
Package ‘secretbase’
February 5, 2026

Type Package

Title Cryptographic Hash, Extendable-Output and Binary/Text Encoding
Functions

Version 1.2.0

Description Fast and memory-efficient streaming hash functions,
binary/text encoding and serialization. Hashes strings and raw vectors
directly. Stream hashes files which can be larger than memory, as
well as in-memory objects through R's serialization mechanism.
Implements the SHA-256, SHA-3 and 'Keccak' cryptographic hash
functions, SHAKE256 extendable-output function (XOF), 'SipHash'
pseudo-random function, base64 and base58 encoding, 'CBOR' and 'JSON'
serialization.

License MIT + file LICENSE

URL https://shikokuchuo.net/secretbase/,

https://github.com/shikokuchuo/secretbase/

BugReports https://github.com/shikokuchuo/secretbase/issues

Depends R (>= 3.5)

Config/build/compilation-database true

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Charlie Gao [aut, cre] (ORCID: <https://orcid.org/0000-0002-0750-061X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>),
Hibiki AI Limited [cph]

Maintainer Charlie Gao <charlie.gao@posit.co>

Repository CRAN

Date/Publication 2026-02-05 06:10:02 UTC

1

https://shikokuchuo.net/secretbase/
https://github.com/shikokuchuo/secretbase/
https://github.com/shikokuchuo/secretbase/issues
https://orcid.org/0000-0002-0750-061X
https://ror.org/03wc8by49

2 base58dec

Contents

base58dec . 2
base58enc . 3
base64dec . 4
base64enc . 5
cbordec . 6
cborenc . 7
jsondec . 8
jsonenc . 9
keccak . 10
sha256 . 11
sha3 . 13
shake256 . 14
siphash13 . 15

Index 18

base58dec Base58 Decode

Description

Decodes a character string or raw vector from base58 encoding with checksum.

Usage

base58dec(x, convert = TRUE)

Arguments

x a character string or raw vector containing base58 encoded data.

convert logical TRUE to convert back to a character string, FALSE to convert back to a
raw vector or NA to decode and then unserialize back to the original object.

Details

The 4-byte checksum suffix is verified using double SHA-256 and an error is raised if validation
fails. Note: does not expect a version byte prefix (unlike Bitcoin Base58Check).

The value of convert should be set to TRUE, FALSE or NA to be the reverse of the 3 encoding
operations (for strings, raw vectors and arbitrary objects), in order to return the original object.

Value

A character string, raw vector, or other object depending on the value of convert.

base58enc 3

References

This implementation is based on ’libbase58’ by Luke Dashjr under the MIT licence at https:
//github.com/luke-jr/libbase58.

See Also

base58enc()

Examples

base58dec(base58enc("secret base"))
base58dec(base58enc(as.raw(c(1L, 2L, 4L))), convert = FALSE)
base58dec(base58enc(data.frame()), convert = NA)

base58enc Base58 Encode

Description

Encodes a character string, raw vector or other object to base58 encoding with a 4-byte checksum
suffix.

Usage

base58enc(x, convert = TRUE)

Arguments

x an object.

convert logical TRUE to encode to a character string or FALSE to a raw vector.

Details

Adds a 4-byte checksum suffix (double SHA-256) to the data before base58 encoding. Note: does
not include a version byte prefix (unlike Bitcoin Base58Check).

A character string or raw vector (with no attributes) is encoded as is, whilst all other objects are first
serialized (using R serialisation version 3, big-endian representation).

Value

A character string or raw vector depending on the value of convert.

References

This implementation is based on ’libbase58’ by Luke Dashjr under the MIT licence at https:
//github.com/luke-jr/libbase58.

https://github.com/luke-jr/libbase58
https://github.com/luke-jr/libbase58
https://github.com/luke-jr/libbase58
https://github.com/luke-jr/libbase58

4 base64dec

See Also

base58dec()

Examples

base58enc("secret base")
base58enc(as.raw(c(1L, 2L, 4L)), convert = FALSE)
base58enc(data.frame())

base64dec Base64 Decode

Description

Decodes a character string, raw vector or other object from base64 encoding.

