
Package ‘reporter’
February 7, 2026

Type Package

Title Creates Statistical Reports

Version 1.4.6

Maintainer David Bosak <dbosak01@gmail.com>

Description Contains functions to create regulatory-style statistical reports.
Originally designed to create tables, listings, and figures for the
pharmaceutical, biotechnology, and medical device industries, these
reports are generalized enough that they could be used in any industry.
Generates text, rich-text, PDF, HTML, and Microsoft Word file formats.
The package specializes
in printing wide and long tables with automatic page wrapping and splitting.
Reports can be produced with a minimum of function calls, and without
relying on other table packages. The package supports titles, footnotes,
page header, page footers, spanning headers, page by variables,
and automatic page numbering.

License CC0

Encoding UTF-8

URL https://reporter.r-sassy.org, https://github.com/dbosak01/reporter

BugReports https://github.com/dbosak01/reporter/issues

Depends R (>= 3.6), common (>= 1.1.0)

Suggests testthat, magrittr, dplyr, tidyr, readr, knitr, rmarkdown,
ggplot2, gridExtra, survminer, utils, logr, covr, libr, devEMF,
patchwork, tools

Imports fmtr(>= 1.5.8), stringi, crayon, jpeg, graphics, grDevices,
zip, withr, glue

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author David Bosak [aut, cre],
Bill Huang [aut],
Kevin Kramer [ctb],

1

https://reporter.r-sassy.org
https://github.com/dbosak01/reporter
https://github.com/dbosak01/reporter/issues

2 Contents

Duong Tran [ctb],
Raphael Huang [ctb],
Archytas Clinical Solutions [cph]

Repository CRAN

Date/Publication 2026-02-07 06:10:03 UTC

Contents

add_content . 3
add_style . 5
cell_style . 7
column_defaults . 8
create_plot . 11
create_report . 13
create_style . 16
create_table . 19
create_text . 23
define . 25
footer_image . 29
footnotes . 31
ftn . 33
get_theme . 34
header_image . 36
lowcase_parens . 37
options_fixed . 39
page_by . 43
page_footer . 46
page_header . 48
print.plot_spec . 51
print.report_spec . 52
print.style_spec . 53
print.table_spec . 54
print.text_spec . 55
set_margins . 56
span . 58
spanning_header . 59
stub . 62
titles . 65
title_header . 68
ttl . 71
write_registration_file . 72
write_report . 74

Index 77

add_content 3

add_content Add content to a report

Description

This function adds an object to the report content list. A report will accept multiple pieces of
content. The add_content function also controls overall alignment of the content on the page, and
whether there is a page break before or after.

Usage

add_content(
x,
object,
page_break = TRUE,
align = "center",
blank_row = "below"

)

Arguments

x The report_spec to append content to.

object The object to append.

page_break Whether to add a page break after the object. Valid values are TRUE or FALSE.
You can manipulate the page_break parameter to add multiple objects to the
same page.

align How to align the content. Valid values are ’left’, ’right’, ’center’, and ’centre’.

blank_row Whether to put a blank row above or below the content. Valid values are ’above’,
’below’, ’both’, or ’none’.

Details

The add_content function adds a piece of content to a report. For a text report, valid objects are
a table or text object. For an RTF, PDF, HTML, or DOCX report, valid objects are a table, text, or
plot object. See create_table, create_text, or create_plot for further information on how to
create content objects.

Content will be appended to the report in the order it is added. By default, a page break is added
after the content. You can stack two pieces of content together closely by setting the page_break
parameter to FALSE, and the blank_row parameter to "none".

Value

The modified report_spec.

4 add_content

See Also

create_table, create_text, and create_plot to create content for a report.

Other report: create_report(), footer_image(), footnotes(), header_image(), options_fixed(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

Create first table
tbl1 <- create_table(mtcars[1:5, 1:6]) %>%

column_defaults(width = .5)

Create second table
tbl2 <- create_table(mtcars[6:10, 1:6], headerless=TRUE) %>%

column_defaults(width = .5)

Create the report object
rpt <- create_report(tmp) %>%

titles("MTCARS Sample Data", align = "left") %>%
add_content(tbl1, page_break = FALSE, align = "left", blank_row = "none") %>%
add_content(tbl2, page_break = FALSE, align = "left") %>%
add_content(create_text("* NOTE: Above table is actually two tables stacked."))

Write the report to the file system
res <- write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

MTCARS Sample Data
#
mpg cyl disp hp drat wt

21 6 160 110 3.9 2.62
21 6 160 110 3.9 2.875
22.8 4 108 93 3.85 2.32
21.4 6 258 110 3.08 3.215
18.7 8 360 175 3.15 3.44
18.1 6 225 105 2.76 3.46
14.3 8 360 245 3.21 3.57
24.4 4 146.7 62 3.69 3.19
22.8 4 140.8 95 3.92 3.15
19.2 6 167.6 123 3.92 3.44
#
* NOTE: Above table is actually two tables stacked.

add_style 5

add_style Add a style object to a report.

Description

This function will add a style object to a report specification. The style may be added either by
passing a style object to the style parameter, or by passing a theme name to the theme parameter.

Usage

add_style(rpt, style = NULL, theme = NULL)

Arguments

rpt The report specification to add a style to.

style A style object which contains style settings to add to the report. This parameter
is optional. Default is NULL.

theme A theme name to use for this report. Valid values are "MidnightBlue", "Steel-
Blue", "DarkRed", "SeaGreen", "SlateGrey", "Plain", and "SASDefault". De-
fault is NULL.

Details

The add_style() function allows you to add styling to HTML reports. This functionality will
apply to additional output types in future versons of the reporter package.

Styling can be added by passing a named theme to the theme parameter, or by creating a style
object using the create_style function and passing that object to the style parameter. You may
also export a theme as a style object using the get_theme function, modify it, and pass that to the
style parameter.

Style Specifications

The style specification is created using the create_style function, and provides the most styling
flexibility. The style object allows you to control background colors, font colors, border colors, and
more. Colors can be specified using an RGB hex code, or an HTML/CSS-compliant color name.
See the create_style documentation for additional information.

Themes

There are currently seven themes available: "MidnightBlue", "SteelBlue", "DarkRed", "SeaGreen",
"SlateGrey", "Plain", and "SASDefault". All themes use Arial 10pt font. These themes are intended
to provide a basic set of examples on how to create styles. Themes can be used by passing the theme
name to the theme parameter on the add_style() function. The theme will assign a variety of style
settings according to the specifics of the theme. For example, the "MidnightBlue" theme sets the
title font and header background colors to "MidnightBlue" and sets the border color to "Grey".

To view theme style settings, you can use get_theme function. This function will return the theme
as a style object. See the get_theme documentation for further details.

6 add_style

See Also

Other styles: create_style(), get_theme(), print.style_spec()

Examples

library(reporter)
library(magrittr)

Prepare data
dat <- as.data.frame(HairEyeColor)
dat <- dat[dat$Freq >= 10,]

Example 1: Use Pre-defined Theme

Create temp file path
tmp1 <- file.path(tempdir(), "HairAndEyes1.html")

Create table object
tbl <- create_table(dat, borders = "outside") %>%
titles("Hair and Eye Colors with Theme") %>%
column_defaults(width = .6)

Create report and add theme
rpt <- create_report(tmp1, output_type = "HTML") %>%

add_content(tbl) %>%
add_style(theme = "SteelBlue")

Write out the report
write_report(rpt)

Uncomment to View report
file.show(tmp1)

#' ## Example 2: Create Custom Style ##

Create temp file path
tmp2 <- file.path(tempdir(), "HairAndEyes2.html")

Define custom style
sty <- create_style(font_name = "Times",

font_size = 10,
title_font_size = 12,
title_font_bold = TRUE,
title_font_color = "Blue",
table_header_background = "Blue",
table_header_font_bold = TRUE,
table_header_font_color = "White",
table_body_background = "White",
table_body_stripe = "Red")

Create table object
tbl <- create_table(dat, borders = "outside") %>%

cell_style 7

titles("Hair and Eye Colors with Style") %>%
column_defaults(width = .6)

Create report and add style spec
rpt <- create_report(tmp2, output_type = "HTML") %>%

add_content(tbl) %>%
add_style(style = sty)

Write out the report
write_report(rpt)

Uncomment to View report
file.show(tmp2)

cell_style A style specification for a table cell

Description

A class to define the style for a cell in a table. This class can be assigned to the "style" parameter of
a define function, a stub function, or a column_defaults function. When assigned, the cell style
will apply to some or all of the cells in the relevant columns. The "indicator" parameter identifies
a column in the table to trigger the style. Alternatively, the "labelrow", "blankrow", or "datarow"
shortcuts may be used to identify cells for styling.

Usage

cell_style(indicator = NULL, bold = FALSE)

Arguments

indicator A keyword or column name to indicate which rows the cell style should be
applied to. Valid keywords are "labelrow", "blankrow", or "datarow". To use an
indicator column, create a column on the input dataset that has a TRUE value for
each row that you want the cell style applied. Then pass the name of the column
to the indicator parameter. If you do not want to see the indicator column on
the report, set the "visible" property on the define function to FALSE for that
column. The default value of the indicator parameter is NULL, meaning to apply
the style to all rows.

bold Whether to bold the text in the cell. Valid values are TRUE and FALSE. The
default is FALSE.

Examples

library(reporter)
library(magrittr)

Create temporary path

8 column_defaults

tmp <- file.path(tempdir(), "table1.rtf")

Prepare data
df <- data.frame(names = rownames(mtcars), mtcars[, 1:3])

Set indicator variable
df$mpgind <- ifelse(df$mpg > 20, TRUE, FALSE)

Create table
tbl <- create_table(df, first_row_blank = TRUE,

header_bold = TRUE, borders = c("top", "bottom")) %>%
column_defaults(style = cell_style(bold = TRUE, indicator = "mpgind")) %>%
define(names, label = "Car Name") %>%
define(mpg, label = "Miles Per Gallon") %>%
define(cyl, label = "Cylinders") %>%
define(disp, label = "Displacement") %>%
define(mpgind, visible = FALSE) %>%
titles("Table 1.0", "MTCARS with Indicator Variable",

borders = "none", bold = TRUE, font_size = 11) %>%
footnotes("* Motor Trend, 1974", borders = "none", blank_row = "none")

Create report and add custom style
rpt <- create_report(tmp, output_type = "RTF", font = "Arial") %>%

add_content(tbl)

Write out report
write_report(rpt)

View report
file.show(tmp)

column_defaults Set default attributes for one or more columns

Description

A function to set default attributes for columns on a table. The column_defaults function contains
a subset of the parameters on the define function that can be shared across variables. Any attributes
set by column_defaults can be overridden by the define function. The overall purpose of the
function is to minimize redundancy in column definitions.

Usage

column_defaults(
x,
vars = NULL,
from = NULL,
to = NULL,
label = NULL,

column_defaults 9

format = NULL,
align = NULL,
label_align = NULL,
width = NULL,
n = NULL,
standard_eval = FALSE,
style = NULL

)

Arguments

x A table spec.

vars The variable name or names to define defaults for. Variable names may be
quoted or unquoted. The parameter will also accept integer column positions
instead of names. For multiple variables, pass the names or positions as a vector.
If you want to pass an R variable of names, set the standard_eval parameter
to TRUE. The standard_eval parameter is useful when writing functions that
construct reports dynamically.

from The variable name or position that starts a column range. If passed as a variable
name, it may be quoted or unquoted.

to The variable name or position that ends a column range. If passed as a variable
name, it may be quoted or unquoted.

label The label to use for a column header. This label will be applied to all variables
assigned to the column_defaults function.

format The format to use for the column data. The format can be a string format, a
formatting function, a lookup list, a user-defined format, or a formatting list. All
formatting is performed by the fmtr package. For additional information, see
the help for that package.

align The column alignment. Valid values are "left", "right", "center", and "centre".

label_align How to align the header labels for this column. Valid values are "left", "right",
"center", and "centre".

width The width of the column in the specified units of measure. The units of measure
are specified on the units parameter of the create_report function. If no
width is supplied, the write_report function will assign a default width based
on the width of the column data and the label. write_report will not set a
column width less than the width of the largest word in the data or label. In
other words, write_report will not break words.

n The n value to place in the "N=" header label. Formatting for the n value will
be performed by the formatting function assigned to the n_format parameter on
create_table.

standard_eval A TRUE or FALSE value that indicates whether to use standard or non-standard
evaluation of the vars, from, and to parameters. Set standard_eval to TRUE
if you want to pass the column names as variables. Default is FALSE, meaning
it will use non-standard (unquoted) evaluation.

style A cell_style object that defines a style for all columns associated with the
column defaults.

10 column_defaults

Details

Column defaults can be specified for multiple variables. By default, the function will apply to
all variables. Alternately, you can specify a vector of columns on the vars parameter, or a range
of columns using the from and to parameters. Both the vars parameters and the from and to
parameters will accept column positions, quoted variable names, or unquoted variable names.

The parameters that can be set with the column_defaults include the formatting attributes ’width’,
’justify’, ’label’, and ’format’. Any parameters set with column_defaults will override any at-
tributes set on the data frame.

Note that you may call the column_defaults function multiple times on the same table specifica-
tion. Typically, multiple column_defaults calls would be made with a different set or range of
variables.

Value

The modified table spec.

