Package ‘saeSim’

January 26, 2026
Type Package

Title Simulation Tools for Small Area Estimation
Version 0.13.0

URL https://wahani.github.io/saeSim/

BugReports https://github.com/wahani/saeSim/issues
Depends R(>= 3.1), methods

Imports dplyr (>= 0.2), functional, ggplot2, grDevices, MASS, utils,
spdep, stats, parallelMap

Suggests testthat, knitr, rmarkdown, covr

Description Tools for the simulation of data in the context of small area
estimation. Combine all steps of your simulation - from data generation
over drawing samples to model fitting - in one object. This enables easy
modification and combination of different scenarios. You can store your
results in a folder or start the simulation in parallel.

License MIT + file LICENSE
VignetteBuilder knitr
RoxygenNote 7.3.3
Encoding UTF-8
NeedsCompilation no

Author Sebastian Warnholz [aut, cre],
Timo Schmid [aut]

Maintainer Sebastian Warnholz <wahani@gmail.com>
Repository CRAN
Date/Publication 2026-01-26 20:40:02 UTC

Contents

agg all. . . . . e e
as.data.frame.sim_setup . . . . . . . ... e


https://wahani.github.io/saeSim/
https://github.com/wahani/saeSim/issues

2 agg all
autoplot.SIM_SEtUP . . . . . . . . e e e e e e e e 3
base_add_id . . . . . . .. 4
base id . . . . . 4
COMP_VAT . o o v v v it e e e e e e e e e e e e e e e e e e e e e e 5
GEN_NOTTIL .« . v v v v v v v e e e e e e e e e e e e e e e e e e e e e 6
plotsim_setup . . . . . . . ... 7
sample_fraction . . . . . . ... 8
show,sim_setup-method . . . . . . . .. ... 9
SIM . . . vt e e e 9
SIM_AZE .« o v v o e e e e e e e e e e e e e e e e e e 11
SIM_DASE . . . . o e e e 12
sim_base Im . . . . . . e, 12
SIM_COMP_Tl .« . v v v v e e e e e e e e e e e e e e e e e e e e e e 13
SIM_COMP_POP « « « v v e e e e e e e e e e e e e e e e e e e e 14
SIM_ZEN . . . v vttt e e e e e e 15
SIM_@EN_CONE . . . . v v v vt ettt e e e e e e e e e 16
SIM_ZEN_X + v v o v v e e e e e e e e e e e e e e e e e e e 17
sim_read_data . . . ... .. L 18
SIM_TESP « + v v v v e e e e e e e e e e e e e e e e e e e e e e e 19
sim_sample . . . ... e 20
sim_SImMNamMe . . . . . . . . e, 21
summary,sim_setup-method . . . . ... ... Lo 21
Do>% . .. e e e 22

Index 23

agg_all Aggregation function

Description

This function is intended to be used with sim_agg and not interactively. This is one implementation
for aggregating data in a simulation set-up.

Usage

agg_all(groupVars = "idD")
Arguments

groupVars variable names as character identifying groups to be aggregated.
Details

This function follows the split-apply-combine idiom. Each data set is split by the defined variables.
Then the variables within each subset are aggregated (reduced to one row). Logical variables are
reduced by any; for characters and factors dummy variables are created and the aggregate is the
mean of each dummy; and for numerics the mean (removing NAs).



as.data.frame.sim_setup 3

See Also

sim_agg

Examples

sim_base() %>% sim_gen_x() %>% sim_gen_e() %>% sim_agg(agg_all())

as.data.frame.sim_setup
as.data.frame method for sim_setup

Description

Use this method to get a single simulated data.frame out of a sim_setup object.

Usage

## S3 method for class 'sim_setup'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments

X a sim_setup

row.names will have no effect

optional will have no effect

will have no effect

autoplot.sim_setup Autoplot method

Description

Use this function to produce plots for an object of class sim_setup and you like to have plots
based on ggplot2. At this time it is a ggplot2 implementation which mimics the behavior of
smoothScatter without all the options.