Usage

base64dec(x, convert = TRUE)

Arguments

x an object.

convert logical TRUE to convert back to a character string, FALSE to convert back to a
raw vector or NA to decode and then unserialize back to the original object.

Details

The value of convert should be set to TRUE, FALSE or NA to be the reverse of the 3 encoding
operations (for strings, raw vectors and arbitrary objects), in order to return the original object.

Value

A character string, raw vector, or other object depending on the value of convert.

References

This implementation is based that by ’The Mbed TLS Contributors’ under the ’Mbed TLS’ Trusted
Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

See Also

base64enc()

https://www.trustedfirmware.org/projects/mbed-tls

base64enc 5

Examples

base64dec(base64enc("secret base"))
base64dec(base64enc(as.raw(c(1L, 2L, 4L))), convert = FALSE)
base64dec(base64enc(data.frame()), convert = NA)

base64enc Base64 Encode

Description

Encodes a character string, raw vector or other object to base64 encoding.

Usage

base64enc(x, convert = TRUE)

Arguments

x an object.

convert logical TRUE to encode to a character string or FALSE to a raw vector.

Details

A character string or raw vector (with no attributes) is encoded as is, whilst all other objects are first
serialized (using R serialisation version 3, big-endian representation).

Value

A character string or raw vector depending on the value of convert.

References

This implementation is based that by ’The Mbed TLS Contributors’ under the ’Mbed TLS’ Trusted
Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

See Also

base64dec()

Examples

base64enc("secret base")
base64enc(as.raw(c(1L, 2L, 4L)), convert = FALSE)
base64enc(data.frame())

https://www.trustedfirmware.org/projects/mbed-tls

6 cbordec

cbordec CBOR Decode

Description

Decode CBOR (Concise Binary Object Representation, RFC 8949) data to an R object.

Usage

cbordec(x)

Arguments

x A raw vector containing CBOR-encoded data.

Details

CBOR types map to R types as follows:

• Integers: integer (if within range) or double

• Float16/Float32/Float64: double

• Byte strings: raw vectors

• Text strings: character

• false/true: logical

• null: NULL

• undefined: NA

• Arrays: lists

• Maps: named lists (keys must be text strings)

Note: CBOR arrays always decode to lists, so R atomic vectors encoded via cborenc() will decode
to lists rather than vectors.

Value

The decoded R object.

See Also

cborenc()

Examples

Round-trip encoding
original <- list(a = 1L, b = "test", c = TRUE)
cbordec(cborenc(original))

cborenc 7

cborenc CBOR Encode

Description

Encode an R object to CBOR (Concise Binary Object Representation, RFC 8949) format.

Usage

cborenc(x)

Arguments

x R object to encode. Supported types: NULL, logical, integer, double, charac-
ter, raw vectors, and lists (named lists become CBOR maps, unnamed become
CBOR arrays).

Details

This implementation supports a minimal CBOR subset:

• Unsigned and negative integers

• Float64

• Byte strings (raw vectors)

• Text strings (UTF-8)

• Simple values: false, true, null, undefined

• Arrays (unnamed lists/vectors)

• Maps (named lists)

Scalars (length-1 vectors) encode as CBOR primitives; longer vectors encode as CBOR arrays. NA
values encode as CBOR undefined. Names on atomic vectors are ignored.

Note: atomic vectors do not round-trip perfectly as CBOR arrays decode to lists. Named lists
round-trip correctly as CBOR maps.

Value

A raw vector containing the CBOR-encoded data.

See Also

cbordec()

8 jsondec

Examples

Encode a named list (becomes CBOR map)
cborenc(list(a = 1L, b = "hello"))

Round-trip
cbordec(cborenc(list(x = TRUE, y = as.raw(1:3))))

jsondec JSON Decode

Description

Minimal JSON parser. Converts JSON to R objects with proper type handling.

