This vignette explains briefly how to use the function
adam() and the related auto.adam() in
smooth package. It does not aim at covering all aspects of
the function, but focuses on the main ones.
ADAM is Augmented Dynamic Adaptive Model. It is a model that underlies ETS, ARIMA and regression, connecting them in a unified framework. The underlying model for ADAM is a Single Source of Error state space model, which is explained in detail separately in an online monograph.
The main philosophy of adam() function is to be agnostic
of the provided data. This means that it will work with ts,
msts, zoo, xts,
data.frame, numeric and other classes of data.
The specification of seasonality in the model is done using a separate
parameter lags, so you are not obliged to transform the
existing data to something specific, and can use it as is. If you
provide a matrix, or a data.frame, or a
data.table, or any other multivariate structure, then the
function will use the first column for the response variable and the
others for the explanatory ones. One thing that is currently assumed in
the function is that the data is measured at a regular frequency. If
this is not the case, you will need to introduce missing values
manually.
In order to run the experiments in this vignette, we need to load the following packages:
First and foremost, ADAM implements ETS model, although in a more
flexible way than (Hyndman et al. 2008):
it supports different distributions for the error term, which are
regulated via distribution parameter. By default, the
additive error model relies on Normal distribution, while the
multiplicative error one assumes Inverse Gaussian. If you want to
reproduce the classical ETS, you would need to specify
distribution="dnorm". Here is an example of ADAM ETS(MMM)
with Normal distribution on AirPassengers data:
testModel <- adam(AirPassengers, "MMM", lags=c(1,12), distribution="dnorm",
h=12, holdout=TRUE)
summary(testModel)
#>
#> Model estimated using adam() function: ETS(MMM)
#> Response variable: AirPassengers
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 473.8895
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.6172 0.0917 0.4358 0.7986 *
#> beta 0.0000 0.0186 0.0000 0.0368
#> gamma 0.1905 0.0656 0.0607 0.3201 *
#>
#> Error standard deviation: 0.0367
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 955.7791 956.0940 967.3103 968.0792
plot(forecast(testModel,h=12,interval="prediction"))You might notice that the summary contains more than what is reported
by other smooth functions. This one also produces standard
errors for the estimated parameters based on Fisher Information
calculation. Note that this is computationally expensive, so if you have
a model with more than 30 variables, the calculation of standard errors
might take plenty of time. As for the default print()
method, it will produce a shorter summary from the model, without the
standard errors (similar to what es() does):
testModel
#> Time elapsed: 0.05 seconds
#> Model estimated using adam() function: ETS(MMM)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 473.8895
#> Persistence vector g:
#> alpha beta gamma
#> 0.6172 0.0000 0.1905
#>
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 955.7791 956.0940 967.3103 968.0792
#>
#> Forecast errors:
#> ME: -17.336; MAE: 18.16; RMSE: 25.138
#> sCE: -79.251%; Asymmetry: -90.7%; sMAE: 6.918%; sMSE: 0.917%
#> MASE: 0.754; RMSSE: 0.802; rMAE: 0.239; rRMSE: 0.244Also, note that the prediction interval in case of multiplicative error models are approximate. It is advisable to use simulations instead (which is slower, but more accurate):
If you want to do the residuals diagnostics, then it is recommended
to use plot function, something like this (you can select,
which of the plots to produce):
By default ADAM will estimate models via maximising likelihood
function. But there is also a parameter loss, which allows
selecting from a list of already implemented loss functions (again, see
documentation for adam() for the full list) or using a
function written by a user. Here is how to do the latter on the example
of BJsales:
lossFunction <- function(actual, fitted, B){
return(sum(abs(actual-fitted)^3))
}
testModel <- adam(BJsales, "AAN", silent=FALSE, loss=lossFunction,
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ETS(AAN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: custom; Loss function value: 599.3072
#> Persistence vector g:
#> alpha beta
#> 1.000 0.227
#>
#> Sample size: 138
#> Number of estimated parameters: 2
#> Number of degrees of freedom: 136
#> Information criteria are unavailable for the chosen loss & distribution.
