra.

The number of units. N must be a positive integer. (required)

A vector of length N that indicates which block each unit belongs to.
A vector of length N that indicates which cluster each unit belongs to.

Use for a two-arm design in which m units (or clusters) are assigned to treatment
and N-m units (or clusters) are assigned to control. In a blocked design, exactly
m units in each block will be treated. (optional)

Use for a two-arm trial. Under complete random assignment, must be con-
stant across units. Under blocked random assignment, must be constant within
blocks.

Use for a multi-arm design in which the values of m_each determine the number
of units (or clusters) assigned to each condition. m_each must be a numeric
vector in which each entry is a nonnegative integer that describes how many
units (or clusters) should be assigned to the 1st, 2nd, 3rd... treatment condition.
m_each must sum to N. (optional)

Use for a two-arm design in which either floor(N*prob) or ceiling(N*prob) units
(or clusters) are assigned to treatment. The probability of assignment to treat-
ment is exactly prob because with probability 1-prob, floor(N*prob) units (or
clusters) will be assigned to treatment and with probability prob, ceiling(N*prob)
units (or clusters) will be assigned to treatment. prob must be a real number be-
tween 0 and 1 inclusive. (optional)

Use for a two arm design. Must of be of length N. Under simple random as-
signment, can be different for each unit or cluster. Under complete random
assignment, must be constant across units. Under blocked random assignment,
must be constant within blocks.

Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. Because of integer issues, the exact number of units assigned
to each condition may differ (slightly) from assignment to assignment, but the
overall probability of assignment is exactly prob_each. (optional)

Use for a two-arm design in which block_m describes the number of units to as-
sign to treatment within each block. Note that in previous versions of randomizr,
block_m behaved like block_m_each.

40

block_m_each

block_prob

block_prob_each

num_arms

conditions

simple

obtain_condition_probabilities

Use for a multi-arm design in which the values of block_m_each determine the
number of units (or clusters) assigned to each condition. block_m_each must
be a matrix with the same number of rows as blocks and the same number of
columns as treatment arms. Cell entries are the number of units (or clusters) to
be assigned to each treatment arm within each block. The rows should respect
the ordering of the blocks as determined by sort(unique(blocks)). The columns
should be in the order of conditions, if specified.

Use for a two-arm design in which block_prob describes the probability of as-
signment to treatment within each block. Differs from prob in that the probabil-
ity of assignment can vary across blocks.

Use for a multi-arm design in which the values of block_prob_each determine
the probabilities of assignment to each treatment condition. block_prob_each
must be a matrix with the same number of rows as blocks and the same num-
ber of columns as treatment arms. Cell entries are the probabilities of assign-
ment to treatment within each block. The rows should respect the ordering of
the blocks as determined by sort(unique(blocks)). Use only if the probabilities
of assignment should vary by block, otherwise use prob_each. Each row of
block_prob_each must sum to 1.

The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

logical, defaults to FALSE. If TRUE, simple random assignment is used. When
simple = TRUE, please do not specify m, m_each, block_m, or block_m_each.
If simple = TRUE, prob and prob_each may vary by unit.

permutation_matrix

check_inputs

Examples

for custom random assignment procedures.
logical. Defaults to TRUE.

Conduct a block random assignment
blocks <- rep(c("A", "B","C"), times=c(50, 100, 200))
block_m_each <- rbind(c(10, 40),

c(30, 70),
c(50, 150))

declaration <- declare_ra(blocks = blocks, block_m_each = block_m_each)
Z <- conduct_ra(declaration = declaration)

table(Z, blocks)

observed_probabilities <-
obtain_condition_probabilities(declaration = declaration, assignment = Z)

obtain_inclusion_probabilities 41

Probabilities in the control group:
table(observed_probabilities[Z == @], blocks[Z == @])

Probabilities in the treatment group:
table(observed_probabilities[Z == 1], blocks[Z == 1])

Sometimes it is convenient to skip the declaration step
Z <- conduct_ra(blocks = blocks, block_m_each = block_m_each)
observed_probabilities <-
obtain_condition_probabilities(assignment = Z,
blocks = blocks,
block_m_each = block_m_each)
table(observed_probabilities[Z == @], blocks[Z == @])
table(observed_probabilities[Z == 1], blocks[Z == 1])

obtain_inclusion_probabilities
Obtain inclusion probabilities

Description

You can either give obtain_inclusion_probabilities() an declaration, as created by declare_rs or
you can specify the other arguments to describe a random sampling procedure.