See Also

Other table: create_table(), define(), print.table_spec(), spanning_header(), stub()

Examples

library(reporter)
library(magrittr)

Create temp file name
tmp <- file.path(tempdir(), "mtcars.txt")

Prepare data
dat <- mtcars[1:10,]
dat <- data.frame(vehicle = rownames(dat), dat, stringsAsFactors = FALSE)

Define table
tbl <- create_table(dat, show_cols = 1:8) %>%

column_defaults(from = mpg, to = qsec, width = .5, format = "%.1f") %>%
define(vehicle, label = "Vehicle", width = 1.5, align = "left") %>%
define(c(cyl, hp), format = "%.0f")

Create the report
rpt <- create_report(tmp, orientation = "portrait") %>%

titles("Table 2.5", "MTCARS Sample Report") %>%
add_content(tbl)

Write the report
write_report(rpt)

Send report to console for viewing
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 2.5

create_plot 11

MTCARS Sample Report
#
Vehicle mpg cyl disp hp drat wt qsec

Mazda RX4 21.0 6 160.0 110 3.9 2.6 16.5
Mazda RX4 Wag 21.0 6 160.0 110 3.9 2.9 17.0
Datsun 710 22.8 4 108.0 93 3.8 2.3 18.6
Hornet 4 Drive 21.4 6 258.0 110 3.1 3.2 19.4
Hornet Sportabout 18.7 8 360.0 175 3.1 3.4 17.0
Valiant 18.1 6 225.0 105 2.8 3.5 20.2
Duster 360 14.3 8 360.0 245 3.2 3.6 15.8
Merc 240D 24.4 4 146.7 62 3.7 3.2 20.0
Merc 230 22.8 4 140.8 95 3.9 3.1 22.9
Merc 280 19.2 6 167.6 123 3.9 3.4 18.3
#

create_plot Create plot content

Description

Function to create a plot specification that can be added as content to a report. The create_plot
function can be used to include charts, graphs, and figures on a statistical report. The function
supports plot objects returned by ggplot or ggsurvplot. It does not support the Base R plot
function.

Usage

create_plot(x, height, width, borders = "none")

Arguments

x The plot to create. Specifically, this parameter should be set to an object returned
from a call to ggplot or ggsurvplot. This parameter also accepts a path to a
JPEG file. If a path is specified, the image will be appended to the report at
the point the content object is added. For RTF and DOCX files, the function
additionally accepts a path to an EMF file.

height The height of the plot in the specified units of measure.

width The width of the plot in the specified units of measure.

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’all’, ’none’, and ’outside’. Default is ’none’. The ’left’, ’right’, and
’outside’ border specifications do not apply to TXT reports.

12 create_plot

Details

To add a plot to a report, use the create_plot function. The function allows you to set a width and
height for the plot. The function will preserve any other geometries you apply to the plot. See the
add_content function to control page breaking and blanks spaces above or below the plot.

A plot specification accepts a page_by function. If a page by is applied to the plot, the plot data
will be subset by the page by variable, and re-run for each subset.

The plot specification also accepts titles and footnotes. See the titles and footnotes functions
for further details.

The function also accepts a path to an image file stored on the file system instead of a plot object.
This functionality was added to allow the user to create figures from other plotting packages. If
you pass an image path, the image will be inserted into the report at the location specified. The
system supports JPEG images for all output types that support graphics. EMF images are also
supported for DOCX and RTF outputs. Note that EMF format may not render properly in all
operating environments, and JPEG is the preferred image type.

Value

The plot specification.

See Also

titles to add a title block to the plot, footnotes to add footnotes, and add_content to add the
plot object to a report.

Other plot: print.plot_spec()

Examples

library(reporter)
library(ggplot2)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.rtf")

Create ggplot
p <- ggplot(mtcars, aes(x=cyl, y=mpg)) + geom_point()

Create plot object
plt <- create_plot(p, height = 4, width = 8)

rpt <- create_report(tmp, font = "Arial", output_type = "RTF") %>%
page_header("Client", "Study: XYZ") %>%
titles("Figure 1.0", "MTCARS Miles per Cylinder Plot") %>%
set_margins(top = 1, bottom = 1) %>%
add_content(plt) %>%
footnotes("* Motor Trend, 1974") %>%
page_footer("Time", "Confidential", "Page [pg] of [tpg]")

Write out report

create_report 13

write_report(rpt)

Uncomment to view RTF file
shell.exec(tmp)

create_report Create a report

Description

Creates a report shell to which you may add titles, footnotes, content, etc.

Usage

create_report(
file_path = "",
output_type = "TXT",
orientation = "landscape",
units = "inches",
paper_size = "letter",
missing = "",
font = "Courier",
font_size = NULL

)

Arguments

file_path The output path of the desired report. Either a full path or a relative path is
acceptable. This parameter is not required to create the report_spec object, but
will be required to write the report. In addition, the file extension is not required.
If the file extension is not supplied, the write_report function will add a file
extension based on the output_type specified.

output_type The report output type. Default is "TXT". Valid values are "TXT", "RTF",
"PDF", "HTML", and "DOCX".

orientation The page orientation of the desired report. Valid values are "landscape" or "por-
trait". The default page orientation is "landscape".

units Specifies the units of measurement. This setting will indicate the units for
columns widths, margins, paper size, and other measurements. Valid values
are "inches" or "cm" (centimeters). Default value is "inches".

paper_size The expected paper size on which the report may be printed. The paper_size
will determine how much text can fit on one page. Valid values are "letter",
"legal", "A4", and "RD4". Default is "letter". For the HTML output type, a
paper size of "none" is also valid. That means the HTML will be generated
in an unbounded manner as a typical web page. For a custom page size, the
parameter also accepts a double vector with the page width and height. The
width and height should be in the report units of measure, and assume a portrait
orientation.

14 create_report

missing How to display missing values in the report. Default is to replace them with an
empty string, which removes them from the report. To display missing values
as is, set the missing parameter to NULL. To replace missing values with a
character string (such as ".", "-", or "<NA>") pass the desired character string to
the missing parameter.

font The font to use on the report. The font specified will be used for the entire
report. Valid values are "Courier", "Arial", "Times", and "fixed". The value
of "fixed" will create a fixed-width, text style report in Courier font. The font
parameter only applies to RTF, HTML, PDF, and DOCX reports. The default
value is "Courier".

font_size The size of the font to use on the report. The font_size specified will be used
for the entire report. Valid values are 8, 9, 10, 11, and 12. The font_size
parameter only applies to RTF, PDF, HTML, and DOCX output types. The
default value is 10.

Details

This function is the constructor for the report object. The report object contains information needed
to create a report. The object is defined as an S3 object, and has a class of ’report_spec’.

The report object holds information concerning report page size, orientation, titles, footnotes, page
header, page footer, margins, and other options. Use the add_content function to add content to
the report. The report may be written to a file using the write_report function.

Value

A new report_spec object.

Report family of functions

The report is the primary container for report specifications. The following functions add additional
specifications to the report object initialized with create_report.

• titles to add titles to the report.

• footnotes to add footnotes to the report.

• title_header to add a title header to the report.

• page_header to add a page header to the report.

• page_footer to add a page_footer to the report.

• add_content to add content to the report.

• options_fixed to set options for fixed-width output.

• add_content to add content to the report.

• write_report to write the report to the file system.

The report family of functions are pipe-friendly. After creating the report, you may pipe the object
to any of the above functions to append additional options.

create_report 15

See Also

create_table, create_text, and create_plot functions to create content for the report.

Other report: add_content(), footer_image(), footnotes(), header_image(), options_fixed(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "airquality.txt")

Prepare Data
dat <- airquality[sample(1:153, 15),]
dat$Month <- as.Date(paste0("1973-", dat$Month, "-01"))

Define table
tbl <- create_table(dat, show_cols = c("Month", "Day", "Wind", "Temp", "Ozone")) %>%

titles("Table 9.6", "Air Quality Sample Report") %>%
column_defaults(width = .5) %>%
define(Month, format = "%B", align = "left", width = 1) %>%
define(Temp, format = "%.0f") %>%
footnotes("* New York, May to September 1973")

Define report
rpt <- create_report(tmp, orientation = "portrait", missing = "-") %>%

add_content(tbl)

Write the report to the file system
write_report(rpt)

Write the report to the console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 9.6
Air Quality Sample Report
#
Month Day Wind Temp Ozone
--
July 8 6.3 92 97
July 9 5.7 92 97
August 1 6.9 81 39
July 23 11.5 82 -
June 9 13.8 90 71
July 12 14.3 73 10
July 4 10.9 84 -
May 31 7.4 76 37
September 30 11.5 68 20
June 25 8 75 -

16 create_style

June 28 11.5 80 -
August 18 7.4 76 23
June 20 10.3 76 13
July 1 4.1 84 135
May 23 9.7 61 4
#
* New York, May to September 1973

create_style Creates a style object

Description

This function will create a style object to control background colors and font settings on your report.
The style object can be applied to a report using the add_style function. Currently, styles may only
be applied to HTML reports.

Usage

create_style(
font_name = NULL,
font_size = NULL,
text_color = NULL,
background_color = NULL,
title_font_size = NULL,
title_font_bold = NULL,
title_font_color = NULL,
title_background = NULL,
footnote_font_bold = NULL,
footnote_font_color = NULL,
footnote_background = NULL,
border_color = NULL,
table_header_background = NULL,
table_header_font_bold = NULL,
table_header_font_color = NULL,
table_body_background = NULL,
table_body_stripe = NULL,
table_body_font_color = NULL,
table_stub_background = NULL,
table_stub_font_color = NULL,
table_stub_font_bold = NULL,
table_label_row_bold = NULL

)

Arguments

font_name The name of the font to use on the report. Valid values are "Courier", "Arial",
or "Times". The default is "Courier".

create_style 17

font_size The default font size to use for the report. This font size will be used for all text,
unless overridden by another font size parameter.

text_color The default color to use for all text in the report. This parameter will apply to
the entire report, unless overridden by other font color settings.

background_color

The color to use for the background of the report. This color will appear every-
where on the document unless overridden by another color specification.

title_font_size

The font size to use for the title font in points.
title_font_bold

Whether to bold the title or not. Valid values are TRUE or FALSE. By default,
the title will not be bold.

title_font_color

The color to use for the title font.
title_background

The background color for the title block.
footnote_font_bold

Whether to bold the footnote or not. Valid values are TRUE or FALSE. By
default, the footnote will not be bold.

footnote_font_color

The font color to use for footnotes.
footnote_background

The color to be used for the background of footnotes.

border_color The color to use for all borders in the report. By default, the border will be
black.

table_header_background

The background color to use in the table header. This color may be different
than the background color used in the table body.

table_header_font_bold

Whether to bold the header labels or not. Valid values are TRUE and FALSE.
By default, the header will not be bold.

table_header_font_color

The font color to use on the table header.
table_body_background

The background color to use in the body of any table in the report.
table_body_stripe

The background color to use for every other row in a table. The stripe color is
used in conjunction with the body background color to perform table striping.
The stripe color will start on the second row.

table_body_font_color

The font color to use for the body of any table in the report.
table_stub_background

The background color to use for the stub column, if one exists on the table.
table_stub_font_color

The font color to be used for the stub column, if one exists on the table.

18 create_style

table_stub_font_bold

Whether or not to bold the stub column. Valid values are TRUE and FALSE.
table_label_row_bold

Whether or not to bold the label row on a stub column. This parameter is so you
can bold the label row, but not the values in the stub column. Valid values are
TRUE and FALSE.

Details

The style object contains style settings for a report. The style object allows you to control back-
ground colors and font specifications such as font size, font color, and font bold. The style object
can be created once and reused on many reports. See the add_style function to learn how to add
the style object to a report.

Note that styles will be applied uniformly to the entire report. Also note that at present, styles can
be used only on HTML output types. Future versions of the reporter package will provide style
support for other output types.

On the style object, colors for background and fonts may be passed as an RGB hex code or a color
name. For example, the color red may be passed as the hex code "#FF0000" or as the color name
"Red". Color names must conform to HTML/CSS standards. These color names can be easily
discovered on the internet. A sample of common color names is presented below.

Color Names

Many of the parameters on the style object accept a color name or code. The values accepted for
these parameters follow standard HTML/CSS style color values. Below is a sample of common
color names that can be used to specify colors with the create_style function. These color names
should be passed as a quoted string:

• Primary and Secondary Colors: Black, White, Red, Yellow, Blue, Green, Orange, Purple
and Brown.

• Common Shades: Beige, Crimson, Gold, Indigo, Ivory, Lavender, Maroon, Navy, Olive,
Pink, Plum, RoyalBlue, Silver, Teal, Turquoise, Violet

• Shades of White: AntiqueWhite, Azure, GhostWhite, SeaShell, Snow, WhiteSmoke

• Shades of Grey: Grey, Gray, DarkGray, DarkGrey, DimGray, DimGrey, LightGray, Light-
Grey, SlateGray, SlateGrey

• Shades of Blue: AliceBlue, CadetBlue, CornflowerBlue, DodgerBlue, PowderBlue, Light-
Blue, MidnightBlue, SkyBlue, SlateBlue, SteelBlue

• Earth Colors: Beige, Bisque, BurlyWood, ForestGreen, Khaki, Linen, SandyBrown, Saddle-
Brown, Salmon, SeaGreen, Sienna, Tan, Thistle, Wheat

• Bright Colors: Aqua, Aquamarine, BlueViolet, Cyan, Fuchia, HotPink, Lime, Magenta, Or-
angeRed, SpringGreen

See Also

Other styles: add_style(), get_theme(), print.style_spec()

create_table 19

Examples

library(reporter)
library(magrittr)

Prepare data
dat <- data.frame(stub = rownames(mtcars), mtcars)
dat <- dat[1:15,]

Create temp file path
tmp <- file.path(tempdir(), "HairAndEyes2.html")

Define custom style
sty <- create_style(font_name = "Arial",

font_size = 10,
background_color = "WhiteSmoke",
border_color = "Grey",
title_font_size = 12,
title_font_bold = TRUE,
title_font_color = "SteelBlue",
table_header_background = "Tan",
table_header_font_bold = TRUE,
table_header_font_color = "White",
table_body_background = "White",
table_body_stripe = "Wheat",
table_stub_background = "Tan",
table_stub_font_color = "White")

Create table object
tbl <- create_table(dat, borders = "all") %>%
titles("MTCARS Dataset With Style") %>%
column_defaults(width = .5) %>%
define(stub, label = "Car Make and Model", width = 1.5)

Create report and add style spec
rpt <- create_report(tmp, output_type = "HTML") %>%

add_content(tbl) %>%
add_style(style = sty)

Write out the report
write_report(rpt)

Uncomment to View report
file.show(tmp)

create_table Create a table

Description

The create_table function creates a table object to which further specifications can be added. The
object can be added to a report using the add_content function. The object is implemented as an

20 create_table

S3 object of class ’table_spec’.

