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restriktor-package Package for equality and inequality restricted estimation, model selec-
tion and hypothesis testing

Description

Package restriktor implements estimation, testing and evaluating of linear equality and inequal-
ity restriktions about parameters and effects for univariate and multivariate normal models and
generalized linear models.

Details

Package: restriktor
Type: Package
Version: 0.6-30
Date: 2026-02-04

License: GPL (>=2)
LazyLoad: yes

Function restriktor estimates the parameters of an univariate and multivariate linear model (1m),
robust estimation of the linear model (rlm) or a generalized linear model (glm) subject to linear
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equality and/or inequality restriktions. The real work horses are the conLM, conMLM, the conRLM,
and the conGLM functions. A major advantage of restriktor is that the constraints can be specified
by a text-based description. This means that users do not have to specify the complex constraint
matrix (comparable with a contrast matrix) themselves.

The function restriktor offers the possibility to compute (model robust) standard errors under the
restriktions. The parameter estimates can also be bootstrapped, where bootstrapped standard errors
and confidence intervals are available via the summary function. Moreover, the function computes
the Generalized Order-restricted Information Criterion (GORIC), which is a modification of the
AIC and a generalization of the ORIC.

The function iht (alias conTest) conducts restricted hypothesis tests. F, Wald/LRT and score test-
statistics are available. The null-distribution of these test-statistics takes the form of a mixture of
F-distributions. The mixing weights (a.k.a. chi-bar-square weights or level probabilities) can be
computed using the multivariate normal distribution function with additional Monte Carlo steps or
via a simulation approach. Bootstrap methods are available to calculate the mixing weights and to
compute the p-value directly. Parameters estimates under the null- and alternative-hypothesis are
available from the summary function.

The function goric (generalized order-restricted information criterion) computes GORIC values,
weights and relative-weights or GORICA (generalized order-restricted information crittion approx-
imation) values, weights and relative weights. The GORIC(A) values are comparable to the AIC
values. The function offers the possibility to evaluate an order-restricted hypothesis against its
complement, the unconstrained hypothesis or against a set of hypotheses. For now, only one order-
restricted hypothesis can be evaluated against its complement but work is in progress to evaluate a
set of order-restricted hypothesis against its complement.

The package makes use of various other R packages: quadprog is used for restricted estimation,
boot for bootstrapping, ic.infer for computing the mixing weights based on the multivariate normal
distribution, lavaan for parsing the constraint syntax.

Value

The output of function restriktor belongs to S3 class conLM, conMLM, conRLM or conGLM.
The output of function conTest belongs to S3 class conTest.

These classes offer print and summary methods.

Acknowledgements

This package uses as an internal function the function nchoosek from ic.infer, which is originally
from vsn, authored by Wolfgang Huber, available under LGPL.

The output style of the iht print function is strongly inspired on the summary of the ic.test
function from the ic.infer package.

Author(s)

Leonard Vanbrabant and Yves Rosseel - Ghent University
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See Also

See also restriktor, iht, packages boot, goric, ic.infer, mvtnorm, and quadprog.

Examples

## Data preparation

## Ages (in months) at which an infant starts to walk alone.
DATA <- ZelazoKolb1972

DATA <- subset(DATA, Group != "Control")

## unrestricted linear model
fit.1lm <- Im(Age ~ -1 + Group, data = DATA)
summary (fit.1m)

## restricted linear model with restrictions that the walking
## exercises would not have a negative effect of increasing the

## mean age at which a child starts to walk.

myConstraints <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

fit.con <- restriktor(fit.1lm, constraints = myConstraints)
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summary (fit.con)

AngerManagement Reduction of aggression levels Dataset (4 treatment groups)

Description

The anger management dataset consists of reduction of aggression levels between week 1 (intake)
and week 8 (end of training) from four different treatment groups (No-exercises, Physical-exercises,
Behavioral-exercises, combination of physical and behavioral exercises).

Usage

data(AngerManagement)

Format
A data frame of 40 observations of 4 treatment variables and covariate age.
Anger reduction in aggression levels

Group No, Physical, Behavioral, Both

Age persons’ age

References

Hoijtink, H. Informative Hypotheses: Theory and Practice for Behavioral and Social Scientists
Boca Raton, FL: Taylor & Francis, 2012.

Examples

head(AngerManagement)

benchmark_functions Benchmark Functions for GORIC(A) Analysis

Description

The ‘benchmark* functions perform benchmarking for models using the Generalized Order-Restricted
Information Criterion (Approximation) (GORIC(A)).
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Usage

benchmark(object, model_type = c("asymp”, "means"), ...)

benchmark_means(object, pop_es = NULL, ratio_pop_means = NULL,
group_size = NULL, alt_group_size = NULL,
quant = NULL, iter = 2000,
control = list(),
ncpus = 1, seed = NULL, ...)

benchmark_asymp(object, pop_est = NULL, sample_size = NULL,
alt_sample_size = NULL, quant = NULL, iter = 2000,
control = list(),
ncpus = 1, seed = NULL, ...)

## S3 method for class 'benchmark'
print(x, output_type = c("rgw”, "gw", "rlw”, "1d", "all"),
hypo_rate_threshold = 1, color = TRUE, ...)

## S3 method for class 'benchmark'
plot(x, output_type = c("rgw", "rlw"”, "gw", "1d"),
percentiles = NULL, x_lim = c(), log_scale = FALSE,
alpha = 0.50, nrow_grid = NULL, ncol_grid = 1,

distr_grid = FALSE, ...)
Arguments

object An object of class con_goric (a GORIC(A) object from the goric function).

model_type If "means", the model parameters reflect (adjusted) means, else model_type =
"asymp" (default). See details for more information about asymp.

X An object of class benchmark or benchmark.

pop_es A scalar or a vector of population Cohen’s f (effect-size) values. By default, it
benchmarks ES = 0 (no-effect) and the observed Cohen’s f.

pop_est A 1 x k vector or an n x k matrix of population estimates to benchmark. By

default, all estimates are set to zero (no-effect) and the observed estimates from
the sample are used.

ratio_pop_means
A 1 x k vector denoting the relative difference between the k group means. Note
that a ratio of c(3, 2, 1) gives the same as c(1, @, -1), as the consecutive
relative differences are 1 in both ratios. By default, the relative differences from
the data are used.

group_size If the GORICA object is based on estimates and their covariance matrix (instead
of on a model/fit object), this should be a 1 x k vector or a scalar to denote the
group sizes. If a scalar is specified, it is assumed that each group is of that size.

alt_group_size An 1 x k vector or a scalar to denote alternative group sizes, if you want to use
sizes different from those in the data. This can be used, for example, to see
the values to which the GORIC(A) weights will converge (and thus to see the
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sample_size

alt_sample_size

quant

iter

maximum value of the weights). If a scalar is specified, it is assumed that each
group is of that size. By default, the group sizes from the data are used.

A scalar to denote the (total) sample sizes. Only used if the GORIC object is
based on estimates and their covariance matrix (instead of on a model/fit object)
or alt_sample_size is not NULL.

A scalar to denote an alternative sample size if you want to use a different sample
size from the one in the data. This can be used, for example, to see the values
to which the GORIC(A) weights will converge (and thus to see the maximum
value of the weights).

Quantiles for benchmarking results. Defaults 5%, 35%, 50%, 65%, 95%.

The number of iterations for benchmarking. Defaults to 2000.

hypo_rate_threshold

control

ncpus

seed

output_type

color

alpha

nrow_grid
ncol_grid

distr_grid

percentiles

x_lim

log_scale

A numeric value specifying the threshold for the hypothesis rate. The function
calculates the proportion of ratio-of-goric-weights that exceeds this threshold.
Defaults to 1.

A list of control parameters.For more information, see details goric.

Number of CPUs to use for parallel processing. Defaults to 1. See details for
more information.

A seed for random number generation.

A character vector specifying the type of output to print or plot. Options are
"all”, "gw" (goric(a) weights), "rgw” (ratio of goric(a) weights), "rlw" (ra-
tio of log-likelihood values), and "1d" (log-likelihood difference). Defaults to
"rgw” for print and "rgw" for plot.

If TRUE, the output will include ANSI color coding. Set color = FALSE when
using this function in R Markdown documents to avoid rendering issues with
color codes.

Alpha refers to the opacity of a geom. Values of alpha range from O to 1, with
lower values corresponding to more transparent colors.

An integer value representing the number of rows in the grid layout.
An integer value representing the number of columns in the grid layout.

If TRUE, the facet_grid function is used to create a grid of separate plots for
each effect-size (estimates).

A numeric vector specifying the percentiles to be shown. By default the per-
centiles are inherited from the quantiles used for benchmarking, see quant.

A numeric vector of length 2 specifying the x-axis limits. Defaults to c().

logical, If TRUE, The x-axis is transformed using a base-10 logarithmic scale.
This transformation adjusts the way the data is visualized on the x-axis, but does
not alter the underlying data values themselves.

See goric.
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Details

The function benchmark_asymp is named as such because it generates data from a multivariate
normal distribution with means equal to the population parameter estimates and a covariance ma-
trix derived from the original data. This is based on the assumption that parameter estimates are
asymptotically normally distributed. This assumption is valid for many statistical models, including
parameters from a generalized linear model (GLM). In such models, as the sample size increases,
the distribution of the parameter estimates tends to a normal distribution, allowing us to utilize the
multivariate normal distribution for benchmarking.

benchmark_means benchmarks the group means of a given GORIC(A) object by evaluating var-
ious population effect sizes and comparing the observed group means against these benchmarks.
benchmark_asymp benchmarks the population estimates of a given GORIC(A) object by evaluating
various population estimates and comparing them against the observed estimates.

print.benchmark prints the results of benchmark analyses performed on objects of class benchmark.
plot.benchmark generates density plots for benchmark analyses of objects of class benchmark.

The benchmark function leverages the future package for parallel processing, allowing users to
speed up computations by distributing tasks across multiple cores or machines. If the user does
not specify a parallelization plan using future: :plan(), the package will choose an appropriate
strategy based on the user’s operating system. Specifically, on Windows, the package defaults to
using mul tisession, which creates separate R sessions for each parallel task. On Unix-like systems
(such as Linux and macOS), the package defaults to multicore, which uses forked R processes to
avoid the overhead of setting up separate R sessions.

The plan() must be specified before running the benchmark function, e.g., future: :plan(future: :multisession,
workers = ncpus)

Value

benchmark_means and benchmark_asymp return a list of class benchmark_means, benchmark, and
list or benchmark_asymp, benchmark, and 1ist containing the results of the benchmark analysis.

print.benchmark does not return a value. It prints formatted benchmark analysis results to the
console.

plot.benchmark returns a gtable object that can be displayed or further customized using various
functions from the gridExtra and grid packages. This allows for flexible and detailed adjustments
to the appearance and layout of the plot.

Author(s)

Leonard Vanbrabant and Rebecca Kuiper

Examples

set.seed(1234)
# Generate data for 4 groups with different group sizes
groupl <- rnorm(1@, mean = 5, sd = 0.1)

group2 <- rnorm(20, mean = 5.5, sd = 1)
group3 <- rnorm(30, mean = 6, sd = 0.5)
group4 <- rnorm(40, mean = 6.5, sd = 0.8)
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# Combine data into a data frame
data <- data.frame(

value = c(groupl, group2, group3, group4),

group = factor(rep(1:4, times = c(10,20,30,40)))
)

# Perform ANOVA
anova_result <- aov(value ~ -1 + group, data = data)

# model/hypothesis
h1 <- 'groupl < group2 < group3 < group4'
h2 <- 'groupl > group2 < group3 < group4'

# fit h1 and h2 model against the unconstrained model (i.e., failsafe to avoid

# selecting a weak hypothesis)

fit_goric <- goric(anova_result, hypotheses = list(H1 = h1, H2 = h2),
comparison = "unconstrained”, type = "goric")

# by default: ES = @ \& ES = observed ES
# In practice you want to increase the number of iterations (default

1000) .

# multisession supports windows machines

# future::plan(future::multisession, workers = 8)

# multicore supports unix machines

# future::plan(future::multicore, workers = 8)

benchmark_results_mean <- benchmark(fit_goric, iter = 10, model_type = "means”)
print(benchmark_results_mean)

# by default the ratio of GORIC weights for the preferred hypothesis (here h1) is
# plotted against its competitors (i.e., h2 and the unconstrained). To improve

# the readability of the plot, the argument hypothesis_comparison can be used to
# focus on a specif competitor. Further readability can be achieved by setting

# the x_lim option.

plot(benchmark_results_mean, output_type = "rgw")

# specify custom effect-sizes

benchmark_results_mean_es <- benchmark(fit_goric, iter = 10,
pop_es = c(0@, 0.1),
model_type = "means”)

print(benchmark_results_mean_es)

# Benchmark asymptotic estimates

fit_gorica <- goric(anova_result, hypotheses = list(hl1=h1),
comparison = "complement”, type = "gorica”)

# by default: no-effect \& estimates from the sample are used
benchmark_results_asymp <- benchmark(fit_gorica, sample_size = 30, iter = 5,

model_type = "asymp")
print(benchmark_results_asymp)
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# specify custom population estimates
my_pop_est <- rbind("no"” = c¢(0,0,0,0), "observed"= coef(anova_result))

benchmark_results_asymp <- benchmark(fit_gorica, sample_size = 30,
iter = 5, pop_est = my_pop_est,
model_type = "asymp")

print(benchmark_results_asymp)

plot(benchmark_results_asymp, x_lim = c(@, 75))

bootstrapD Bootstrapping a Lavaan Model

Description

Bootstrap the D statistic.

Usage

bootstrapD(h® = NULL, h1 = NULL, constraints, type = "A",
bootstrap.type = "bollen.stine”, R = 1000L,
return.D = FALSE, double.bootstrap "no",
double.bootstrap.R = 500L, double.bootstrap.alpha = 0.05,

verbose = FALSE, warn = -1L,
parallel = c("no”, "multicore"”, "snow"), ncpus = 1L, cl = NULL,
seed = NULL)

## S3 method for class 'conTestlLavaan'

print(x, digits = max(3, getOption("digits”) - 2), ...)
Arguments

ho An object of class lavaan. The restricted model.

h1 An object of class lavaan. The unrestricted model.

X an object of class conTestLavaan.

constraints The imposed (in)equality constraints on the model.

type hypothesis test type "A", "B".

bootstrap.type If "parametric”, the parametric bootstrap is used. If "bollen.stine”, the
semi-nonparametric Bollen-Stine bootstrap is used. The defaultis setto "bollen.stine".

R Integer. The number of bootstrap draws.

return.D Logical; if TRUE, the function returns bootstrapped D-values.
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double.bootstrap
If "standard” (default) the genuine double bootstrap is used to compute an
additional set of plug-in p-values for each bootstrap sample. If "no”, no double
bootstrap is used. If "FDB", the fast double bootstrap is used to compute second
level LRT-values for each bootstrap sample. Note that the "FDB" is experimental
and should not be used by inexperienced users.

double.bootstrap.R
Integer; number of double bootstrap draws. The default value is set to 249.

double.bootstrap.alpha
The significance level to compute the adjusted alpha based on the plugin p-
values. Only used if double.bootstrap = "standard”. The default value is

set to 0.05.
verbose If TRUE, show information for each bootstrap draw.
warn Sets the handling of warning messages. See options.
parallel The type of parallel operation to be used (if any). If missing, the default is "no".
ncpus Integer: number of processes to be used in parallel operation: typically one

would chose this to the number of available CPUs.

cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the bootstrapLavaan
or bootstrapLRT call.

digits the number of significant digits to use when printing.
no additional arguments for now.

seed An integer to set the seed. Or NULL if no reproducible seeds are needed.

Value

A bootstrap p value, calculated as the proportion of bootstrap samples with a D statistic at least as
large as the D statistic for the original data.