#>
#> Forecast errors:
#> ME: 3.015; MAE: 3.129; RMSE: 3.866
#> sCE: 15.916%; Asymmetry: 91.7%; sMAE: 1.376%; sMSE: 0.029%
#> MASE: 2.626; RMSSE: 2.52; rMAE: 1.009; rRMSE: 1.009Note that you need to have parameters actual, fitted and B in the function, which correspond to the vector of actual values, vector of fitted values on each iteration and a vector of the optimised parameters.
loss and distribution parameters are
independent, so in the example above, we have assumed that the error
term follows Normal distribution, but we have estimated its parameters
using a non-conventional loss because we can. Some of distributions
assume that there is an additional parameter, which can either be
estimated or provided by user. These include Asymmetric Laplace
(distribution="dalaplace") with alpha,
Generalised Normal and Log-Generalised normal
(distribution=c("gnorm","dlgnorm")) with shape
and Student’s T (distribution="dt") with
nu:
The model selection in ADAM ETS relies on information criteria and
works correctly only for the loss="likelihood". There are
several options, how to select the model, see them in the description of
the function: ?adam(). The default one uses
branch-and-bound algorithm, similar to the one used in
es(), but only considers additive trend models (the
multiplicative trend ones are less stable and need more attention from a
forecaster):
testModel <- adam(AirPassengers, "ZXZ", lags=c(1,12), silent=FALSE,
h=12, holdout=TRUE)
#> Forming the pool of models based on... ANN , ANA , MNM , MAM , Estimation progress: 71 %86 %100 %... Done!
testModel
#> Time elapsed: 0.19 seconds
#> Model estimated using adam() function: ETS(MAM)
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 475.1973
#> Persistence vector g:
#> alpha beta gamma
#> 0.6496 0.0000 0.2382
#>
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 958.3947 958.7096 969.9259 970.6948
#>
#> Forecast errors:
#> ME: -2.32; MAE: 16.219; RMSE: 21.671
#> sCE: -10.608%; Asymmetry: -6.2%; sMAE: 6.179%; sMSE: 0.682%
#> MASE: 0.673; RMSSE: 0.692; rMAE: 0.213; rRMSE: 0.21Note that the function produces point forecasts if
h>0, but it won’t generate prediction interval. This is
why you need to use forecast() method (as shown in the
first example in this vignette).
Similarly to es(), function supports combination of
models, but it saves all the tested models in the output for a potential
reuse. Here how it works:
testModel <- adam(AirPassengers, "CXC", lags=c(1,12),
h=12, holdout=TRUE)
testForecast <- forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95))
testForecast
#> Point forecast Lower bound (5%) Lower bound (2.5%) Upper bound (95%)
#> Jan 1960 421.3869 412.5346 410.8574 430.3180
#> Feb 1960 404.2151 378.8297 374.1284 430.2890
#> Mar 1960 478.2432 440.4960 433.5686 517.2865
#> Apr 1960 469.4753 426.7247 418.9335 513.9292
#> May 1960 483.3768 436.9943 428.5652 531.7112
#> Jun 1960 548.3281 495.2308 485.5863 603.6809
#> Jul 1960 605.2671 545.4208 534.5633 667.7113
#> Aug 1960 592.0438 532.2679 521.4364 654.4720
#> Sep 1960 492.9109 442.5413 433.4207 545.5438
#> Oct 1960 435.5918 390.9739 382.8960 482.2194
#> Nov 1960 383.7125 344.3754 337.2539 424.8229
#> Dec 1960 429.4814 385.5892 377.6416 475.3461
#> Jan 1961 446.7925 400.8209 392.5002 494.8448
#> Feb 1961 428.4600 381.0510 372.5092 478.1851
#> Mar 1961 506.7828 446.4769 435.6652 570.2693
#> Apr 1961 497.3506 435.1430 424.0310 563.0165
#> May 1961 511.9422 446.5961 434.9416 581.0002
#> Jun 1961 580.5781 508.4246 495.5299 656.7161
#> Upper bound (97.5%)
#> Jan 1960 432.0478
#> Feb 1960 435.4488
#> Mar 1960 525.0770
#> Apr 1960 522.8546
#> May 1960 541.4400
#> Jun 1960 614.8273