Usage

create_table(
x,
show_cols = "all",
use_attributes = "all",
width = NULL,
first_row_blank = FALSE,
n_format = upcase_parens,
headerless = FALSE,
borders = "none",
header_bold = FALSE,
continuous = FALSE

)

Arguments

x The data frame or tibble from which to create the table object.

show_cols This parameter gives control over which columns in the input data to display on
the report by default. Valid values are ’all’, ’none’, a vector of quoted column
names, or a vector of column positions. ’all’ means show all columns, unless
overridden by the column definitions. ’none’ means don’t show any columns un-
less specified in the column definitions. If a vector of column names or positions
is supplied, those columns will be shown in the report in the order specified,
whether or not a definition is supplied. See the define function for additional
information on how to show/hide report columns.

use_attributes Whether or not to use any formatting attributes assigned to the columns on the
input data frame. Valid values are ’all’, ’none’, or a vector of attribute names
to use. Possible attributes that may be used are ’label’, ’format’, ’width’, and
’justify’. By default, any of these attribute values will be applied to the table.
For example, if you assign a label to the ’label’ attribute of a data frame column,
pass that data frame into create_table, and don’t override the label value on
a define function, the label will appear as a column header on the table. The
use_attributes parameter allows you to control this default behavior, and use
or ignore data frame attributes as desired.

width The expected width of the table in the report units of measure. By default, the
width setting is NULL, and columns will be sized according to the width of the
data and labels. If the width parameter is set, the function will attempt to size
the table to the specified width. If the sum of the column widths is less than the
specified width, the function will adjust the columns widths proportionally to
fit the specified width. If the sum of the column widths is wider than the table
width parameter value, the table width parameter will be ignored.

first_row_blank

Whether to place a blank row under the table header. Valid values are TRUE or
FALSE. Default is FALSE.

create_table 21

n_format The formatting function to apply to the header "N=" label. The default format-
ting function is upcase_parens.

headerless Whether to create a headerless table. A headerless table displays the table data
only. Default is FALSE, meaning the table will have a header.

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’all’, ’none’, ’outside’, ’inside’, and ’body’. Default is ’none’. The
’left’, ’right’, ’outside’, ’inside’, and ’body’ border specifications only apply to
RTF, HTML, PDF, and DOCX reports. The ’body’ border specification means
put borders around only the body of the table.

header_bold Whether or not the column headers on the tables should be bolded. Valid values
are TRUE and FALSE. The default is FALSE.

continuous If a table crosses multiple pages, it is normally broken into a separate table for
each page, and the titles and footnotes are repeated on each page. When the
"continuous" parameter is TRUE, the table will instead be a single table, and the
titles and footnotes will not be repeated on each page. This parameter currently
only works for RTF outputs. Also, this parameter only works for titles and
footnotes that are attached to the table body. Titles and footnotes attached to the
report will still be shown on every page.

Details

A table object is a container to hold information about a table. The only required information for a
table is the table data. All other parameters and functions are optional.

By default, the table will display all columns in the data frame. To change this default, use the
show_cols parameter. Setting this parameter to ’none’ will display none of the columns in the data,
unless they are explicitly defined with a define function.

The show_cols parameter also accepts a vector of column positions or column names. When
a vector is supplied, create_table will display only those columns on the report, in the order
encountered in the vector. The show_cols parameter is the only mechanism in create_table to
modify the column order. Otherwise, modify the order prior to sending the data to create_table
using the many options available in Base R or supplemental packages.

Setting Formatting Attributes

Formatting attributes can be controlled in three ways. By default, formatting attributes assigned
to the data frame will be passed through to the reporting functions. The reporting functions will
recognize the ’label’, ’format’, ’width’, and ’justify’ attributes. In other words, you can control
the column label, width, format, and alignment of your report columns simply by assigning those
attributes to your data frame. The advantage of using attributes assigned to data frame columns is
that you can store those attributes permanently with the data frame, and those attributes will not
have to be re-specified for each report. To ignore attributes assigned to the data frame, set the
use_attributes parameter to ’none’.

Secondly, attributes can be specified using the column_defaults function. This function allows
the user to apply a default set of parameters to one or more columns. If no columns are specified
in the var or from and to parameter of this function, the defaults will apply to all columns. Any
default parameter value can be overridden by the define function.

22 create_table

Lastly, the define function provides the most control over column parameters. This function pro-
vides a significant amount of functionality that cannot be specified elsewhere. See the define func-
tion for additional information. The define function will also override any formatting attributes
assigned to the data frame, or anything set by the column_defaults function.

Additional Functionality

The create_table function also provides the capabilities to create a "headerless" table. A header-
less table is useful when combining two tables into one report. The example below illustrates use
of a headerless table.

Since the purpose of the reporter package is to create statistical reports, the create_table function
makes it easy to add population counts to the table header. These population counts are added to
column labels and spanning header labels using the n parameter on the define or spanning_header
functions. The population count is formatted according to the n_format parameter on create_table.
The reporter package provides four population count formatting functions. You may create your
own formatting function if one of these functions does not meet your needs. See upcase_parens
for further details.

See Also

create_report to create a report, create_plot to create a plot, create_text to create text con-
tent, and add_content to append content to a report. Also see the titles, footnotes, and page_by
functions to add those items to the table if desired.

Other table: column_defaults(), define(), print.table_spec(), spanning_header(), stub()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

#Subset cars data
dat <- mtcars[1:10, 1:7]

Calculate means for all columns
dat_sum <- data.frame(all_cars = "All cars average", as.list(sapply(dat, mean)),

stringsAsFactors = FALSE)

Get vehicle names into first column
dat_mod <- data.frame(vehicle = rownames(dat), dat, stringsAsFactors = FALSE)

Create table for averages
tbl1 <- create_table(dat_sum) %>%

titles("Table 1.0", "MTCARS Sample Data") %>%
column_defaults(width = .5) %>%
define(all_cars, label = "", width = 2) %>%
define(mpg, format = "%.1f") %>%
define(disp, format = "%.1f") %>%

create_text 23

define(hp, format = "%.0f") %>%
define(qsec, format = "%.2f")

Create table for modified data
tbl2 <- create_table(dat_mod, headerless = TRUE) %>%

column_defaults(width = .5) %>%
define(vehicle, width = 2)

Create the report object
rpt <- create_report(tmp) %>%

add_content(tbl1, align = "left", page_break = FALSE) %>%
add_content(tbl2, align = "left")

Write the report to the file system
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 1.0
MTCARS Sample Data
#
mpg cyl disp hp drat wt qsec

All cars average 20.4 5.8 208.6 123 3.538 3.128 18.58
#
Mazda RX4 21 6 160 110 3.9 2.62 16.46
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.32 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02
Valiant 18.1 6 225 105 2.76 3.46 20.22
Duster 360 14.3 8 360 245 3.21 3.57 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.19 20
Merc 230 22.8 4 140.8 95 3.92 3.15 22.9
Merc 280 19.2 6 167.6 123 3.92 3.44 18.3
#

create_text Create text content

Description

Function to create a text specification that can be added as content to a report. The text content
can be used to include analysis on a statistical report. A text specification is an S3 object of class
’text_spec’.

Usage

create_text(txt, width = NULL, align = "left", borders = "none")

24 create_text

Arguments

txt The text to create.

width The width of the text in the specified units of measure. If no width is specified,
the full page width will be used.

align How to align the text within the content area. Valid values are ’left’, ’right’,
’center’, or ’centre’. Default is ’left’.

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’all’, ’none’, and ’outside’. Default is ’none’. The ’left’, ’right’, and
’outside’ border specifications only apply to RTF reports.

Details

To add plain text to a report, use the create_text function. The function allows you to set a width
and alignment for the text. The function will preserve any other formatting you apply to the text.
See the add_content function to control page breaking and blanks spaces above or below the text.

The text specification also accepts titles and footnotes. See the titles and footnotes functions
for further details.

Value

The text specification.

See Also

titles to add a title block to the text, footnotes to add footnotes, and add_content to add the
text object to a report.

Other text: print.text_spec()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

Create dummy text
dt <- paste0("Lorem ipsum dolor sit amet, consectetur adipiscing elit, ",

"sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. ",
"Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris ",
"nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in ",
"reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla ",
"pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa ",
"qui officia deserunt mollit anim id est laborum.")

Create the text object
txt <- create_text(dt) %>%

titles("Text Content 1.0", "Sample Text Report") %>%
footnotes("* Cicero, 1st century BCE")

define 25

Create the report object
rpt <- create_report(tmp, orientation = "portrait") %>%

add_content(txt)

Write the report to the file system
write_report(rpt)

Write the report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Text Content 1.0
Sample Text Report
#
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum.
#
* Cicero, 1st century BCE
#

define Defines a column

Description

A function to define a table column. The define function contains a variety of a parameters to
control the appearance of the report. Using the define function, you can control simple options
like column alignment and width, but also control more sophisticated options like page wrapping
and page breaking.

Usage

define(
x,
vars,
label = NULL,
format = NULL,
align = NULL,
label_align = NULL,
width = NULL,
visible = TRUE,
n = NULL,
blank_after = FALSE,
blank_before = FALSE,
dedupe = FALSE,

26 define

id_var = FALSE,
page_wrap = FALSE,
page_break = FALSE,
indent = NULL,
label_row = FALSE,
standard_eval = FALSE,
style = NULL,
group_border = FALSE

)

Arguments

x The table spec.

vars The variable name or names to define a column for. Names may be quoted or
unquoted. If defining for multiple variables, pass them as a vector of names.
If you want to pass an R variable of names, set the standard_eval parameter
to TRUE . The standard_eval parameter is useful when writing functions that
construct reports dynamically.

label The label to use for the column header. If a label is assigned to the label column
attribute, it will be used as a default. Otherwise, the column name will be used.

format The format to use for the column data. The format can be a string format, a
formatting function, a lookup list, a user-defined format, or a formatting list. All
formatting is performed by the fapply function from the fmtr package. For a
list of common formatting codes, see FormattingStrings.

align The column alignment. Valid values are "left", "right", "center", and "centre".
By default, text columns will be left aligned and numeric columns will be right
aligned.

label_align How to align the header labels for this column. Valid values are "left", "right",
"center", and "centre". By default, the label alignment will follow any alignment
set on the column align parameter.

width The width of the column in the specified units of measure. The units of measure
are specified on the units parameter of the create_report function. If no
width is supplied, the write_report function will assign a default width based
on the width of the column data and the label. write_report will not set a
column width less than the width of the largest word in the data or label. In
other words, write_report will not break words.

visible Whether or not the column should be visible on the report. This parameter can
be used as a simple way to drop columns from the report.

n The n value to place in the "N=" header label. Formatting for the n value will
be performed by the formatting function assigned to the n_format parameter on
create_table.

blank_after Whether to place a blank row after unique values of this variable. Valid values
are TRUE or FALSE. Default is FALSE.

blank_before Whether to place a blank row before unique values of this variable. Valid values
are TRUE or FALSE. Default is FALSE.

define 27

dedupe Whether to dedupe the values for this variable. Variables that are deduped only
show the value on the first row of each group. This option is commonly used for
grouping variables.

id_var Whether this variable should be considered an ID variable. ID variables are
retained on each page when the page is wrapped. ID variables are also moved to
the far left of the page.

page_wrap Force a page wrap on this variable. A page wrap is a vertical page break nec-
essary when the table is too wide to fit on a single page. The excess variables
will be wrapped to the next page. Page wraps will continue until all columns are
displayed. Use the id_var parameter to identify rows across wrapped pages.

page_break You may control when page breaks occur by defining a page break variable
yourself, and setting this parameter to TRUE for that variable. Only one page
break variable can be defined per table. If two or more variables are defined as
a page break, an error will be generated.

indent How much to indent the column values. The parameter takes a numeric value
that will be interpreted according to the units (Unit Of Measure) setting on the
report. This parameter can be used to help create a stub column. The default
value is NULL, meaning the column should not be indented. See the stub
function for additional information on creating a stub column.

label_row Whether the values of the variable should be used to create a label row. Valid
values are TRUE or FALSE. Default is FALSE. If label_row is set to TRUE,
the dedupe parameter will also be set to TRUE. This parameter is often used
in conjunction with the stub function and indent parameter to create a stub
column.

standard_eval A TRUE or FALSE value indicating whether to use standard evaluation on the
vars parameter value. Default is FALSE. Set this parameter to TRUE if you
want to pass the vars value(s) using a variable.

style A cell_style object that defines the desired style for this column. The cell
style object can be used to define conditional styling.

group_border Adds a horizontal border at the end of a group. Valid values are TRUE or
FALSE. Default is FALSE. The group border is another way to separate analy-
sis groups, and can be used in addition to or instead of the "blank_before" and
"blank_after" parameters.

Details

Column definitions are optional. By default, all columns in the data are displayed in the order
assigned to the data frame.

The report will use attributes assigned to the data frame such as ’width’, ’justify’, ’label’, and
’format’. In other words, some control over the column formatting is available by manipulating the
data frame attributes prior to assigning the data frame to create_table. See create_table for
more details.

The define function is used to provide additional control over column appearance. For example,
you may use the define function to assign an "N=" population count, eliminate duplicates from the
column, or place a blank row after each unique value of the variable. See the parameter documen-
tation for additional options.

28 define

Some of the parameters on the define function are used in the creation of a table stub. Specifically,
the label_row and indent parameters participate in the creation of the stub column. See the stub
function for further information.

A single column definition may be defined for multiple variables. To create a definition for multiple
variables, pass the variables as a quoted or unquoted vector. When creating a single definition for
multiple variables, the parameters will be unified across those variables. Note that some parame-
ters (such as page_break) may only be set once per report, and cannot be shared across multiple
variables.

Value

The modified table spec.