Author(s)

Leonard Vanbrabant

References

Bollen, K. and Stine, R. (1992) Bootstrapping Goodness of Fit Measures in Structural Equation
Models. Sociological Methods and Research, 21, 205-229.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Yuan, K.-H., Hayashi, K., and Yanagihara, H. (2007). A class of population covariance matrices
in the bootstrap approach to covariance structure analysis. Multivariate Behavioral Research, 42,
261-281.
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Examples

SRR A
### real data example #i##
HHHHEHEHHHEHHHHHH
# Multiple group path model for facial burns example.

# model syntax with starting values.
burns.model <- 'Selfesteem ~ Age + c(m1, f1)*TBSA + HADS +
start(-.10, -.20)*TBSA
HADS ~ Age + c(m2, f2)*TBSA + RUM +
start(.10, .20)*TBSA '

# constraints syntax

burns.constraints <- 'f2 >0 ; ml <@
m >0 ; fl<@o
f2>m2 ; f1 <ml'

# we only generate 2 bootstrap samples in this example; in practice
# you may wish to use a much higher number.
# the double bootstrap was switched off; in practice you probably
# want to set it to "standard”.
examplel <- conTestD(model = burns.model, data = FacialBurns,
R = 2, constraints = burns.constraints,
double.bootstrap = "no"”, group = "Sex")

examplel

HHHHHHRREEE A
### artificial example #i#
HHHHHHEEEE A

# Simple ANOVA model with 3 groups (N = 20 per group)
set.seed(1234)

Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
grp <- c(rep("1", 20), rep("2", 20), rep("3", 20))

Data <- data.frame(Y, grp)

#create model matrix

fit.1m <- 1Im(Y ~ grp, data = Data)
mfit <- fit.lm$model

mm <- model.matrix(mfit)

Y <- model.response(mfit)
X <- data.frame(mm[,2:3])
names(X) <- c("d1", "d2")
Data.new <- data.frame(Y, X)

# model
model <- 'Y ~ 1 + alxdl + a2*d2'

# fit without constraints
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fit <- lavaan::sem(model, data = Data.new)

# constraints syntax: mul < mu2 < mu3
constraints <- ' al > 0
al < a2 '

# we only generate 10 bootstrap samples in this example; in practice
# you may wish to use a much higher number, say > 1000. The double
# bootstrap is not necessary in case of an univariate ANOVA model.
example2 <- conTestD(model = model, data = Data.new,

start = lavaan::parTable(fit),

R = 10L, double.bootstrap = "no",

constraints = constraints)

example2
Burns Relation between the response variable PTSS and gender, age, TBSA,
guilt and anger.
Description

Simulated dataset based on the original model parameters. The original data are based on two
cohort studies in children from 0 to 4 and 8 to 18 years old with burns and their mother.

Usage

data(Burns)

Format
A data frame of 278 observations of 4 variables.

PTSS post-traumatic stress symptoms

gender gender

age age in years

TBSA estimated percentage total body surface area affected by second and third degree burns
guilt parental guilt feelings in relation to the burn event

anger parental anger feelings in relation to the burn event

References

Bakker A, Van der Heijden PG, Van Son MJ, Van Loey NE. Course of traumatic stress reactions
in couples after a burn event to their young child. Health Psychology 2013; 10(32):1076-1083,
doi:10.1037/a0033983.

Egberts MR, van de Schoot R, Boekelaar A, Hendrickx H, Geenen R, NEE V. Child and adolescent
internalizing and externalizing problems 12 months postburn: the potential role of preburn func-

tioning, parental posttraumatic stress, and informant bias. Child and Adolescent Psychiatry 2016;
25:791-803.
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Examples

head(Burns)

calculate_IC_weights  Calculating IC weights based on IC values (AIC, ORIC, GORIC(A),
BIC, SIC, ...)

Description

This function transforms IC values into IC weights: IC values denote the ordering of hypothe-
ses/models, while IC weights quantify the relative strength of hypotheses/models.

Usage

calculate_IC_weights(IC, hypo_names = NULL)
calc_ICweights(IC, hypo_names = NULL)

## S3 method for class 'goric_ICw'

print(x, digits = max(3, getOption("digits") - 4), use_scientific, ...)
Arguments
IC A vector or one-column matrix with information criteria (AIC, ORIC, GORIC(A),

BIC, SIC, ...) values of length 'NrHypos’, where 'NrHypos’ stands for the
number of hypotheses/ models.

X an object of class con_goric.

hypo_names Optional. Vector containing ’"NrHypos’ characters which will be used for label-
ing the hypothesis. Default: H1, H2, ...

use_scientific If TRUE (default), the IC weights and ratio of IC weights will be formatted
using scientific notation. If FALSE, standard numeric formatting is used.

digits the number of significant digits to use when printing.

no additional arguments for now.

Value

IC weights, which quantify the relative strength of hypotheses/models.

Examples

IC <- ¢(1,2,3)
calculate_IC_weights(IC)

## PT weights
# This examples shows how to calculate PT weights.
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Notably, one is interested in PT weights when the log-likelihood for two or more
hypotheses are (approximately) equal.

Then, the comparison between those hypotheses is solely based on the PT values.
The IC weights will then equal the PT weights.

In that case, there is support for the overlap (boundary) of these hypotheses.
Thus, when the IC weights equal the PT weights for a (sub)set of hypotheses,
then there is support for the overlap (boundary) of these hypotheses.

od o H

y <= rnorm(30)

group <- factor(rep(c("A","B","C"), each = 10))

fit.1lm <- Im(y ~ -1 + group)

est <- coef(fit.1m)

VCOV_est <- vcov(fit.1lm)

H1 <- "groupA < groupB < groupC”

results <- goric(est, VCOV = VCOV_est, hypotheses = list(H1),
comparison = "complement”, type = "gorica")

calculate_IC_weights(results$result[,3])

conTestC one-sided t-test for iht

Description

conTestC tests linear inequality restricted hypotheses for (robust) linear models by a one-sided t-
test. This method is based on the union-intersection principle. It is called by the conTest function
if all restrictions are equalities. For more information see details.

Usage
## S3 method for class 'restriktor'
conTestC(object, ...)

Arguments
object an object of class restriktor.

no additional arguments for now.

Details
Hypothesis test Type C:

e Test HO: at least one restriction false ("<") against HA: all constraints strikty true (">"). This
test is based on the intersection-union principle. Note that, this test only makes sense in case
of no equality constraints.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.
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Value

conTestC

An object of class conTest, for which a print is available. More specifically, it is a list with the

following items:

CON

Amat

bvec

meq

test

Ts
df.residual
pvalue
b.unrestr
b.restr
Sigma
R2.org
R2.reduced
boot

model.org

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

a list with useful information about the constraints.
constraints matrix.
vector of right-hand side elements.

number of equality constraints.

same as input.

test-statistic value.

the residual degrees of freedom.

tail probability for Ts.

unrestricted regression coefficients.

restricted regression coefficients.
variance-covariance matrix of unrestricted model.
unrestricted R-squared.

restricted R-squared.

"no", not used (yet).

original model.

Silvapulle, M.J. and Sen, P.K. (2005, chapter 5.). Constrained Statistical Inference. Wiley, New

York

See Also

quadprog, iht

Examples

## example 1:

# the data consist of ages (in months) at which an

# infant starts to walk alone.

# prepare data

DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data

# the variable names can be used to impose constraints on
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# the corresponding regression parameters.
coef(fit1.1m)

# constraint syntax: assuming that the walking

# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraintsl <- ' GroupActive < GroupPassive < GroupNo '

iht(fit1.1m, myConstraintsl, type = "C")

# another way is to first fit the restricted model
fit.restrl <- restriktor(fit1.1lm, constraints = myConstraints1)

iht(fit.restr1, type = "C")

# Or in matrix notation.

Amat1l <- rbind(c(-1, @, 1),
c(o, 1, -1)

myRhs1 <- rep(0L, nrow(Amat1))

myNeql <- @

fitl.con <- restriktor(fit1.1m, constraints = Amat1,
rhs = myRhs1, neq = myNeql)
iht(fit1.con, type = "C")

conTestF F-bar test for iht

Description

conTestF tests linear equality and/or inequality restricted hypotheses for linear models by F-tests.
It can be used directly and is called by the conTest function if test = "F".

Usage

## S3 method for class 'conLM'
conTestF(object, type = "A", neq.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,

parallel = "no"”, ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)
## S3 method for class 'conRLM'
conTestF(object, type = "A", neq.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = 1234,

verbose = FALSE, control = NULL, ...)
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## S3 method for class 'conGLM'

conTestF(object, type = "A", neq.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

Arguments

object an object of class conLM, conRLM or conGLM.

type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

boot the null-distribution of these test-statistics (except under type "C") takes the
form of a mixture of F-distributions. The tail probabilities can be computed di-
rectly via bootstrapping; if "parametric”, the p-value is computed based on the
parametric bootstrap. By default, samples are drawn from a normal distribution
with mean zero and varance one. See p.distr for other distributional options.
If "model.based”, a model-based bootstrap method is used. Instead of com-
puting the p-value via simulation, the p-value can also be computed using the
chi-bar-square weights. If "no”, the p-value is computed based on the weights
obtained via simulation (mix_weights = "boot") or using the multivariate nor-
mal distribution function (mix_weights = "pmvnorm”). Note that, these weights
are already available in the restriktor objected and do not need to be estimated
again. However, there are two exception for objects of class conRLM, namely for
computing the p-value for the robust test = "Wald"” and the robust "score”. In
these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The distributional parameters will be passed in via .. ..

parallel the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.
verbose logical; if TRUE, information is shown at each bootstrap draw.
control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.
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* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).
¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.
e chunk_size the chi-bar-square weights are computed for samples of size
chunk_size = 5000L. This process is repeated iteratively until the weights
converges (see convergenge_crit) or the maximum is reached, i.e., mix_weights_bootstrap_limit.

* convergence_crit the convergence criterion for the iterative process. The
default is 1e-03.

Additional arguments that can be passed to the p.distr function, or arguments for

the restriktor or iht function. Consider, for example, the mix_weights_bootstrap_limit

control argument, which specifies the maximum number of bootstrap draws (de-

faultis 100.000) used to compute the chi-bar-square weights. If mix_weights_bootstrap_limit
is set to 100.000, then in each iteration, a sample of size 5000 is added until the

weights converge, or the maximum limit is reached.

Details

The following hypothesis tests are available:

n_mn

» Type A: Test HO: all constraints with equalities ("=") active against HA: at least one inequality
restriction (">") strictly true.

n_n

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

* Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B" and
"global” are computed based on mixtures of F-distributions.

Note that, in case of equality constraints only, the null-distribution of the (robust) F-test statistics
is based on an F-distribution. The (robust) Wald- and (robust) score-test statistics are based on
chi-square distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
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Amat

bvec

meq

meq.alt
iact

type

test

Ts
df.residual
pvalue

b.eqgrestr

b.unrestr
b.restr

b.restr.alt

Sigma
R2.org
R2.reduced
boot

model.org

Author(s)

constraints matrix.

vector of right-hand side elements.
number of equality constraints.
same as input neq.alt.

number of active constraints.

same as input.

same as input.

test-statistic value.

the residual degrees of freedom.

tail probability for Ts.

equality restricted regression coefficients.
type = "global”, else b.eqrestr = NULL.

unrestricted regression coefficients.

restricted regression coefficients.

conTestF

Only available for type = "A" and

restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B" else b.restr.alt = NULL.

variance-covariance matrix of unrestricted model.

unrestricted R-squared, not available for objects of class conGLM.

restricted R-squared, not available for objects of class conGLM.

same as input.

original model.

Leonard Vanbrabant and Yves Rosseel

References

Kudo, A. (1963) A multivariate analogue of the one-sided test. Biometrika, 50, 403—418.

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1996) On an F-type statistic for testing one-sided hypotheses and computation of
chi-bar-squared weights. Statistics and probability letters, 28, 137-141.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Wolak, F. (1987). An exact test for multiple inequality and equality constraints in the linear regres-
sion model. Journal of the American statistical association, 82, 782-793.

See Also

quadprog, iht
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Examples

## example 1:
# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

# fit unrestricted linear model
fit1.1m <- 1Im(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fit1.1m)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraintsl <- ' GroupActive < GroupPassive < GroupNo

iht(fit1.1m, myConstraints1)

# another way is to first fit the restricted model
fit.restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit.restr1)

# Or in matrix notation.

Amatl <- rbind(c(-1, 0, 1),
c( o, 1, -1))

myRhs1 <- rep(@OL, nrow(Amat1))

myNeql <- @

iht(fit1.1m, constraints = Amat1,
rhs = myRhs1, neq = myNeql)

HHHHHHHEHEEAH

## Artificial examples ##
HHHHHHARHEE

# generate data

n<-10

means <- ¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted linear model
fit2.1m <- Im(y ~ -1 + group, data = DATA2)
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coef (fit2.1m)

## example 2: increasing means
myConstraints2 <- ' groupl < group2 < group3 < group4 '

# compute F-test for hypothesis test Type A and compute the tail
# probability based on the parametric bootstrap. We only generate 9
# bootstrap samples in this example; in practice you may wish to
# use a much higher number.
iht(fit2.1m, constraints = myConstraints2, type = "A",
boot = "parametric”, R = 9)

# or fit restricted linear model
fit2.con <- restriktor(fit2.1m, constraints = myConstraints2)

iht(fit2.con)

# increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c( 0,-1, 1, 9,
c( 9, 0,-1, 1))
myRhs2 <- rep(@L, nrow(Amat2))
myNeg2 <- @

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", boot = "parametric”, R = 9)

## example 3:
# combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.1m, constraints = myConstraints3, type = "B"”, neq.alt = 1)

# fit resticted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
# Note that, a warning message may be thrown because the number of
# bootstrap samples is too low.
fit3.con <- restriktor(fit2.1lm, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", neq.alt = 1)

## example 4:

# restriktor can also be used to define effects using the := operator
# and impose constraints on them. For example, is the

# average effect (AVE) larger than zero?

# generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <= c(rep(c(@), n/2), rep(c(1), n/2))

conTestF
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set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit4.1m <- 1lm(y ~ X*Z, data = DATA3)

# constraint syntax
myConstraints4 <- ' AVE := X + 16.86137%X.Z;
AVE > 0 '

iht(fit4.1lm, constraints = myConstraints4)

# or
fit4.con <- restriktor(fit4.1lm, constraints = ' AVE := X + 16.86137*X.Z;
AVE > 0 ')
iht(fit4.con)
conTestLRT Likelihood-ratio-bar test for iht

Description

conTestLRT tests linear equality and/or inequality restricted hypotheses for linear models by LR-
tests. It can be used directly and is called by the conTest function if test = "LRT".

Usage

## S3 method for class 'conLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

## S3 method for class 'conGLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

## S3 method for class 'conMLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed
verbose = FALSE, control = NULL, ...)

1234,
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Arguments

object an object of class conLM, conMLM or conGLM.

type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

boot the null-distribution of these test-statistics (except under type "C", see details)
takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model.based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix_weights = "boot") or using the mul-
tivariate normal distribution function (mix_weights = "pmvnorm"”). Note that,
these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald"” and the
robust "score”. In these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passed in via ....

parallel the type of parallel operation to be used (if any). If missing, the default is set

" n

no .

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.
verbose logical; if TRUE, information is shown at each bootstrap draw.
control a list of control arguments:
* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.
* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).
¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.
* chunk_size the chi-bar-square weights are computed for samples of size
chunk_size = 5000L. This process is repeated iteratively until the weights
converges (see convergenge_crit) or the maximum is reached, i.e., mix_weights_bootstrap_limit.
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* convergence_crit the convergence criterion for the iterative process. The
default is 1e-03.