#> Jul 1960 680.2989
#> Aug 1960 667.0696
#> Sep 1960 556.1714
#> Oct 1960 491.6356
#> Nov 1960 433.1253
#> Dec 1960 484.6072
#> Jan 1961 504.5510
#> Feb 1961 488.2690
#> Mar 1961 583.1988
#> Apr 1961 576.4312
#> May 1961 595.1262
#> Jun 1961 672.2639
plot(testForecast)Yes, now we support vectors for the levels in case you want to produce several. In fact, we also support side for prediction interval, so you can extract specific quantiles without a hustle:
forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95,0.99), side="upper")
#> Point forecast Upper bound (90%) Upper bound (95%) Upper bound (99%)
#> Jan 1960 421.3869 428.3295 430.3180 434.0648
#> Feb 1960 404.2151 424.3906 430.2890 441.4995
#> Mar 1960 478.2432 508.4000 517.2865 534.2323
#> Apr 1960 469.4753 503.7647 513.9292 533.3604
#> May 1960 483.3768 520.6389 531.7112 552.8988
#> Jun 1960 548.3281 590.9966 603.6809 627.9573
#> Jul 1960 605.2671 653.3911 667.7113 695.1304
#> Aug 1960 592.0438 640.1441 654.4720 681.9171
#> Sep 1960 492.9109 533.4585 545.5438 568.6990
#> Oct 1960 435.5918 471.5120 482.2194 502.7356
#> Nov 1960 383.7125 415.3822 424.8229 442.9125
#> Dec 1960 429.4814 464.8148 475.3461 495.5239
#> Jan 1961 446.7925 483.8083 494.8448 515.9936
#> Feb 1961 428.4600 466.7308 478.1851 500.1689
#> Mar 1961 506.7828 555.5991 570.2693 598.4731
#> Apr 1961 497.3506 547.8079 563.0165 592.2912
#> May 1961 511.9422 564.9905 581.0002 611.8328
#> Jun 1961 580.5781 639.0873 656.7161 690.6440A brand new thing in the function is the possibility to use several
frequencies (double / triple / quadruple / … seasonal models). In order
to show how it works, we will generate an artificial time series,
inspired by half-hourly electricity demand using sim.gum()
function:
set.seed(41)
ordersGUM <- c(1,1,1)
lagsGUM <- c(1,48,336)
initialGUM1 <- -25381.7
initialGUM2 <- c(23955.09, 24248.75, 24848.54, 25012.63, 24634.14, 24548.22, 24544.63, 24572.77,
24498.33, 24250.94, 24545.44, 25005.92, 26164.65, 27038.55, 28262.16, 28619.83,
28892.19, 28575.07, 28837.87, 28695.12, 28623.02, 28679.42, 28682.16, 28683.40,
28647.97, 28374.42, 28261.56, 28199.69, 28341.69, 28314.12, 28252.46, 28491.20,
28647.98, 28761.28, 28560.11, 28059.95, 27719.22, 27530.23, 27315.47, 27028.83,
26933.75, 26961.91, 27372.44, 27362.18, 27271.31, 26365.97, 25570.88, 25058.01)
initialGUM3 <- c(23920.16, 23026.43, 22812.23, 23169.52, 23332.56, 23129.27, 22941.20, 22692.40,
22607.53, 22427.79, 22227.64, 22580.72, 23871.99, 25758.34, 28092.21, 30220.46,
31786.51, 32699.80, 33225.72, 33788.82, 33892.25, 34112.97, 34231.06, 34449.53,
34423.61, 34333.93, 34085.28, 33948.46, 33791.81, 33736.17, 33536.61, 33633.48,
33798.09, 33918.13, 33871.41, 33403.75, 32706.46, 31929.96, 31400.48, 30798.24,
29958.04, 30020.36, 29822.62, 30414.88, 30100.74, 29833.49, 28302.29, 26906.72,
26378.64, 25382.11, 25108.30, 25407.07, 25469.06, 25291.89, 25054.11, 24802.21,
24681.89, 24366.97, 24134.74, 24304.08, 25253.99, 26950.23, 29080.48, 31076.33,
32453.20, 33232.81, 33661.61, 33991.21, 34017.02, 34164.47, 34398.01, 34655.21,
34746.83, 34596.60, 34396.54, 34236.31, 34153.32, 34102.62, 33970.92, 34016.13,
34237.27, 34430.08, 34379.39, 33944.06, 33154.67, 32418.62, 31781.90, 31208.69,
30662.59, 30230.67, 30062.80, 30421.11, 30710.54, 30239.27, 28949.56, 27506.96,
26891.75, 25946.24, 25599.88, 25921.47, 26023.51, 25826.29, 25548.72, 25405.78,
25210.45, 25046.38, 24759.76, 24957.54, 25815.10, 27568.98, 29765.24, 31728.25,
32987.51, 33633.74, 34021.09, 34407.19, 34464.65, 34540.67, 34644.56, 34756.59,
34743.81, 34630.05, 34506.39, 34319.61, 34110.96, 33961.19, 33876.04, 33969.95,