See Also

Other table: column_defaults(), create_table(), print.table_spec(), spanning_header(),
stub()

Examples

library(reporter)
library(magrittr)

Create temp file name
tmp <- file.path(tempdir(), "mtcars.txt")

Prepare data
dat <- mtcars[1:10,]
dat <- data.frame(vehicle = rownames(dat), dat, stringsAsFactors = FALSE)

Define table
tbl <- create_table(dat, show_cols = 1:8) %>%

define(vehicle, label = "Vehicle", width = 3, id_var = TRUE, align = "left") %>%
define(mpg, label = "Miles per Gallon", width = 1) %>%
define(cyl, label = "Cylinders", format = "%.1f") %>%
define(disp, label = "Displacement") %>%
define(hp, label = "Horsepower", page_wrap = TRUE) %>%
define(drat, visible = FALSE) %>%
define(wt, label = "Weight") %>%
define(qsec, label = "Quarter Mile Time", width = 1.5)

Create the report
rpt <- create_report(tmp, orientation = "portrait") %>%

titles("Listing 2.0", "MTCARS Data Listing with Page Wrap") %>%
add_content(tbl, align = "left") %>%
page_footer(right = "Page [pg] of [tpg]")

Write the report
write_report(rpt)

footer_image 29

Send report to console for viewing
writeLines(readLines(tmp, encoding = "UTF-8"))

Listing 2.0
MTCARS Data Listing with Page Wrap
#
Miles per
Vehicle Gallon Cylinders Displacement
--
Mazda RX4 21 6.0 160
Mazda RX4 Wag 21 6.0 160
Datsun 710 22.8 4.0 108
Hornet 4 Drive 21.4 6.0 258
Hornet Sportabout 18.7 8.0 360
Valiant 18.1 6.0 225
Duster 360 14.3 8.0 360
Merc 240D 24.4 4.0 146.7
Merc 230 22.8 4.0 140.8
Merc 280 19.2 6.0 167.6
#
...
#
Page 1 of 2
Listing 2.0
MTCARS Data Listing with Page Wrap
#
Vehicle Horsepower Weight Quarter Mile Time

Mazda RX4 110 2.62 16.46
Mazda RX4 Wag 110 2.875 17.02
Datsun 710 93 2.32 18.61
Hornet 4 Drive 110 3.215 19.44
Hornet Sportabout 175 3.44 17.02
Valiant 105 3.46 20.22
Duster 360 245 3.57 15.84
Merc 240D 62 3.19 20
Merc 230 95 3.15 22.9
Merc 280 123 3.44 18.3
#
...
#
Page 2 of 2

footer_image Insert an image into the page footer

Description

The footer_image function inserts an image into the page footer. The function can be used to add
a logo or other graphical element to the report. The image will then appear at the bottom of each
page.

30 footer_image

Usage

footer_image(x, image_path, height, width, align = "left")

Arguments

x The report object to insert the image into.

image_path The path of image file. Function accepts JPG images for RTF, DOCX, PDF, and
HTML output types. Function also accepts PNG images for RTF, DOCX, and
HTML output types.

height Desired height of the image, in the report units of measure.

width Desired width of the image, in the report units of measure.

align Alignment of the image in the page footer. Valid values are "left", "right", "cen-
ter", or "centre". The default value is "left".

Details

The function assumes the existence of a page footer inserted by the page_footer function. If there
is no page footer, an error will be generated during the rendering process in write_report. If there
is text in the same cell as the image, the text will be disregarded. You may add text to other cells in
the footer.

The "align" parameter determines which page footer cell the image will be inserted. That is, if
you align an image "left", it will be inserted into the left column of the page footer. Options are
"left", "right", and "center". To insert images in multiple cells, you may use multiple calls to
image_footer.

The page footer cell width will take priority over the image width. That is, if you set the image
width larger than the cell width, the image width will be reduced to fit the cell. To make a wider
image, increase the cell width on the page footer.

Note that page footer cells can be removed entirely by setting the width to zero. This feature can
give you more room for a wide image. For instance, to create a banner image under the entire report,
align the image "center" and set the left and right page header column widths to zero.

See the page_footer function for more information on setting footer column widths. For a demon-
stration of a header image insertion, see vignette("reporter-hfimage").

Value

The modified report specification.

See Also

Other report: add_content(), create_report(), footnotes(), header_image(), options_fixed(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

footnotes 31

footnotes Adds a footnote block

Description

The footnotes function adds one or more footnotes to the report. If added to the report specifica-
tion, the footnotes will be added to the page template, and thus appear on each page of the report.
Footnotes may also be added directly to table, text, or plot content.

Usage

footnotes(
x,
...,
align = "left",
blank_row = "above",
borders = "none",
valign = NULL,
width = NULL,
footer = FALSE,
italics = FALSE,
columns = 1,
font_size = NULL

)

Arguments

x The object to assign footnotes to.

... A set of footnote strings.

align The position to align the footnotes. Valid values are: ’left’, ’right’, ’center’, or
’centre’.

blank_row Whether to print a blank row above or below the footnote. Valid values are
’above’, ’below’, ’both’, or ’none’. Default is ’above’.

borders Whether to print a border above or below the footnote. Valid values are ’top’,
’bottom’, ’outside’, ’inside’, ’all’, or ’none’. Default is ’none’. For fixed width
reports, the border character will be taken from the value of the uchar param-
eter on the options_fixed function. The ’left’, ’right’, ’outside’, and ’inside’
border specifications only apply to RTF, HTML, PDF, and DOCX reports.

valign The vertical position to align the footnotes. Valid values are: ’top’ and ’bottom’.
For footnotes attached to a report, default is ’bottom’. For footnotes attached to
content, default is ’top’.

width The width of the footnotes block. If the footnotes are attached to the report,
valid values are ’page’ or a numeric width, and the default is ’page’. If the
footnotes are attached to the table, plot, or text content, the valid values are
’page’, ’content’ or a numeric value, and the default is ’content’. The value

32 footnotes

’content’ means the footnotes will be aligned to the width of the table, plot,
or text content. The value ’page’ means the footnotes will be aligned to the
width of the page. In addition to these two convenience settings, you may also
specify a specific width in the current unit of measure. The unit of measure is
determined by the ’units’ parameter on create_report.

footer Whether to put the footnotes in the page footer. Valid values are TRUE and
FALSE. Default is FALSE. This parameter only works with RTF and DOCX
output types. It also only applies to footnotes assigned to the report object. Foot-
notes in the page footer will appear on every page, and be the same throughout
the report.

italics A TRUE or FALSE value indicating whether the footnote text shoud be in italics
font. If TRUE, the entire footnote will be in italics.

columns The number of columns for the footnote block. Valid values are 1, 2, and 3.
Default is 1. If this parameter is set to 2, the footnote block will be split into two
columns, each aligned to the outside. If this parameter is set to 3, the title block
will be split into 3 columns, with the outer columns aligned to the outside and
the middle column aligned center. Footnotes are assigned to cells from top left
to bottom right.

font_size The font size to use for the footnote block. The font size of the report will be
used by default. Valid values are 8, 9, 10, 11, 12 This parameter only applies to
variable-width RTF, HTML, PDF, and DOCX output types.

Details

The footnotes function accepts a set of strings of the desired footnote text. The footnotes may be
aligned center, left or right using the align parameter. The user is responsible for adding desired
footnote symbols. Footnote symbols will not be generated automatically.

If footnotes are assigned to the report, alignment will be oriented to the page body. If footnotes are
assigned to a table or text, alignment will be oriented to the edge of the content.

One footnote function accepts up to 25 footnotes. However, multiple footnote blocks may be added
to the same object.

Blank rows above or below the footnote block may be controlled using the blank_row parameter.

Each footnote string must fit within the available space. The reporter package will not wrap foot-
notes on fixed-width reports. If a footnote does not fit within the available space, a warning will be
generated and the footnote will be truncated. In these situations, either shorten the footnote or split
it into multiple footnotes that each fit within the available space.

Value

The modified report.

See Also

Other report: add_content(), create_report(), footer_image(), header_image(), options_fixed(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

ftn 33

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "expenses.txt")

Prepare data
dat <- data.frame(category = rownames(USPersonalExpenditure),

USPersonalExpenditure, stringsAsFactors = FALSE)

Define table
tbl <- create_table(dat) %>%

titles("Table 1.0", "US Personal Expenditures from 1940 - 1960") %>%
column_defaults(from = X1940, to = X1960, width = .6, format = "$%.2f") %>%
define(category, label = "Category") %>%
define(X1940, label = "1940") %>%
define(X1945, label = "1945") %>%
define(X1950, label = "1950") %>%
define(X1955, label = "1955") %>%
define(X1960, label = "1960") %>%
footnotes("* In billions of dollars")

Define report
rpt <- create_report(tmp, orientation="portrait") %>%

add_content(tbl)

Write the report
write_report(rpt)

Display in console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 1.0
US Personal Expenditures from 1940 - 1960
#
Category 1940 1945 1950 1955 1960
--
Food and Tobacco $22.20 $44.50 $59.60 $73.20 $86.80
Household Operation $10.50 $15.50 $29.00 $36.50 $46.20
Medical and Health $3.53 $5.76 $9.71 $14.00 $21.10
Personal Care $1.04 $1.98 $2.45 $3.40 $5.40
Private Education $0.34 $0.97 $1.80 $2.60 $3.64
#
* In billions of dollars

ftn Creates a footnote attribute

34 get_theme

Description

The ftn function creates a footnote attribute, which may be attached as an attribute to a data frame
and passed into create_table. This function is used internally to the system.

Usage

ftn(
footnotes,
align = "left",
blank_row = "above",
borders = "none",
valign = NULL,
width = NULL

)

Arguments

footnotes A vector of footnote strings.

align The position to align the footnotes. Valid values are: ’left’, ’right’, ’center’, or
’centre’.

blank_row Whether to print a blank row above or below the footnote. Valid values are
’above’, ’below’, ’both’, or ’none’. Default is ’above’.

borders Whether to print a border above or below the footnote. Valid values are ’top’,
’bottom’, ’outside’, ’inside’, ’all’, or ’none’. Default is ’none’.

valign The vertical position to align the footnotes. Valid values are: ’top’ and ’bottom’.

width The width of the footnotes block.

Value

The footnote attribute object.

See Also

footnotes to create a footnote.

Other attributes: span(), ttl()

get_theme Get a theme

Description

This function will return a style object for a specified theme. There are currently seven themes
available. The returned object may be modifed and applied to a report using add_style.

get_theme 35

Usage

get_theme(theme)

Arguments

theme A string that contains the desired theme name to return. Valid values are "Mid-
nightBlue", "SteelBlue", "DarkRed", "SeaGreen", "SlateGrey", "Plain", and "SAS-
Default".

See Also

Other styles: add_style(), create_style(), print.style_spec()

Examples

library(reporter)
library(magrittr)

Get theme
tm <- get_theme("SteelBlue")

View theme settings
print(tm)
A style specification:
#- font_name: 'Arial'
#- font_size: 10
#- text_color: 'DimGrey'
#- title_font_size: 11
#- title_font_bold: TRUE
#- title_font_color: 'SteelBlue'
#- border_color: 'Grey'
#- table_header_background: 'SteelBlue'
#- table_header_font_bold: TRUE
#- table_header_font_color: 'LightGrey'
#- table_body_background: 'White'
#- table_body_stripe: 'WhiteSmoke'
#- table_stub_background: 'SteelBlue'
#- table_stub_font_color: 'LightGrey'
#- table_stub_font_bold: TRUE

Modify theme
tm$font_size <- 12
tm$title_font_size <- 13

Create temp file path
tmp <- file.path(tempdir(), "HairAndEyes.html")

Get data
dat <- as.data.frame(HairEyeColor)

Create table object
tbl <- create_table(dat[dat$Freq >= 10,],

36 header_image

borders = "outside") %>%
titles("Hair and Eye Colors")

Use modified theme
rpt <- create_report(tmp, output_type = "HTML") %>%

add_content(tbl) %>%
add_style(tm)

Write out the report
write_report(rpt)

Uncomment to View report
file.show(tmp)

header_image Insert an image into the page header

Description

The header_image function inserts an image into the page header. The function can be used to add
a logo or other graphical element to the report. The image will then appear at the top of each page.

Usage

header_image(x, image_path, height, width, align = "left")

Arguments

x The report object.

image_path The path of image file. Function accepts JPG images for RTF, DOCX, PDF, and
HTML output types. Function also accepts PNG images for RTF, DOCX, and
HTML output types.

height Desired height of the image, in the report units of measure.

width Desired width of the image, in the report units of measure.

align Alignment of the image. Valid values are "left", "right", "center", or "centre".
The default value is "left".

Details

The function assumes the existence of a page header inserted by the page_header function. If there
is no page header, an error will be generated during the rendering process in write_report. If
there is text in the same cell as the image, the text will be disregarded. You may add text to other
cells in the header.

The "align" parameter determines which page header cell the image will be inserted. That is, if
you align an image "left", it will be inserted into the left column of the page header. Options

lowcase_parens 37

are "left", "right", and "center". To insert images in multiple cells, you may use multiple calls to
image_header.

The page header cell width will take priority over the image width. That is, if you set the image
width larger than the cell width, the image width will be reduced to fit the cell. To make a wider
image, increase the cell width on the page header.

Note that page header cells can be removed entirely by setting the width to zero. This feature can
give you more room for a wide image. For instance, to create a banner image over the entire report,
align the image "center" and set the left and right page header column widths to zero.

See the page_header function for more information on setting header column widths. For a demon-
stration of a header image insertion, see vignette("reporter-hfimage").

Value

The modified report specification.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), options_fixed(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

lowcase_parens Functions to format the population label

Description

These functions are used to format the "N=" population label on column headers.

Usage

lowcase_parens(x)

upcase_parens(x)

lowcase_n(x)

upcase_n(x)

Arguments

x Population count

38 lowcase_parens

Details

Which function to use to format the population label is specified on the n_format parameter on
the create_table function. These formatting functions provide several options for formatting the
"N=", including whether the "N" should be upper case or lower case, and whether or not to put the
value in parentheses. If one of these options does not meet the specifications for your report, you
may also write your own formatting function and pass it to the n_format function. When an N
value is supplied, the output of this function will be concatenated to the header label.

See Also

create_table function to create a table.