Usage

## S3 method for class 'sim_setup'
autoplot(object, x = "x", y = "y", ...)



Arguments

object
X

y

Examples

## Not run:

base_id

a sim_setup
character of variable name in the data on the x-axis
character of variable name in the data on the y-axis

is not used

autoplot(sim_base_1m())

## End(Not run)

base_add_id

Add id-variables to data

Description

Use this function to add id-variables to your data.

Usage

base_add_id(data, domainId)

Arguments
data a data.frame.
domainId variable names in data as character which will identify the areas/domains/groups/cluster
in the data.
base_id Construct data with id-variables
Description

This function constructs a data frame with grouping/id variables.

Usage

base_id(nDomains = 1@, nUnits = 10)

base_id_temporal(nDomains = 10, nUnits = 10, nTime = 10)



comp_var 5

Arguments
nDomains The number of domains.
nUnits The number of units in each domain. Can have length(nUnits) > 1.
nTime The number of time points for each units.

Value

Return a data.frame with variables idD as ID-variable for domains, and idU as ID-variable for
units.

Examples

base_id(2, 2)
base_id(2, c(2, 3))

comp_var Compute variables in data

Description
This function is intended to be used with sim_comp_pop, sim_comp_sample or sim_comp_agg and
not interactively. This is a wrapper around mutate

Usage

comp_var(...)

Arguments

variables interpreted in the context of that data frame.

See Also

sim_comp_pop, sim_comp_sample, sim_comp_agg

Examples

sim_base_lm() %>% sim_comp_pop(comp_var(yExp = exp(y)))



gen_norm

gen_norm

Generator functions

Description

These functions are intended to be used with sim_gen and not interactively. They are designed to
draw random numbers according to the setting of grouping variables.

Usage

gen_norm(mean

gen_v_norm(mean

gen_v_sar(mean

@, sd = 1, name = "e")
=0, sd =1, name = "v")
=0, sd =1, rho = 0.5, type = "rook"”, name)

gen_v_arl(mean = @, sd = 1, rho = 0.5, groupVar = "idD"”, timeVar = "idT", name)
gen_generic(generator, ..., groupVars = NULL, name)
Arguments
mean the mean passed to the random number generator, for example rnorm.
sd the standard deviation passed to the random number generator, for example
rnorm.
name name of variable as character in which random numbers are stored.
rho the correlation used to create the variance covariance matrix for a SAR process
- see cell2nb.
type either "rook" or "queen". See cell2nb for details.
groupVar a variable name identifying groups.
timeVar a variable name identifying repeated measurements.
generator a function producing random numbers.
arguments passed to generator.
groupvars names of variables as character. Identify groups within random numbers are
constant.
Details

gen_normis used to draw random numbers from a normal distribution where all generated numbers

are independent.

gen_v_norm and gen_v_sar will create an area-level random component. In the case of v_norm,
the error component will be from a normal distribution and i.i.d. from an area-level perspective
(all units in an area will have the same value, all areas are independent). v_sar will also be from
a normal distribution, but the errors are correlated. The variance covariance matrix is constructed



plot.sim_setup 7

for a SAR(1) - spatial/simultanous autoregressive process. mvrnorm is used for the random number
generation. gen_v_norm and gen_v_sar expect a variable idD in the data identifying the areas.

gen_generic can be used if your world is not normal. You can specify ’any’ function as generator,

like rnorm. Arguments in . .. are matched by name or position. The first argument of generator
is expected to be the number of random numbers (not necessarily named n) and need not to be
specified.