34220.96, 34444.66, 34474.57, 34018.83, 33307.40, 32718.90, 32115.27, 31663.53,
30903.82, 31013.83, 31025.04, 31106.81, 30681.74, 30245.70, 29055.49, 27582.68,
26974.67, 25993.83, 25701.93, 25940.87, 26098.63, 25771.85, 25468.41, 25315.74,
25131.87, 24913.15, 24641.53, 24807.15, 25760.85, 27386.39, 29570.03, 31634.00,
32911.26, 33603.94, 34020.90, 34297.65, 34308.37, 34504.71, 34586.78, 34725.81,
34765.47, 34619.92, 34478.54, 34285.00, 34071.90, 33986.48, 33756.85, 33799.37,
33987.95, 34047.32, 33924.48, 33580.82, 32905.87, 32293.86, 31670.02, 31092.57,
30639.73, 30245.42, 30281.61, 30484.33, 30349.51, 29889.23, 28570.31, 27185.55,
26521.85, 25543.84, 25187.82, 25371.59, 25410.07, 25077.67, 24741.93, 24554.62,
24427.19, 24127.21, 23887.55, 24028.40, 24981.34, 26652.32, 28808.00, 30847.09,
32304.13, 33059.02, 33562.51, 33878.96, 33976.68, 34172.61, 34274.50, 34328.71,
34370.12, 34095.69, 33797.46, 33522.96, 33169.94, 32883.32, 32586.24, 32380.84,
32425.30, 32532.69, 32444.24, 32132.49, 31582.39, 30926.58, 30347.73, 29518.04,
29070.95, 28586.20, 28416.94, 28598.76, 28529.75, 28424.68, 27588.76, 26604.13,
26101.63, 25003.82, 24576.66, 24634.66, 24586.21, 24224.92, 23858.42, 23577.32,
23272.28, 22772.00, 22215.13, 21987.29, 21948.95, 22310.79, 22853.79, 24226.06,
25772.55, 27266.27, 28045.65, 28606.14, 28793.51, 28755.83, 28613.74, 28376.47,
27900.76, 27682.75, 27089.10, 26481.80, 26062.94, 25717.46, 25500.27, 25171.05,
25223.12, 25634.63, 26306.31, 26822.46, 26787.57, 26571.18, 26405.21, 26148.41,
25704.47, 25473.10, 25265.97, 26006.94, 26408.68, 26592.04, 26224.64, 25407.27,
25090.35, 23930.21, 23534.13, 23585.75, 23556.93, 23230.25, 22880.24, 22525.52,
22236.71, 21715.08, 21051.17, 20689.40, 20099.18, 19939.71, 19722.69, 20421.58,
21542.03, 22962.69, 23848.69, 24958.84, 25938.72, 26316.56, 26742.61, 26990.79,
27116.94, 27168.78, 26464.41, 25703.23, 25103.56, 24891.27, 24715.27, 24436.51,
24327.31, 24473.02, 24893.89, 25304.13, 25591.77, 25653.00, 25897.55, 25859.32,
25918.32, 25984.63, 26232.01, 26810.86, 27209.70, 26863.50, 25734.54, 24456.96)
y <- sim.gum(orders=ordersGUM, lags=lagsGUM, nsim=1, frequency=336, obs=3360,
measurement=rep(1,3), transition=diag(3), persistence=c(0.045,0.162,0.375),
initial=rbind(initialGUM1,initialGUM2,initialGUM3))$dataWe can then apply ADAM to this data:
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE)
testModel
#> Time elapsed: 0.97 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19575.11
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0186 0.0000 0.1810 0.2721
#> Damping parameter: 0.8881
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39162.22 39162.25 39198.31 39198.42
#>
#> Forecast errors:
#> ME: 80.806; MAE: 144.186; RMSE: 185.09
#> sCE: 89.583%; Asymmetry: 57.6%; sMAE: 0.476%; sMSE: 0.004%
#> MASE: 0.194; RMSSE: 0.18; rMAE: 0.023; rRMSE: 0.023Note that the more lags you have, the more initial seasonal
components the function will need to estimate, which is a difficult
task. This is why we used initial="backcasting" in the
example above - this speeds up the estimation by reducing the number of
parameters to estimate. Still, the optimiser might not get close to the
optimal value, so we can help it. First, we can give more time for the
calculation, increasing the number of iterations via
maxeval (the default value is 40 iterations for each
estimated parameter, e.g. \(40 \times 5 =
200\) in our case):
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE, maxeval=10000)
testModel
#> Time elapsed: 0.9 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19575.11
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0186 0.0000 0.1810 0.2721
#> Damping parameter: 0.8881