Examples

Create test data
l <- "Label"
n <- 47

cat(paste0(l, lowcase_parens(n)))
Label
(n=47)

cat(paste0(l, upcase_parens(n)))
Label
(N=47)

cat(paste0(l, lowcase_n(n)))
Label
n=47

cat(paste0(l, upcase_n(n)))
Label
N=47

customN <- function(n) {
return(paste0(": N=", n))

}
cat(paste0(l, customN(n)))
Label: N=47

Use alternate n format
library(reporter)
library(magrittr)

tmp <- tempfile(fileext = ".txt")

Prepare data
df <- read.table(header = TRUE, text = '

Hair Group1 Group2
Black 25 16
Brown 13 18

options_fixed 39

Blonde 5 7
Red 2 1')

Create table with lowcase n formatting
tbl <- create_table(df, n_format=lowcase_n) %>%

titles("Hair Color") %>%
define(Group1, n = 45) %>%
define(Group2, n = 42)

Create report
rpt <- create_report(tmp) %>%

add_content(tbl, align = "left")

Write to file system
write_report(rpt)

writeLines(readLines(tmp))
Hair Color
#
Group1 Group2
Hair n=45 n=42
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Black 25 16
Brown 13 18
Blonde 5 7
Red 2 1

options_fixed Set options for a fixed-width report

Description

This function sets the options for a report with a fixed width font.

Usage

options_fixed(
x,
editor = NULL,
cpuom = NULL,
lpuom = NULL,
min_margin = NULL,
blank_margins = FALSE,
font_size = NULL,
line_size = NULL,
line_count = NULL,
uchar = "¯"

)

40 options_fixed

Arguments

x The report spec.

editor The expected text editor to use for printing text reports. Assigning this parameter
will set the cpuom and lpuom parameters appropriately for the text editor. Valid
values are ’notepad’, ’word’, ’wordpad’, ’notepad++’, and ’editplus’. If the
editor parameter is used, any settings for cpuom and lpuom will be ignored. It is
not necessary to set this parameter for RTF and PDF reports.

cpuom Characters per unit of measure of printed text. If units is inches, the default is
12. If units is centimeters (cm), the default is 4.687. This value will be used to
determine how many characters can fit on a line.

lpuom Lines per unit of measure of the printed text. Default for inches is 6. The default
for centimeters (cm) is 2.55. This value will be used to determine the number of
lines that can fit on a page.

min_margin The editor minimum margin. This parameter normally defaults to 0, but may be
set for some types of editors.

blank_margins When this option is TRUE, reporter will use blank spaces and blank rows to
create left and top margins, rather than rely on the editor to set margins. When
used, editor margins should be set to zero. Valid values are TRUE and FALSE.
Default is FALSE. This option is only valid for output_type = 'TXT'.

font_size The size of the font in points. Default is 10pt. This option is only valid for
output types RTF and PDF. Valid values are 8, 9, 10, 11, and 12.

line_size The number of characters that will fit on a line. Normally, the line_size is
calculated based on the page size, font size, and cpuom. You can override the
calculated value by setting the line_size directly.

line_count The number of lines that will fit on page. Normally, the line_count is cal-
culated based on the page size, font size, and lpuom. You can override the
calculated value by setting the line_count directly.

uchar The character to use for underlines on the table header and spanning headers.
Default is a Unicode macron character #U00AF. You may use a dash or under-
score if your editor does not support Unicode. The uchar is forced to a dash for
PDF output, as the LaTeX converter does not support the macron character.

Details

The options_fixed function sets options for reports with a fixed-width, monospace font. These
reports are based off a text report, but may be output as type "RTF" or "PDF".

Value

The updated report spec.

Text Reports

The options_fixed function sets the characters per unit of measure (cpuom) and lines per unit of
measure (lpuom) settings for the report. These settings determine how many characters and lines
will fit within one unit of measure (uom), as specified on the create_report function. These

options_fixed 41

settings are important to ensure the report content stays within the available page size and margins.
Because every editor allows a different number of characters and lines on a page, these settings
must be adjusted depending on the editor.

The options_fixed function provides a shortcut editor parameter to directly specify a popular
editor. If this parameter is specified, the function will set the characters per unit of measure and
lines per unit of measure for you. If the editor is not available in the editor parameter selections,
for best results, you should set the cpuom and lpuom parameters manually. To determine your cpuom
and lpuom, see the help for write_registration_file.

Alternatively, using the options_fixed function, you may set the line_size and line_count
directly. Note that the line_size and line_count may be different for different output types and
editors.

The min_margin parameter is used to set the minimum margin allowed by the editor. This value
will be subtracted from the margin settings when the blank_margins option is used. It is useful for
editors that do not calculate margins from the edge of the page.

As some editors do not support Unicode characters, it may be necessary to change the character
used for the header and spanning header underlines. The default character is a Unicode #U00AF
macron. The macron is sometimes referred to as an "overline", since it is located at the top of the
character area. If your editor does not support Unicode, the macron will not be displayed properly.
In this case, change the underline character to a dash ("-") or an underscore ("_") using the uchar
parameter.

RTF and PDF Reports

For RTF and PDF reports, most of the parameters on the options_fixed function do not apply.
For RTF and PDF reports, these parameters will be set automatically, and cannot be changed.

Some of the options_fixed function apply only to RTF and PDF. In particular, the font_size
parameter applies only to RTF and PDF reports. Valid font size options are 8, 9, 10, 11, and 12.
The font size may also be set on the create_report function.

See Also

create_report to create a report and set the unit of measure, write_registration_file to de-
termine the characters and lines per unit of measure manually.

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
page_by(), page_footer(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "bod.txt")

Define table
tbl <- create_table(BOD, width = 2.5) %>%

titles("Table 3.6", "BOD* Sample Report") %>%

42 options_fixed

define(Time, format = "Day %s", align = "left") %>%
define(demand, format = "%2.1f mg/l", label = "Demand") %>%
footnotes("* Biochemical Oxygen Demand")

Define report #1 - No blank margins
rpt <- create_report(tmp, orientation="portrait") %>%

add_content(tbl, align = "left")

Write the report
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 3.6
BOD* Sample Report
#
Time Demand

Day 1 8.3 mg/l
Day 2 10.3 mg/l
Day 3 19.0 mg/l
Day 4 16.0 mg/l
Day 5 15.6 mg/l
Day 7 19.8 mg/l
#
* Biochemical Oxygen Demand

Define report #2 - blank margins
rpt <- create_report(tmp, orientation="portrait") %>%

options_fixed(blank_margins = TRUE) %>%
set_margins(top = .5, left = 1) %>%
add_content(tbl, align = "left")

Write the report
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

#
#
#
Table 3.6
BOD* Sample Report
#
Time Demand

Day 1 8.3 mg/l
Day 2 10.3 mg/l
Day 3 19.0 mg/l
Day 4 16.0 mg/l

page_by 43

Day 5 15.6 mg/l
Day 7 19.8 mg/l
#
* Biochemical Oxygen Demand

page_by Adds a page by variable

Description

The page_by function adds a page by variable to a report, table, or plot. The page by will generate
a page break for each value of the page by variable. A label will appear above the content showing
the page by variable value. You must be sort the data by the page by variable prior to reporting.

Usage

page_by(
x,
var,
label = NULL,
align = "left",
blank_row = "below",
borders = "none",
format = NULL,
bold = FALSE

)

Arguments

x The report specification to assign the page by to.

var The page by variable. There can be only one page by per report, and one page
by variable. The page by can be passed either quoted or unquoted.

label A label to be used as a prefix to the page by variable value. By default, the label
will be assigned to the variable name. Alternatively, you may specify a string
value to use for the label.

align How to align the page by. Default value is ’left’. Valid values are ’left’, ’right’,
’center’, or ’centre’.

blank_row Indicates whether a blank row is desired above or below the page by. Default
value is ’none’. Valid values are ’above’, ’below’, ’both’, or ’none’.

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’all’, ’outside’, or ’none’. Default is "none". The ’left’ and ’right’ border
specifications only apply to RTF, HTML, PDF, and DOCX reports.

format The format to use for the page by column data. The format can be a string for-
mat, a formatting function, a lookup list, a user-defined format, or a formatting
list. All formatting is performed by the fapply function from the fmtr package.
For a list of common formatting codes, see FormattingStrings.

44 page_by

bold A parameter to bold the page by text. Valid values are TRUE, FALSE, ’label’ or
’value’. Default is FALSE. A value of TRUE bolds both the label and the page
by value. The value ’label’ bolds only the label, while a value of ’value’ bolds
only the page by value. This parameter applies to variable-width RTF, HTML,
PDF, and DOCX output types only.

Details

Only one page by function is allowed per report, table, or plot. The page by label will appear on all
pages of the object. The page by label may be aligned on the left, right, or center. Use the align
parameter to specify the alignment.

You must sort the data by the page by variable prior to reporting. The page by labels will appear
in the sorted order. Failure to sort the page by variable prior to reporting may produce unexpected
results.

See Also

create_table to create a table, and create_plot to create a plot.

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_footer(), page_header(), print.report_spec(), set_margins(),
title_header(), titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "iris.txt")

Sample and sort iris data frame
dat <- iris[sample(1:150, 50),]
dat <- dat[order(dat$Species),]

Create table
tbl <- create_table(dat) %>%

page_by(Species, "Species: ") %>%
define(Species, visible = FALSE)

Create the report object
rpt <- create_report(tmp, orientation = "portrait") %>%

page_header("Sponsor: Iris Society", "Study: flowers") %>%
titles("Table 2.0", "IRIS Sample Report with Page By") %>%
add_content(tbl) %>%
page_footer(Sys.time(), right = "Page [pg] of [tpg]")

Write the report to the file system
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

page_by 45

Sponsor: Iris Society Study: flowers
Table 2.0
IRIS Sample Report with Page By
#
Species: setosa
#
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.4 3.9 1.7 0.4
4.9 3.1 1.5 0.1
4.8 3.1 1.6 0.2
5.1 3.5 1.4 0.3
5 3.5 1.6 0.6
5 3.3 1.4 0.2
4.4 3 1.3 0.2
5.1 3.5 1.4 0.2
5.4 3.4 1.5 0.4
4.9 3.6 1.4 0.1
4.6 3.1 1.5 0.2
4.6 3.2 1.4 0.2
5.1 3.3 1.7 0.5
...
2020-10-25 19:33:35 Page 1 of 3
#
Sponsor: Iris Society Study: flowers
Table 2.0
IRIS Sample Report with Page By
#
Species: versicolor
#
Sepal.Length Sepal.Width Petal.Length Petal.Width

4.9 2.4 3.3 1
6.3 3.3 4.7 1.6
6.1 2.8 4.7 1.2
6 2.9 4.5 1.5
6.7 3 5 1.7
5.6 3 4.5 1.5
5.8 2.7 4.1 1
6.7 3.1 4.7 1.5
6.1 2.9 4.7 1.4
5 2 3.5 1
5.9 3.2 4.8 1.8
5.5 2.5 4 1.3
7 3.2 4.7 1.4
6.3 2.3 4.4 1.3
6.1 2.8 4 1.3
6 2.2 4 1
5.5 2.6 4.4 1.2
6 3.4 4.5 1.6
5 2.3 3.3 1
5.5 2.4 3.7 1

46 page_footer

...
2020-10-25 19:33:35 Page 2 of 3
#
Sponsor: Iris Society Study: flowers
Table 2.0
IRIS Sample Report with Page By
#
Species: versicolor
#
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.3 3.4 5.6 2.4
7.9 3.8 6.4 2
6.7 3.1 5.6 2.4
6.2 2.8 4.8 1.8
6.7 3.3 5.7 2.5
6.2 3.4 5.4 2.3
5.6 2.8 4.9 2
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6.9 3.1 5.4 2.1
6.5 3.2 5.1 2
6.1 2.6 5.6 1.4
5.7 2.5 5 2
6.5 3 5.8 2.2
6.3 2.8 5.1 1.5
7.6 3 6.6 2.1
6.3 2.5 5 1.9
...
2020-10-25 19:33:35 Page 3 of 3

page_footer Adds a page footer

Description

This function adds a page footer to the report. The page footer will appear on each page of the
report, at the bottom of the page. The page footer contains three sections: left, center, and right.
Content for each section may be specified with the appropriate parameter.

Usage

page_footer(
x,
left = "",
center = "",
right = "",
blank_row = "above",
width = NULL

)

page_footer 47

Arguments

x The report spec object.

left The left page footer text. May be a single string or a vector of strings.

center The center page footer text. May be a single string or a vector of strings.

right The right page footer text. May be a single string or a vector of strings.

blank_row Whether to create a blank row above the page footer. Valid values are ’above’
and ’none’. Default is ’above’.

width Widths for left, center, and right columns of the page footer, passed as a vector
of double values in the report unit of measure. If the vector contains fewer than
three widths, the widths passed will be interpreted from left to right, and any
unassigned column widths will be calculated from the remaining width on the
page. For example, if two values are assigned, they will be interpreted as left
and center, and the right column width will be calculated. Setting a cell width
to zero (0) will remove that column from the page footer entirely. To set the left
and right widths only, pass a zero for the center cell, i.e. width = c(6, 0, 3) for
a total width of 9 inches.

Details

Only one page footer is allowed per report. The page footer will appear on all pages of the report.
The page footer may contain text on the left, right, or center. Use the appropriate parameters to
specify the desired text for each section. Multiple strings may be passed to each section as a vector
of strings.

If the width of the page header string exceeds the available space, an error will be generated. In
addition, there is a limit of 5 strings for each page footer section.

There are two special tokens to generate page numbers: [pg] and [tpg]. Use [pg] to indicate the
current page number. Use [tpg] to indicate the total number of pages in the report. These tokens
may be placed anywhere in the page header or page footer.

Use the blank_row parameter to control the blank space above the page footer.

Each footer string must fit within the available space. The reporter package will not wrap footer. If
a footer string does not fit within the available space, an error will be generated. In these situations,
either shorten the footer string or split it into multiple footers that each fit within the available space.