This function is especially useful when units have different inclusion probabilities and the analyst
plans to use inverse-probability weights.

Usage

obtain_inclusion_probabilities(
declaration = NULL,
N = NULL,
strata = NULL,
clusters = NULL,
n = NULL,
n_unit = NULL,
prob = NULL,
prob_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
simple = FALSE,
check_inputs = TRUE

Arguments

declaration
N

strata
clusters

n

n_unit

prob

prob_unit

strata_n

strata_prob

simple

check_inputs

Examples

obtain_inclusion_probabilities

A random sampling declaration, created by declare_rs.

The number of units. N must be a positive integer. (required)

A vector of length N that indicates which stratum each unit belongs to.
A vector of length N that indicates which cluster each unit belongs to.

Use for a design in which n units (or clusters) are sampled. In a stratified design,
exactly n units in each stratum will be sampled. (optional)

Under complete random sampling, must be constant across units. Under strati-
fied random sampling, must be constant within strata.

Use for a design in which either floor(N*prob) or ceiling(N*prob) units (or clus-
ters) are sampled. The probability of being sampled is exactly prob because with
probability 1-prob, floor(N*prob) units (or clusters) will be sampled and with
probability prob, ceiling(N*prob) units (or clusters) will be sampled. prob must
be a real number between 0 and 1 inclusive. (optional)

Must of be of length N. Under simple random sampling, can be different for
each unit or cluster. Under complete random sampling, must be constant across
units. Under stratified random sampling, must be constant within strata.

Use for a design in which strata_n describes the number of units to sample within
each stratum.

Use for a design in which strata_prob describes the probability of being sampled
within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

logical, defaults to FALSE. If TRUE, simple random sampling is used. When
simple = TRUE, please do not specify n or strata_n. When simple = TRUE, prob
may vary by unit.

logical. Defaults to TRUE.

Draw a stratified random sample
strata <- rep(c("A", "B","C"), times=c(50, 100, 200))

declaration <- declare_rs(strata = strata)

observed_probabilities <-
obtain_inclusion_probabilities(declaration = declaration)

table(strata, observed_probabilities)

Sometimes it is convenient to skip the declaration step
observed_probabilities <-
obtain_inclusion_probabilities(strata = strata)

table(strata, observed_probabilities)

obtain_num_permutations 43

obtain_num_permutations

Obtain the Number of Possible Permutations from a Random Assign-
ment Declaration

Description

Obtain the Number of Possible Permutations from a Random Assignment Declaration

Usage

obtain_num_permutations(declaration)

Arguments

declaration A random assignment or sampling declaration, created by declare_raor declare_rs.

Value

a scalar

Examples

Random assignment
complete

declaration <- declare_ra(N = 4)

perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

blocked

blocks <- c("A", "A", "B", "B", "C", "C", "C")
declaration <- declare_ra(blocks = blocks)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

clustered

clusters <- c("A", "B", "A", "B", "C", "C", "C")
declaration <- declare_ra(clusters = clusters)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

large

declaration <- declare_ra(20)

44 obtain_permutation_matrix

choose (20, 10)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

Random sampling
complete

declaration <- declare_rs(N = 4)

perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

stratified

strata <- c("A", "A", "B", "B", "C", "C", "C")
declaration <- declare_rs(strata = strata)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

clustered

clusters <- c("A", "B", "A", "B", "C", "C", "C")
declaration <- declare_rs(clusters = clusters)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

large
declaration <- declare_rs(N = 20)

perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_permutation_matrix
Obtain Permutation Matrix from a Random Assignment Declaration

Description

Obtain Permutation Matrix from a Random Assignment Declaration

Usage

obtain_permutation_matrix(declaration, maximum_permutations = 10000)

obtain_permutation_matrix 45

Arguments

declaration A random assignment declaration, created by declare_ra.

maximum_permutations
If the number of possible random assignments exceeds maximum_permutations,
obtain_permutation_matrix will return a random sample of maximum_permutations
permutations. Defaults to 10,000.