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39162.22 39162.25 39198.31 39198.42
#>
#> Forecast errors:
#> ME: 80.806; MAE: 144.186; RMSE: 185.09
#> sCE: 89.583%; Asymmetry: 57.6%; sMAE: 0.476%; sMSE: 0.004%
#> MASE: 0.194; RMSSE: 0.18; rMAE: 0.023; rRMSE: 0.023This will take more time, but will typically lead to more refined
parameters. You can control other parameters of the optimiser as well,
such as algorithm, xtol_rel,
print_level and others, which are explained in the
documentation for nloptr function from nloptr package (run
nloptr.print.options() for details). Second, we can give a
different set of initial parameters for the optimiser, have a look at
what the function saves:
and use this as a starting point for the reestimation (e.g. with a different algorithm):
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE, B=testModel$B)
testModel
#> Time elapsed: 1.23 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19574.32
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0185 0.0000 0.1813 0.2718
#> Damping parameter: 0.9997
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39160.64 39160.66 39196.72 39196.83
#>
#> Forecast errors:
#> ME: 85.337; MAE: 146.164; RMSE: 187.409
#> sCE: 94.605%; Asymmetry: 60.2%; sMAE: 0.482%; sMSE: 0.004%
#> MASE: 0.197; RMSSE: 0.182; rMAE: 0.023; rRMSE: 0.024If you are ready to wait, you can change the initialisation to the
initial="optimal", which in our case will take much more
time because of the number of estimated parameters - 389 for the chosen
model. The estimation process in this case might take 20 - 30 times more
than in the example above.
In addition, you can specify some parts of the initial state vector or some parts of the persistence vector, here is an example:
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=TRUE, h=336, holdout=TRUE, persistence=list(beta=0.1))
testModel
#> Time elapsed: 0.99 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 55569.28
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.1023 0.1000 0.3078 0.5031
#> Damping parameter: 0.9512
#> Sample size: 3024
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 3019
#> Number of provided parameters: 1
#> Information criteria:
#> AIC AICc BIC BICc
#> 111148.6 111148.6 111178.6 111178.7
#>
#> Forecast errors:
#> ME: -8.35383527144936e+39; MAE: 8.35383527144936e+39; RMSE: 1.52759937174104e+41
#> sCE: -9.26112441499184e+39%; Asymmetry: -100%; sMAE: 2.75628702827138e+37%; sMSE: 2.54036435427557e+75%
#> MASE: 1.12495972795497e+37; RMSSE: 1.48562752008939e+38; rMAE: 1.30569989341819e+36; rRMSE: 1.9378817190662e+37The function also handles intermittent data (the data with zeroes) and the data with missing values. This is partially covered in the vignette on the oes() function. Here is a simple example:
testModel <- adam(rpois(120,0.5), "MNN", silent=FALSE, h=12, holdout=TRUE,
occurrence="odds-ratio")
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: iETS(MNN)[O]
#> With backcasting initialisation
#> Occurrence model type: Odds ratio
#> Distribution assumed in the model: Mixture of Bernoulli and Gamma
#> Loss function type: likelihood; Loss function value: 23.6797
#> Persistence vector g:
#> alpha
#> 0
#>
#> Sample size: 108
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 104
#> Information criteria:
#> AIC AICc BIC BICc
#> 192.8464 192.9607 203.5749 194.4782
#>
#> Forecast errors:
#> Asymmetry: -1.833%; sMSE: 28.466%; rRMSE: 0.799; sPIS: -18.182%; sCE: 90.909%Finally, adam() is faster than es()
function, because its code is more efficient and it uses a different
optimisation algorithm with more finely tuned parameters by default.