Value

The modified report.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_header(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

48 page_header

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

dat <- data.frame(name = rownames(mtcars[1:10,]), mtcars[1:10, 1:5],
stringsAsFactors = FALSE)

Create the report object
rpt <- create_report(tmp, orientation = "portrait") %>%

page_header("Client: Motor Trend", "Study: Cars") %>%
titles("MTCARS Sample Report") %>%
add_content(create_table(dat)) %>%
page_footer(Sys.time(), right = "Page [pg] of [tpg]")

Write the report to the file system
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Client: Motor Trend Study: Cars
MTCARS Sample Report
#
name mpg cyl disp hp drat
--
Mazda RX4 21 6 160 110 3.9
Mazda RX4 Wag 21 6 160 110 3.9
Datsun 710 22.8 4 108 93 3.85
Hornet 4 Drive 21.4 6 258 110 3.08
Hornet Sportabout 18.7 8 360 175 3.15
Valiant 18.1 6 225 105 2.76
Duster 360 14.3 8 360 245 3.21
Merc 240D 24.4 4 146.7 62 3.69
Merc 230 22.8 4 140.8 95 3.92
Merc 280 19.2 6 167.6 123 3.92
#
...
#
2020-10-17 11:53:51 Page 1 of 1

page_header Add a page header

Description

This function adds a page header to the report. The page header will appear at the top of each page
of the report.

page_header 49

Usage

page_header(
x,
left = "",
right = "",
blank_row = "none",
width = NULL,
center = ""

)

Arguments

x The report object.

left The left page header text. May be a single string or a vector of strings.

right The right page header text. May be a single string or a vector of strings.

blank_row Whether to create a blank row below the page header. Valid values are ’below’
and ’none’. Default is ’none’.

width Widths for left, center, and right columns of the page header, passed as a vector
of double values in the report unit of measure. If the vector contains fewer than
three widths, the widths passed will be interpreted from left to right, and any
unassigned column widths will be calculated from the remaining width on the
page. For example, if two values are assigned, they will be interpreted as left
and center, and the right column width will be calculated. Setting a cell width to
zero (0) will remove that column from the page header entirely. To set the left
and right widths only, pass a zero for the center cell, i.e. width = c(6, 0, 3) for
a total width of 9 inches.

center The center page header text. May be a single string or a vector of strings. By
default, the center column is not displayed. To display it, either assign a value
on this parameter, or assign a width on the "width" parameter.

Details

The page header may contain text on the left or right. Use the appropriate parameters to specify
the desired text. Only one page header is allowed on a report. The page header will be repeated on
every page of the report. Multiple text values for each side may be specified as a vector of strings.

If the width of the page header string exceeds the available space, an error will be generated. There
is also a limit of 5 page header strings per each side.

There are two special tokens to generate page numbers: [pg] and [tpg]. Use [pg] to indicate the
current page number. Use [tpg] to indicate the total number of pages in the report. These tokens
may be placed anywhere in the page header or page footer.

Each header string must fit within the available space. The reporter package will not wrap head-
ers. If a header string does not fit within the available space, an error will be generated. In these
situations, either shorten the header string or split it into multiple headers that each fit within the
available space.

50 page_header

Value

The modified report specification.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), print.report_spec(), set_margins(), title_header(),
titles(), write_report()

Examples

library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

dat <- data.frame(name = rownames(mtcars[1:10,]), mtcars[1:10, 1:5],
stringsAsFactors = FALSE)

Create the report object
rpt <- create_report(tmp, orientation = "portrait") %>%

page_header("Client: Motor Trend", "Study: Cars") %>%
titles("MTCARS Sample Report") %>%
add_content(create_table(dat)) %>%
page_footer(Sys.time(), right = "Page [pg] of [tpg]")

Write the report to the file system
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Client: Motor Trend Study: Cars
MTCARS Sample Report
#
name mpg cyl disp hp drat
--
Mazda RX4 21 6 160 110 3.9
Mazda RX4 Wag 21 6 160 110 3.9
Datsun 710 22.8 4 108 93 3.85
Hornet 4 Drive 21.4 6 258 110 3.08
Hornet Sportabout 18.7 8 360 175 3.15
Valiant 18.1 6 225 105 2.76
Duster 360 14.3 8 360 245 3.21
Merc 240D 24.4 4 146.7 62 3.69
Merc 230 22.8 4 140.8 95 3.92
Merc 280 19.2 6 167.6 123 3.92
#
...
#
2020-10-17 11:53:51 Page 1 of 1

print.plot_spec 51

print.plot_spec Prints the plot spec

Description

A function to print the plot spec. The print function will print the plot spec in summary form. To
view all parameters, set the verbose parameter to TRUE.

Usage

S3 method for class 'plot_spec'
print(x, ..., verbose = FALSE)

Arguments

x The plot spec.

... Additional parameters to pass to the underlying print function.

verbose Whether to print in verbose form. Default is FALSE.

Value

The plot spec, invisibly.

See Also

create_plot function to create a plot specification.

Other plot: create_plot()

Examples

txt <- create_text("Lorem ipsum dolor sit amet, consectetur...")
print(txt)

A text specification:
- text: data.frame 'mtcars' 32 rows 11 cols

52 print.report_spec

print.report_spec Prints the report specification

Description

A function to print the report specification. The print function will print the report spec in summary
form by default. To print in list form, set the verbose parameter to TRUE.

Usage

S3 method for class 'report_spec'
print(x, ..., verbose = FALSE)

Arguments

x The report spec.

... Additional parameters to pass to the underlying print function.

verbose Whether to print the report object in verbose (list) form or summary form. The
default is FALSE.

Value

The report spec, invisibly.

See Also

create_report function to create a report specification.

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), page_header(), set_margins(), title_header(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")

Create the table
tbl <- create_table(mtcars) %>%

titles("Table 1.0", "MTCARS Sample Report") %>%
footnotes("* NOTE: Data from 1974")

Create the report object
rpt <- create_report(tmp) %>%

add_content(tbl, align = "left")

print.style_spec 53

Write the report to the file system
res <- write_report(rpt)

Write the modified report object to the console
print(res)

A report specification: 1 pages
- file_path: 'C:/Users/User/AppData/Local/Temp/RtmpWQybXs/mtcars.txt'
- output_type: TXT
- units: inches
- orientation: landscape
- line size/count: 108/45
- content:
A table specification:
- data: data.frame 'mtcars' 32 rows 11 cols
- show_cols: all
- use_attributes: all
- title 1: 'Table 1.0'
- title 2: 'MTCARS Sample Report'
- footnote 1: '* NOTE: Data from 1974'

print.style_spec Prints a style specification

Description

This function will print a style object to the console. The print function will display each style
setting that has been assigned, and the value which is assigned.

Usage

S3 method for class 'style_spec'
print(x, ..., verbose = FALSE)

Arguments

x A style object to print.

... Any follow-on parameters to pass to print().

verbose If verbose is TRUE, the function will print the style object as a list. Otherwise,
the object will print using the custom print function. The custom print is more
compact than the verbose style print. Default is FALSE.

See Also

Other styles: add_style(), create_style(), get_theme()

54 print.table_spec

Examples

library(reporter)

Get theme
tm <- get_theme("SteelBlue")

View theme settings
print(tm)
A style specification:
#- font_name: 'Arial'
#- font_size: 10
#- text_color: 'DimGrey'
#- title_font_size: 11
#- title_font_bold: TRUE
#- title_font_color: 'SteelBlue'
#- border_color: 'Grey'
#- table_header_background: 'SteelBlue'
#- table_header_font_bold: TRUE
#- table_header_font_color: 'LightGrey'
#- table_body_background: 'White'
#- table_body_stripe: 'WhiteSmoke'
#- table_stub_background: 'SteelBlue'
#- table_stub_font_color: 'LightGrey'
#- table_stub_font_bold: TRUE

print.table_spec Prints the table spec

Description

A function to print the table spec. The print function will print the table spec in summary form. To
view all parameters, set the verbose parameter to TRUE.

Usage

S3 method for class 'table_spec'
print(x, ..., verbose = FALSE)

Arguments

x The table spec.

... Additional parameters to pass to the underlying print function.

verbose Whether to print in verbose form, which is similar to a list. Default is FALSE,
which prints in summary form.

Value

The table spec, invisibly.

print.text_spec 55

See Also

create_table function to create a table specification.

Other table: column_defaults(), create_table(), define(), spanning_header(), stub()

Examples

library(magrittr)

Create Table
tbl <- create_table(mtcars) %>%

define(mpg, label = "Miles Per Gallon", width = .5) %>%
define(cyl, label = "Cylinders") %>%
titles("Table 6.4", "MTCARS Sample Table") %>%
footnotes("* Motor Trend, 1974")

tbl

A table specification:
- data: data.frame 'mtcars' 32 rows 11 cols
- show_cols: all
- use_attributes: all
- title 1: 'Table 6.4'
- title 2: 'MTCARS Sample Table'
- footnote 1: '* Motor Trend, 1974'
- define: mpg 'Miles Per Gallon' width=0.5
- define: cyl 'Cylinders'

print.text_spec Prints the text spec

Description

A function to print the text spec. The print function will print the text spec in summary form. To
view all parameters, set the verbose parameter to TRUE.

Usage

S3 method for class 'text_spec'
print(x, ..., verbose = FALSE)

Arguments

x The text spec.
... Additional parameters to pass to the underlying print function.
verbose Whether to print in verbose form. Default is FALSE.

Value

The text spec, invisibly.

56 set_margins

See Also

create_text function to create a text specification.

Other text: create_text()

Examples

txt <- create_text("Lorem ipsum dolor sit amet, consectetur...",
align = "left", width = 3)

txt

A text specification: 6 words
- text: Lorem ipsum dolor sit amet, consectetur...
- width: 3
- align: left

set_margins Set page margins

Description

Sets the page margins for the report. The units for this parameter can be inches or centimeters,
depending on the units of measure specified on the create_report function.

Usage

set_margins(x, top = NULL, bottom = NULL, left = NULL, right = NULL)

Arguments

x The report spec object.

top The top margin.

bottom The bottom margin.

left The left margin.

right The right margin.

Details

The margins set with set_margins will be used for the entire report. Units for the margins are
specified by the units parameter on the create_report function. Available units are ’inches’ and
’cm’. When the unit of measure is inches, default margins are 1 inch on the left and right, and .5
inches on top and bottom. When the unit of measure is centimeters, default margins are 2.54 cm on
left and right, and 1.27 cm on top and bottom.

Note that when using output type of TXT, and not using the blank_margins option, setting the
margins only reduces the area available for content on a page. You must still set the actual margins
on the available editor to match those specified in set_margins. Any mismatch may result in
content not fitting properly on the page. For best results, set the right and bottom margins to zero to
allow for slight overflow without causing a page break or wrapping lines.

set_margins 57

Value

The report_spec with margins set as desired.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), page_header(), print.report_spec(), title_header(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "bod.txt")

Define table
tbl <- create_table(BOD, width = 2.5) %>%

titles("Table 3.6", "BOD¹ Sample Report") %>%
define(Time, format = "Day %s", align = "left") %>%
define(demand, format = "%2.1f mg/l", label = "Demand") %>%
footnotes("¹ Biochemical Oxygen Demand")

Define report #1 - No blank margins
rpt <- create_report(tmp, orientation="portrait") %>%

add_content(tbl, align = "left")

Write the report
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 3.6
BOD* Sample Report
#
Time Demand

Day 1 8.3 mg/l
Day 2 10.3 mg/l
Day 3 19.0 mg/l
Day 4 16.0 mg/l
Day 5 15.6 mg/l
Day 7 19.8 mg/l
#
* Biochemical Oxygen Demand

Define report #2 - blank margins
rpt <- create_report(tmp, orientation="portrait") %>%

options_fixed(blank_margins = TRUE) %>%

58 span

set_margins(top = .5, left = 1) %>%
add_content(tbl, align = "left")

Write the report
write_report(rpt)

Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

#
#
#
Table 3.6
BOD* Sample Report
#
Time Demand

Day 1 8.3 mg/l
Day 2 10.3 mg/l
Day 3 19.0 mg/l
Day 4 16.0 mg/l
Day 5 15.6 mg/l
Day 7 19.8 mg/l
#
* Biochemical Oxygen Demand

span Defines a spanning header attribute

Description

Create a spanning header attribute object that can be attached to a data frame and passed to the
create_table function. This attribute is used internally by other packages in the r-sassy system.

Usage

span(
from,
to,
label = NULL,
label_align = "center",
level = 1,
underline = TRUE

)

Arguments

from The starting column to span. Spanning columns are defined as range of columns
’from’ and ’to’. The columns may be identified by position, or by quoted or
unquoted variable names. The from parameter is required.

spanning_header 59

to The ending column to span. Spanning columns are defined as range of columns
’from’ and ’to’. The columns may be identified by position, or by quoted or
unquoted variable names. The to parameter is required.

label The label to apply to the spanning header.

label_align The alignment to use for the label. Valid values are "left", "right", "center", and
"centre". The default for spanning columns is "center".

level The level to use for the spanning header. The lowest spanning level is level 1,
the next level above is level 2, and so on. By default, the level is set to 1.

underline A TRUE or FALSE value indicating whether the spanning header should be
underlined. Default is TRUE.

Details

A spanning header is a label and underline that spans one or more columns. A spanning header is
defined minimally by identifying the column range to be spanned, and a label. A label alignment
may also be supplied.

The spanning column range is defined by the from and to parameters. The range identifies a
contiguous set of variables on the data. Variables can be identified by position, a quoted variable
name, or an unquoted variable name.

Value

The spanning header attribute object.

See Also

Other attributes: ftn(), ttl()

spanning_header Defines a spanning header

Description

Create a header that spans multiple columns. Spanning headers are used to group related columns.
Such groupings are a common feature of statistical reports.