See Also

sim_gen, sim_gen_x, sim_gen_e, sim_gen_ec, sim_gen_v, sim_gen_vc, cell2nb

Examples
sim_base() %>% sim_gen_x() %>% sim_gen_e() %>% sim_gen_v() %>% sim_gen(gen_v_sar(name = "vSP"))

# Generic interface
set.seed(1)
dat1 <- sim(base_id() %>%
sim_gen(gen_generic(rnorm, mean = @, sd = 4, name = "e")))
set.seed(1)
dat2 <- sim(base_id() %>% sim_gen_e())
all.equal(datl, dat2)

plot.sim_setup Plotting methods

Description

Use this function to produce plots for an object of class sim_setup.

Usage
## S3 method for class 'sim_setup'
plot(x, vy, ...)
Arguments
X asim_setup
y will be ignored

Arguments to be passed to plot.

See Also

autoplot



sample_fraction

sample_fraction Sampling functions

Description

These functions are intended to be used with sim_sample and not interactively. They are wrappers
around sample_frac and sample_n.

Usage

sample_fraction(size, replace = FALSE, weight = NULL, groupVars = NULL)
sample_number(size, replace = FALSE, weight = NULL, groupVars = NULL)
sample_numbers(size, replace = FALSE, groupVars = NULL)
sample_cluster_number(size, replace = FALSE, weight = NULL, groupVars)

sample_cluster_fraction(size, replace = FALSE, weight = NULL, groupVars)

Arguments
size <tidy-select> For sample_n(), the number of rows to select. For sample_frac(),
the fraction of rows to select. If tbl is grouped, size applies to each group.
replace Sample with or without replacement?
weight <tidy-select> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.
groupvars character with names of variables to be used for grouping.
Details

sample_numbers is a vectorized version of sample_number.

sample_cluster_number and sample_cluster_fraction will sample clusters (all units in a clus-
ter).

Examples

sim_base_1lm() %>% sim_sample(sample_number(5))

sim_base_lm() %>% sim_sample(sample_fraction(@.5))

sim_base_lm() %>% sim_sample(sample_cluster_number(5, groupVars = "idD"))
sim_base_1lm() %>% sim_sample(sample_cluster_fraction(@.5, groupVars = "idD"))



show,sim_setup-method 9

show, sim_setup-method Show for sim_setup

Description

This is the documentation for the show methods in the package saeSim. In case you don’t know,
show is for S4-classes like print for S3. If you don’t know what that means, don’t bother, there is
no reason to call show directly, however there is the need to document it.

Usage

## S4 method for signature 'sim_setup'
show(object)

## S4 method for signature 'summary.sim_setup'
show(object)

Arguments

object Any R object

Details

Will print the head of a sim_setup to the console, after converting it to a data. frame.

sim Start simulation

Description

This function will start the simulation. Use the printing method as long as you are testing the
scenario.

Usage

sim(
X,
R=1,
path = NULL,
overwrite = TRUE,
suffix = NULL,
fileExt = ".csv",
libs = NULL,
exports = NULL



10

Arguments

X
R
path

overwrite

suffix
fileExt
libs

exports

Details

sim

asim_setup
number of repetitions.

optional path in which the simulation results can be saved. They will we coerced
to a data. frame and then saved as "csv’.

TRUE/FALSE. If TRUE files in path are replaced. If FALSE files in path are not
replaced and simulation will not be recomputed.

arguments passed to parallelStart.
an optional suffix of file names.
the file extension. Default is ".csv" - alternative it can be ".RData".

arguments passed to parallellibrary. Will be used in a call to do. call after
coersion with as.list.

arguments passed to parallelExport. Will be used in a call to do.call after
coersion with as.list.

The package parallelMap is utilized as back-end for parallel computations.

Use the argument path to store the simulation results in a directory. This may be a good idea for
long running simulations and for those using large data. frames. You can use sim_read_data to
read them in. The return value will change to NULL in each run.

Value

The return value is a list. The elements are the results of each simulation run, typically of class
data.frame. In case you specified path, each element is NULL.