Value

a matrix of all possible (or a random sample of all possible) random assignments consistent with a
declaration.

Examples
complete

declaration <- declare_ra(N = 4)

perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

blocked

blocks <- c("A", "A", "B", "B", "C", "C", "C")
declaration <- declare_ra(blocks = blocks)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

clustered

clusters <- c("A", "B", "A", "B", "C", "C", "C")
declaration <- declare_ra(clusters = clusters)
perms <- obtain_permutation_matrix(declaration)
dim(perms)

obtain_num_permutations(declaration)

large

declaration <- declare_ra(20)

choose (20, 10)

perms <- obtain_permutation_matrix(declaration)
dim(perms)

46 randomizr

obtain_permutation_probabilities
Obtain the probabilities of permutations

Description

Obtain the probabilities of permutations

Usage

obtain_permutation_probabilities(declaration)

Arguments

declaration A random assignment declaration, created by declare_ra.

Value

a vector of probabilities

Examples

declaration <- declare_ra(N = 5, prob_each = c(.49, .51))
obtain_num_permutations(declaration)

perm_probs <- obtain_permutation_probabilities(declaration)
perms <- obtain_permutation_matrix(declaration)

probabilities of assignment from declaration *shouldx match the average over all permutations
true_probabilities <- declaration$probabilities_matrix[,2]
true_probabilities

correctly WRONG because the perms have different probs!
rowMeans (perms)

correctly correct!
perms %*% perm_probs

randomizr randomizr

Description

Easy-to-Use Tools for Common Forms of Random Assignment and Sampling

simple_ra 47

Author(s)
Maintainer: Alexander Coppock <acoppock@gmail.com> (ORCID)

Other contributors:

* Jasper Cooper <jaspercooper@gmail.com> (ORCID) [contributor]
* Neal Fultz <nfultz@gmail.com> (C version of restricted partitions) [contributor]

¢ Graeme Blair <graeme.blair@gmail.com> (ORCID) [contributor]

See Also
Useful links:
* https://declaredesign.org/r/randomizr/

* https://github.com/DeclareDesign/randomizr

* Report bugs at https://github.com/DeclareDesign/randomizr/issues

simple_ra Simple Random Assignment

Description

simple_ra implements a random assignment procedure in which units are independently assigned
to treatment conditions. Because units are assigned independently, the number of units that are
assigned to each condition can vary from assignment to assignment. For most experimental ap-
plications in which the number of experimental units is known in advance, complete_ra is better
because the number of units assigned to each condition is fixed across assignments.

In most cases, users should specify N and not more than one of prob, prob_each, or num_arms.

If only N is specified, a two-arm trial with prob = 0.5 is assumed.

Usage
simple_ra(
N,
prob = NULL,

prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE,
simple = TRUE

https://orcid.org/0000-0002-5733-2386
https://orcid.org/0000-0002-8639-3188
https://orcid.org/0000-0001-9164-2102
https://declaredesign.org/r/randomizr/
https://github.com/DeclareDesign/randomizr
https://github.com/DeclareDesign/randomizr/issues

48

Arguments

N
prob

prob_unit

prob_each

num_arms

conditions

simple_ra

The number of units. N must be a positive integer. (required)

Use for a two-arm design. prob is the probability of assignment to treatment
and must be a real number between 0 and 1 inclusive and must be length 1.
(optional)

Use for a two-arm design. prob is the probability of assignment to treatment
and must be a real number between 0 and 1 inclusive and must be length N.
(optional)

Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. It may be a conditions-length vector or a N-by-conditions matrix.
(optional)

The number of treatment arms. If unspecified, num_arms will be determined
from the other arguments. (optional)

A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named O (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

check_inputs logical. Defaults to TRUE.

simple

Value

logical. internal use only.

A vector of length N that indicates the treatment condition of each unit. Is numeric in a two-arm
trial and a factor variable (ordered by conditions) in a multi-arm trial.