Additional arguments that can be passed to the p.distr function, or arguments for

the restriktor or iht function. Consider, for example, the mix_weights_bootstrap_limit
argument, which specifies the maximum number of bootstrap draws (default is
100.000) used to compute the chi-bar-square weights. If mix_weights_bootstrap_limit
is set to 100.000, then in each iteration, a sample of size 5000 is added until the
weights converge, or the maximum limit is reached.

Details
The following hypothesis tests are available:

» Type A: Test HO: all constraints with equalities ("=") active against HA: at least one inequality
restriction (">") strictly true.

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B"” and
"global” are computed based on mixtures of F-distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meqg_alt same as input neq.alt.

iact number of active constraints.

type same as input.

test same as input.
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Ts
df.residual
pvalue

b_eqrestr

b_unrestr
b_restr

b_restr_alt

Sigma
R2_org
R2_reduced
boot

model_org

Author(s)

conTestLRT

test-statistic value.
the residual degrees of freedom.
tail probability for Ts.

equality restricted regression coefficients. Only available for type = "A"” and
type = "global”, else b.eqrestr = NULL.

unrestricted regression coefficients.
restricted regression coefficients.

restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B" else b_restr_alt = NULL.

variance-covariance matrix of unrestricted model.

unrestricted R-squared, not available for objects of class conGLM.
restricted R-squared, not available for objects of class conGLM.
same as input.

original model.

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

quadprog, conTest

Examples

## example 1:

# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data

DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fit1_1m <- 1lm(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.

coef (fit1_1m)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraints1 <-

' GroupActive < GroupPassive < GroupNo '
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iht(fit1_1m, myConstraintsl, test = "LRT")

# another way is to first fit the restricted model
fit_restrl <- restriktor(fiti_1lm, constraints = myConstraintsl)

iht(fit_restrl, test = "LRT")

# Or in matrix notation.

Amat1 <- rbind(c(-1, 0, 1),
cCo, 1, -1)

myRhs1 <- rep(QL, nrow(Amat1))

myNeql <- @

iht(fit1_1m, constraints = Amatl1, test = "LRT",
rhs = myRhs1, neq = myNeql)

iz s

## Artificial examples ##

AR A

# generate data

n<-10

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted linear model
fit2_1m <- Im(y ~ -1 + group, data = DATA2)
coef(fit2_1m)

## example 2: increasing means
myConstraints2 <- ' groupl < group2 < group3 < group4 '

# compute F-test for hypothesis test Type A and compute the tail

# probability based on the parametric bootstrap. We only generate 9

# bootstrap samples in this example; in practice you may wish to

# use a much higher number.

iht(fit2_1m, constraints = myConstraints2, type = "A", test = "LRT",
boot = "parametric”, R = 9)

# or fit restricted linear model
fit2_con <- restriktor(fit2_1lm, constraints = myConstraints2)

iht(fit2_con, test = "LRT")

# increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),

c( 9,-1, 1, 9),

c( 9, 0,-1, 1))

27
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myRhs2 <- rep(QL, nrow(Amat2))
myNeg2 <- @

iht(fit2_con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", test = "LRT", boot = "parametric”, R = 9)

## example 3:
# combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2_1m, constraints = myConstraints3, type = "B",
test = "LRT", neqg.alt = 1)

# fit resticted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
# Note that, a warning message may be thrown because the number of
# bootstrap samples is too low.
fit3_con <- restriktor(fit2_1Im, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3_con, type = "B", test = "LRT", neq.alt = 1)

## example 4:

# restriktor can also be used to define effects using the := operator
# and impose constraints on them. For example, is the
# average effect (AVE) larger than zero?

# generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <= rnorm(n, 16, 5)

y <= b0 + b1xX + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit4_1Im <- 1lm(y ~ X*Z, data = DATA3)

# constraint syntax
myConstraints4 <- ' AVE := X + 16.86137xX.Z;
AVE > 0 '

iht(fit4_1m, constraints = myConstraints4, test = "LRT")

# or

fit4_con <- restriktor(fit4_1m, constraints = ' AVE := X + 16.86137*X.Z;

AVE > 0 ')
iht(fit4_con, test = "LRT")

conTestLRT
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conTestScore Score-bar test for iht

Description

conTestScore tests linear equality and/or inequality restricted hypotheses for (robust) linear mod-
els by score-tests. It can be used directly and is called by the conTest function if test = "score”.

Usage

## S3 method for class 'conLM'

conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed
verbose = FALSE, control = NULL, ...)

1234,

## S3 method for class 'conRLM'

conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

## S3 method for class 'conGLM'
conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,

parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)
Arguments
object an object of class conLM, conRLM or conGLM.
type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.
neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.
boot the null-distribution of these test-statistics (except under type "C", see details)

takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model.based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix_weights = "boot") or using the mul-
tivariate normal distribution function (mix_weights = "pmvnorm"”). Note that,
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these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald"” and the
robust "score”. In these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passedin via....

parallel the type of parallel operation to be used (if any). If missing, the default is set
llnoll .

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.

verbose logical; if TRUE, information is shown at each bootstrap draw.

control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.

* chunk_size the chi-bar-square weights are computed for samples of size
chunk_size = 5000L. This process is repeated iteratively until the weights
converges (see convergenge_crit) or the maximum is reached, i.e., mix_weights_bootstrap_limit.

* convergence_crit the convergence criterion for the iterative process. The
default is 1e-03.

Additional arguments that can be passed to the p.distr function, or arguments for

the restriktor or iht function. Consider, for example, the mix_weights_bootstrap_limit
argument, which specifies the maximum number of bootstrap draws (default is
100.000) used to compute the chi-bar-square weights. If mix_weights_bootstrap_limit
is set to 100.000, then in each iteration, a sample of size 5000 is added until the
weights converge, or the maximum limit is reached.

Details

The following hypothesis tests are available:

n_mn

* Type A: Test HO: all constraints with equalities ("=") active against HA: at least one inequality
restriction (">") strictly true.

n_n

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).



conTestScore

31

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B"” and

"global" are computed based on mixtures of F-distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the

following items:

CON
Amat
bvec
meq
meq.alt
iact
type
test

Ts
df.residual
pvalue

b.eqrestr

b.unrestr
b.restr

b.restr.alt

Sigma
R2.org
R2.reduced
boot

model.org

a list with useful information about the constraints.

constraints matrix.

vector of right-hand side elements.
number of equality constraints.
same as input neq.alt.

number of active constraints.

same as input.

same as input.

test-statistic value.

the residual degrees of freedom.

tail probability for Ts.

equality restricted regression coefficients.
type = "global”, else b.eqrestr = NULL.

unrestricted regression coefficients.

restricted regression coefficients.

Only available for type = "A" and

restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B"” else b.restr.alt = NULL.

variance-covariance matrix of unrestricted model.

unrestricted R-squared, not available for objects of class conGLM.

restricted R-squared, not available for objects of class conGLM.

same as input.

original model.
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See Also

quadprog, conTest

Examples

## example 1:
# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fit1.1m)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.
myConstraints] <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraintsl, test = "score")

# another way is to first fit the restricted model
fit.restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit.restr1, test = "score")

# Or in matrix notation.

Amat1 <- rbind(c(-1, o, 1),
cCo, 1, -1)

myRhs1 <- rep(0L, nrow(Amat1))

myNeql <- @
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iht(fit1.1m, constraints = Amatl, test = "score”, rhs = myRhs1, neq = myNeql)

HHHHHHAHEA

## Artificial examples ##
B R S S i i i

# generate data

n<-10

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted linear model
fit2.1m <- Im(y ~ -1 + group, data = DATA2)
coef (fit2.1m)

## example 2: increasing means
myConstraints2 <- ' groupl < group2 < group3 < group4 '

# compute F-test for hypothesis test Type A and compute the tail

# probability based on the parametric bootstrap. We only generate 9

# bootstrap samples in this example; in practice you may wish to

# use a much higher number.

iht(fit2.1m, constraints = myConstraints2, type = "A", test = "score”,
boot = "parametric”, R = 9)

# or fit restricted linear model
fit2.con <- restriktor(fit2.1m, constraints = myConstraints2)

conTest(fit2.con, test = "score")

# increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c( 0,-1, 1, 9,
c( 9, 0,-1, 1))
myRhs2 <- rep(0L, nrow(Amat2))
myNeq2 <- @

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", test = "score"”, boot = "parametric”, R = 9)

## example 3:
# combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.1m, constraints = myConstraints3, type = "B", test = "score”, neqg.alt = 1)

33
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# fit resticted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
# Note that, a warning message may be thrown because the number of
# bootstrap samples is too low.
fit3.con <- restriktor(fit2.1m, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", test = "score”, neqg.alt = 1)

## example 4:

# restriktor can also be used to define effects using the := operator
# and impose constraints on them. For example, is the
# average effect (AVE) larger than zero?

# generate data

n <- 30

bo <- 10; bl = 0.5; b2 = 1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit4.1m <- Im(y ~ X*Z, data = DATA3)

# constraint syntax
myConstraints4 <- ' AVE := X + 16.86137*X.Z;

AVE > 0
iht(fit4.1lm, constraints = myConstraints4, test = "score")
# or
fit4.con <- restriktor(fit4.1m, constraints = ' AVE := X + 16.86137*X.Z;
AVE > 0 ")
iht(fit4.con, test = "score")
conTestWald Wald-bar test for robust iht

Description

conTestWald tests linear equality and/or inequality restricted hypotheses for linear models by
Wald-tests. It can be used directly and is called by the conTest function if test = "Wald".

Usage

## S3 method for class 'conRLM'
conTestWald(object, type = "A", neqg.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
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parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

Arguments

object an object of class conRLM.

type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

boot the null-distribution of these test-statistics (except under type "C", see details)
takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model . based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix_weights = "boot") or using the mul-
tivariate normal distribution function (mix_weights = "pmvnorm”). Note that,
these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald" and the
robust "score”. In these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passed in via ....

parallel the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.
verbose logical; if TRUE, information is shown at each bootstrap draw.
control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.
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e chunk_size the chi-bar-square weights are computed for samples of size
chunk_size = 5000L. This process is repeated iteratively until the weights
converges (see convergenge_crit) or the maximum is reached, i.e., mix_weights_bootstrap_limit.

* convergence_crit the convergence criterion for the iterative process. The
default is 1e-03.

Additional arguments that can be passed to the p.distr function, or arguments for

the restriktor or iht function. Consider, for example, the mix_weights_bootstrap_limit
argument, which specifies the maximum number of bootstrap draws (default is
100.000) used to compute the chi-bar-square weights. If mix_weights_bootstrap_limit
is set to 100.000, then in each iteration, a sample of size 5000 is added until the
weights converge, or the maximum limit is reached.

Details

The following hypothesis tests are available:

n_mn

* Type A: Test HO: all constraints with equalities ("=") active against HA: at least one inequality
restriction (">") strictly true.

n_nmn

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B"” and
"global” are computed based on mixtures of F-distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meq.alt same as input neq.alt.

iact number of active constraints.
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type same as input.
test same as input.
Ts test-statistic value.
df.residual the residual degrees of freedom.
pvalue tail probability for Ts.
b.egrestr equality restricted regression coefficients. Only available for type = "A" and
type = "global”, else b.eqgrestr = NULL.
b.unrestr unrestricted regression coefficients.
b.restr restricted regression coefficients.
b.restr.alt restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B" else b.restr.alt = NULL.
Sigma variance-covariance matrix of unrestricted model.
R2.org unrestricted R-squared, not available for objects of class conGLM.
R2.reduced restricted R-squared, not available for objects of class conGLM.
boot same as input.
model.org original model.
Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156—-161.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
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Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

quadprog, conTest

Examples

library(MASS)

## example 1:

# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted robust linear model
fitl.rlm <- rlm(Age ~ -1 + Group, data = DATA1, method = "MM")
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# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fitl.rlm)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.rlm, myConstraintsl, test = "Wald")

# another way is to first fit the restricted model
fit.restr1 <- restriktor(fitl.rlm, constraints = myConstraints1)

iht(fit.restr1, test = "Wald")

# Or in matrix notation.

Amat1l <- rbind(c(-1, o, 1),
cCo, 1, -1)

myRhs1 <- rep(@L, nrow(Amat1))

myNeql <- @

conTestWald

iht(fit1.rlm, constraints = Amat1, test = "Wald”, rhs = myRhs1, neq = myNeql)

HHHHEHHHHEHHHHHH

## Artificial examples ##
SHFHEHHRHRHEHREEEEH R

# generate data

n <- 30

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted robust linear model
fit2.rlm <- rlm(y ~ -1 + group, data = DATA2, method = "MM")
coef (fit2.rlm)

## example 2: increasing means
myConstraints2 <- ' groupl < group2 < group3 < group4 '

# compute Wald-test for hypothesis test Type A and compute the tail
# probability based on the parametric bootstrap. We only generate 9
# bootstrap samples in this example; in practice you may wish to
# use a much higher number.
iht(fit2.rlm, constraints = myConstraints2, type = "A",

test = "Wald"”, boot = "parametric”, R = 9)
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# or fit restricted robust linear model
fit2.con <- restriktor(fit2.rlm, constraints = myConstraints2)

iht(fit2.con, test = "Wald")

# increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c( 0,-1, 1, 9,
c( 9, 0,-1, 1))
myRhs2 <- rep(0L, nrow(Amat2))
myNeg2 <- @

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", test = "Wald”, boot = "parametric”, R = 9)

## example 3:
# combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.rlm, constraints = myConstraints3, type = "B", test = "Wald", neqg.alt = 1)

# fit robust resticted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
# Note that, a warning message may be thrown because the number of
# bootstrap samples is too low.
fit3.con <- restriktor(fit2.rlm, constraints = myConstraints3,

se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", test = "Wald”, neq.alt = 1)

## example 4:

# restriktor can also be used to define effects using the := operator
# and impose constraints on them. For example, is the
# average effect (AVE) larger than zero?

# generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 =1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit3.rlm <- rlm(y ~ XxZ, data = DATA3, method = "MM")

# constraint syntax
myConstraints4 <- ' AVE := X + 16.86137*X.Z;
AVE > 0 '
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iht(fit3.rlm, constraints = myConstraints4, test = "Wald")

# or

fit3.con <- restriktor(fit3.rlm, constraints = ' AVE := X + 16.86137*X.Z;

AVE >0 ')
iht(fit3.con, test = "Wald")

conTest_ceq

conTest_ceq Tests for iht with equality constraints only

Description

conTest_ceq tests linear equality restricted hypotheses for (robust) linear models by F-, Wald-,
and score-tests. It can be used directly and is called by the conTest function if all restrictions are

equalities.

Usage

## S3 method for class 'conLM'

conTest_ceq(object, test = "F", boot = "no",
R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE,

## S3 method for class 'conRLM'

conTest_ceq(object, test = "F", boot = "no",
R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE,

## S3 method for class 'conGLM'

conTest_ceq(object, test = "F", boot = "no",
R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE,

Arguments

object an object of class conLM, conRLM or conGLM.

)

)

)

test test statistic; for information about the null-distribution see details.

* for object of class Im and glm; if "F" (default), the classical F-statistic is
computed. If "Wald", the classical Wald-statistic is computed. If "score",

the classical score test statistic is computed.