Examples

setup <- sim_base_1m()
resultlList <- sim(setup, R = 1)

# For parallel computations you may need to export objects
localFun <- function() cat("Hello World!")
comp_fun <- function(dat) {

localFun()
dat

3

res <- sim_base_1m() %>%
sim_comp_pop(comp_fun) %>%

sim(
R =2,
mode = "socket”, cpus = 2,
exports = "localFun”

)

str(res)



sim_agg 11

sim_agg Aggregation component

Description

One of the components which can be added to a simulation set-up. Aggregating the data is a sim-
ulation component which can be used to aggregate the population or sample. The aggregation will
simply be done after the sampling, if you haven’t specified any sampling component, the population
is aggregated (makes sense if you draw samples directly from the model).

Usage

sim_agg(simSetup, aggFun = agg_all())

Arguments
simSetup a sim_setup.
aggFun function which controls the aggregation process. At the moment only agg_all
is defined.
Details

Potentially you can define an aggFun yourself. Take care that it only has one argument, named dat,
and returns the aggregated data as data. frame.

See Also

agg_all, sim_gen, sim_comp_pop, sim_sample, , sim_comp_sample

Examples

# Aggregating the population:
sim_base_lm() %>% sim_agg()

# Aggregating after sampling:
sim_base_lm() %>% sim_sample() %>% sim_agg()

# User aggFun:
sim_base_lm() %>% sim_agg(function(dat) dat[1, 1)



12 sim_base Im

sim_base Base component

Description

Use the ‘sim_base‘ functions to start a new sim_setup.

Usage

sim_base(data = base_id(100, 100))

Arguments

data adata.frame.

Examples

# Example for a linear model:
sim_base() %>%
sim_gen_x() %>%
sim_gen_e()

sim_base_1lm Preconfigured set-ups

Description

sim_base_1m() will start a linear model: One regressor, one error component. sim_base_lmm()
will start a linear mixed model: One regressor, one error component and one random effect for the
domain. sim_base_lmc() and sim_base_lmmc() add outlier contamination to the scenarios. Use
these as a quick start, then you probably want to configure your own scenario.

Usage

sim_base_1m()
sim_base_1lmm()
sim_base_lmc()

sim_base_lmmc()



sim_comp_n 13

Details
Additional information on the generated variables:

nDomains: 100 domains

nUnits: 100 in each domain

x: is normally distributed with mean of 0 and sd of 4

e: is normally distributed with mean of O and sd of 4

v: is normally distributed with mean of 0 and sd of 1, it is a constant within domains
e-cont: as e; probability of unit to be contaminated is 0.05; sd is then 150

v-cont: as v; probability of area to be contaminated is 0.05; sd is then 40

y =100+x+v+e

Examples

# The preconfigured set-ups:
sim_base_1lm()
sim_base_lmm()
sim_base_lmc()
sim_base_lmmc()

sim_comp_n Preconfigured computation components

Description

sim_comp_n and sim_comp_N will add the sample and population size in each domain respectively.
sim_comp_popMean and sim_comp_popVar the population mean and variance of the variable y. The
data is expected to have a variable idD identifying domains.

Usage
sim_comp_n(simSetup)
sim_comp_N(simSetup)
sim_comp_popMean(simSetup)
sim_comp_popVar(simSetup)

Arguments

simSetup a sim_setup.



14 sim_comp_pop

sim_comp_pop Calculation component

Description

One of the components which can be added to a sim_setup. These functions can be used for adding
new variables to the data.

Usage

sim_comp_pop(simSetup, fun = comp_var(), by = "")

sim_comp_sample(simSetup, fun = comp_var(), by = "")

sim_comp_agg(simSetup, fun = comp_var(), by = "")
Arguments

simSetup a sim_setup.

fun a function, see details.

by names of variables as character; identifying groups for which fun is applied.
Details

Potentially you can define a function for computation yourself. Take care that it only has one argu-
ment, named dat, and returns a data.frame. Use comp_var for simple data manipulation. Func-
tions added with sim_comp_pop are applied before sampling; sim_comp_sample after sampling.
Functions added with sim_comp_agg after aggregation.