Examples

Two Group

Z <- simple_

table(2)

Z <- simple_

table(2)

Z <- simple_

table(Z)

Multi-arm

Z <- simple_

table(2)

Z <- simple_

Designs

ra(N=100)

ra(N=100, prob=0.5)

ra(N=100, prob_each = c(0.3, 0.7),
conditions = c("control”, "treatment"))

Designs
ra(N=100, num_arms=3)

ra(N=100, prob_each=c(0.3, 0.3, 0.4))

simple_ra_probabilities 49

table(2)

Z <- simple_ra(N=100, prob_each=c(0.3, 0.3, 0.4),

conditions=c("control”, "placebo”, "treatment”))
table(2)
Z <- simple_ra(N=100, conditions=c("control”, "placebo”, "treatment"))
table(Z)

simple_ra_probabilities
probabilities of assignment: Simple Random Assignment

Description

probabilities of assignment: Simple Random Assignment

Usage
simple_ra_probabilities(
N,
prob = NULL,

prob_unit = NULL,
prob_each = NULL,
num_arms = NULL,
conditions = NULL,
check_inputs = TRUE,
simple = TRUE

)
Arguments

N The number of units. N must be a positive integer. (required)

prob Use for a two-arm design. prob is the probability of assignment to treatment
and must be a real number between 0 and 1 inclusive and must be length 1.
(optional)

prob_unit Use for a two-arm design. prob is the probability of assignment to treatment
and must be a real number between 0 and 1 inclusive and must be length N.
(optional)

prob_each Use for a multi-arm design in which the values of prob_each determine the
probabilities of assignment to each treatment condition. prob_each must be a
numeric vector giving the probability of assignment to each condition. All en-
tries must be nonnegative real numbers between 0 and 1 inclusive and the total
must sum to 1. It may be a conditions-length vector or a N-by-conditions matrix.
(optional)

num_arms The number of treatment arms. If unspecified, num_arms will be determined

from the other arguments. (optional)

50 simple_rs

conditions A character vector giving the names of the treatment groups. If unspecified, the
treatment groups will be named 0 (for control) and 1 (for treatment) in a two-arm
trial and T1, T2, T3, in a multi-arm trial. An exception is a two-group design in
which num_arms is set to 2, in which case the condition names are T1 and T2,
as in a multi-arm trial with two arms. (optional)

check_inputs logical. Defaults to TRUE.

simple logical. internal use only.

Value

A matrix of probabilities of assignment

Examples

Two Group Designs
prob_mat <- simple_ra_probabilities(N=100)
head(prob_mat)

prob_mat <- simple_ra_probabilities(N=100, prob=0.5)
head(prob_mat)

prob_mat <- simple_ra_probabilities(N=100, prob_each = c(0.3, 0.7),
conditions = c("control”, "treatment"))
head(prob_mat)

Multi-arm Designs
prob_mat <- simple_ra_probabilities(N=100, num_arms=3)
head(prob_mat)

prob_mat <- simple_ra_probabilities(N=100@, prob_each=c(0.3, 0.3, 0.4))
head(prob_mat)

prob_mat <- simple_ra_probabilities(N=100, prob_each=c(0.3, 0.3, 0.4),
conditions=c("control”, "placebo”, "treatment"))
head(prob_mat)

prob_mat <- simple_ra_probabilities(N=100, conditions=c("control”, "placebo”, "treatment"))
head(prob_mat)

simple_rs Simple Random Sampling

Description

simple_rs implements a random sampling procedure in which units are independently sampled. Be-
cause units are sampled independently, the number of units that are sampled can vary from sample
to sample. For most applications in which the number of units in the sampling frame is known in
advance, complete_rs is better because the number of units sampled is fixed across sampled.

simple_rs_probabilities 51

Usage

simple_rs(N, prob = NULL, prob_unit = NULL, check_inputs = TRUE, simple = TRUE)

Arguments
N The number of units. N must be a positive integer. (required)
prob prob is the probability of being sampled must be a real number between 0 and 1
inclusive, and must be of length 1. (optional)
prob_unit prob is the probability of being sampled must be a real number between 0 and 1

inclusive, and must be of length N. (optional)
check_inputs logical. Defaults to TRUE.

simple logical. internal use only.

Value

A numeric vector of length N that indicates if a unit is sampled (1) or not (0).