* for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a score test statistic

(Silvapulle, 1996) is computed.
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boot

p.distr

parallel

ncpus

cl

seed

verbose

Value

An object of class
following items:
CON

Amat

bvec

meq

test

Ts
df.residual
pvalue
b_unrestr
b_restr
R2_org
R2_reduced

Author(s)
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if "parametric”, the p-value is computed based on the parametric bootstrap.
See p.distr for available distributions. If "model.based”, a model-based
bootstrap method is used. Model-based bootstrapping is not supported for the
conGLM object yet.

integer; number of bootstrap draws for boot. The default value is set to 9999.

the p.distr function is specified by this function. For all available distributions
see ?distributions. For example, if rnorm, samples are drawn from the nor-
mal distribution (default) with mean zero and variance one. If rt, samples are
drawn from a t-distribution. If rchisq, samples are drawn from a chi-square
distribution. The distributional parameters will be passed in via .. ..

the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed value. The default value is set to 1234.
logical; if TRUE, information is shown at each bootstrap draw.

additional arguments to be passed to the p.distr function.

conTest, for which a print is available. More specifically, it is a list with the

a list with useful information about the constraints.
constraints matrix.

vector of right-hand side elements.
number of equality constraints.
same as input.

test-statistic value.

the residual degrees of freedom.
tail probability for Ts.

unrestricted regression coefficients.
restricted regression coefficients.
unrestricted R-squared.

restricted R-squared.

Leonard Vanbrabant and Yves Rosseel
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See Also

quadprog, iht

Examples

## example 1:
# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fit1.1m)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraints1 <- ' GroupActive = GroupPassive = GroupNo

iht(fit1.1m, myConstraints1)

# another way is to first fit the restricted model
fit_restrl <- restriktor(fit1.1lm, constraints = myConstraintsl)

iht(fit_restr1)

# Or in matrix notation.

Amat1 <- rbind(c(-1, 0, 1),
cCo, 1, -1)

myRhs1 <- rep(QL, nrow(Amat1))

myNeql <- 2
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iht(fit1.1m, constraints = Amatl,
rhs = myRhs1, neq = myNeql)

conTest_summary function for computing all available hypothesis tests

Description

conTest_summary computes all available hypothesis tests and returns and object of class conTest
for which a print function is available. The conTest_summary can be used directly and is called by
the conTest function if type = "summary"”.

Usage
## S3 method for class 'restriktor'
conTest_summary(object, test = "F", ...)
Arguments
object an object of class restriktor.
test test statistic; for information about the null-distribution see details.

« for object of class Im; if "F" (default), the classical F-statistic is computed.
If "Wald", the classical Wald-statistic is computed. If "score", the classical
score test statistic is computed.

* for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a score test statistic
(Silvapulle, 1996) is computed.

the same arguments as passed to the iht function, except for type, of course.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meq.alt same as input neq.alt.

iact number of active constraints.

type same as input.

test same as input.
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Ts
df.residual
pvalue

b.egrestr

b.unrestr
b.restr

b.restr.alt

Sigma
R2.org
R2.reduced
boot

model.org

Author(s)

conTest_summary

test-statistic value.
the residual degrees of freedom.
tail probability for Ts.

equality restricted regression coefficients. Only available for type = "A" and
type = "global”, else b.eqgrestr = NULL.

unrestricted regression coefficients.
restricted regression coefficients.

restricted regression coefficients under HA if some equality constraints are main-
tained.

variance-covariance matrix of unrestricted model.
unrestricted R-squared.

restricted R-squared.

same as input.

original model.

Leonard Vanbrabant and Yves Rosseel

References

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49-62.

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156-161.

Silvapulle, M. and Silvapulle, P. (1995). A score test against one-sided alternatives. American
statistical association, 90, 342-349.

Silvapulle, M. (1996) On an F-type statistic for testing one-sided hypotheses and computation of
chi-bar-squared weights. Statistics and probability letters, 28, 137-141.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics and probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Wolak, F. (1987). An exact test for multiple inequality and equality constraints in the linear regres-
sion model. Journal of the American statistical association, 82, 782-793.

See Also

quadprog, iht
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Examples

## example 1:
# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fit1.1m <- Im(Age ~ -1 + Group, data = DATAT)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fit1.1m)

# constraint syntax: assuming that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraintsl <- ' GroupActive < GroupPassive < GroupNo

iht(fit1.1m, myConstraints1)

# another way is to first fit the restricted model
fit.restrl <- restriktor(fit1.1lm, constraints = myConstraints1)

iht(fit.restr1)

# Or in matrix notation.

Amat1 <- rbind(c(-1, 0, 1),
cCo, 1, -1)

myRhs1 <- rep(@L, nrow(Amat1))

myNeql <- @

fitl.con <- restriktor(fitl1.1lm, constraints = Amat1,
rhs = myRhs1, neq = myNeql)
iht(fit1.con)

con_weights_boot function for computing the chi-bar-square weights based on Monte
Carlo simulation.

Description

The null-distribution of the test statistics under inequality constraints takes the form of mixtures
of F-distributions. This function computes these mixing weights (a.k.a chi-bar-square weights and
level probabilities).
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Usage

con_weights_boot(VCOV, Amat, meq, R = 1e5L,
chunk_size = 5000L, convergence_crit = 1e-03,
seed = NULL, verbose = FALSE, ...)

Arguments

vcov variance-covariance matrix of the data for which the weights are to be calculated.

Amat constraints matrix R (or a vector in case of one constraint) and defines the left-
hand side of the constraint Rf > rhs, where each row represents one constraint.
The number of columns needs to correspond to the number of parameters esti-
mated (#). The rows should be linear independent, otherwise the function gives
an error. For more information about constructing the matrix R and rhs see
restriktor.

meq integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if meq = 2, this means
that the first two rows of the constraints matrix R are treated as equality con-
straints.

R integer; the maximum number of bootstrap draws for mix_weights_bootstrap_limit.
The default value is set to 1e5. See details for more information.

chunk_size integer; the chi-bar-square weights are computed for samples of size chunk_size
=5000L. This process is repeated iteratively until the weights converges (see
convergenge_crit) or the maximum is reached, i.e., mix_weights_bootstrap_limit.

convergence_crit

the convergence criterion for the iterative process. The default is le-03. See
details for more information.

seed seed value.
verbose logical; if TRUE, information is shown at each bootstrap draw.

additional parameters for the rtmvnorm function.

Details

#i# Iterative Weight Updating and Convergence Checking ## The function adds in each run chunks
of 5000 samples (default) to compute the chi-bar-square weights. After each iteration, the function
checks if the weights have converged. This is determined by the convergence_crit parameter.

Convergence is assessed by comparing the absolute difference between the current and previous
iteration’s weights against the convergence_crit. If the change in weights is smaller than the con-
vergence criterion, it indicates that the weights have stabilized, suggesting convergence.

If the weights have not converged and the mix_weights_bootstrap_limit has not been reached,
the function proceeds with adding another set of 5000 samples and updates the weights accord-
ingly.If the maximum number of iterations is reached without convergence, the function returns the
(non-converged) weights. In this situation, it is advisible to increase the number of mix_weights_bootstrap_limit.
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Value

If convergence is reached, the function returns a vector with the mixing weights with the following
attributes:

total_bootstrap_draws
total number of bootstrap draws

converged have the chi-bar-square weights converged

convergence_crit
convergence criterium

wt_bar_chunk  matrix with the chi-bar-square weights for each iteration
chunk_size how many samples are added in each iteration

total_chunks what is the maximum number of chunks based on mix_weights_bootstrap_limit
and chunk_size

chunk_iter number of iterations run

error.idx which bootstrap samples were not succesful

mix_weights_bootstrap_limit
the maximum number of bootstrap draws

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M.J. and Sen, P.K. (2005, p.79). Constrained Statistical Inference. Wiley, New York.

Examples

W <- matrix(c(1,0.5,0.5,1),2,2)

Amat <- rbind(c(9,1))

meq <- 0L

wt.bar <- con_weights_boot(W, Amat, meq, R = 99999)
wt.bar

# in practice you want to use are more conservative convergence criterion
wt.bar2 <- con_weights_boot(W, Amat, meq, R = 99999, convergence_crit = 1e-02)
wt.bar2
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evSyn GORIC(A) Evidence synthesis
Description
GORIC(A) evidence synthesis aggregates the evidence for theory-based hypotheses from multiple
studies that may use diverse designs to investigate the same central theory.
Usage

# I try to guess the input type.
evSyn(object, input_type = NULL, ...)

# input: Parameter estimates and covariance matrix

evSyn_est(object, ..., VCOV = list(), hypotheses = list(),
type_ev = c("added”, "equal"”, "average"),
comparison = c("unconstrained”, "complement”, "none"),
hypo_names = c(), type = c("gorica”, "goricac"),
order_studies = c("input_order”, "ascending”, "descending"”),
study_names = c(), study_sample_nobs = NULL)

# input: Log-likelihood and penalty values

evSyn_LL(object, ..., PT = list(), type_ev = c("added”, "equal”, "average"),
hypo_names = c(),
order_studies = c("input_order”, "ascending"”, "descending"),

study_names = c())

# input: GORIC(A), ORIC, AIC values

evSyn_ICvalues(object, ..., type_ev = c("added”, "average"), hypo_names = c(),
order_studies = c("input_order”, "ascending", "descending"),
study_names = c())

# input: AIC or ORIC or GORIC or GORICA weights or (Bayesian) posterior
# model probabilities

evSyn_ICweights(object, ..., type_ev = c("added”, "average"),
priorWeights = NULL, hypo_names = c(),
order_studies = c("input_order”, "ascending”, "descending"),

study_names = c())

# input: Ratio of AIC or ORIC or GORIC or GORICA weights or
# (Bayesian) posterior model probabilities

evSyn_ICratios(object, ..., type_ev = c("added”, "average"),
priorWeights = NULL, hypo_names = c(),
order_studies = c("input_order”, "ascending"”, "descending"),

study_names = c())

# input: result from the goric() function
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# Note that this is a wrapper function for evSyn_LL.

evSyn_gorica(object, ..., type_ev = c("added”, "equal”, "average"),
hypo_names = c(),
order_studies = c("input_order”, "ascending"”, "descending"),

study_names = c())
# input: Result from the escalc() function from the metafor package.
# Note that this is a wrapper function for evSyn_est.

evSyn_escalc(data, yi_col = "yi", vi_cols = "vi", cluster_col, outcome_col, ...)

## S3 method for class 'evSyn'

print(x, digits = max(3, getOption("digits"”) - 4), ...)
## S3 method for class 'evSyn'

summary (object, ...)

## S3 method for class 'summary.evSyn'

print(x, digits = max(3, getOption("digits") - 4), ...)

## S3 method for class 'evSyn'
plot(x, output_type = "gorica_weights"”, xlab = NULL,

xlab_unordered = NULL, angle_x = 30, ...)
Arguments
object Currently, the following objects can be processed:

* alist of vectors with (standardized) parameter estimates (the VCOV argument
is required);

* alist of vectors with log-likelihood values (the PT argument is required);

* alist of vectors with GORIC(A) weights;

* alist of vectors with ratio of GORIC(A) weights;

« a list of vectors with GORIC(A) values;

* alist of objects of class goric;

* adata.frame of class escalc from the metafor package;

input_type character Specifies the type of input provided to the function. Valid options
are:

"est_vcov" Indicates that the input consists of estimates and covariance matri-
ces. Invokes the evSyn_est () function.

"11_pt" Indicates that the input consists of log-likelihoods and penalty values.
Invokes the evSyn_LL () function.

"icweights" Indicates that the input consists of information criterion (IC) weights.
Invokes the evSyn_ICweights() function.

"icratios” Indicates that the input consists of IC weights ratios. Invokes the
evSyn_ICratios() function.

"icvalues” Indicates that the input consists of IC values. Invokes the evSyn_ICvalues()
function.
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vcov
PT

type_ev

type

hypotheses

comparison

priorWeights

hypo_names

output_type

xlab_unordered

angle_x

evSyn

"gorica” Indicates that the input is of class goric from the goric function.
Invokes the evSyn_gorica() function.

"escalc"” Indicates that the input is of class escalc from the metafor package.
Invokes the evSyn_escalc() function.

If input_type is NULL, the function attempts to infer the input type based on the
structure of the object and other arguments.

a list of covariance matrices of the (standardized) parameter estimates of interest.
a list of vectors with penalty values.
an object of class evSyn

type of evidence-synthesis approach: Equal-evidence approach (type_ev = "equal”),
Added-evidence approach (type_ev = "added"), or Average-evidence approach
(type_ev = "average"). See details for more information.

If "gorica”, a proxi for the log-likihood is calculated by assuming that the
parameter estimates (of interest) are multivariate normally distributed. Then,
either the unbiased covariance matrix of the estimates (based on ’N’; e.g., for
an Im object) is used or the biased one obtained via the vcov function (e.g., for
a lavaan object). In the latter case, a corresponding message will be printed. If
"goricac”, then the small-sample-size correction is applied.

When applying the same set of hypotheses to each study, the syntax structure
should be as follows: "hypotheses = list(H1, H2, ...)". However, if a different
set of hypotheses is applied to each study, the syntax structure should be as
follows: hypotheses = list(setl = list(H11, H12), set2 = list(H21, H22)). See
goric how to specify the hypotheses syntax or see the example section below.

denotes the failsafe hypothesis; one can choose from "unconstrained", "comple-
ment", and "none". If "none", the model is only compared against the models
provided by the user. By default, if one user-specified hypothesis, "comparison
= 'complement'"; if multiple user-specified hypotheses, "comparison = 'unconstrained'".
Note that the complement can only be computed for one model/hypothesis at a

time.

vector that represents the prior belief for this model. By default, equal prior
weights are used (i.e., 1/(#hypotheses)). Notably, in case the prior weights do
not sum to 1, it will be rescaled such that it does; which implies that relative
importance can be used and not per se weights.

character vector for labelling the hypotheses. By default the names are set to
H1,H2, ...

aplot options. If "gorica_weights" (default), a plot with the cumulative goric(a)
weights and goric(a) weights per study is displayed. If "11_weights", a plot

with the cumulative log-likelihood weights and log-likelihood weights per study

is displayed.

A character vector specifying the original (unordered) study labels. This argu-
ment should be used when studies have been re-ordered using order_studies.
The labels will be reordered internally to match the plotting order.

Numeric value specifying the angle (in degrees) of the x-axis labels. Useful
when labels are long and overlap.
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study_names
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A character vector specifying the names or labels of the individual studies.
When provided, these names will be used throughout the output, including in ta-
bles, summaries, and plots (in place of numeric study indices). If NULL (default),
studies are automatically numbered (1, 2, ..., K) following the order determined
by order_studies.

study_sample_nobs

order_studies

xlab

data

cluster_col

outcome_col

yi_col

vi_cols

digits

A numeric vector specifying the sample size (n) for each study. When provided,
this information will be included in summaries and can be used for weighted
averaging or diagnostic purposes in the evidence synthesis. If NULL (default), all
studies are assumed to have equal weight with respect to sample size.

A character string that determines how studies are ordered in the output and
plots. If "input_order” (default), studies are displayed in the order they were
provided. If "ascending” or "descending”, studies are ordered based on the
ascending or descending cumulative support for the preferred hypothesis, re-
spectively.

a vector specifying custom labels for the x-axis (be aware that study ordering
may be changed based on order_studies). The length of the vector must match
the number of studies in the dataset. If not provided, the x-axis labels default
to a sequence from 1 to the number of studies (possibly re-ordered based on
order_studies).

an object of class "escalc" from the metafor package.

a character string specifying the column in data that contains the cluster/study
identifier. Observations within the same cluster/study should share the same
value in this column. When not specified, the function looks for a column

with one of the following names: "trial", "study", "author", "authors", "Trial",
"Study", "Author", or "Authors".

a column name in data containing the outcome identifiers/labels for each ob-
servation within a cluster/study. The hypothesis/-es should be based on this la-
belling. By default (i.e., if ’outcome_col’ is null), the function assumes that the
parameter label used in the hypothesis is "theta" (one outcome variable); when
there is additionally a column called *outcome’, it will use that as the outcome
identifier, employing its unique levels/values as the labels (more outcome vari-
ables). If outcome_col’ is not null but user-specified, then the labeling should
be based on the unique level(s)/value(s) in the corresponding data column. No-
tably, outcome_col is related to the labeling; the column with estimates is re-
ferred to as ’yi_col’ and is, by default, set to "yi". For more information, see
Example 5 below.

a character string specifying the column in data that contains the outcome val-
ues / estimates for each observation. The default is "yi”. For more information,
see Example 5 below.

a character vector specifying the columns in data that contain the variance and
covariance values for each observation. The default is, in the case of one out-
come variable, "vi"; in the case of multiple (namely, O) variables, c("v1i",

n

., "v0i". For more information, see Example 5 below.
the number of significant digits to use when printing.