Usage

jsondec(x)

Arguments

x Character string or raw vector containing JSON data.

Details

This is a minimal implementation designed for parsing HTTP API responses.

Value

The corresponding R object, or an empty list for invalid input.

Type Mappings

• Object {} -> named list
• Array [] -> unnamed list
• String -> character
• Number -> numeric
• true/false -> logical
• null -> NULL

RFC 8259 Non-conformance

• Invalid JSON returns an empty list instead of erroring.
• Duplicate keys are preserved; R accessors ($, [[) return first match.
• Non-standard number forms may be accepted (e.g., leading zeros, hexadecimal).
• Invalid escape sequences are output literally (e.g., \\uZZZZ becomes "uZZZZ").
• Incomplete Unicode escape sequences for emoji are tolerated.
• Nesting depth is limited to 512 levels.

jsonenc 9

See Also

jsonenc()

Examples

jsondec('{"name": "John", "age": 30}')
jsondec('[1, 2, 3]')
jsondec('"a string"')
jsondec('123')
jsondec('true')

jsonenc JSON Encode

Description

Minimal JSON encoder. Converts an R object to a JSON string.

Usage

jsonenc(x)

Arguments

x An R object to encode as JSON.

Details

This is a minimal implementation designed for creating HTTP API request bodies.

Value

A character string containing the JSON representation.

Type Mappings

• Named list -> object {}

• Unnamed list -> array []

• Character -> string (with escaping)

• Numeric/integer -> number

• Logical -> true/false

• NULL, NA -> null

• Scalars (length 1) -> primitive value

• Vectors (length > 1) -> array []

• Unsupported types (e.g., functions) -> null

10 keccak

See Also

jsondec()

Examples

jsonenc(list(name = "John", age = 30L))
jsonenc(list(valid = TRUE, count = NULL))
jsonenc(list(nested = list(a = 1, b = list(2, 3))))
jsonenc(list(nums = 1:3, strs = c("a", "b")))

keccak Keccak Cryptographic Hash Algorithms

Description

Returns a Keccak hash of the supplied object or file.

Usage

keccak(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Must be one of 224, 256, 384 or 512.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

sha256 11

References

Keccak is the underlying algorithm for SHA-3, and is identical apart from the value of the padding
parameter.

The Keccak algorithm was designed by G. Bertoni, J. Daemen, M. Peeters and G. Van Assche.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

Keccak-256 hash as character string:
keccak("secret base")

Keccak-256 hash as raw vector:
keccak("secret base", convert = FALSE)

Keccak-224 hash as character string:
keccak("secret base", bits = 224)

Keccak-384 hash as character string:
keccak("secret base", bits = 384)

Keccak-512 hash as character string:
keccak("secret base", bits = 512)

Keccak-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
keccak(file = file)
unlink(file)

sha256 SHA-256 Cryptographic Hash Algorithm

Description

Returns a SHA-256 hash of the supplied object or file, or HMAC if a secret key is supplied.

Usage

sha256(x, key = NULL, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

key if NULL, the SHA-256 hash of x is returned. If a character string or raw vector,
this is used as a secret key to generate an HMAC. Note: for character vectors,
only the first element is used.

https://www.trustedfirmware.org/projects/mbed-tls

12 sha256

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SHA-256 Secure Hash Standard was published by the National Institute of Standards and Tech-
nology (NIST) in 2002 at https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.
pdf.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

SHA-256 hash as character string:
sha256("secret base")

SHA-256 hash as raw vector:
sha256("secret base", convert = FALSE)

SHA-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
sha256(file = file)
unlink(file)

SHA-256 HMAC using a character string secret key:
sha256("secret", key = "base")

SHA-256 HMAC using a raw vector secret key:
sha256("secret", key = charToRaw("base"))

https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://www.trustedfirmware.org/projects/mbed-tls

sha3 13

sha3 SHA-3 Cryptographic Hash Algorithms

Description

Returns a SHA-3 hash of the supplied object or file.