Examples

S <- simple_rs(N
table(S)

100)

S <- simple_rs(N = 100, prob = 0.3)
table(S)

simple_rs_probabilities
Inclusion Probabilities: Simple Random Sampling

Description

Inclusion Probabilities: Simple Random Sampling

Usage
simple_rs_probabilities(
N,
prob = NULL,

prob_unit = NULL,
check_inputs = TRUE,
simple = TRUE

52

Arguments

N

prob

prob_unit

check_inputs

simple

Value

strata_and_cluster_rs

The number of units. N must be a positive integer. (required)

prob is the probability of being sampled must be a real number between 0 and 1

inclusive, and must be of length 1. (optional)

prob is the probability of being sampled must be a real number between 0 and 1

inclusive, and must be of length N. (optional)

logical. Defaults to TRUE.

logical. internal use only.

A vector length N indicating the probability of being sampled.

Examples

probs <- simple_ra_probabilities(N

table(probs)

probs <- simple_ra_probabilities(N

table(probs)

100)

100, prob = 0.3)

strata_and_cluster_rs Stratified and Clustered Random Sampling

Description

A random sampling procedure in which units are sampled as clusters and clusters are nested within
strata.

Usage

strata_and_cluster_rs(

strata = NULL,
clusters = NULL,
prob = NULL,
prob_unit = NULL,

n = NULL,

n_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
check_inputs = TRUE

strata_and_cluster_rs 53

Arguments

strata A vector of length N that indicates which stratum each unit belongs to.

clusters A vector of length N that indicates which cluster each unit belongs to.

prob Use for a design in which either floor(N_clusters_stratum*prob) or ceiling(N_clusters_stratum*prob)
clusters are sampled within each stratum. The probability of being sampled is
exactly prob because with probability 1-prob, floor(N_clusters_stratum*prob)
clusters will be sampled and with probability prob, ceiling(N_clusters_stratum*prob)
clusters will be sampled. prob must be a real number between 0 and 1 inclusive.
(optional)

prob_unit Must of be of length N. tapply(prob_unit, blocks, unique) will be passed to
strata_prob.

n Use for a design in which the scalar n describes the fixed number of units to
sample in each stratum. This number does not vary across strata.

n_unit Must be of length N. tapply(m_unit, blocks, unique) will be passed to strata_n.

strata_n Use for a design in which strata_n describes the number of units to sample within
each stratum.

strata_prob Use for a design in which strata_prob describes the probability of being sampled

within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

check_inputs logical. Defaults to TRUE.

Value

A numeric vector of length N that indicates if a unit is sampled (1) or not (0).

Examples

clusters <- rep(letters, times = 1:26)

strata <- rep(NA, length(clusters))

stratalclusters %in% letters[1:5]] <- "stratum_1"
stratalclusters %in% letters[6:10]] <- "stratum_2"
stratalclusters %in% letters[11:15]] <- "stratum_3"
stratalclusters %in% letters[16:20]] <- "stratum_4"
stratalclusters %in% letters[21:26]] <- "stratum_5"

table(strata, clusters)

S <- strata_and_cluster_rs(strata = strata,
clusters = clusters)

table(S, strata)
table(S, clusters)

S <- strata_and_cluster_rs(clusters = clusters,
strata = strata,
prob = .5)

54 strata_and_cluster_rs_probabilities

table(S, clusters)
table(S, strata)

S <- strata_and_cluster_rs(clusters = clusters,
strata = strata,
strata_n = c(2, 3, 2, 3, 2))

table(S, clusters)
table(S, strata)

S <- strata_and_cluster_rs(clusters = clusters,
strata = strata,
strata_prob = c(.1, .2, .3, .4, .5))

table(S, clusters)
table(S, strata)

strata_and_cluster_rs_probabilities
Inclusion Probabilities: Stratified and Clustered Random Sampling

Description

Inclusion Probabilities: Stratified and Clustered Random Sampling

Usage

strata_and_cluster_rs_probabilities(
strata = NULL,
clusters = NULL,
prob = NULL,
prob_unit = NULL,
n = NULL,
n_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
check_inputs = TRUE

Arguments

strata A vector of length N that indicates which stratum each unit belongs to.

clusters A vector of length N that indicates which cluster each unit belongs to.

strata_and_cluster_rs_probabilities 55

prob Use for a design in which either floor(N_clusters_stratum*prob) or ceiling(N_clusters_stratum*prob)
clusters are sampled within each stratum. The probability of being sampled is
exactly prob because with probability 1-prob, floor(N_clusters_stratum*prob)
clusters will be sampled and with probability prob, ceiling(N_clusters_stratum*prob)
clusters will be sampled. prob must be a real number between 0 and 1 inclusive.