This depends on the class of the object.
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Details

In the added-evidence approach, evidence from each study or dataset is cumulatively aggregated.
This means that for every new study, the log-likelihood and the penalty term are added to the
cumulative totals. The strength of the aggregated evidence in this approach depends on the nature
of the evidence itself. Simply having more studies doesn’t necessarily mean stronger evidence if
those studies provide weak or contradictory evidence.

Opt for this approach when you anticipate each new piece of evidence to provide an incremental
contribution to the overall evidence, without the need to normalize or average across datasets. It’s
especially suitable when you believe that the aggregated evidence from multiple studies is stronger
than if the data were combined into a single study.

The equal-evidence approach aggregates the cumulative evidence in the same manner as the added-
evidence approach. However, when calculating the GORICA, the cumulative evidence is divided
by the number of studies. This ensures that the contribution from each study or dataset remains
equal, regardless of the total count. Conceptually, aggregating evidence from multiple studies in
this approach can be likened to obtaining evidence from a single larger study, similar to how a
meta-analysis treats combined evidence.

Choose this method when you want each study to contribute equally to the overall evidence, irre-
spective of the size or scope of each individual dataset. It’s ideal for situations where you view the
combined evidence from multiple studies as equivalent to that from a single, larger study.

The average-evidence method can be conceptualized as a form of multiverse analysis. When faced
with a single dataset, there are often numerous analytical choices available, such as handling miss-
ing data, selecting variables, or choosing statistical methods. Each choice can lead to a different
analysis or model, creating a "multiverse" of possible outcomes.

For each of these analyses, an "evidence" score can be calculated, indicating how well the model
fits the data. Some models might offer a superior fit, while others might not align as closely with
the data. The average-evidence method aggregates these scores, providing an average measure of fit
across all considered models. This approach offers an overarching perspective on the general trend
across all analyses. If the average evidence suggests a good fit, it indicates that the majority of the
chosen analyses align well with the data. This method is invaluable for assessing the robustness of
results, ensuring that findings are not merely artifacts of a specific analytical choice but are consis-
tent across various model specifications on the same dataset.

Opt for the average-evidence approach when you wish to gauge the central tendency of evidence
across multiple analytical choices. It’s especially beneficial when aiming to determine the robust-
ness of results across various model specifications applied to the same dataset.

Value
An object of class evSyn for which a print, summary and plot function is available. The output
comprises, among other things, the cumulative and final evidence for the theory-based hypotheses.

Author(s)

Leonard Vanbrabant and Rebecca M. Kuiper

Examples

## By following these examples, you can appropriately specify hypotheses based on
## your research questions and analytical framework.
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# The hypotheses (i.e., constraints) have to be in a list. It is recommended to name
# each hypothesis in the list. Otherwise, the hypotheses are named accordingly 'H1', 'H2', \ldots.

# Example using text-based syntax (the labels x1, x2, and x3 are the names of
# coef(model) or names(vector))

H1 <- '"(x1, x2, x3) > @'

H2 <- '"(x1, x3) > 0; x2 < @'

H3 <- 'x1 > 0; x2<0; x3=20'

hypotheses = list(hypol = H1, hypo2 = H2, hypo3 = H3)

# Here, it is assumed that each study uses the same hypothesis specification

# Example using mixed syntax:

HT <= 'x1 > x2 > x3 > @'

hypotheses = list(Ha = H1, Hb = 'x1 = x2 > x3"')

# Here, it is assumed that each study uses the same hypothesis specification

# Example using a different set of hypotheses for each study:

# Set for Study 1

H11 <- 'groupl = group2 > group3'

H12 <- 'group2 > groupl > group3'

# Set for Study 2

H21 <- 'grl = gr2 > gr3'

H22 <- 'gr2 > gr1 > gr3'

#

# correct

hypotheses = list(setl = list(H11, H12), set2 = list(H21, H22))

# note that the list names setl and set2 are redundant and can be left out.
# It is crucial to ensure that the hypotheses across each set are ordered in a similar manner.
#

# NOT correct

#hypotheses = list(setl = list(H12, H11), set2 = list(H21, H22))

## Example 1: based on one estimate and its variance
# 4 studies

# estimates (beta) (from the 4 primary studies)
est_1 <- c(betal = 0.09)

est_2 <- c(betal 0.14)

est_3 <- c(betal = 1.09)

est_4 <- c(betal = 1.781)

Param_studies <- list(est_1, est_2, est_3, est_4)

# standard error of the beta's (from the 4 primary studies)
vcov_est_1 <- matrix(c(0.029%2), nrow = 1)

vecov_est_2 <- matrix(c(0.054"2), nrow = 1)

vcov_est_3 <- matrix(c(0.093%2), nrow = 1)

vcov_est_4 <- matrix(c(@.179%2), nrow = 1)

CovMx_studies <- list(vcov_est_1, vcov_est_2, vcov_est_3, vcov_est_4)

# Set of hypotheses for each study
# Note: in this case the same for each study
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HO  <- "betal = 0"
Hpos <- "betal > 0"
Hneg <- "betal < 0"
hypotheses <- list(H® = H@, Hpos = Hpos, Hneg = Hneg)

# Since this covers the whole space / covers all theories, we do not need a safeguard-hypothesis:
comparison <- "none”

evS4_added <- evSyn(object = Param_studies, VCOV = CovMx_studies,
hypotheses = hypotheses,
type_ev = "added”,
comparison = "none")

evS4_added

summary (evS4_added)

plot(evS4_added)

evS4_equal <- evSyn(object = Param_studies, VCOV = CovMx_studies,
hypotheses = hypotheses,
type_ev = "equal”,
comparison = "none")

evS4_equal

summary (evS4_equal)

plot(evS4_equal)

## Example 2: based on (multiple) estimates and their covariance matrices
# 2 studies

# estimates and their covariance matrices (from the 2 primary studies)
est_1 <- c(1.88, 2.54, 0.02)

names(est_1) <- c("group1”, "group2", "group3")

vcov_est_1 <- diag(c(0.2149074, 0.2149074, 0.1408014))

est_2 <- c(0.98, 0.02, 0.27)
names(est_2) <- c("gr1", "gr2", "gr3")
vecov_est_2 <- diag(c(0.1382856, 0.1024337, 0.0987754))

# list of estimates

object <- list(est_1, est_2)

# list of covariance matrices of the estimates

VCOV <- CovMx_studies <- list(vcov_est_1, vcov_est_2)

# Hypotheses (study-specific)

# names(est_1) # Specify restrictions using those names
H11 <- 'groupl = group2 > group3'

H12 <- 'group2 > groupl > group3'

# names(est_2) # Specify restrictions using those names
H21 <- 'gr1 = gr2 > gr3'

H22 <- 'gr2 > gr1 > gr3'

# list of (competing) hypotheses
hypotheses <- list(H1 = list(H11, H12), H2 = list(H21, H22))
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# Evidence synthesis (added-evidence)

evS2_added <- evSyn(object, VCOV = VCOV, hypotheses = hypotheses,
type_ev = "added”, comparison = "unconstrained")

evS2_added

plot(evS2_added)

## Example 3: based on (multiple) estimates and their covariance matrices
# 3 studies

# generate data
ratio <- ¢(1,1.1,1.2)
n <- c(30, 50, 100)

# Generate datal

nl <- n[1]

x11 <= rnorm(n1)

x12 <= rnorm(n1)

x13 <= rnorm(n1)

data <- cbind(x11, x12, x13)

# Standardize data - since parameters for continuous variables will be compared
datal <- as.data.frame(scale(data))

y1 <- ratio[1]*datal$x11 + ratio[2]xdatal$x12 + ratio[3]*datal$x13 + rnorm(n1)
# Note: since there is one outcome, the outcome does not need to be standardized.
fit.1ml <= Im(y1 ~ 1 + x11 + x12 + x13, data = datal)

# Generate data2

n2 <- n[2]

x21 <= rnorm(n2)

x22 <= rnorm(n2)

x23 <= rnorm(n2)

data <- cbind(x21, x22, x23)

data2 <- as.data.frame(scale(data))

y2 <- ratio[1]xdata2$x21 + ratio[2]*data2$x22 + ratio[3]*data2$x23 + rnorm(n2)
fit.1Im2 <- Im(y2 ~ 1 + x21 + x22 + x23, data = data2)

# Generate data3

n3 <- n[3]

x31 <= rnorm(n3)

x32 <= rnorm(n3)

x33 <= rnorm(n3)

data <- cbind(x31, x32, x33)

data3 <- as.data.frame(scale(data))

y3 <- ratio[1]*data3$x31 + ratio[2]xdata3$x32 + ratio[3]*data3$x33 + rnorm(n3)
fit.1m3 <- Im(y3 ~ 1 + x31 + x32 + x33, data = data3)

# Extract estimates and their covariance matrix (per study)
est_1 <- coef(fit.1m1)

est_2 <- coef(fit.1m2)

est_3 <- coef(fit.1m3)

veov_est_1 <- vcov(fit.1m1)

vcov_est_2 <- vcov(fit.1lm2)

vecov_est_3 <- vcov(fit.1m3)
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names(est_1) <- names(est_2) <- names(est_3) <- c("intercept”, "x1", "x2", "x3")

# Parameter estimate values from the primary studies
Param_studies <- list(est_1, est_2, est_3)

# standard error of the beta's
CovMx_studies <- list(vcov_est_1, vcov_est_2, vcov_est_3)

# Set of hypotheses for each study. Note: in this case the same for each study
hypothesis <- 'x1 < x2 < x3'

# In our theory, we compare estimates of continuous variables, so we standardized

# the data beforehand to ensure comparability. In 'Param_studies' and 'CovMx_studies',

# the intercept can be omitted without affecting the GORIC(A) weights, as there are

# no restrictions on it. Since we have only one theory-based hypothesis, we will

# utilize the more powerful complement of the hypothesis (Vanbrabant, Van Loey, Kuiper, 2019).
# The complement represents the remaining 11 theories, while the unconstrained

# scenario includes all 12 possible theories, including H1.

# Evidence synthesis (added-evidence)

evS3 <- evSyn(object = Param_studies, VCOV = CovMx_studies,
hypotheses = list(H1 = hypothesis),
type_ev = "added”,
comparison = "complement”)

evS3

plot(evS3)

## Example 4: based on loglikelihood values and penalty values

# Make LL and PT values a list
LL <- as.list(data.frame(t(myLLs)))
penalty.values <- as.list(data.frame(t(myPTs)))

# Evidence synthesis

#

# Added-evidence

evS_LL_added <- evSyn(object = LL, PT = penalty.values,
hypo_names = colnames(myLLs),
type_ev = "added")

evS_LL_added

#

# Equal-evidence

evS_LL_equal <- evSyn(object = LL, PT = penalty.values,
hypo_names = colnames(myLLs),
type_ev = "equal”)

evS_LL_equal

## Example 5: based on AIC, ORIC, GORIC(A) values

# Make GORIC values a list
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goric.values <- as.list(data.frame(t(myGORICs)))

# Evidence synthesis (added-evidence)
evS_Gv <- evSyn(goric.values,

hypo_names = colnames(myGORICs))
evS_Gv

## Example 6: based on an escalc object

## Example 6a: one outcome, default labeling
if (requireNamespace("metadat”, quietly = TRUE)) {
# access data within metafor
data_a <- metadat::dat.berkey1998[metadat: :dat.berkey1998%outcome == "PD", 1[, c(1:4, 6:7)]

# yi gives the estimates and vi their variances.

# So, here:

# cluster_col = "trial” using the first variable with a cluster variable

# name (year and author are other possibilities)

# outcome_col = NULL # No 'outcome' variable, so 'theta' is used as labeling
# yi_col = "yi"

# vi_cols = "vi”

#

# The hypothesis should thus now be based on the default labelling theta:
H1 <- "abs(theta) > 0.5"
evS_escalc_a <- evSyn(
data_a,
hypotheses = list(H1 = H1),
type_ev = "equal”,
comparison = "complement”
)
evS_escalc_a

}

## Example 6b: one outcome, default labeling coming from 'outcome' variable
if (requireNamespace("metadat”, quietly = TRUE)) {

data_b <- metadat::dat.berkey1998[metadat: :dat.berkey1998$outcome == "PD", 1[, c(1:7)]
# yi gives the estimates and vi their variances.

# So, here:

# cluster_col = "trial” # using the first variable with a cluster variable

# name (year and author are other possibilities)

# outcome_col = "outcome” # was NULL, but found 'outcome' variable, so use that

# labeling, that is, "PD"

# yi_col = "yi"

# vi_cols = "vi”

#

# The hypothesis should thus now be based on the labeling based on the 'outcome' variable:
H1 <- "abs(PD) > 0.5"
evS_escalc_b <- evSyn(data_b,

hypotheses = list(H1 = H1),

type_ev = "equal”,
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comparison = "complement")
evS_escalc_b

## Example 6¢c: 2 outcomes, default labeling coming from 'outcome' variable
if (requireNamespace("metadat”, quietly = TRUE)) {
data_c <- metadat::dat.berkey1998
yi gives the estimates (for both outcomes), vi their variances,
and v1i & v2i combined their covariance matrices.
So, here:
cluster_col = "trial” # using the first variable with a cluster variable
name (year and author are other possibilities)
outcome_col = "outcome” # was NULL, but found 'outcome' variable, so use
that labeling, that is, "PD"
yi_col = "yi"
vi_cols = c("v1i", "v2i")

HOoH H B OHF ¥ B OF

#

Exam

# The hypothesis should thus now be based on the labeling based on the 'outcome' variable:

H1 <- "abs(AL) > 0.5, abs(PD) > 0.5"
evS_escalc_c <- evSyn(data_c,
hypotheses = list(H1 = H1),
type_ev = "equal”,
comparison = "complement")
evS_escalc_c

Exam Relation between exam scores and study hours, anxiety scores and

average point scores.

Description

The data provide information about students’ exam scores, average point score, the amount of study

hours and anxiety scores.

Usage
data(Exam)

Format
A data frame of 20 observations of 4 variables.
Scores exam scores
Hours study hours

Anxiety anxiety scores

APS average point score
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References

The original source of these data is http://staff.bath.ac.uk/pssiw/stats2/examrevision.sav.

Examples

head(Exam)

FacialBurns Dataset for illustrating the conTest_conLavaan function.

Description

A dataset from the Dutch burn center (http://www.adbc.nl). The data were used to examine psy-
chosocial functioning in patients with facial burn wounds. Psychosocial functioning was measured
by Anxiety and depression symptoms (HADS), and self-esteem (Rosenberg’s self-esteem scale).

Usage

data(FacialBurns)

Format

A data frame of 77 observations of 6 variables.

Selfesteem Rosenberg’s self-esteem scale
HADS Anxiety and depression scale

Age Age measured in years, control variable
TBSA Total Burned Surface Area

RUM Rumination, control variable

Sex Gender, grouping variable

Examples

head(FacialBurns)
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goric

goric
Weights

Generalized Order-Restricted Information Criterion (Approximation)

Description

The goric function computes GORIC(A) weights, which are comparable to the Akaike weights.

