Package ‘rollupTree’

January 30, 2026

Title Perform Recursive Computations
Version 0.4.0

Description Mass rollup for a Bill of Materials is an example of a class of computations in which ele-
ments are arranged in a tree structure and some property of each element is a computed func-
tion of the corresponding values of its child elements. Leaf elements, i.e., those with no chil-
dren, have values assigned. In many cases, the combining function is simple arith-
metic sum; in other cases (e.g., mass properties), the combiner may involve other informa-
tion such as the geometric relationship between parent and child, or statistical rela-
tions such as root-sum-of-squares (RSS). This package implements a general func-
tion for such problems. It is adapted to specific recursive computations by functional program-
ming techniques; the caller passes a function as the update parame-
ter to rollup() (or, at a lower level, passes functions as the get, set, combine, and override param-
eters to update_prop()) at runtime to specify the desired operations. The implementation re-
lies on graph-theoretic algorithms from the 'igraph' pack-
age of Csardi, et al. (2006 <doi:10.5281/zenodo.7682609>).

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports igraph

Depends R (>=3.5)

LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3

VignetteBuilder knitr

URL https://jsjuni.github.io/rollupTree/,
https://github.com/jsjuni/rollupTree

BugReports https://github.com/jsjuni/rollupTree/issues
NeedsCompilation no

Author James Steven Jenkins [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-0725-0884>)

1

https://doi.org/10.5281/zenodo.7682609
https://jsjuni.github.io/rollupTree/
https://github.com/jsjuni/rollupTree
https://github.com/jsjuni/rollupTree/issues
https://orcid.org/0000-0002-0725-0884

create_rollup_tree

Maintainer James Steven Jenkins <sjenkins@studioj.us>
Repository CRAN
Date/Publication 2026-01-30 06:10:22 UTC

Contents
create_rollup_tree L. 2
default_validate_dag 3
default_validate_tree e e 4
df_get_by_id e e 4
df_get by key e 5
df_get ids L 5
df_get Keys 6
df_get row_by_id 6
df_get_row_by_Key 7
df_set_by_id e e 7
df_set_ by key e 8
df_set_row_by_id L 9
df_set_row_by_key 9
fault_table e 10
fault_tree e e e e e 10
ollup e e 11
test_dag e e e 12
update_df_prop_by_id 12
update_df_prop_by_key 13
UPdate_Prop . . . v v v e e e e e e e e e e e e e e e 13
update_rollup e 14
validate_ df by_id L 15
validate_df by _key 16
validate_ds e 17
wbs_table e e 18
wbs_table_rollup 18
WDS_TI€E o o o e e e e 19

Index 20

create_rollup_tree Create a tree for use with rollup()
Description

create_rollup_tree() creates a tree suitable for use with rollup() by applying helper functions
to construct vertices and edges.

Usage

create_rollup_tree(get_keys, get_parent_key_by_child_key)

default_validate_dag 3

Arguments

get_keys A function() that returns a collection of names for vertices.

get_parent_key_by_child_key
A function(key) that returns for each child key the key of its parent.

Value

An igraph directed graph with vertices and edges as supplied

Examples

get_keys <- function() wbs_table$id
get_parent_key_by_child_key <- function(key) wbs_table[which(wbs_table$id == key), "pid"]
create_rollup_tree(get_keys, get_parent_key_by_child_key)

default_validate_dag Validate a directed acyclic graph for use with rollup

Description

Validate a directed acyclic graph for use with rollup

Usage

default_validate_dag(dag)

Arguments

dag An igraph directed acyclic graph

Value

TRUE if valid, stops otherwise

Examples

default_validate_dag(test_dag)

4 df_get_by_id

default_validate_tree Validate a tree for use with rollup()

Description
default_validate_tree() ensures that a tree is acyclic, loop-free, single-edged, connected, di-
rected, and single-rooted with edge direction from child to parent.

Usage

default_validate_tree(tree)

Arguments
tree igraph directed graph that is a valid single-rooted in-tree and whose vertex
names are keys from the data set
Value

single root vertex identifier if tree is valid; stops otherwise

Examples

default_validate_tree(wbs_tree)

df_get_by_id Get property by key "id" from data frame

Description
df_get_by_id returns the value of specified property (column) in a specified row of a data frame.
The row is specified by a value for the id column.

Usage
df_get_by_id(df, idval, prop)

Arguments

df a data frame

idval id of the row to get

prop name of the column to get
Value

The requested value

df_get_by_key 5

Examples

df_get_by_id(wbs_table, "1.1", "work")

df _get_by_key Get row by key "id" from data frame

Description
df_get_by_key returns the value of specified property (column) in a specified row of a data frame.
The row is specified by a key column and a value from that column.