Let’s compare:
adamModel <- adam(AirPassengers, "CCC",
h=12, holdout=TRUE)
esModel <- es(AirPassengers, "CCC",
h=12, holdout=TRUE)
"adam:"
#> [1] "adam:"
adamModel
#> Time elapsed: 0.82 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#>
#> Number of models combined: 30
#> Sample size: 132
#> Average number of estimated parameters: 5.8562
#> Average number of degrees of freedom: 126.1438
#>
#> Forecast errors:
#> ME: -17.536; MAE: 18.405; RMSE: 24.343
#> sCE: -80.169%; sMAE: 7.012%; sMSE: 0.86%
#> MASE: 0.764; RMSSE: 0.777; rMAE: 0.242; rRMSE: 0.236
"es():"
#> [1] "es():"
esModel
#> Time elapsed: 0.8 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#>
#> Number of models combined: 30
#> Sample size: 132
#> Average number of estimated parameters: 5.9289
#> Average number of degrees of freedom: 126.0711
#>
#> Forecast errors:
#> ME: -14.557; MAE: 16.464; RMSE: 23.474
#> sCE: -66.548%; sMAE: 6.272%; sMSE: 0.8%
#> MASE: 0.684; RMSSE: 0.749; rMAE: 0.217; rRMSE: 0.228As mentioned above, ADAM does not only contain ETS, it also contains
ARIMA model, which is regulated via orders parameter. If
you want to have a pure ARIMA, you need to switch off ETS, which is done
via model="NNN":
testModel <- adam(BJsales, "NNN", silent=FALSE, orders=c(0,2,2),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ARIMA(0,2,2)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 240.5973
#> ARMA parameters of the model:
#> Lag 1
#> MA(1) -0.7488
#> MA(2) -0.0175
#>
#> Sample size: 138
#> Number of estimated parameters: 3
#> Number of degrees of freedom: 135
#> Information criteria:
#> AIC AICc BIC BICc
#> 487.1947 487.3738 495.9764 496.4177
#>
#> Forecast errors:
#> ME: 2.963; MAE: 3.089; RMSE: 3.815
#> sCE: 15.642%; Asymmetry: 90.2%; sMAE: 1.359%; sMSE: 0.028%
#> MASE: 2.593; RMSSE: 2.487; rMAE: 0.996; rRMSE: 0.996Given that both models are implemented in the same framework, they can be compared using information criteria.
The functionality of ADAM ARIMA is similar to the one of
msarima function in smooth package, although
there are several differences.
First, changing the distribution parameter will allow
switching between additive / multiplicative models. For example,
distribution="dlnorm" will create an ARIMA, equivalent to
the one on logarithms of the data:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dlnorm",
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.12 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Log-Normal
#> Loss function type: likelihood; Loss function value: 483.4464
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.8424 -0.7557
#> Lag 1 Lag 12
#> MA(1) 0.6089 0.7222
#> MA(2) -0.0926 0.1492
#>
#> Sample size: 132
#> Number of estimated parameters: 7
#> Number of degrees of freedom: 125
#> Information criteria:
#> AIC AICc BIC BICc
#> 980.8928 981.7960 1001.0724 1003.2775
#>
#> Forecast errors:
#> ME: -27.035; MAE: 27.035; RMSE: 31.66
#> sCE: -123.594%; Asymmetry: -100%; sMAE: 10.3%; sMSE: 1.455%
#> MASE: 1.123; RMSSE: 1.01; rMAE: 0.356; rRMSE: 0.307Second, if you want the model with intercept / drift, you can do it
using constant parameter:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12), constant=TRUE,
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.09 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12] with drift
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 483.6894
#> Intercept/Drift value: 1.5054
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.5535 -0.9112
#> Lag 1 Lag 12
#> MA(1) 0.2497 0.8703
#> MA(2) -0.0640 0.0992
#>
#> Sample size: 132
#> Number of estimated parameters: 8
#> Number of degrees of freedom: 124
#> Information criteria:
#> AIC AICc BIC BICc
#> 983.3788 984.5495 1006.4412 1009.2994
#>
#> Forecast errors:
#> ME: -12.561; MAE: 16.41; RMSE: 21.183
#> sCE: -57.422%; Asymmetry: -73.6%; sMAE: 6.252%; sMSE: 0.651%
#> MASE: 0.681; RMSSE: 0.676; rMAE: 0.216; rRMSE: 0.206If the model contains non-zero differences, then the constant acts as
a drift. Third, you can specify parameters of ARIMA via the
arma parameter in the following manner:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