Usage

sha3(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Must be one of 224, 256, 384 or 512.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SHA-3 Secure Hash Standard was published by the National Institute of Standards and Tech-
nology (NIST) in 2015 at doi:10.6028/NIST.FIPS.202.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

https://doi.org/10.6028/NIST.FIPS.202
https://www.trustedfirmware.org/projects/mbed-tls

14 shake256

Examples

SHA3-256 hash as character string:
sha3("secret base")

SHA3-256 hash as raw vector:
sha3("secret base", convert = FALSE)

SHA3-224 hash as character string:
sha3("secret base", bits = 224)

SHA3-384 hash as character string:
sha3("secret base", bits = 384)

SHA3-512 hash as character string:
sha3("secret base", bits = 512)

SHA3-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
sha3(file = file)
unlink(file)

shake256 SHAKE256 Extendable Output Function

Description

Returns a SHAKE256 hash of the supplied object or file.

Usage

shake256(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Value must be between 8 and 2^24.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Details

To produce single integer values suitable for use as random seeds for R’s pseudo random number
generators (RNGs), set bits to 32 and convert to NA.

siphash13 15

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

SHAKE256 hash as character string:
shake256("secret base")

SHAKE256 hash as raw vector:
shake256("secret base", convert = FALSE)

SHAKE256 hash to integer:
shake256("secret base", bits = 32L, convert = NA)

SHAKE256 hash a file:
file <- tempfile(); cat("secret base", file = file)
shake256(file = file)
unlink(file)

siphash13 SipHash Pseudorandom Function

Description

Returns a fast, cryptographically-strong SipHash keyed hash of the supplied object or file. SipHash-
1-3 is optimised for performance. Note: SipHash is not a cryptographic hash algorithm.

Usage

siphash13(x, key = NULL, convert = TRUE, file)

https://www.trustedfirmware.org/projects/mbed-tls

16 siphash13

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

key a character string or raw vector comprising the 16 byte (128 bit) key data, or
else NULL which is equivalent to 0. If a longer vector is supplied, only the first
16 bytes are used, and if shorter, padded with trailing ’0’. Note: for character
vectors, only the first element is used.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SipHash family of cryptographically-strong pseudorandom functions (PRFs) are described
in ’SipHash: a fast short-input PRF’, Jean-Philippe Aumasson and Daniel J. Bernstein, Paper
2012/351, 2012, Cryptology ePrint Archive at https://ia.cr/2012/351.

This implementation is based on the SipHash streaming implementation by Daniele Nicolodi, David
Rheinsberg and Tom Gundersen at https://github.com/c-util/c-siphash. This is in turn
based on the SipHash reference implementation by Jean-Philippe Aumasson and Daniel J. Bern-
stein released to the public domain at https://github.com/veorq/SipHash.

Examples

SipHash-1-3 hash as character string:
siphash13("secret base")

SipHash-1-3 hash as raw vector:
siphash13("secret base", convert = FALSE)

SipHash-1-3 hash using a character string key:
siphash13("secret", key = "base")

SipHash-1-3 hash using a raw vector key:
siphash13("secret", key = charToRaw("base"))

https://ia.cr/2012/351
https://github.com/c-util/c-siphash
https://github.com/veorq/SipHash

siphash13 17

SipHash-1-3 hash a file:
file <- tempfile(); cat("secret base", file = file)
siphash13(file = file)
unlink(file)

Index

base58dec, 2
base58dec(), 4
base58enc, 3
base58enc(), 3
base64dec, 4
base64dec(), 5
base64enc, 5
base64enc(), 4

cbordec, 6
cbordec(), 7
cborenc, 7
cborenc(), 6

jsondec, 8
jsondec(), 10
jsonenc, 9
jsonenc(), 9

keccak, 10

sha256, 11
sha3, 13
shake256, 14
siphash13, 15

18

	base58dec
	base58enc
	base64dec
	base64enc
	cbordec
	cborenc
	jsondec
	jsonenc
	keccak
	sha256
	sha3
	shake256
	siphash13
	Index