Usage

spanning_header(
x,
from,
to,
label = "",
label_align = "center",
level = 1,
n = NULL,

60 spanning_header

underline = TRUE,
bold = FALSE,
standard_eval = FALSE

)

Arguments

x The table object to add spanning headers to.

from The starting column to span. Spanning columns are defined as range of columns
’from’ and ’to’. The columns may be identified by position, or by quoted or
unquoted variable names. If you want to pass the from value using an R variable,
set the standard_eval parameter to TRUE. The from parameter is required.

to The ending column to span. Spanning columns are defined as range of columns
’from’ and ’to’. The columns may be identified by position, or by quoted or
unquoted variable names. If you want to pass the to value using an R variable,
set the standard_eval parameter to TRUE. The to parameter is required.

label The label to apply to the spanning header.

label_align The alignment to use for the label. Valid values are "left", "right", "center", and
"centre". The default for spanning columns is "center".

level The level to use for the spanning header. The lowest spanning level is level 1,
the next level above is level 2, and so on. By default, the level is set to 1.

n The population count to use for the "N=" label on the spanning header. The "N="
label will be formatted according to the n_format parameter on the create_table
function.

underline A TRUE or FALSE value indicating whether the spanning header should be
underlined. Default is TRUE.

bold A TRUE or FALSE value indicating whether the spanning header label should
be bold. Default is FALSE.

standard_eval A TRUE or FALSE value that indicates whether to use standard or non-standard
evaluation of the from, and to parameters. Set standard_eval to TRUE if you
want to pass the column names as variables. Default is FALSE, meaning it will
use non-standard (unquoted) evaluation.

Details

A spanning header is a label and underline that spans one or more columns. A spanning header is
defined minimally by identifying the column range to be spanned, and a label. A label alignment
and "N=" value may also be supplied.

The spanning column range is defined by the from and to parameters. The range identifies a
contiguous set of variables on the data. Variables can be identified by position, a quoted variable
name, or an unquoted variable name.

Value

The modified table spec.

spanning_header 61

See Also

Other table: column_defaults(), create_table(), define(), print.table_spec(), stub()

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "iris.txt")

Prepare data
dat <- iris[sample(1:150, 15), c(5, 1, 2, 3, 4)]
dat <- dat[order(dat$Species),]

Define table
tbl <- create_table(dat) %>%

titles("Table 3.2", "IRIS Sample Report") %>%
spanning_header(2, 3, label = "Sepal") %>%
spanning_header(4, 5, label = "Petal") %>%
column_defaults(2:5, format = "%.1f") %>%
define(Species, align = "left", dedupe = TRUE, blank_after = TRUE) %>%
define(Sepal.Length, label = "Length") %>%
define(Sepal.Width, label = "Width") %>%
define(Petal.Length, label = "Length") %>%
define(Petal.Width, label = "Width") %>%
footnotes("* From Fisher's Iris Dataset")

Define report
rpt <- create_report(tmp, orientation="portrait") %>%

options_fixed(blank_margins = TRUE) %>%
set_margins(top = 1, bottom =1) %>%
add_content(tbl, align = "left")

Write the report
write_report(rpt)

writeLines(readLines(tmp, encoding = "UTF-8"))

#
#
#
#
Table 3.2
IRIS Sample Report
#
Sepal Petal
------------ ------------
Species Length Width Length Width

setosa 5.0 3.0 1.6 0.2
4.6 3.4 1.4 0.3

62 stub

5.0 3.4 1.6 0.4
5.7 3.8 1.7 0.3
#
versicolor 5.7 2.8 4.1 1.3
6.2 2.9 4.3 1.3
7.0 3.2 4.7 1.4
6.6 2.9 4.6 1.3
#
virginica 6.2 3.4 5.4 2.3
7.2 3.0 5.8 1.6
6.9 3.1 5.1 2.3
5.6 2.8 4.9 2.0
7.7 2.6 6.9 2.3
6.3 2.8 5.1 1.5
7.7 2.8 6.7 2.0
#
#
* From Fisher's Iris Dataset

stub Defines a report stub

Description

Combine columns into a nested report stub. The report stub is a common feature of statistical
reports. The stub is created with the stub function, and frequently appears in combination with
the label_row and indent parameters from the define function. These elements work together to
define the appearance of the stub.

Usage

stub(
x,
vars,
label = "",
label_align = NULL,
align = "left",
width = NULL,
standard_eval = FALSE,
style = NULL

)

Arguments

x The table spec.

vars A vector of quoted or unquoted variable names from which to create the stub.
If you want to pass an R variable of names, escape the values with double curly
braces, i.e. vars = {{myvar}}. The curly brace escape is useful when writing
functions that construct reports dynamically.

stub 63

label The label for the report stub. The default label is an empty string.

label_align The alignment for the stub column label. Valid values are ’left’, ’right’, ’center’,
and ’centre’. Default follows the align parameter.

align How to align the stub column. Valid values are ’left’, ’right’, ’center’, and ’cen-
tre’. Default is ’left’.

width The width of the stub, in report units of measure.

standard_eval A TRUE or FALSE value that indicates whether to use standard or non-standard
evaluation of the vars, from, and to parameters. Set standard_eval to TRUE
if you want to pass the column names as variables. Default is FALSE, meaning
it will use non-standard (unquoted) evaluation.

style A cell_style object that contains the style specifications for the stub.

Details

The table stub is a nested set of labels that identify rows on the table. The stub is created by
combining two or more columns into a single stub column. The relationship between the columns
is typically visualized as a hierarchy, with lower level concepts indented under higher level concepts.

A typical stub is created with the following steps:

• Prepare the data.

• Create the table object.

• Define the stub on the table using the stub function, and identify the variables to be combined.

• Identify higher level concepts with the label_row parameter on the define function.

• Identify lower level concepts using the indent parameter on the define function.

The stub will be automatically added as an identity variable on the report, and will always appear
as the leftmost column. There can only be one stub defined on a report.

If you wish to create multiple levels of nested labels, use an NA value to prevent lower level labels
from overwriting higher level labels.

For example, the following data:

continent country state_province
"North America" NA NA
"North America" "Canada" NA
"North America" "Canada" "Ontario"
"North America" "USA" NA
"North America" "USA" "New York"
"South America" NA NA
"South America" "Brazil" NA
"South America" "Brazil" "Amazonas"
"South America" "Brazil" "Bahia"

Will produce the following stub:

64 stub

North America
Canada
Ontario

USA
New York

South America
Brazil
Amazonas
Bahia

With the following code:

tbl <- create_table(dat) %>%
stub(c(continent, country, state_province)) %>%
define(country, indent = .25) %>%
define(state_province, indent = .5)

Value

The modified table spec.

See Also

Other table: column_defaults(), create_table(), define(), print.table_spec(), spanning_header()

Examples

library(reporter)
library(magrittr)

Create temporary path
tmp <- file.path(tempdir(), "stub.txt")

Read in prepared data
df <- read.table(header = TRUE, text = '

var label A B
"ampg" "N" "19" "13"
"ampg" "Mean" "18.8 (6.5)" "22.0 (4.9)"
"ampg" "Median" "16.4" "21.4"
"ampg" "Q1 - Q3" "15.1 - 21.2" "19.2 - 22.8"
"ampg" "Range" "10.4 - 33.9" "14.7 - 32.4"
"cyl" "8 Cylinder" "10 (52.6%)" "4 (30.8%)"
"cyl" "6 Cylinder" "4 (21.1%)" "3 (23.1%)"
"cyl" "4 Cylinder" "5 (26.3%)" "6 (46.2%)"')

Create table
tbl <- create_table(df, first_row_blank = TRUE) %>%

stub(c(var, label)) %>%
define(var, blank_after = TRUE, label_row = TRUE,

format = c(ampg = "Miles Per Gallon", cyl = "Cylinders")) %>%
define(label, indent = .25) %>%

titles 65

define(A, label = "Group A", align = "center", n = 19) %>%
define(B, label = "Group B", align = "center", n = 13)

Create report and add content
rpt <- create_report(tmp, orientation = "portrait") %>%

page_header(left = "Client: Motor Trend", right = "Study: Cars") %>%
titles("Table 1.0", "MTCARS Summary Table") %>%
add_content(tbl) %>%
footnotes("* Motor Trend, 1974") %>%
page_footer(left = Sys.time(),

center = "Confidential",
right = "Page [pg] of [tpg]")

Write out report
write_report(rpt)

View report in console
writeLines(readLines(tmp, encoding = "UTF-8"))

Client: Motor Trend Study: Cars
Table 1.0
MTCARS Summary Table
#
Group A Group B
(N=19) (N=13)

#
Miles Per Gallon
N 19 13
Mean 18.8 (6.5) 22.0 (4.9)
Median 16.4 21.4
Q1 - Q3 15.1 - 21.2 19.2 - 22.8
Range 10.4 - 33.9 14.7 - 32.4
#
Cylinders
8 Cylinder 10 (52.6%) 4 (30.8%)
6 Cylinder 4 (21.1%) 3 (23.1%)
4 Cylinder 5 (26.3%) 6 (46.2%)
#
...
#
#
* Motor Trend, 1974
#
2020-08-30 03:50:02 Confidential Page 1 of 1
#

titles Adds a title block

66 titles

Description

This function adds one or more titles to an object as a title block. If added to a report, the titles will
be added to the page template, and thus appear on each page of the report. Titles may also be added
to a table, text, or plot object.

Usage

titles(
x,
...,
align = "center",
blank_row = "below",
borders = "none",
width = NULL,
bold = FALSE,
font_size = NULL,
header = FALSE,
columns = 1

)

Arguments

x The object to assign titles to. Valid objects are a report, or a table, text, or plot
specification.

... A set of title strings.

align The position to align the titles. Valid values are ’left’, ’right’, ’center’ or ’centre’.
For titles, the default is ’center’.

blank_row Where to place a blank row. Valid values are ’above’, ’below’, ’both’, or ’none’.
Default is "below".

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’outside’, ’inside’, ’all’, or ’none’. Default is "none". The ’left’, ’right’,
’outside’, and ’inside’ border specifications only apply to RTF, HTML, PDF and
DOCX reports.

width The width of the titles block. If the titles are attached to the report, valid values
are ’page’ or a numeric width, and the default is ’page’. If the titles are attached
to the table, plot, or text content, the valid values are ’page’, ’content’ or a
numeric value, and the default is ’content’. The value ’content’ means the titles
will be aligned to the width of the table, plot, or text content. The value ’page’
means the titles will be aligned to the width of the page. In addition to these
two convenience settings, you may also specify a specific width in the current
units of measure. The units of measure is determined by the ’units’ parameter
on create_report.

bold A parameter to bold the titles. Valid values are TRUE and FALSE. Default is
FALSE. This parameter only applies to variable-width RTF, HTML, PDF, and
DOCX output types.

titles 67

font_size The font size to use for the title block. The font size of the report will be used
by default. Valid values are 8, 9, 10, 11, 12, 13, and 14. This parameter only
applies to variable-width RTF, HTML, PDF, and DOCX output types.

header Whether to put the titles in the page header. Valid values are TRUE and FALSE.
Default is FALSE. This option only works on the RTF and DOCX output types,
and only applies to titles assigned to the report object. Titles in the page header
will appear on every page, and be the same throughout the report.

columns The number of columns for the title block. Valid values are 1, 2, and 3. Default
is 1. If this parameter is set to 2, the title block will be split into two columns,
each aligned to the outside. If this parameter is set to 3, the title block will
be split into 3 columns, with the outer columns aligned to the outside and the
middle column aligned center. Titles are assigned to cells from top left to bottom
right.

Details

The titles function accepts a set of strings of the desired title text. To specify multiple titles for the
block, pass them to the function as separate strings.

The titles may be aligned center, left or right using the align parameter. The alignment will be
applied to all titles contained in the block. To control alignment of titles separately for each title,
use multiple titles functions.

Titles may be assigned to a report, a table, a text specification, or a plot. If assigned to the report, the
title will appear at the top of the page, and be repeated for every page of the report. If the titles are
assigned to content, the titles will appear above the content, and be repeated if the content breaks to
the next page.

If titles are assigned to the report, alignment will be oriented to the page body. If titles are assigned
to content, alignment will be oriented to the edge of the content.

One title function accepts up to 10 titles. However, multiple title blocks may be added to the same
object if needed.

Blank rows above or below the title block may be controlled using the blank_row parameter.

Each title string must fit within the available space. The reporter package will not wrap titles on
fixed-width reports. If a title does not fit within the available space, a warning will be generated and
the title will be truncated. In these situations, either shorten the title or split it into multiple titles
that each fit within the available space.

Value

The modified report.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), page_header(), print.report_spec(), set_margins(),
title_header(), write_report()

68 title_header

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "expenses.txt")

Prepare data
dat <- data.frame(category = rownames(USPersonalExpenditure),

USPersonalExpenditure, stringsAsFactors = FALSE)

Define table
tbl <- create_table(dat) %>%

titles("Table 1.0", "US Personal Expenditures from 1940 - 1960") %>%
column_defaults(from = X1940, to = X1960, width = .6, format = "$%.2f") %>%
define(category, label = "Category") %>%
define(X1940, label = "1940") %>%
define(X1945, label = "1945") %>%
define(X1950, label = "1950") %>%
define(X1955, label = "1955") %>%
define(X1960, label = "1960") %>%
footnotes("* In billions of dollars")

Define report
rpt <- create_report(tmp, orientation="portrait") %>%

add_content(tbl)

Write the report
write_report(rpt)

Display in console
writeLines(readLines(tmp, encoding = "UTF-8"))
Table 1.0
US Personal Expenditures from 1940 - 1960
#
Category 1940 1945 1950 1955 1960
--
Food and Tobacco $22.20 $44.50 $59.60 $73.20 $86.80
Household Operation $10.50 $15.50 $29.00 $36.50 $46.20
Medical and Health $3.53 $5.76 $9.71 $14.00 $21.10
Personal Care $1.04 $1.98 $2.45 $3.40 $5.40
Private Education $0.34 $0.97 $1.80 $2.60 $3.64
#
* In billions of dollars

title_header Adds a title header block

title_header 69

Description

This function adds a title header to an object. A title header is a special type of title layout that has
titles on the left and header information on the right.

Usage

title_header(
x,
...,
right = "",
blank_row = "below",
borders = "none",
width = NULL

)

Arguments

x The object to assign titles to. Valid objects are a report, table, text, or plot
specification.

... A set of title strings.

right A set of header strings to be shown on the right side of the title header. Pass the
header strings as a vector of strings.

blank_row Where to place a blank row. Valid values are ’above’, ’below’, ’both’, or ’none’.
Default is ’below’.