Usage
goric(object, ...)
## Default S3 method:

goric(object, ., hypotheses
comparison = NULL, type

VCOV = NULL, sample_nobs

NULL,
"goric",
NULL,

penalty_factor = 2, Heq = FALSE, control = list(), debug

## S3 method for class 'lm'

goric(object, ., hypotheses = NULL,
comparison = NULL, type = "goric",
missing = "none"”, auxiliary = c(), emControl = list(),
debug = FALSE)

## S3 method for class 'numeric'

goric(object, ..., hypotheses = NULL,
comparison = NULL, type = "gorica",
VCOV = NULL, sample_nobs = NULL,
debug = FALSE)

## S3 method for class 'lavaan'

goric(object, ., hypotheses = NULL,
comparison = NULL, type = "gorica",

standardized = FALSE, debug = FALSE)

## S3 method for class 'CTmeta’
goric(object, ., hypotheses =
comparison = NULL, type =
sample_nobs = NULL, debug
## S3 method for class 'rma'
goric(object, ..., hypotheses =
comparison = NULL, type =

VCOV = NULL, sample_nobs

debug = FALSE)

NULL,
"gorica”,
= FALSE)

NULL,
"gorica”,
NULL,

= FALSE)
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## S3 method for class 'con_goric'
print(x, digits = max(3, getOption("digits"”) - 4), ...)

## S3 method for class 'con_goric'
summary(object, brief = TRUE, digits = max(3, getOption("digits") - 4), ...)

## S3 method for class 'con_goric'

coef(object, ...)
Arguments
object an object containing the outcome of an unconstrained statistical analysis. Cur-

rently, the following objects can be processed:

* afitted unconstrained object of class aov, 1m, glm, r1m or mlm.

* anumeric (named) vector containing the unconstrained estimates resulting
from any statistical analysis.

* a fitted object of class lavaan. See examples on how to specify the hy-
potheses.

* afitted object of class CTmeta.

* afitted object of class rma.

* afitted object of class nlmerMod.

* a fitted object of class glmerMod.

« afitted object of class ImerMod.

X an object of class con_goric.

this depends on the class of the object. If object is of class lavaan, the standard-
ized or unstandardized vcov can be used, using setting standardized = TRUE.
See details for more information.

Options for calculating the chi-bar-square weights:

Parameters passed to the truncated multivariate normal distribution. By default,
restriktor (i.e. con_weights_boot function) uses no truncation points for calcu-
lating the chi-bar-square weights, which renders to the multivariate normal dis-
tribution. See the manual page of the rtmvnorm function from the rtmvnorm to
see how to specify a truncated mvnorm distribution and the possible arguments.

hypotheses a named list; Please note that the hypotheses argument in the given context
serves the same purpose as the constraints argument utilized in the restriktor
function. The distinction between them is solely semantic.
There are two ways to constrain parameters. First, the hypothesis syntax consists
of one or more text-based descriptions, where the syntax can be specified as a
literal string enclosed by single quotes. Only the names of coef(model) or
names(vector) can be used as names. See details for more information. Note
that objects of class "mlm" do not (yet) support this method.
Second, the hypothesis syntax consists of a matrix R (or a vector in case of
one constraint) and defines the left-hand side of the constraint Rf > rhs, where
each row represents one constraint. The number of columns needs to correspond
to the number of parameters estimated (¢) by model. The rows should be linear
independent, otherwise the function gives an error. For more information about
constructing the matrix R and rhs see details.
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comparison

type

VCov

sample_nobs

penalty_factor

Heq

missing

goric

The default behavior depends on the number of user-specified order-restricted
hypotheses. If a single hypothesis is specified, it is compared against its com-
plement by default. When multiple order-restricted hypotheses are specified, the
unconstrained model is added as a safeguard to the set of hypotheses.

These default settings can be overridden. Use "unconstrained" to include the
unconstrained model in the set of models. Use "complement" to compare the
order-restricted object against its complement; note that the complement can
only be computed for one model/hypothesis at a time for now. If "none" is
chosen, the model is compared only against those provided by the user.

if "goric”, the generalized order-restricted information criterion value is com-
puted. If "gorica”, a proxi for the log-likihood is calculated by assuming that
the parameter estimates (of interest) are multivariate normally distributed. Then,
either the unbiased covariance matrix of the estimates (based on ’N’; e.g., for an
Im object) is used or the biased one obtained via the vcov function (e.g., for a
lavaan object). In the latter case, a corresponding message will be printed. If
"goricc” or "goricac”, then the small-sample-size correction is applied.

variance-covariance matrix. Only needed if object is of class ‘numeric’ (and,
therefore, type = "gorica"” or type = "goricac"”). For many fit objects, one
can use the function vcov() to obtain the VCOV. This renders the (biased) re-
stricted sample covariance matrix and not the unbiased sample covariance ma-
trix (based on ’N’). To obtain the unbiased one, one should make an adjustment
based on samples size and the rank of the model (i.e., number of predictors
including intercept); as shwon in an example below.

the number of observations, only needed if type = "goricac”. Note that, for
many fit objects and/or if type = "goricc”, the number of observations are in-
herited from the fitted object. In case a vector is given, it is assumed that those
are group sizes; then, their sum is used as the number of observations.

The penalty factor adjusts the penalty in the GORIC(A) formula (GORIC(A)
= -2 x log-likelihood + penalty_factor x penalty). By default, GORIC(A) uses
a penalty factor of 2, but penalty factor allows this to be customized. Higher
values of penalty factor place a stronger emphasis on model simplicity, helping
to prevent overfitting by penalizing complex models more heavily.

If TRUE, the null hypothesis is added to the set of models. This means that all
inequality constraints are replaced with equality constraints, effectively testing
the hypothesis that the parameters satisfy exact equality rather than inequality.
Defaults to FALSE.

the default setting for objects of class "Im" is listwise: all cases with miss-
ing values are removed from the data before the analysis. This is only valid
if the data are missing completely at random (MCAR). Another option is to
use "two.stage". In this approach, missing data are imputed using an EM al-
gorithm. However, we cannot use the complete data as input for futher analy-
ses, because the resulting complete data variance-covariance matrix will not be
correct. Therefore, we compute the correct aymptotic covariance (Savalei and
Bentler, 2009) and use it as input for the goric.numeric function to compute
a GORICA(C) value. Note that, the parameter estimates are also recomputed
using the complete data.
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auxiliary Vector. The inclusion of auxiliary variables can improve the imputation model.
These auxiliary variables are not part of the target model.

emControl a list of control arguments for the emnorm function from the norm package.
standardized if TRUE, standardized parameter estimates are used.

digits the number of significant digits to use when printing.

debug if TRUE, debugging information is printed out.

Control options for calculating the chi-bar-square weights:

control * chunk_size integer; the chi-bar-square weights are computed for samples
of size chunk_size = 5000L. This process is repeated iteratively until the
weights converges (see convergenge_crit) or the maximum is reached,
i.e., mix_weights_bootstrap_limit.
* mix_weights_bootstrap_limit integer; maximum number of bootstrap
draws. The default value is set to 1e5.
» convergence_crit the convergence criterion for the iterative bootstrap
process. Default is 1e-03.

brief if TRUE, a short overview is printed.

Details

The GORIC(A) can be used to evaluate theory-based, informative hypotheses, that is, quantify the
relative support of theory-based, informative hypotheses. The GORIC(A) values themselves are
not interpretable and the interest lie in their differences. The GORIC(A) weights reflect the support
of each hypothesis in the set. To compare two hypotheses (and not one to the whole set), one
can examine the ratio of the two corresponding GORIC(A) weights. To avoid selecting a weakly
supported hypothesis as the best one, the unconstrained hypothesis is usually included as safeguard.

In case of one order-constrained hypothesis, say H1, the complement Hc can be used as competing
hypothesis. The complement is defined as "Hc: not H1".

The hypothesis syntax can be parsed via the hypotheses argument. If the object is an unconstrained
model of class aov, 1m, glm, rlm, or mlm, then the hypotheses can be specified in two ways, see
restriktor. Note that if the hypotheses are written in matrix notation, then the hypotheses for
each model/hypothesis is put in a named list with specific names constraints, rhs, and neq. For
example with three parameters x1, x2, x3, and x1 > 0: list(modell = list(constraints = rbind(c(1, 0,
0)), rhs =0, neq = 0))). The rhs and neq are not required if they are equal to 0. If type = "gorica”,
then the object might be a (named) numeric vector. The hypotheses can again be specified in two
ways, see restriktor. For examples, see below.

To determine the penalty term values, the chi-bar-square weights (a.k.a. level probabilities) must
be computed. If "mix_weights = "pmvnorm” " (default), the chi-bar-square weights are com-
puted based on the multivariate normal distribution function with additional Monte Carlo steps.
If "mix_weights = "boot" ", the chi-bar-square weights are computed using parametric bootstrap-
ping (see restriktor).

The "two.stage" approach for missing data uses the EM algorithm from the norm package. The
response variables are assumed to be jointly normal. In practice, missing-data procedures designed
for variables that are normal are sometimes applied to variables that are not. Binary and ordinal
variables are sometimes imputed under a normal model, and the imputed values may be classified
or rounded. This is also how restriktor handles (ordered) factors for now.
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A better strategy (not implemented yet) would be to convert (ordered) factors into a pair of dummy
variables. If the (ordered) factors have missing values, the dummy variables could be included as
columns of Y and imputed, but then you have to decide how to convert the continuously distributed
imputed values for these dummy codes back into categories.

### Note on not full row-rank ###

If the restriction matrix is not of full row-rank, this means one of the following:

* There is at least one redundant restriction specified in the hypothesis. Then, either

— [a] Leave the redundant one out

— [b] Use another (more time-consuming) way of obtaining the level probabilities for the
penalty term (goric function does this by default): Bootstrapping, as discussed above.

* There is at least one range restriction (e.g., -2 < groupl < 2). Such a restriction can be evalu-
ated but there is a sensitivity (of a scaling factor in the covariance matrix, like with a prior in
a Bayes factor) which currently cannot be checked for.

* There is at least one conflicting restriction (e.g., 2 < groupl < -2).

Such a restriction can evidently never hold and is thus impossible to evaluate. To prevent this type
of error delete the one that is incorrect.

Value

The function returns a dataframe with the log-likelihood, penalty term, GORIC(A) values and the
GORIC(A) weights. Furthermore, a dataframe is returned with the relative GORIC(A) weights.

Author(s)

Leonard Vanbrabant and Rebecca M. Kuiper

References

Kuiper, R.M., Hoijtink, H., and Silvapulle, M.J. (2011). An Akaike-type information criterion for
model selection under inequality constraints. Biometrika, 98, 2, 495-501. doi:10.1093/biomet/
asr002

Vanbrabant, L. and Kuiper, R. (2020). Evaluating a theory-based hypothesis against its complement
using an AIC-type information criterion with an application to facial burn injury. Psychological
Methods. Vanbrabant, L., Van Loey, N., and Kuiper, R. M. (2020). Evaluating a Theory-Based

Hypothesis Against Its Complement Using an AIC-Type Information Criterion With an Application
to Facial Burn Injury. Psychological Methods, 25(2), 129-142. doi:10.1037/met0000238

Victoria Savalei and Peter M. Bentler (2009) A Two-Stage Approach to Missing Data: Theory and
Application to Auxiliary Variables, Structural Equation Modeling: A Multidisciplinary Journal,
16:3, 477-497, DOI: 10.1080/10705510903008238

Examples

## By following these examples, you can appropriately specify hypotheses based on
## your research questions and analytical framework.

# The hypotheses (i.e., constraints) have to be in a list. It is recommended to name


https://doi.org/10.1093/biomet/asr002
https://doi.org/10.1093/biomet/asr002
https://doi.org/10.1037/met0000238
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# each hypothesis in the list. Otherwise the hypotheses are named accordingly 'H1', 'H2', \ldots.
# Another option is to use the \code{1llist()} function from the \pkg{Hmisc} package, where.

# text-based syntax (the labels x1, x2, and x2 are the names of coef(model) or names(vector))
hl <- '"(x1, x2, x3) > @'
h2 <- "(x1, x3) > 0; x2
h3 <= 'x1 > 0; x2 < 0; X
hypotheses = list(hypol

In w 1

0
=9
h1, hypo2 = h2, hypo3 = h3)

# define constraints matrix directly (note that the constraints have to be specified pairwise).
# the element names (i.e., constraints, rhs, neq) must be used.

h1 <- list(constraints = c(0,1,0))

h2 <- list(constraints = rbind(c(0,1,0), c(0,0,1)), rhs = c(0.5, 1), neq = 0)

hypotheses = 1list(H1 = h1, H2 = h2)

# mixed syntax:
hypotheses = list(Ha = h1, Hb = 'x1 = x2 > x3"')

# lavaan object syntax:

# the recommended option for objects of class lavaan is to use labels (here a, b and c)
# to define our hypothesis.

model.lav <- "y ~ 1 + a*x1 + b*x2 + cxx3 + x4"

# fit lavaan model, for example

# library(lavaan)

# fit.lav <- sem(model, data = DATA)

# define hypothesis syntax

hypotheses = list(h1 = 'a > b > c¢')

# if needed absolute values can be used.
hypotheses = list(h1 = 'abs(a) > abs(b) > abs(c)"')

library(MASS)

## 1m

## unrestricted linear model for ages (in months) at which an
## infant starts to walk alone.

# prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestrikted linear model
fitl.1m <- 1lm(Age ~ Group, data = DATA)

# some artificial restrictions

H1 <- "GroupPassive > 0; GroupPassive < GroupNo"
H2 <- "GroupPassive > 0; GroupPassive > GroupNo"
H3 <- "GroupPassive = @; GroupPassive < GroupNo"

# object is of class 1lm
goric(fit1.1m, hypotheses = list(H1 = H1, H2 = H2, H3 = H3))

# same result, but using the parameter estimates and covariance matrix as input
# Note, that in case of a numeric input only the gorica(c) can be computed.
goric(coef(fit1.1m), VCOV = vcov(fitl.1m), hypotheses = list(H1 = H1, H2 = H2, H3 = H3))
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# hypothesis H1 versus the complement (i.e., not H1)
goric(fit1.1m, hypotheses = list(H1 = H1), comparison = "complement")

## GORICA

# generate data

n<-10

x1 <= rnorm(n)

x2 <= rnorm(n)

y <= 1 + x1 + x2 + rnorm(n)

# fit unconstrained linear model
fit.Im <= 1Im(y ~ x1 + x2)

# extract unconstrained estimates

est <- coef(fit.1m)

# unconstrained variance-covariance matrix
#biased VCOV

VCOV <- vcov(fit.1m)

#unbiased VCOV

N_min_k <- fit.lm$df.residual

N <= N_min_k + fit.1lm$rank

VCOV_unbiased <- vcov(fit.Im) * N_min_k / N

## constraint syntax (character)

h1 <= "x1 > 0"

h2 <- "x1 > 0; x2 > 0"

# use fitted unconstrained linear model

goric(fit.1lm, hypotheses = list(h1 = h1, h2 = h2), type = "gorica")

# use unconstrained estimates

# unbiased VCOV - then same result as with fit object above

goric(est, VCOV = VCOV_unbiased, hypotheses = list(hl = h1, h2 = h2), type = "gorica")
# biased VCOV
goric(est, VCOV

VCOV, hypotheses = list(hl = h1, h2 = h2), type = "gorica")

## constraint syntax (matrix notation)

h1 <- list(constraints = c¢(0,1,0))

h2 <- list(constraints = rbind(c(0,1,0), c(0,0,1)), rhs = c(0.5, 1), neq = 0)
goric(fit.1lm, hypotheses = list(h1 = h1, h2 = h2), type = "gorica")
goric(est, VCOV = VCOV, hypotheses = list(h1l = h1, h2 = h2), type = "gorica")

Hurricanes The Hurricanes Dataset

Description

The data provide information on the effect of El Nino (Cold, Neutral, Warm) on the number of
hurricanes from 1950 to 1995.
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Usage

data(Hurricanes)

Format

A data frame of 46 observations of 3 variables.