(optional)

prob_unit Must of be of length N. tapply(prob_unit, blocks, unique) will be passed to
strata_prob.

n Use for a design in which the scalar n describes the fixed number of units to
sample in each stratum. This number does not vary across strata.

n_unit Must be of length N. tapply(m_unit, blocks, unique) will be passed to strata_n.

strata_n Use for a design in which strata_n describes the number of units to sample within

each stratum.

strata_prob Use for a design in which strata_prob describes the probability of being sampled
within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

check_inputs logical. Defaults to TRUE.

Value

A vector length N indicating the probability of being sampled.

Examples

clusters <- rep(letters, times = 1:26)

strata <- rep(NA, length(clusters))

stratalclusters %in% letters[1:5]] <- "stratum_1"
stratalclusters %in% letters[6:10]] <- "stratum_2"
stratalclusters %in% letters[11:15]] <- "stratum_3"
stratalclusters %in% letters[16:20]] <- "stratum_4"
stratalclusters %in% letters[21:26]] <- "stratum_5"

table(strata, clusters)

probs <- strata_and_cluster_rs_probabilities(strata = strata,
clusters = clusters)

table(probs, strata)
table(probs, clusters)

probs <- strata_and_cluster_rs_probabilities(clusters = clusters,
strata = strata,
prob = .5)

table(probs, clusters)
table(probs, strata)

56 strata_rs

probs <- strata_and_cluster_rs_probabilities(clusters = clusters,
strata = strata,
strata_n = c(2, 3, 2, 3, 2))

table(probs, clusters)
table(probs, strata)

probs <- strata_and_cluster_rs_probabilities(clusters = clusters,
strata = strata,
strata_prob = c(.1, .2, .3, .4, .5))

table(probs, clusters)
table(probs, strata)

strata_rs Stratified Random Sampling

Description

strata_rs implements a random sampling procedure in which units that are grouped into strata de-
fined by covariates are sample using complete random sampling within stratum For example, imag-
ine that 50 of 100 men are sampled and 75 of 200 women are sampled.

Usage

strata_rs(
strata = NULL,
prob = NULL,
prob_unit = NULL,
n = NULL,
n_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
check_inputs = TRUE

)
Arguments
strata A vector of length N that indicates which stratum each unit belongs to. Can be
a character, factor, or numeric vector. (required)
prob Use for a design in which either floor(N_stratum*prob) or ceiling(N_stratum*prob)

units are sampled within each stratum. The probability of being sampled is ex-
actly prob because with probability 1-prob, floor(N_stratum*prob) units will be
sampled and with probability prob, ceiling(N_stratum*prob) units will be sam-
pled. prob must be a real number between 0 and 1 inclusive. (optional)

strata_rs

prob_unit

n_unit

strata_n

strata_prob

check_inputs

Value

57

Must of be of length N. tapply(prob_unit, strata, unique) will be passed to
strata_prob.

Use for a design in which the scalar n describes the fixed number of units to
sample in each stratum. This number does not vary across strata.

Must be of length N. tapply(m_unit, strata, unique) will be passed to strata_n.

Use for a design in which the numeric vector strata_n describes the number of
units to sample within each stratum.

Use for a design in which strata_prob describes the probability of being sampled
within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

logical. Defaults to TRUE.

A numeric vector of length N that indicates if a unit is sampled (1) or not (0).

Examples

strata <- rep(c("A"”, "B","C"), times = c(50, 100, 200))
Z <- strata_rs(strata = strata)

table(strata, Z2)

7 <- strata_rs(strata = strata, prob

table(strata, Z2)

.3)

Z <- strata_rs(strata = strata, n = 20)

table(strata, Z2)

7 <- strata_rs(strata = strata, strata_prob = c(.1, .2, .3))

table(strata, Z2)

Z <- strata_rs(strata = strata,
prob_unit = rep(c(.1, .2, .3), times = c(50, 100, 200)))

table(strata, Z)

Z <- strata_rs(strata = strata, strata_n = c(20, 30, 40))

table(strata, Z2)