Usage
df_get_by_key(df, key, keyval, prop)

Arguments
df a data frame
key name of the column used as key
keyval value of the key for the specified row
prop column name of the property value to get
Value

The requested value

Examples

df_get_by_key(wbs_table, "id”, "1.1", "work")

df_get_ids Get ids from a data frame

Description
The default name for a key column in rollupis id. df _get_ids gets all values from the id column
in a data frame.

Usage
df_get_ids(df)

Arguments

df a data frame

Value

all values of the id column

Examples

df_get_ids(wbs_table)

df_get_row_by_id

df_get_keys Get keys from a data frame

Description

df_get_keys gets all values from a designated column in a data frame.

Usage
df_get_keys(df, key)

Arguments

df a data frame

key name of the column used as key

Value

All values of the key column

Examples

df_get_keys(wbs_table, "id")

df_get_row_by_id Title

Description

Title

Usage
df_get_row_by_id(df, idval)

Arguments

df a data frame

idval id of the row to get

df_get_row_by_key

Value

A named list of values from the requested row

Examples

df_get_row_by_id(wbs_table, "1.1")

df_get_row_by_key Get row by key from data frame

Description

Get row by key from data frame

Usage
df_get_row_by_key(df, key, keyval)

Arguments
df a data frame
key name of the column used as key
keyval value of the key for the specified row
Value

A named list of values from the requested row

Examples

df_get_row_by_key(wbs_table, "id", "1.1")

df_set_by_id Set property by key "id" in data frame

Description

Set property by key "id" in data frame

Usage
df_set_by_id(df, idval, prop, val)

Arguments
df
idval

prop

val

Value

updated data frame

Examples

a data frame
id of the specified row
column name of the property value to get

value to set

df_set_by_id(wbs_table, "1", "work”, 45.6)

df_set_by_key

df_set_by_key

Set property by key in data frame

Description

Set property by key in data frame

Usage

df_set_by_key(df, key, keyval, prop, val)

Arguments
df a data frame
key name of the column used as key
keyval value of the key for the specified row
prop column name of the property value to get
val value to set

Value
The updated data frame

Examples

df_set_by_key(wbs_table, "id”, "1”, "work”, 45.6)

df_set_row_by_id

df_set_row_by_id Set row by key "id" in data frame

Description

Set row by key "id" in data frame

Usage
df_set_row_by_id(df, idval, list)

Arguments
df a data frame
idval id of the specified row
list named list of values to set
Value

The updated data frame

Examples

1 <- list(id = "1.1", pid = "1", name = "Thermal”, work = 11.9, budget = 25001)
df_set_row_by_id(wbs_table, "1.1", 1)

df_set_row_by_key Set row by key in data frame

Description

Set row by key in data frame

Usage
df_set_row_by_key(df, key, keyval, list)

Arguments
df a data frame
key name of the column used as key
keyval value of the key for the specified row

list named list of values to set

10 fault_tree

Value

The updated data frame

Examples

1 <- list(id = "1.1", pid = "1", name = "Thermal”, work = 11.9, budget = 25001)
df_set_row_by_key(wbs_table, "id", "1.1", 1)

fault_table Example Fault Tree Data

Description

Example Fault Tree Data

Usage
fault_table

Format
A data frame with columns:

id unique key for each row

non

type event type ("basic", "and", or "or")
prob event probability

Source

https://control.com/technical-articles/deep-dive-into-fault-tree-analysis/

fault_tree Example Fault Tree

Description

Example Fault Tree

Usage

fault_tree

Format

An igraph tree with edges from child id to parent id.

Source

https://control.com/technical-articles/deep-dive-into-fault-tree-analysis/

https://control.com/technical-articles/deep-dive-into-fault-tree-analysis/
https://control.com/technical-articles/deep-dive-into-fault-tree-analysis/

rollup 11

rollup Perform recursive computation

Description

rollup() traverses a tree depth-first (post order) and calls a user-specified update function at each
vertex, passing the method a data set, the unique key of that target vertex in the data set, and a list
of source keys. The update method typically gets some properties of the source elements of the
data set, combines them, sets some properties of the target element of the data set to the combined
value, and returns the updated data set as input to the update of the next vertex. The final operation
updates the root vertex.

An update_prop() helper function is available to simplify building compliant update methods.

Before beginning the traversal, rollup() calls a user-specified method to validate that the tree is
well-formed (see default_validate_tree()). It also calls a user-specified method to ensure that
the id sets of the tree and data set are identical, and that data set elements corresponding to leaf
vertices in the tree satisfy some user-specified predicate, e.g., is.numeric().