See Also

comp_var, sim_gen, sim_agg, sim_sample, sim_comp_N, sim_comp_n, sim_comp_popMean, sim_comp_popVar

Examples

# Standard behavior
sim_base() %>% sim_gen_x() %>% sim_comp_N()

# Custom data modifications
## Add predicted values of a linear model
library(saeSim)

comp_lm <- function(dat) {
dat$linearPredictor <- predict(lm(y ~ x, data = dat))
dat

}

sim_base_lm() %>% sim_comp_pop(comp_1m)



sim_gen 15

# or if applied after sampling
sim_base_lm() %>% sim_sample() %>% sim_comp_pop(comp_1lm)

sim_gen Generation component

Description

One of the components which can be added to a sim_setup.

Usage

sim_gen(simSetup, generator)

sim_gen_generic(simSetup, ...)
Arguments
simSetup a sim_setup.
generator generator function used to generate random numbers.

arguments passed to gen_generic.

Details

Potentially you can define a generator yourself. Take care that it has one argument, named dat,
and returns a data.frame. sim_gen_generic is a shortcut to gen_generic.

See Also

gen_norm, gen_v_norm, gen_v_sar, sim_agg, , sim_comp_pop, sim_sample, sim_gen_x, sim_gen_e,
sim_gen_v, sim_gen_vc, sim_gen_ec

Examples

# Data setup for a mixed model

sim_base() %>% sim_gen_x() %>% sim_gen_v() %>% sim_gen_e()

# Adding contamination in the model error

sim_base() %>% sim_gen_x() %>% sim_gen_v() %>% sim_gen_e() %>% sim_gen_ec()

# Simple user defined generator:

gen_myVar <- function(dat) {
dat["myVar"] <- rnorm(nrow(dat))
dat

3

sim_base() %>% sim_gen_x() %>% sim_gen(gen_myVar)

# And a chi-sq(5) distributed 'random-effect':
sim_base() %>% sim_gen_generic(rchisq, df = 5, groupVars = "idD", name = "re")



16 sim_gen_cont

sim_gen_cont Generation Component for contamination

Description

One of the components which can be added to a sim_setup. It is applied after functions added with
sim_gen.

Usage

sim_gen_cont(simSetup, generator, nCont, type, areaVar = NULL, fixed = TRUE)

Arguments
simSetup a sim_setup.
generator generator function used to generate random numbers.
nCont gives the number of contaminated observations. Values between 0 and 1 will be
treated as probability. If type is "unit’ and length is larger than 1, the expected
length is the number of areas. If type is ’area’ and length is larger than 1 the
values are interpreted as area positions; i.e. c(1, 3) is interpreted as the first
and 3rd area in the data is contaminated.
type "unit" or "area" - unit- or area-level contamination.
areaVar character with variable name(s) identifying areas.
fixed TRUE fixes the observations which will be contaminated. FALSE will result in
a random selection of observations or areas.
See Also
sim_gen
Examples

sim_base_1lm() %>%
sim_gen_cont(gen_norm(name = "e"), nCont = 0.05, type = "unit”, areaVar = "idD") %>%
as.data.frame



sim_gen_x 17

sim_gen_x Preconfigured generation components

Description

These are some preconfigured generation components and all wrappers around sim_gen and sim_gen_cont.

Usage
sim_gen_x(simSetup, mean = @, sd = 4, name = "x")
sim_gen_e(simSetup, mean = @, sd = 4, name = "e")
sim_gen_ec(
simSetup,
mean = 0,
sd = 150,
name = "e",
nCont = 0.05,
type = "unit",
areaVar = "idD",
fixed = TRUE
)
sim_gen_v(simSetup, mean = @, sd = 1, name = "v")
sim_gen_vc(
simSetup,
mean = 0,
sd = 40,
name = "v",
nCont = 0.05,
type = "area",
areaVar = "idD",
fixed = TRUE
)
Arguments
simSetup a sim_setup.
mean the mean passed to the random number generator, for example rnorm.
sd the standard deviation passed to the random number generator, for example

rnorm.

name name of variable as character in which random numbers are stored.