Z <- strata_rs(strata

strata,

n_unit = rep(c(20, 30, 40), times = c(50, 100, 200)))

table(strata, Z7)

58 strata_rs_probabilities

strata_rs_probabilities
Inclusion Probabilities: Stratified Random Sampling

Description

Inclusion Probabilities: Stratified Random Sampling

Usage

strata_rs_probabilities(
strata = NULL,
prob = NULL,
prob_unit = NULL,
n = NULL,
n_unit = NULL,
strata_n = NULL,
strata_prob = NULL,
check_inputs = TRUE

)
Arguments

strata A vector of length N that indicates which stratum each unit belongs to. Can be
a character, factor, or numeric vector. (required)

prob Use for a design in which either floor(N_stratum*prob) or ceiling(N_stratum*prob)
units are sampled within each stratum. The probability of being sampled is ex-
actly prob because with probability 1-prob, floor(N_stratum*prob) units will be
sampled and with probability prob, ceiling(N_stratum*prob) units will be sam-
pled. prob must be a real number between 0 and 1 inclusive. (optional)

prob_unit Must of be of length N. tapply(prob_unit, strata, unique) will be passed to
strata_prob.

n Use for a design in which the scalar n describes the fixed number of units to
sample in each stratum. This number does not vary across strata.

n_unit Must be of length N. tapply(m_unit, strata, unique) will be passed to strata_n.

strata_n Use for a design in which the numeric vector strata_n describes the number of
units to sample within each stratum.

strata_prob Use for a design in which strata_prob describes the probability of being sampled

within each stratum. Differs from prob in that the probability of being sampled
can vary across strata.

check_inputs logical. Defaults to TRUE.

Value

A vector length N indicating the probability of being sampled.

strata_rs_probabilities

Examples

strata <- rep(c("A”, "B","C"), times =
probs <- strata_rs_probabilities(strata
table(strata, probs)

probs <- strata_rs_probabilities(strata
table(strata, probs)

probs <- strata_rs_probabilities(strata
table(strata, probs)

probs <- strata_rs_probabilities(strata
table(strata, probs)

c(50, 100,

strata)

strata,

strata,

strata,

200))

prob = .2)

strata_prob = c(.1, .2,

strata_n = c(10, 40, 70))

-3

59

Index

block_and_cluster_ra, 2
block_and_cluster_ra_probabilities, 5
block_ra, 8

block_ra_probabilities, 11

cluster_ra, 13
cluster_ra_probabilities, 15
cluster_rs, 17
cluster_rs_probabilities, 19
complete_ra, 20, 47
complete_ra_probabilities, 22
complete_rs, 24, 50
complete_rs_probabilities, 26
conduct_ra, 27, 39
custom_ra, 29
custom_ra_probabilities, 30

declare_ra, 27, 28, 31, 38, 39, 43, 45, 46
declare_rs, 34, 37,4143
draw_rs, 36

obtain_condition_probabilities, 38
obtain_inclusion_probabilities, 41
obtain_num_permutations, 43
obtain_permutation_matrix, 44
obtain_permutation_probabilities, 46

randomizr, 46
randomizr-package (randomizr), 46

simple_ra, 13,47
simple_ra_probabilities, 49
simple_rs, 18, 50
simple_rs_probabilities, 51
strata_and_cluster_rs, 52
strata_and_cluster_rs_probabilities,
54
strata_rs, 56
strata_rs_probabilities, 58

60

	block_and_cluster_ra
	block_and_cluster_ra_probabilities
	block_ra
	block_ra_probabilities
	cluster_ra
	cluster_ra_probabilities
	cluster_rs
	cluster_rs_probabilities
	complete_ra
	complete_ra_probabilities
	complete_rs
	complete_rs_probabilities
	conduct_ra
	custom_ra
	custom_ra_probabilities
	declare_ra
	declare_rs
	draw_rs
	obtain_condition_probabilities
	obtain_inclusion_probabilities
	obtain_num_permutations
	obtain_permutation_matrix
	obtain_permutation_probabilities
	randomizr
	simple_ra
	simple_ra_probabilities
	simple_rs
	simple_rs_probabilities
	strata_and_cluster_rs
	strata_and_cluster_rs_probabilities
	strata_rs
	strata_rs_probabilities
	Index