Usage

rollup(tree, ds, update, validate_ds, validate_tree = default_validate_tree)

Arguments
tree igraph directed graph that is a valid single-rooted in-tree and whose vertex
names are keys from the data set
ds data set to be updated; can be any object
update function called at each vertex as update(ds, parent_key, child_keys)
validate_ds data set validator function called as validate_ds(tree, ds)

validate_tree tree validator function called as validate_tree(tree)

Details

The data set passed to rollup() can be any object for which an update function can be written. A
common and simple example is a data frame, but lists work as well.

Value

updated input data set

Examples

rollup(wbs_tree, wbs_table,
update = function(d, p, ¢) {
if (length(c) > @)
dfd$id == p, c("work"”, "budget")] <-
apply(d[is.element(d$id, c), c("work”, "budget”)], 2, sum)

12

update_df_prop_by_id

d
}Y
validate_ds = function(tree, ds) TRUE
)
test_dag Example Directed Acyclic Graph
Description

Example Directed Acyclic Graph

Usage

test_dag

Format

An igraph DAG with edges from child id to parent id.

update_df_prop_by_id Update a property in a data frame with key "id"

Description

update_df_prop_by_id() is a convenience wrapper around update_prop() for the common case

in which the data set is a data frame whose key column is named "id"

Usage

update_df_prop_by_id(df, target, sources, prop, ...)
Arguments

df a data frame

target key of data set element to be updated

sources keys of data set elements to be combined

prop column name of the property

other arguments passed to update_prop()

Value

The updated dataframe
Examples

update_df_prop_by_id(wbs_table, "1", list("1.1", "1.2"), "work")

update_df_prop_by_key 13

update_df_prop_by_key Update a property in a data frame

Description

update_df_prop_by_key() is a convenience wrapper around update_prop() for the common
case in which the data set is a data frame.

Usage

update_df_prop_by_key(df, key, target, sources, prop, ...)
Arguments

df a data frame

key name of the column serving as key

target key of data set element to be updated

sources keys of data set elements to be combined

prop column name of the property

other arguments passed to update_prop()

Value

The updated data frame

Examples

update_df_prop_by_key(wbs_table, "id", "1", list("1.1", "1.2"), "work")

update_prop Update a data set with recursively-defined properties

Description

update_prop calls user-specified methods to get properties of a source set of elements in a data set,
combine those properties, and set the properties of a target element to the combined value. If the
source set is empty, the data set is returned unmodified. The default combine operation is addition.

The override argument can be used to selectively override the computed value based on the target
element. By default, it simply returns the value computed by the combiner.

14 update_rollup

Usage

update_prop(

ds,

target,

sources,

set,

get,

combine = function(l) Reduce("+", 1),
override = function(ds, target, v) v

)
Arguments
ds data set to be updated
target key of data set element to be updated
sources keys of data set elements to be combined
set function to set properties for a target element called as set(ds, key, value)
get function to get properties for source elements called as get(ds, key)
combine function to combine properties called as combine(vl)
override function to selectively override combined results called as override(ds, key,)
Value

updated data set

Examples

update_prop(wbs_table, "1", list("1.1", "1.2"),
function(d, k, v) {d[d$id == k, "work"] <- v; d},
function(d, k) d[d$id == k, "work"]
)
update_prop(wbs_table, "1", list("1.1", "1.2"),
function(d, k, v) {d[d$id == k, c("work”, "budget")] <- v; d},
function(d, k) d[d$id == k, c("work"”, "budget")],
function(l) Reduce("+", 1)
)

update_rollup Update a rollup from a single leaf vertex

Description

update_rollup() performs a minimal update of a data set assuming a single leaf element property
has changed. It performs updates along the path from that vertex to the root. There should be no
difference in the output from calling rollup() again. update_rollup() is perhaps more efficient
and useful in an interactive context.

validate_df_by_id 15

Usage

update_rollup(tree, ds, vertex, update)

Arguments
tree igraph directed graph that is a valid single-rooted in-tree and whose vertex
names are keys from the data set
ds data set to be updated; can be any object
vertex The start vertex
update function called at each vertex as update(ds, parent_key, child_keys)
Value

updated input data set

Examples

update_rollup(wbs_tree, wbs_table, igraph::V(wbs_tree)["3.2"],
update = function(d, p, c) {
if (length(c) > @)
d[d$id == p, c("work”, "budget")] <-
apply(dlis.element(d$id, c), c("work”, "budget”)], 2, sum)
d

validate_df_by_id Validate a data frame with key "id" for rollup()

Description

validate_df_by_id() is a convenience wrapper for validate_ds() for the common case in
which the data set is a data frame with key column named "id".