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’outside’, ’inside’, ’all’, or ’none’. Default is ’none’. The ’left’, ’right’,
’outside’, and ’inside’ border specifications only apply to RTF, HTML, PDF and
DOCX reports.

width The width of the title header. If the title header is attached to the report, valid
values are ’page’ or a numeric width, and the default is ’page’. If the title header
is attached to the table, plot, or text content, the valid values are ’page’, ’content’
or a numeric value, and the default is ’content’. The value ’content’ means the
footnotes will be aligned to the width of the table, plot, or text content. The value
’page’ means the footnotes will be aligned to the width of the page. In addition
to these two convenience settings, you may also specify a specific width in the
current units of measure. The units of measure is determined by the ’units’
parameter on create_report.

Details

The title_header function accepts a set of strings of the desired title text, and a vector of header
strings. The titles will appear on the left of the title header, and the header strings on the right. To
specify multiple titles for the block, pass them to the function as separate strings.

Title headers may be assigned to a report, a table, a text specification, or a plot. If assigned to the
report, the title header will appear at the top of the page, and be repeated for every page of the
report. If the title header is assigned to content, the titles will appear above the content, and be
repeated if the content breaks to the next page.

70 title_header

One title header function accepts up to 10 titles. Blank rows above or below the title block may be
controlled using the blank_row parameter.

Each title string must fit within the available space. The reporter package will not wrap titles on
fixed-width reports. If a title does not fit within the available space, an error will be generated. In
these situations, either shorten the title or split it into multiple titles that each fit within the available
space.

Value

The modified report.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), page_header(), print.report_spec(), set_margins(),
titles(), write_report()

Examples

library(reporter)
library(magrittr)

Create a temporary file
tmp <- file.path(tempdir(), "expenses.txt")

Prepare data
dat <- data.frame(category = rownames(USPersonalExpenditure),

USPersonalExpenditure, stringsAsFactors = FALSE)

Define table
tbl <- create_table(dat) %>%

title_header("Table 1.0", "US Personal Expenditures from 1940 - 1960",
right = c("Page [pg] of [tpg]", "World Almanac")) %>%

column_defaults(from = X1940, to = X1960, width = .6, format = "$%.2f") %>%
define(category, label = "Category") %>%
define(X1940, label = "1940") %>%
define(X1945, label = "1945") %>%
define(X1950, label = "1950") %>%
define(X1955, label = "1955") %>%
define(X1960, label = "1960") %>%
footnotes("* In billions of dollars")

Define report
rpt <- create_report(tmp, orientation="portrait") %>%

add_content(tbl)

Write the report
write_report(rpt)

Display in console
writeLines(readLines(tmp, encoding = "UTF-8"))

ttl 71

Table 1.0 Page 1 of 1
US Personal Expenditures from 1940 - 1960 World Almanac
#
Category 1940 1945 1950 1955 1960
--
Food and Tobacco $22.20 $44.50 $59.60 $73.20 $86.80
Household Operation $10.50 $15.50 $29.00 $36.50 $46.20
Medical and Health $3.53 $5.76 $9.71 $14.00 $21.10
Personal Care $1.04 $1.98 $2.45 $3.40 $5.40
Private Education $0.34 $0.97 $1.80 $2.60 $3.64
#
* In billions of dollars

ttl Creates a title attribute

Description

This function creates a titles attribute, which can be used to define titles by attaching as an attribute
to a data frame. This function is used internally to the system.

Usage

ttl(
titles,
align = "center",
blank_row = "below",
borders = NULL,
width = NULL,
bold = FALSE,
font_size = NULL

)

Arguments

titles A vector of title strings.

align The position to align the titles. Valid values are ’left’, ’right’, ’center’ or ’centre’.
For titles, the default is ’center’.

blank_row Where to place a blank row. Valid values are ’above’, ’below’, ’both’, or ’none’.
Default is "below".

borders Whether and where to place a border. Valid values are ’top’, ’bottom’, ’left’,
’right’, ’outside’, ’inside’, ’all’, or ’none’. Default is "none".

width The width of the titles block.

bold A parameter to bold the titles. Valid values are TRUE and FALSE. Default is
FALSE.

font_size The font size to use for the title block. The font size of the report will be used
by default. Valid values are 8, 9, 10, 11, 12, 13, and 14.

72 write_registration_file

Value

A title attribute object.

See Also

titles function.

Other attributes: ftn(), span()

write_registration_file

Create a registration file

Description

This function will create a registration file to help determine the correct cpuom and lpuom for your
editor/printer.

Usage

write_registration_file(file_path)

Arguments

file_path The full or relative file name and path to create the registration file.

Details

The cpi and lpi are used in output_type = "TXT" to determine available space on the page. The
registration file can help determine the correct settings for the target text editor and printer. Failure
to set the correct characters per unit of measure (cpuom) and lines per unit of measure (lpuom) may
result in misalignment of content on the page when printing text output.

How to Use the Registration File

To use the registration file, first decide the units of measure you wish to use, inches or centimeters.
Next, create the registration file by calling the write_registration_file function. Then print the
registration file.

Once the registration file is printed, take a ruler and measure both the horizontal and vertical regis-
tration lines from zero to 60 in the desired units of measure. For example, if your units of measure
is ’inches’, measure the registration lines in inches.

Record the distance measured in each direction. For each direction, divide 60 by the distance mea-
sured, and round to three decimal places. The horizontal result is the characters per unit of measure
(cpuom). The vertical result is the lines per unit of measure (lpuom). To get an accurate print-
ing of text reports, assign these values to the cpuom and lpuom parameters on the options_fixed
function.

For best results, test the calculated values by printing some reports and checking for undesired
page breaks or wrapped lines. If necessary, adjust the calculated cpuom and lpuom values until all
content stays within the available space without wrapping or breaking.

write_registration_file 73

Examples

library(reporter)

Create temp file path
tmp <- file.path(tempdir(), "reg.txt")

Create the registration file
write_registration_file(tmp)

Write registration file to the console
writeLines(readLines(tmp))

0--------+---------+---------+---------+---------+---------+
- 10 20 30 40 50 60
-
-
-
-
-
-
-
+ 10
-
-
-
-
-
-
-
-
-
+ 20
-
-
-
-
-
-
-
-
-
+ 30
-
-
-
-
-
-
-
-
-
+ 40

74 write_report

-
-
-
-
-
-
-
-
-
+ 50
-
-
-
-
-
-
-
-
-
+ 60

write_report Write a report to the file system

Description

This function writes a report_spec object to the file system, using the specifications provided in the
object.

Usage

write_report(
x,
file_path = NULL,
output_type = NULL,
preview = NULL,
log = TRUE

)

Arguments

x The report object to write.

file_path The file name and path to write the report to. If supplied, this parameter over-
rides the file_path parameter on the create_report function. Default is
NULL.

output_type The output file type. This parameter will override the output_type on the
create_report function. This parameter can be used to output the same re-
port object to multiple output types. Default value is NULL, meaning it will not

write_report 75

override the create_report value. Valid values are ’TXT’, ’RTF’, ’DOCX’,
’PDF’ and ’HTML’.

preview Whether to write the entire report, or a report preview. A report preview is a
subset of pages of the report. The default value is NULL, meaning the entire
report will be written. You may also pass a number of pages to write. For
example, passing the number 1 will print the first page, while passing a 5 will
print the first five pages.

log Whether the function should log itself automatically, if the logr package is avail-
able. This parameter is used internally. Default is TRUE.

Details

The function renders the report in the requested format, and writes it to the location specified in
the report file_path parameter. Attempts to write an object that is not of class "report_spec" will
generate an error.

The write_report function is a driver for very complex set of rendering functions. The rendering
functions perform most of the advanced functionality of the reporter package: generating spanning
headers, page wrapping and breaking, creating stub columns, etc. When things go wrong, they will
usually go wrong during this function call. For that reason, although this function can be part of the
pipeline that creates the report object, it is best to call write_report independently, to help isolate
any issues from the report definition procedure.

Value

The report spec, with settings modified during rendering. These modified settings can sometimes
be useful for documentation, and for debugging issues with the procedure.

See Also

Other report: add_content(), create_report(), footer_image(), footnotes(), header_image(),
options_fixed(), page_by(), page_footer(), page_header(), print.report_spec(), set_margins(),
title_header(), titles()

Examples

library(reporter)
library(fmtr)
library(magrittr)

Create temp file path
tmp <- file.path(tempdir(), "beaver2.txt")

Take Sample of Data
dat <- beaver2[sample(1:100, 15),]

Create format for active variable
fmt <- value(condition(x == 0, "No"),

condition(x == 1, "Yes"))

Create the table

76 write_report

tbl <- create_table(dat) %>%
titles("Table 1.0", "BEAVERS Sample Report") %>%
column_defaults(width = .75) %>%
define(day, label = "Day", format = "Day %s") %>%
define(time, label = "Time") %>%
define(temp, label = "Temperature", width = 1, format = "%.1f") %>%
define(activ,label = "Active", format = fmt) %>%
footnotes("* NOTE: Data on beaver habits")

Create the report object
rpt <- create_report(tmp) %>%

add_content(tbl, align = "left")

Write the report to the file system
res <- write_report(rpt)

Write the modified report object to the console
print(res)

Write the report to console
writeLines(readLines(tmp, encoding = "UTF-8"))

Table 1.0
BEAVERS Sample Report
#
Day Time Temperature Active

Day 307 1020 37.2 No
Day 307 1030 37.2 No
Day 307 940 36.7 No
Day 307 1340 37.1 No
Day 307 1410 37.2 No
Day 307 1400 37.1 No
Day 307 1130 36.9 No
Day 307 1140 37.0 No
Day 307 1120 37.0 No
Day 307 1000 37.1 No
Day 307 1250 37.0 No
Day 307 2100 37.9 Yes
Day 307 1210 37.0 No
Day 307 1740 38.0 Yes
Day 308 130 37.8 Yes
#
* NOTE: Data on beaver habits

Index

∗ attributes
ftn, 33
span, 58
ttl, 71

∗ plot
create_plot, 11
print.plot_spec, 51

∗ report
add_content, 3
create_report, 13
footer_image, 29
footnotes, 31
header_image, 36
options_fixed, 39
page_by, 43
page_footer, 46
page_header, 48
print.report_spec, 52
set_margins, 56
title_header, 68
titles, 65
write_report, 74

∗ styles
add_style, 5
create_style, 16
get_theme, 34
print.style_spec, 53

∗ table
column_defaults, 8
create_table, 19
define, 25
print.table_spec, 54
spanning_header, 59
stub, 62

∗ text
create_text, 23
print.text_spec, 55

add_content, 3, 12, 14, 15, 19, 22, 24, 30, 32,
37, 41, 44, 47, 50, 52, 57, 67, 70, 75

add_style, 5, 16, 18, 34, 35, 53

cell_style, 7, 9, 27, 63
column_defaults, 7, 8, 21, 22, 28, 55, 61, 64
create_plot, 3, 4, 11, 15, 22, 44, 51
create_report, 4, 9, 13, 22, 26, 30, 32, 37,

40, 41, 44, 47, 50, 52, 56, 57, 66, 67,
69, 70, 75

create_style, 5, 6, 16, 35, 53
create_table, 3, 4, 9, 10, 15, 19, 26–28, 34,

38, 44, 55, 58, 60, 61, 64
create_text, 3, 4, 15, 22, 23, 56

define, 7, 8, 10, 20–22, 25, 55, 61–64

fapply, 26, 43
fmtr, 9, 26, 43
footer_image, 4, 15, 29, 32, 37, 41, 44, 47,

50, 52, 57, 67, 70, 75
footnotes, 4, 12, 14, 15, 22, 24, 30, 31, 34,

37, 41, 44, 47, 50, 52, 57, 67, 70, 75
FormattingStrings, 26, 43
ftn, 33, 59, 72

get_theme, 5, 6, 18, 34, 53
ggplot, 11
ggsurvplot, 11

header_image, 4, 15, 30, 32, 36, 41, 44, 47,
50, 52, 57, 67, 70, 75

lowcase_n (lowcase_parens), 37
lowcase_parens, 37

options_fixed, 4, 14, 15, 30–32, 37, 39, 44,
47, 50, 52, 57, 67, 70, 72, 75

page_by, 4, 12, 15, 22, 30, 32, 37, 41, 43, 47,
50, 52, 57, 67, 70, 75

page_footer, 4, 14, 15, 30, 32, 37, 41, 44, 46,
50, 52, 57, 67, 70, 75

77

78 INDEX

page_header, 4, 14, 15, 30, 32, 36, 37, 41, 44,
47, 48, 52, 57, 67, 70, 75

print.plot_spec, 12, 51
print.report_spec, 4, 15, 30, 32, 37, 41, 44,

47, 50, 52, 57, 67, 70, 75
print.style_spec, 6, 18, 35, 53
print.table_spec, 10, 22, 28, 54, 61, 64
print.text_spec, 24, 55

set_margins, 4, 15, 30, 32, 37, 41, 44, 47, 50,
52, 56, 67, 70, 75

span, 34, 58, 72
spanning_header, 10, 22, 28, 55, 59, 64
stub, 7, 10, 22, 27, 28, 55, 61, 62

title_header, 4, 14, 15, 30, 32, 37, 41, 44,
47, 50, 52, 57, 67, 68, 75

titles, 4, 12, 14, 15, 22, 24, 30, 32, 37, 41,
44, 47, 50, 52, 57, 65, 70, 72, 75

ttl, 34, 59, 71

upcase_n (lowcase_parens), 37
upcase_parens, 21, 22
upcase_parens (lowcase_parens), 37

write_registration_file, 41, 72
write_report, 4, 9, 13–15, 26, 30, 32, 36, 37,

41, 44, 47, 50, 52, 57, 67, 70, 74

	add_content
	add_style
	cell_style
	column_defaults
	create_plot
	create_report
	create_style
	create_table
	create_text
	define
	footer_image
	footnotes
	ftn
	get_theme
	header_image
	lowcase_parens
	options_fixed
	page_by
	page_footer
	page_header
	print.plot_spec
	print.report_spec
	print.style_spec
	print.table_spec
	print.text_spec
	set_margins
	span
	spanning_header
	stub
	titles
	title_header
	ttl
	write_registration_file
	write_report
	Index