arma=list(ar=c(0.1,0.1), ma=c(-0.96, 0.03, -0.12, 0.03)),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 564.21
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) 0.1 0.1
#> Lag 1 Lag 12
#> MA(1) -0.96 -0.12
#> MA(2) 0.03 0.03
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 6
#> Information criteria:
#> AIC AICc BIC BICc
#> 1130.420 1130.451 1133.303 1133.378
#>
#> Forecast errors:
#> ME: 9.579; MAE: 17.084; RMSE: 19.15
#> sCE: 43.789%; Asymmetry: 61.9%; sMAE: 6.508%; sMSE: 0.532%
#> MASE: 0.709; RMSSE: 0.611; rMAE: 0.225; rRMSE: 0.186Finally, the initials for the states can also be provided, although
getting the correct ones might be a challenging task (you also need to
know how many of them to provide; checking
testModel$initial might help):
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,0)), distribution="dnorm",
initial=list(arima=AirPassengers[1:24]),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.05 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,0)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 494.9289
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.4837 -0.0502
#> Lag 1
#> MA(1) 0.3488
#> MA(2) 0.0964
#>
#> Sample size: 132
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 127
#> Information criteria:
#> AIC AICc BIC BICc
#> 999.8578 1000.3340 1014.2718 1015.4344
#>
#> Forecast errors:
#> ME: -18.06; MAE: 19.481; RMSE: 24.594
#> sCE: -82.564%; Asymmetry: -91.9%; sMAE: 7.422%; sMSE: 0.878%
#> MASE: 0.809; RMSSE: 0.785; rMAE: 0.256; rRMSE: 0.239If you work with ADAM ARIMA model, then there is no such thing as
“usual” bounds for the parameters, so the function will use the
bounds="admissible", checking the AR / MA polynomials in
order to make sure that the model is stationary and invertible (aka
stable).
Similarly to ETS, you can use different distributions and losses for
the estimation. Note that the order selection for ARIMA is done
in auto.adam() function, not in the
adam()! However, if you do
orders=list(..., select=TRUE) in adam(), it
will call auto.adam() and do the selection.
Finally, ARIMA is typically slower than ETS, mainly because its
initial states are more difficult to estimate due to an increased
complexity of the model. If you want to speed things up, use
initial="backcasting" and reduce the number of iterations
via maxeval parameter.
Another important feature of ADAM is introduction of explanatory
variables. Unlike in es(), adam() expects a
matrix for data and can work with a formula. If the latter
is not provided, then it will use all explanatory variables. Here is a
brief example:
If you work with data.frame or similar structures, then you can use
them directly, ADAM will extract the response variable either assuming
that it is in the first column or from the provided formula (if you
specify one via formula parameter). Here is an example,
where we create a matrix with lags and leads of an explanatory
variable:
BJData <- cbind(as.data.frame(BJsales),as.data.frame(xregExpander(BJsales.lead,c(-7:7))))
colnames(BJData)[1] <- "y"
testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, formula=y~xLag1+xLag2+xLag3)
testModel
#> Time elapsed: 0.06 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 197.237
#> Persistence vector g (excluding xreg):
#> alpha
#> 1
#>
#> Sample size: 132
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 127
#> Information criteria:
#> AIC AICc BIC BICc
#> 404.4740 404.9502 418.8880 420.0506
#>
#> Forecast errors:
#> ME: 1.184; MAE: 1.619; RMSE: 2.249
#> sCE: 9.431%; Asymmetry: 50.8%; sMAE: 0.717%; sMSE: 0.01%
#> MASE: 1.328; RMSSE: 1.439; rMAE: 0.723; rRMSE: 0.896Similarly to es(), there is a support for variables
selection, but via the regressors parameter instead of
xregDo, which will then use stepwise()
function from greybox package on the residuals of the
model:
The same functionality is supported with ARIMA, so you can have, for example, ARIMAX(0,1,1), which is equivalent to ETSX(A,N,N):