Usage
validate_df_by_id(tree, df, prop, ...)

Arguments
tree tree to validate against
df data frame
prop property whose value is checked (leaf elements only)

other parameters passed to validate_ds()

16 validate_df_by_key

Value

TRUE if validation succeeds, halts otherwise

Examples

validate_df_by_id(wbs_tree, wbs_table, "work")

validate_df_by_key Validate a data frame For rollup()

Description

validate_df_by_key() is a convenience wrapper for validate_ds() for the common case in
which the data set is a dataframe.

Usage
validate_df_by_key(tree, df, key, prop, ...)
Arguments
tree tree to validate against
df data frame
key name of the column serving as key
prop property whose value is checked (leaf elements only)
other parameters passed to validate_ds()
Value

TRUE if validation succeeds, halts otherwise

Examples

validate_df_by_key(wbs_tree, wbs_table, "id", "work")

validate_ds 17

validate_ds Validates a data set for use with rollup()

Description

validate_ds() ensures that a data set contains the same identifiers as a specified tree and that
elements of the data set corresponding to leaf vertices in the tree satisfy a user-specified predicate.

Usage
validate_ds(
tree,
ds,
get_keys,
get_prop,
op = function(x) is.numeric(x) & !is.na(x)
)
Arguments
tree igraph directed graph that is a valid single-rooted in-tree and whose vertex
names are keys from the data set
ds data set to be updated; can be any object
get_keys function to get keys of the data set called as get_keys(ds)
get_prop function to get the property value to validate for leaf element with id 1, called as
get_prop(ds, 1)
op logical function to test return value of get_prop() (default is.numeric());
returns TRUE if OK
Value

TRUE if validation succeeds, halts otherwise

Examples

validate_ds(wbs_tree, wbs_table, function(d) d$id, function(d, 1) d[d$id == 1, "work"])

18 wbs_table_rollup
wbs_table Example Work Breakdown Structure Data

Description

Example Work Breakdown Structure Data
Usage

wbs_table
Format

A data frame with columns:

id unique key for each row

pid parent key for each row

name character name of the element

work percent of total work for this element

budget budget for this element
Source

https://www.workbreakdownstructure.com

wbs_table_rollup Example Work Breakdown Structure Data After Rollup

Description

Example Work Breakdown Structure Data After Rollup
Usage

wbs_table_rollup
Format

A data frame with columns:

id unique key for each row

pid parent key for each row

name character name of the element

work percent of total work for this element

budget budget for this element

https://www.workbreakdownstructure.com

wbs_tree

Source

https://www.workbreakdownstructure.com

19

wbs_tree Example Work Breakdown Structure Data

Description

Example Work Breakdown Structure Data

Usage

wbs_tree

Format

An igraph tree with edges from child id to parent id.

Source

https://www.workbreakdownstructure.com

https://www.workbreakdownstructure.com
https://www.workbreakdownstructure.com

Index

+ datasets
fault_table, 10
fault_tree, 10
test_dag, 12
wbs_table, 18
wbs_table_rollup, 18
wbs_tree, 19

create_rollup_tree, 2

default_validate_dag, 3
default_validate_tree, 4
default_validate_tree(), /1
df_get_by_id, 4
df_get_by_key, 5
df_get_ids, 5
df_get_keys, 6
df_get_row_by_id, 6
df_get_row_by_key, 7
df_set_by_id, 7
df_set_by_key, 8
df_set_row_by_id, 9
df_set_row_by_key, 9

fault_table, 10
fault_tree, 10

rollup, 11
test_dag, 12

update_df_prop_by_id, 12
update_df_prop_by_key, 13
update_prop, 13
update_rollup, 14

validate_df_by_id, 15
validate_df_by_key, 16
validate_ds, 17

wbs_table, 18
wbs_table_rollup, 18
wbs_tree, 19

20

	create_rollup_tree
	default_validate_dag
	default_validate_tree
	df_get_by_id
	df_get_by_key
	df_get_ids
	df_get_keys
	df_get_row_by_id
	df_get_row_by_key
	df_set_by_id
	df_set_by_key
	df_set_row_by_id
	df_set_row_by_key
	fault_table
	fault_tree
	rollup
	test_dag
	update_df_prop_by_id
	update_df_prop_by_key
	update_prop
	update_rollup
	validate_df_by_id
	validate_df_by_key
	validate_ds
	wbs_table
	wbs_table_rollup
	wbs_tree
	Index