18 sim_read_data

nCont gives the number of contaminated observations. Values between 0 and 1 will be
treated as probability. If type is "unit’ and length is larger than 1, the expected
length is the number of areas. If type is ’area’ and length is larger than 1 the
values are interpreted as area positions; i.e. c(1, 3) is interpreted as the first
and 3rd area in the data is contaminated.

type "unit" or "area" - unit- or area-level contamination.
areaVar character with variable name(s) identifying areas.
fixed TRUE fixes the observations which will be contaminated. FALSE will result in

a random selection of observations or areas.

Details

x: fixed-effect component; e: model-error; ec: contaminated model error; v: random-effect (error
constant for each domain); vc contaminated random-effect. Note that for contamination you are
expected to add both, a non-contaminated component and a contaminated component.

sim_read_data Read in simulated data

Description

Functions to read in simulation data from folder. Can be csv or RData files.

Usage
sim_read_data(path, ..., returnList = FALSE)
sim_clear_data(path, ...)

sim_read_list(path)

sim_clear_list(path)

Arguments
path path to the files you want to read in.
arguments passed to read.csv
returnList if TRUE a list containing the data.frames. Very much like the output of sim. If

FALSE a single data.frame is returned, using bind_rows



sim_resp 19

sim_resp Response component

Description

One of the components which can be added to a sim_setup.

Usage

sim_resp(simSetup, respFun)

sim_resp_eq(simSetup, ...)
Arguments
simSetup a sim_setup.
respFun a function constructing the response variable

<data-masking> Name-value pairs. The name gives the name of the column in
the output.

The value can be:

A vector of length 1, which will be recycled to the correct length.

* A vector the same length as the current group (or the whole data frame if
ungrouped).

¢ NULL, to remove the column.

* A data frame or tibble, to create multiple columns in the output.

Details

Potentially you can define an respFun yourself. Take care that it only has one argument, named
dat, and returns the a data.frame.

See Also

agg_all, sim_gen, sim_comp_pop, sim_sample, , sim_comp_sample

Examples

base_id() %>% sim_gen_x() %>% sim_gen_e() %>% sim_resp_eq(y = 100 + 2 * x + e)



20 sim_sample

sim_sample Sampling component

Description

One of the components which can be added to a sim_setup. This component can be used to add
a sampling mechanism to the simulation set-up. A sample will be drawn after the population is
generated (sim_gen) and variables on the population are computed (sim_comp_pop).

Usage

sim_sample(simSetup, smplFun = sample_number(size = 5L, groupVars = "idD"))
Arguments

simSetup a sim_setup.

smplFun function which controls the sampling process.
Details

Potentially you can define a smplFun yourself. Take care that it has one argument, named dat being
the data as data.frame, and returns the sample as data.frame.

See Also

sample_number, sample_fraction

Examples

# Simple random sample - 5% sample:
sim_base_lm() %>% sim_sample(sample_fraction(0.05))

# Simple random sampling proportional to size - 5% in each domain:
sim_base_lm() %>% sim_sample(sample_fraction(0.05, groupVars = "idD"))

# User defined sampling function:
sample_mySampleFun <- function(dat) {
dat[sample.int(nrow(dat), 10), ]

3

sim_base_1lm() %>% sim_sample(sample_mySampleFun)



sim_simName 21

sim_simName Add a name to a sim_setup

Description
Use this function to add a name to a sim_setup in case you are simulating different scenarios. This
name will be added if you use the function sim for simulation

Usage

sim_simName(simSetup, name)

Arguments
simSetup a sim_setup.
name a character
Examples

sim_base_lm() %>% sim_simName("newName")

summary, sim_setup-method
Summary for a sim_setup

Description

Reports a summary of the simulation setup.

Usage
## S4 method for signature 'sim_setup'
summary (object, ...)