Year
Hurricanes Number of Hurricanes

EINino 1=Cold, 2=Neutral, 3=Warm

References

The original source of these data is the National Hurricane Center in Australia. The dataset was
extracted from the table on page 5 in Silvapulle and Sen (2005).

Examples

head(Hurricanes)

iht function for informative hypothesis testing (iht)

Description

iht tests linear equality and/or inequality restricted hypotheses for linear models.

Usage
iht(...)
conTest(object, constraints = NULL, type = "summary”, test = "F",

rhs = NULL, neq = 0, ...)

conTestD(model = NULL, data = NULL, constraints = NULL,
type = c("A","B"), R = 1000L, bootstrap.type = "bollen.stine"”,
return.test = TRUE, neqg.alt = 0,
double.bootstrap = "standard”, double.bootstrap.R = 249,
double.bootstrap.alpha = 0.05,
parallel = c("no”, "multicore”, "snow"),
ncpus = 1L, cl = NULL, verbose = FALSE, ...)
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Arguments

object

model

constraints

data

type

test

rhs

iht

an object of class 1Im or rlm. In this case, the constraint syntax needs to be
specified

OR

an object of class restriktor. The constraints are inherited from the fitted
restriktor object and do not to be specified again.

lavaan model syntax specifying the model. See model.syntax for more infor-
mation.

there are two ways to constrain parameters. First, the constraint syntax consists
of one or more text-based descriptions, where the syntax can be specified as a
literal string enclosed by single quotes. Only the names of coef (model) can be
used as names. See details restriktor for more information.

Second, the constraint syntax consists of a matrix R (or a vector in case of one
constraint) and defines the left-hand side of the constraint R0 > rhs, where each
row represents one constraint. The number of columns needs to correspond to
the number of parameters estimated () by model. The rows should be linear
independent, otherwise the function gives an error. For more information about
constructing the matrix R and rhs see the details in the restriktor function.

the data frame containing the observed variables being used to fit the lavaan
model.

hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

test statistic; for information about the null-distribution see details.

* for object of class Im; if "F" (default), the F-bar statistic (Silvapulle, 1996)
is computed. If "LRT", a likelihood ratio test statistic (Silvapulle and Sen,
2005, chp 3.) is computed. If "score", a global score test statistic (Silvapulle
and Silvapulle, 1995) is computed. Note that, in case of equality constraints
only, the usual unconstrained F-, Wald-, LR- and score-test statistic is com-
puted.

« for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a global score test
statistic (Silvapulle, and Silvapulle, 1995) is computed. Note that, in case of
equality constraints only, unconstrained robust F-, Wald-, score-test statis-
tics are computed.

« for object of class glm; if "F" (default), the F-bar statistic (Silvapulle, 1996)
is computed. If "LRT", a likelihood ratio test statistic (Silvapulle and Sen,
2005, chp 4.) is computed. If "score", a global score test statistic (Silvapulle
and Silvapulle, 1995) is computed. Note that, in case of equality constraints
only, the usual unconstrained F-, Wald-, LR- and score-test statistic is com-
puted.

vector on the right-hand side of the constraints; Rf > rhs. The length of this
vector equals the number of rows of the constraints matrix R and consists of
zeros by default. Note: only used if constraints input is a matrix or vector.
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neq integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if neq = 2, this means
that the first two rows of the constraints matrix R are treated as equality con-
straints. Note: only used if constraints input is a matrix or vector.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B").

R Integer; number of bootstrap draws. The default value is set to 1000.

bootstrap.type If "parametric”, the parametric bootstrap is used. If "bollen.stine”, the
semi-nonparametric Bollen-Stine bootstrap is used. The defaultis setto "bollen.stine".

return.test Logical; if TRUE, the function returns bootstrapped test-values.
double.bootstrap
If "standard” (default) the genuine double bootstrap is used to compute an
additional set of plug-in p-values for each bootstrap sample. If "no"”, no double
bootstrap is used. If "FDB", the fast double bootstrap is used to compute second
level LRT-values for each bootstrap sample. Note that the "FDB" is experimental
and should not be used by inexperienced users.
double.bootstrap.R
Integer; number of double bootstrap draws. The default value is set to 249.
double.bootstrap.alpha

The significance level to compute the adjusted alpha based on the plugin p-
values. Only used if double.bootstrap = "standard”. The default value is

set to 0.05.
parallel The type of parallel operation to be used (if any). If missing, the default is set
Ylnoll'
ncpus Integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.
cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the InformativeTesting
call.
verbose Logical; if TRUE, information is shown at each bootstrap draw.

futher options for the iht and/or restriktor function. See details for more
information.

Details
The following hypothesis tests are available:

n_n

* Type A: Test HO: all constraints with equalities (
restriction (">") strictly true.

) active against HA: at least one inequality

n_mn

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.
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* Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under the
null hypothesis (Wolak, 1987). For the robust tests, we found that the results based on these mixtures
of F-distributions approximate the tail probabilities better than their asymptotic distributions.

Note that, in case of equality constraints only, the null-distribution of the (non-)robust F-test statis-
tics are based on an F-distribution. The (non-)robust Wald- and (non-)robust score-test statistics are
based on chi-square distributions.

If object is of class 1m or rlm, the conTest function internally calls the restriktor function.

Arguments for the restriktor function can be passed on via the . ... Additional arguments for
the conTest function can also passed on via the . ... See for example conTestF for all available
arguments.

Value

An object of class conTest or conTestLavaan for which a print is available.

Author(s)

Leonard Vanbrabant and Yves Rosseel
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See Also

quadprog, conTest

Examples

## example 1:
# the data consist of ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose constraints on
# the corresponding regression parameters.
coef (fit1.1m)

# constraint syntax: assuming that the walking

# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

myConstraints] <- ' GroupActive < GroupPassive < GroupNo '

iht(fit1.1m, myConstraints1)

# another way is to first fit the restricted model
fit.restrl <- restriktor(fit1.1lm, constraints = myConstraintsl)

iht(fit.restr1)

# Or in matrix notation.

Amat1 <- rbind(c(-1, 0, 1),
c(o, 1, -1)

myRhs1 <- rep(QL, nrow(Amat1))

myNeql <- @

iht(fit1.1m, constraints = Amatl1, rhs = myRhs1, neq = myNeql)

A
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## Artificial examples #i#
HHHHHHAAHEEH

# generate data

n<-10

means <- ¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted linear model
fit2.1m <- Im(y ~ -1 + group, data = DATA2)
coef (fit2.1m)

## example 2: increasing means
myConstraints2 <- ' groupl < group2 < group3 < group4 '

# compute F-test for hypothesis test Type A and compute the tail
# probability based on the parametric bootstrap. We only generate 9
# bootstrap samples in this example; in practice you may wish to
# use a much higher number.
iht(fit2.1m, constraints = myConstraints2, type = "A",
boot = "parametric”, R = 9)

# or fit restricted linear model
fit2.con <- restriktor(fit2.1m, constraints = myConstraints2)

iht(fit2.con)

# increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c( 0,-1, 1, 9,
c( 9, 0,-1, 1))
myRhs2 <- rep(0L, nrow(Amat2))
myNeq2 <- 0@

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", boot = "parametric”, R = 9)

## example 3: equality constraints only.
myConstraints3 <- ' groupl = group2 = group3 = group4 '

iht(fit2.1m, constraints = myConstraints3)

# or
fit3.con <- restriktor(fit2.1m, constraints = myConstraints3)
iht(fit3.con)

## example 4:
# combination of equality and inequality constraints.
myConstraints4 <- ' groupl = group2
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group3 < group4 '
iht(fit2.1m, constraints = myConstraints4, type = "B", neq.alt = 1)

# fit resticted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
# Note that, a warning message may be thrown because the number of
# bootstrap samples is too low.
fit4.con <- restriktor(fit2.1lm, constraints = myConstraints4,
se = "boot.model.based”, B = 9)
iht(fit4.con, type = "B"”, neqg.alt = 1)

## example 5:

# restriktor can also be used to define effects using the := operator
# and impose constraints on them. For example, is the
# average effect (AVE) larger than zero?

# generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <= c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit5.1m <- 1Im(y ~ X*Z, data = DATA3)

# constraint syntax
myConstraints5 <- ' AVE := X + 16.86137*X.Z;
AVE > 0 '

iht(fit5.1m, constraints = myConstraints5)

# or

fit5.con <- restriktor(fit5.1m, constraints = ' AVE := X + 16.86137*X.Z;
AVE >0 ")

iht(fit5.con)

# testing equality and/or inequality restrictions in SEM:

HEHHHHHHHEEHE A
### real data example ###
HHHHHHHEHEE A
# Multiple group path model for facial burns example.

# model syntax with starting values.
burns.model <- 'Selfesteem ~ Age + c(m1, f1)*TBSA + HADS +
start(-.10, -.20)*TBSA
HADS ~ Age + c(m2, f2)*TBSA + RUM +
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start(.10, .20)*TBSA '

# constraints syntax

burns.constraints <- 'f2 >0 ; ml <@
m2>0 ; f1<@o
f2>m2 ; f1 <ml'

# we only generate 2 bootstrap samples in this example; in practice

# you may wish to use a much higher number.

# the double bootstrap was switched off; in practice you probably

# want to set it to "standard”.

example6 <- iht(model = burns.model, data = FacialBurns,
R = 2, constraints = burns.constraints,
, group = "Sex")

n

double.bootstrap = "no
example6
SRR

### artificial example #i##
HHHHHHEEEERH A

# Simple ANOVA model with 3 groups (N = 20 per group)

set.seed(1234)

Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
grp <- c(rep("1", 20), rep("2", 20), rep("3", 20))

Data <- data.frame(Y, grp)

#create model matrix

fit.1lm <- Im(Y ~ grp, data = Data)
mfit <- fit.lm$model

mm <- model.matrix(mfit)

Y <- model.response(mfit)
X <- data.frame(mm[,2:3])
names(X) <- c("d1", "d2")
Data.new <- data.frame(Y, X)

# model
model <- 'Y ~ 1 + alxdl + a2xd2'

# fit without constraints
fit <- lavaan::sem(model, data = Data.new)

# constraints syntax: mul < mu2 < mu3
constraints <- ' al > 0@
al < a2 '

# we only generate 10 bootstrap samples in this example; in practice
# you may wish to use a much higher number, say > 1000. The double
# bootstrap is not necessary in case of an univariate ANOVA model.
example7 <- iht(model = model, data = Data.new,

start = lavaan::parTable(fit),

iht
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R = 10L, double.bootstrap = "no",
constraints = constraints)
example?7
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iht-methods Methods for iht

Description

Print function for objects of class conTest.

Usage

## S3 method for class 'conTest'
print(x, digits = max(3, getOption("digits") - 2), ...)

Arguments
X an object of class conTest.
digits the number of significant digits to use when printing.
no additional arguments for now.
Value

No return value, just the result of the print function

Examples

# unrestricted linear model for ages (in months) at which an
# infant starts to walk alone.

# prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")

# fit unrestricted linear model
fit.1lm <- 1m(Age ~ -1 + Group, data = DATA)

# restricted linear model with restrictions that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.

fit.con <- restriktor(fit.1lm, constraints = "GroupActive < GroupPassive < GroupNo")

iht(fit.con)
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Kuiper2012estimates Estimates and standard errors from four studies on past experience
and buyer trust

Description

This dataset contains effect estimates for the association between previous experience and buyer
trust from four independent studies. The studies used different statistical models (linear, probit, and
three-level logistic regression), making the raw parameter estimates not directly comparable across
studies. Therefore, GORICA evidence aggregation can be performed using only the study-specific
estimates of 3,4+ and their uncertainty (standard errors, or equivalently variances).

Usage

data(Kuiper2012estimates)

Format

An object of class data. frame with 4 rows and 4 columns.

study Character. Study identifier (e.g., authors).
year Integer. Publication year of the study.
estimate Numeric. Estimate of 3,4+ (effect of previous experience on trust).

se Numeric. Standard error of estimate.

Details

Each row corresponds to one study. For each study, the hypothesis of interest is H; : Bpqst >
0. Study-specific GORICA weights quantify support for this hypothesis, and GORICA evidence
aggregation combines this support across the four studies to synthesize evidence for the central
theory that previous experience positively relates to trust.

Examples

data(Kuiper20i2estimates)

# Inspect the data
Kuiper2012estimates

# Optional: compute variances from standard errors
# Kuiper20il2estimates$var <- Kuiper20l2estimates$se”2
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myGORICs An example of IC values

Description

An example of IC: A matrix with information criteria (AIC, ORIC, GORIC, or GORICA) values of
size 4 x 3 (in general: S x "NrHypos+1’°, where 'NrHypos+1’ stands for the number of theory-based
hypotheses plus a safeguard hypothesis (the complement or unconstrained)).
Usage
data(myGORICs)

Format

An object of class matrix (inherits from array) with 4 rows and 3 columns.

Examples

data(myGORICs)

myLLs An example of log-likelihood (LL) values

Description

An example of LL: A matrix with log-likelihood values of size 4 x 3 (in general: S x "NrHypos+1°,
where 'NrHypos+1’ stands for the number of theory-based hypotheses plus a safeguard hypothesis
(the complement or unconstrained)).

Usage

data(myLLs)

Format

An object of class matrix (inherits from array) with 4 rows and 3 columns.

Examples

data(myLLs)



78 restriktor

myPTs An example of penalty (PT) values

Description
An example of PT: A matrix with penalty values of size 4 x 3 (in general: S x 'NrHypos+1’, where
’NrHypos+1’ stands for the number of theory-based hypotheses plus a safeguard hypothesis (the
complement or unconstrained)).
Usage
data(myPTs)

Format

An object of class matrix (inherits from array) with 4 rows and 3 columns.

Examples

data(myPTs)

restriktor Estimating linear regression models with (in)equality restrictions

Description

Function restriktor estimates the parameters of an univariate and a multivariate linear model
(1m), a robust estimation of the linear model (rlm) and a generalized linear model (glm) subject to
linear equality and linear inequality restrictions. It is a convenience function. The real work horses
are the conLM, conMLM, conRLM and the conGLM functions.

Usage

restriktor(object, constraints = NULL, ...)

## S3 method for class 'Im'

conLM(object, constraints = NULL, se = "standard”,
B = 999, rhs = NULL, neq = OL, mix_weights = "pmvnorm”,
parallel = "no", ncpus = 1L, cl = NULL, seed = NULL,
control = list(), verbose = FALSE, debug = FALSE, ...)

## S3 method for class 'rlm'

conRLM(object, constraints = NULL, se = "standard"”,
B = 999, rhs = NULL, neq = OL, mix_weights = "pmvnorm”,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = NULL,
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control = list(), verbose = FALSE, debug = FALSE, ...)

## S3 method for class 'glm'

conGLM(object, constraints = NULL, se = "standard”,
B = 999, rhs = NULL, neq = OL, mix_weights = "pmvnorm”,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = NULL,
control = list(), verbose = FALSE, debug = FALSE, ...)

## S3 method for class 'mlm'

conMLM(object, constraints = NULL, se = "none”,
B = 999, rhs = NULL, neq = OL, mix_weights = "pmvnorm”,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = NULL,
control = list(), verbose = FALSE, debug = FALSE, ...)

Arguments

object

constraints

se

rhs

neq

non non

a fitted linear model object of class "Im", "mlm", "rlm" or "glm". For class "rlm"
only the loss function bisquare is supported for now, otherwise the function
gives an error.

there are two ways to constrain parameters. First, the constraint syntax consists
of one or more text-based descriptions, where the syntax can be specified as a
literal string enclosed by single quotes. Only the names of coef(model) can
be used as names. See details for more information. Note that objects of class
"mlm" do not (yet) support this method.