Arguments

object a sim_setup.

has no effect.

Examples

summary(sim_base_1m())



22 %>%

%>% Piping operator

Description
This is the *pipe operator’ from the package *magrittr’. Use it to chain all operations for the simu-
lation together. See the original documentation for details: %>%.

Usage
lhs %>% rhs

Arguments

lhs The value to be piped

rhs A function or expression



Index

%>%, 22,22

agg_all,2, 11,19

any, 2
as.data.frame.sim_setup, 3
as.list, 10

autoplot, 7

autoplot (autoplot.sim_setup), 3
autoplot.sim_setup, 3

base_add_id, 4

base_id, 4

base_id_temporal (base_id), 4
bind_rows, /8

cell2nb, 6, 7
comp_var, 5, 14

do.call, 10

gen_generic, 15
gen_generic (gen_norm), 6
gen_norm, 6, 15

gen_v_ar1 (gen_norm), 6
gen_v_norm, 15
gen_v_norm (gen_norm), 6
gen_v_sar, 15

gen_v_sar (gen_norm), 6

mutate, 5
mvrnorm, 7

parallelExport, 10
parallellLibrary, 10
parallelStart, 10
plot, 7
plot.sim_setup, 7

read.csv, I8
rnorm, 6, 7, 17

23

sample_cluster_fraction
(sample_fraction), 8
sample_cluster_number
(sample_fraction), 8
sample_frac, 8
sample_fraction, 8, 20
sample_n, 8
sample_number, 20
sample_number (sample_fraction), 8
sample_numbers (sample_fraction), 8
show, sim_setup-method, 9
show, summary.sim_setup-method
(show, sim_setup-method), 9
sim, 9, 27
sim_agg, 2, 3,11, 14, 15
sim_base, 12
sim_base_1m, 12
sim_base_lmc (sim_base_1m), 12
sim_base_lmm (sim_base_1m), 12
sim_base_lmmc (sim_base_1m), 12
sim_clear_data (sim_read_data), 18
sim_clear_list (sim_read_data), 18
sim_comp_agg, 5
sim_comp_agg (sim_comp_pop), 14
sim_comp_N, /4
sim_comp_N (sim_comp_n), 13
sim_comp_n, 13, 14
sim_comp_pop, 5, 11,14, 15, 19, 20
sim_comp_popMean, 14
sim_comp_popMean (sim_comp_n), 13
sim_comp_popVar, 14
sim_comp_popVar (sim_comp_n), 13
sim_comp_sample, 5, 11, 19
sim_comp_sample (sim_comp_pop), 14
sim_gen, 6, 7,11, 14, 15, 16, 17, 19, 20
sim_gen_cont, 16, 17
sim_gen_e, 7, 15
sim_gen_e (sim_gen_x), 17
sim_gen_ec, 7, 15



24 INDEX

sim_gen_ec (sim_gen_x), 17
sim_gen_generic (sim_gen), 15
sim_gen_v, 7, 15

sim_gen_v (sim_gen_x), 17
sim_gen_vc, 7, 15

sim_gen_vc (sim_gen_x), 17
sim_gen_x, 7, 15,17
sim_read_data, 10, 18
sim_read_list (sim_read_data), 18
sim_resp, 19

sim_resp_eq (sim_resp), 19
sim_sample, 8, 11, 14, 15, 19, 20
sim_simName, 21
smoothScatter, 3
summary,sim_setup-method, 21



	agg_all
	as.data.frame.sim_setup
	autoplot.sim_setup
	base_add_id
	base_id
	comp_var
	gen_norm
	plot.sim_setup
	sample_fraction
	show,sim_setup-method
	sim
	sim_agg
	sim_base
	sim_base_lm
	sim_comp_n
	sim_comp_pop
	sim_gen
	sim_gen_cont
	sim_gen_x
	sim_read_data
	sim_resp
	sim_sample
	sim_simName
	summary,sim_setup-method
	>
	Index