Second, the constraint syntax consists of a matrix R (or a vector in case of one
constraint) and defines the left-hand side of the constraint Rf > rhs, where each
row represents one constraint. The number of columns needs to correspond to
the number of parameters estimated () by model. The rows should be linear
independent, otherwise the function gives an error. For more information about
constructing the matrix R and rhs see details.

if "standard" (default), conventional standard errors are computed based on in-
verting the observed augmented information matrix. If "const", homoskedas-
tic standard errors are computed. If "HCQ" or just "HC", heteroskedastic ro-
bust standard errors are computed (a.k.a Huber White). The options "HC1",
"HC2", "HC3", "HC4", "HC4m", and "HC5" are refinements of "HC@". For more
details about heteroskedastic robust standard errors see the sandwich pack-
age. If "boot.standard", bootstrapped standard errors are computed using
standard bootstrapping. If "boot.model.based" or "boot.residual", boot-
strapped standard errors are computed using model-based bootstrapping. If
"none", no standard errors are computed. Note that for objects of class "mIm"
no standard errors are available (yet).

integer; number of bootstrap draws for se. The default value is set to 999.
Parallel support is available.

vector on the right-hand side of the constraints; R > rhs. The length of this
vector equals the number of rows of the constraints matrix R and consists of
zeros by default. Note: only used if constraints input is a matrix or vector.
integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if neq = 2, this means
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that the first two rows of the constraints matrix R are treated as equality con-
straints. Note: only used if constraints input is a matrix or vector.

mix_weights if "pmvnorm” (default), the chi-bar-square weights are computed based on the
multivariate normal distribution function with additional Monte Carlo steps. If
"boot", the chi-bar-square weights are computed using parametric bootstrap-
ping. If "none”, no chi-bar-square weights are computed. The weights are nec-
essary in the restriktor. summary function for computing the GORIC. More-
over, the weights are re-used in the iht function for computing the p-value for
the test-statistic, unless the p-value is computed directly via bootstrapping.

parallel the type of parallel operation to be used (if any). If missing, the default is set
llnoﬂ'
ncpus integer: number of processes to be used in parallel operation: typically one

would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the restriktor call.

seed seed value.
control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
* maxit the maximum number of iterations for the optimizer (default = 10000).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.
Control options for calculating the chi-bar-square weights:

* chunk_size integer; the chi-bar-square weights are computed for samples
of size chunk_size = 5000L. This process is repeated iteratively until the
weights converges (see convergenge_crit) or the maximum is reached,
i.e., mix_weights_bootstrap_limit.

* mix_weights_bootstrap_limit integer; maximum number of bootstrap
draws. The default value is set to le5.

* convergence_crit the convergence criterion for the iterative bootstrap
process. Default is 1e-03.

verbose logical; if TRUE, information is shown at each bootstrap draw.

debug if TRUE, debugging information about the constraints is printed out.

Options for calculating the chi-bar-square weights:
parameters passed to the truncated multivariate normal distribution. By default,
restriktor (i.e. con_weights_boot function) uses no truncation points for calcu-
lating the chi-bar-square weights, which renders to the multivariate normal dis-

tribution. See the manual page of the rtmvnorm function from the rtmvnorm to
see how to specify a truncated mvnorm distribution and the possible arguments.

Details

The constraint syntax can be specified in two ways. First as a literal string enclosed by single quotes
as shown below:
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myConstraints <-
# 1. inequality constraints
x1 > 0
x1 < x2
# or
0 < x1 < x2

! 2. equality constraints
x3 == x4; x4 == x5

# or

x3 = x4; x4 = x5
# or

x3 = x4 = x5'

The variable names x1 to x5 refer to the corresponding regression coefficient. Thus, constraints are
impose on regression coefficients and not on the data.

Second, the above constraints syntax can also be written in matrix/vector notation as:

(The first column refers to the intercept, the remaining five columns refer to the regression coeffi-
cients x1 to x5.)

myConstraints <-

rbind(c(@, @, 0,-1, 1, @), #equality constraint x3 = x4
c(o, o0, 0, 0,-1, 1), #equality constraint x4 = x5
c(o, 1, o, 0, @, @), #inequality constraint x1 > rhs
c(0,-1, 1, 0, @, 0)) #inequality constraint x1 < x2

# the length of rhs is equal to the number of myConstraints rows.
myRhs <- ¢(0,0,0,0)

# the first two rows should be considered as equality constraints
myNeq <- 2

Blank lines and comments can be used in between the constraints, and constraints can be split
over multiple lines. Both the hashtag (#) and the exclamation (!) characters can be used to start a
comment. Multiple constraints can be placed on a single line if they are separated by a semicolon
(;), a comma (,) or the "&" sign.

In addition compound constraints can be stated via one or more longer equality or inequality sen-
tences e.g., 'x1 > x2 > x3; x3 <4 <x4’ or ’x1 == x2 ==x3 & x4 = 1’. Alternatively, the constrains
can be specifies as ’(x1, x2) > (x3, x4)” which is equivalent to *x1 > x3; x1 > x4; x2 > x3; x2 > x4’.

There can be three types of text-based descriptions in the constraints syntax:

n_n

1. Equality constraints: The "==" or "=" operator can be used to define equality constraints (e.g.,
x1=1orx1 =x2).

2. Inequality constraints: The "<" or ">" operator can be used to define inequality constraints
(e.g., x1>1or x1<x2).
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3. Newly defined parameters: The ":=" operator can be used to define new parameters, which
take on values that are an arbitrary function of the original model parameters. The function
must be specified in terms of the parameter names in coef (model) (e.g., new := x1 + 2*x2).
By default, the standard errors for these defined parameters are computed by using the so-
called Delta method.

Variable names of interaction effects in objects of class Im, rlm and glm contain a semi-colon (:)
between the variables. To impose constraints on parameters of interaction effects, the semi-colon
must be replaced by a dot () (e.g., x3:x4 becomes x3.x4). In addition, the intercept variable
names is shown as "(Intercept)". To impose restrictions on the intercept both parentheses must
be replaced by a dot ".Intercept." (e.g.,. Intercept. > 10). Note: in most practical situations
we do not impose restrictions on the intercept because we do not have prior knowledge about the
intercept. Moreover, the sign of the intercept can be changed arbitrarily by shifting the response
variable y.

Each element can be modified using arithmetic operators. For example, if x2 is expected to be twice
as large as x1, then "2*x2 = x1".

If constraints = NULL, the unrestricted model is fitted.
### Note on not full row-rank ###

If the restriction matrix is not of full row-rank, this means one of the following:

e There is at least one redundant restriction. Then, either

— [a] Leave the redundant one out

— [b] Use another (more time-consuming) way of obtaining the level probabilities for the
penalty term (goric function does this by default): Bootstrapping, as discussed above.

* There is at least one range restriction (e.g., -2 < groupl < 2). Such a restriction can be evalu-
ated but there is a sensitivity (of a scaling factor in the covariance matrix, like with a prior in
a Bayes factor) which currently cannot be checked for.

* There is at least one conflicting restriction (e.g., 2 < groupl < -2).
Such a restriction can evidently never hold and is thus impossible to evaluate. To prevent this type
of error delete the one that is incorrect.
Value

An object of class restriktor, for which a print and a summary method are available. More specifi-
cally, it is a list with the following items:

CON a list with useful information about the restrictions.

call the matched call.

timing how much time several tasks take.

parTable a parameter table with information about the observed variables in the model
and the imposed restrictions.

b.unrestr unrestricted regression coefficients.

b.restr restricted regression coefficients.

residuals restricted residuals.
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wresid
fitted
weights

wgt

scale
stddev
R2.org
R2.reduced
df.residual
s2.unrestr
s2.restr
loglik
Sigma
constraints
rhs

neq

wt.bar

iact
converged
iter

bootout

control
model.org
se

information

Author(s)
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a working residual, weighted for "inv.var" weights only (rlm only)
restricted fitted mean values.

(only for weighted fits) the specified weights.

the weights used in the IWLS process (rlm only).

the robust scale estimate used (rlm only).

a scale estimate used for the standard errors.

unrestricted R-squared.

restricted R-squared.

the residual degrees of freedom

mean squared error of unrestricted model.

mean squared error of restricted model.

restricted log-likelihood.

variance-covariance matrix of unrestricted model.

matrix with restrictions.

vector of right-hand side elements.

number of equality restrictions.

chi-bar-square mixing weights or a.k.a. level probabilities.
active restrictions.

did the IWLS converge (rlm only)?

number of iteration needed for convergence (rlm only).

object of class boot. Only available if bootstrapped standard errors are re-
quested, else bootout = NULL.

list with control options.
original model.
as input. This information is needed in the summary function.

observed information matrix with the inverted information matrix and the aug-
mented information matrix as attributes.

Leonard Vanbrabant and Yves Rosseel
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See Also

iht, goric

Examples

## 1m
## unrestricted linear model for ages (in months) at which an
## infant starts to walk alone.

# prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

# fit unrestricted linear model
fit1.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

# the variable names can be used to impose restrictions on
# the corresponding regression parameters.
coef(fit1.1m)

# restricted linear model with restrictions that the walking

# exercises would not have a negative effect of increasing the

# mean age at which a child starts to walk.

fitl.con <- restriktor(fit1.1lm, constraints = ' GroupActive < GroupPassive < GroupNo ')
summary (fit1.con)

# Or in matrix notation.
myConstraints1 <- rbind(c(-1, 1, 0),

c( 0,-1, 1))
myRhs1 <- rep(@L, nrow(myConstraints1))
myNeql <- @

fitl.con <- restriktor(fit1.1lm, constraints = myConstraintsi,
rhs = myRhs1, neq = myNeql)
summary (fit1.con)

HHHEHHARHEEE
## Artificial examples ##
HHEHHHHHHHHEH AR
library(MASS)

## mlm

# generate data

n <- 30

mu <- rep(9, 4)

Sigma <- matrix(5,4,4)
diag(Sigma) <- c(10,10,10,10)

#4VY's.

Y <- mvrnorm(n, mu, Sigma)

# fit unrestricted multivariate linear model
fit.mlm <- Im(Y ~ 1)
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# constraints
myConstraints2 <- diag(@,4)
diag(myConstraints2) <- 1

# fit restricted multivariate linear model
fit2.con <- restriktor(fit.mlm, constraints = myConstraints2)

summary (fit2.con)

## rlm

# generate data

n<-10

means <- ¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

# fit unrestricted robust linear model
fit3.rlm <- rlm(y ~ -1 + group, data = DATA2, method = "MM")
coef (fit3.rlm)

## increasing means

myConstraints3 <- ' groupl < group2 < group3 < group4 '

# fit restricted robust linear model and compute

# Huber-White (robust) standard errors.

fit3.con <- restriktor(fit3.rlm, constraints = myConstraints3,
se = "HCO")

summary (fit3.con)

## increasing means in matrix notation.
myConstraints3 <- rbind(c(-1, 1, @, 0),
c( 0,-1, 1, @),
c( 9, 0,-1, 1))
myRhs3 <- rep(@L, nrow(myConstraints3))
myNeq3 <- @

fit3.con <- restriktor(fit3.rlm, constraints = myConstraints3,
rhs = myRhs3, neq = myNeq3, se = "HCQ")
summary (fit3.con)

## equality restrictions only.
myConstraints4 <- ' groupl = group2 = group3 = group4 '

fit4.con <- restriktor(fit3.rlm, constraints = myConstraints4)

summary (fit4.con)

## combination of equality and inequality restrictions.
myConstraints5 <- ' groupl = group2
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group3 < group4 '

# fit restricted model and compute model-based bootstrapped
# standard errors. We only generate 9 bootstrap samples in this
# example; in practice you may wish to use a much higher number.
fit5.con <- restriktor(fit3.rlm, constraints = myConstraints4,
se = "boot.model.based”, B = 9)
# an error is probably thrown, due to a too low number of bootstrap draws.
summary (fit5.con)

# restriktor can also be used to define effects using the := operator
# and impose restrictions on them. For example, compute the average
# effect (AVE) and impose the restriction AVE > 0.

# generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <= rnorm(n, 16, 5)

y <= b0 + b1xX + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

# fit linear model with interaction
fit6.1m <- lm(y ~ X*Z, data = DATA3)

fit6.con <- restriktor(fit6.1m, constraints = ' AVE := X + 16.86137*X.Z;
AVE >0 ')
summary (fit6.con)

restriktor-methods Methods for restriktor

Description

restricted estimation and confidence intervals for (robust) linear (in)equality restricted hypotheses.

Usage

## S3 method for class 'restriktor'
print(x, digits = max(3, getOption("digits") - 2), ...)

## S3 method for class 'restriktor'
summary (object, bootCIs = TRUE,
bty = "perc”, level = 0.95, goric = "goric"”, ...)

## S3 method for class 'summary.restriktor'
print(x, digits = max(3, getOption("digits”") - 2),
signif.stars = getOption("show.signif.stars"), ...)
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## S3 method for class 'restriktor'
coef(object, ..., which = c("restr"”, "unrestr"))

## S3 method for class 'restriktor'
model.matrix(object, ...)

## S3 method for class 'restriktor'

loglik(object, ...)
Arguments
object an object of class restriktor.
X an object of class restriktor.
bootCIs if TRUE (default), nonparametric bootstrap confidence intervals are generated.

Only available if object contains bootout object.

bty a character string representing the type of interval required. The value should be

any of the values "norm”, "basic”,"perc”,"bca"”. The value "stud” is not
supported. For more details see boot.ci.

level the confidence level of the interval (default = 0.95).

goric if "goric” (default), the generalized order-restricted information criterion value
is computed. If "gorica” the log-likihood is computed using the multivariate
normal distribution function. If "goricc” or "goricca”, a small sample ver-
sion of the "goric” or "gorica"” is computed.

which Character string indicating which coefficient vector to return: "restr"” for re-
stricted coefficients (object$b.restr) or "unrestr” for unrestricted coeffi-
cients (object$b.unrestr).

digits the number of significant digits to use when printing.
signif.stars  If TRUE, "significance stars are printed for each coefficient.

no additional arguments for now.

Details

The function print returns the restricted coefficients. The output from the print.summary.conLM
function provides information that is comparable with the output from print.summary.1lm. Addi-
tional information is provided about the unrestricted and restricted R-square and by default the out-

put of the GORIC. If bootstrapped standard errors are requested (e.g., option se = "boot.model.based”
in the restriktor function and bootCI = TRUE in the summary function) standard errors and con-
fidence intervals are provided.

Value

The function summary computes and returns a list of summary statistics of the fitted unrestricted
and restricted (robust) linear model given in object, plus

se.type type of standard error computed, equal to input se in the restriktor function.
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residuals the weighted residuals.
coefficients a p x 4 matrix with columns for the estimated coefficient, its standard error, t-
statistic and corresponding p-value. If bootCIs = TRUE and the bootout object
is available in the object, bootstrapped standard errors and confidence intervals
are produced.
rdf residual degrees of freedom.
R2.org unrestricted R-squared.
R2.reduced restricted R-squared.
goric goric value and attributed its penalty term and log-likelihood.
Examples
# unrestricted linear model for ages (in months) at which an
# infant starts to walk alone.
# prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")
# fit unrestricted linear model
fit.1m <- 1m(Age ~ -1 + Group, data = DATA)
# restricted linear model with restrictions that the walking
# exercises would not have a negative effect of increasing the
# mean age at which a child starts to walk.
fit.con <- restriktor(fit.1lm, constraints = ' GroupActive < GroupPassive < GroupNo ')
summary (fit.con)
ZelazoKolb1972 "Walking" in the newborn (4 treatment groups)
Description
The Zelazo, Zelazo and Kolb (1972) dataset consists of ages (in months) at which an infant starts to
walk alone from four different treatment groups (Active-exercise, Passive-exercise, 8 week Control,
No-exercise).
Usage
data(ZelazoKolb1972)
Format

A data frame of 23 observations of 4 treatment variables.

Age Age in months

Group Active-exercise, Passive-exercise, 8-week Control group, No-exercise
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