testModel <- adam(BJData, "NNN", h=18, silent=FALSE, holdout=TRUE, regressors="select", orders=c(0,1,1))The two models might differ because they have different initialisation in the optimiser and different bounds for parameters (ARIMA relies on invertibility condition, while ETS does the usual (0,1) bounds by default). It is possible to make them identical if the number of iterations is increased and the initial parameters are the same. Here is an example of what happens, when the two models have exactly the same parameters:
BJData <- BJData[,c("y",names(testModel$initial$xreg))];
testModel <- adam(BJData, "NNN", h=18, silent=TRUE, holdout=TRUE, orders=c(0,1,1),
initial=testModel$initial, arma=testModel$arma)
testModel
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ARIMAX(0,1,1)
#> With provided initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 425.9002
#> ARMA parameters of the model:
#> Lag 1
#> MA(1) 0.2556
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#> AIC AICc BIC BICc
#> 853.8004 853.8312 856.6832 856.7583
#>
#> Forecast errors:
#> ME: 0.64; MAE: 0.64; RMSE: 0.88
#> sCE: 5.102%; Asymmetry: 100%; sMAE: 0.283%; sMSE: 0.002%
#> MASE: 0.525; RMSSE: 0.563; rMAE: 0.286; rRMSE: 0.351
names(testModel$initial)[1] <- names(testModel$initial)[[1]] <- "level"
testModel2 <- adam(BJData, "ANN", h=18, silent=TRUE, holdout=TRUE,
initial=testModel$initial, persistence=testModel$arma$ma+1)
testModel2
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> With provided initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 425.9002
#> Persistence vector g (excluding xreg):
#> alpha
#> 1.2556
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#> AIC AICc BIC BICc
#> 853.8004 853.8312 856.6832 856.7583
#>
#> Forecast errors:
#> ME: 0.64; MAE: 0.64; RMSE: 0.88
#> sCE: 5.102%; Asymmetry: 100%; sMAE: 0.283%; sMSE: 0.002%
#> MASE: 0.525; RMSSE: 0.563; rMAE: 0.286; rRMSE: 0.351Another feature of ADAM is the time varying parameters in the SSOE
framework, which can be switched on via
regressors="adapt":
testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="adapt")
testModel$persistence
#> alpha delta1 delta2 delta3 delta4 delta5
#> 0.418436536 0.178429452 0.002808931 0.136392363 0.295716981 0.203650154Note that the default number of iterations might not be sufficient in
order to get close to the optimum of the function, so setting
maxeval to something bigger might help. If you want to
explore, why the optimisation stopped, you can provide
print_level=41 parameter to the function, and it will print
out the report from the optimiser. In the end, the default parameters
are tuned in order to give a reasonable solution, but given the
complexity of the model, they might not guarantee to give the best one
all the time.
Finally, you can produce a mixture of ETS, ARIMA and regression, by using the respective parameters, like this:
testModel <- adam(BJData, "AAN", h=18, silent=FALSE, holdout=TRUE, orders=c(1,0,0))
summary(testModel)
#>
#> Model estimated using adam() function: ETSX(AAN)+ARIMA(1,0,0)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 60.753
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.2379 0.1651 0.0000 0.5643
#> beta 0.0854 0.3845 0.0000 0.2379
#> phi1[1] 0.9999 0.0474 0.9061 1.0936 *
#> xLag3 4.7444 3.0218 -1.2370 10.7182
#> xLag7 0.5509 3.0319 -5.4506 6.5448
#> xLag4 3.5020 2.8612 -2.1614 9.1583
#> xLag6 1.4968 2.8703 -4.1848 7.1712
#> xLag5 2.2980 2.5247 -2.6995 7.2892
#>
#> Error standard deviation: 0.3956
#> Sample size: 132
#> Number of estimated parameters: 9
#> Number of degrees of freedom: 123
#> Information criteria:
#> AIC AICc BIC BICc
#> 139.5060 140.9814 165.4512 169.0533This might be handy, when you explore a high frequency data, want to add calendar events, apply ETS and add AR/MA errors to it.
Finally, if you estimate ETSX or ARIMAX model and want to speed
things up, it is recommended to use initial="backcasting",
which will then initialise dynamic part of the model via backcasting and
use optimisation for the parameters of the explanatory variables:
testModel <- adam(BJData, "AAN", h=18, silent=TRUE, holdout=TRUE, initial="backcasting")
summary(testModel)
#>
#> Model estimated using adam() function: ETSX(AAN)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 46.9657
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.7473 0.0908 0.5676 0.9268 *
#> beta 0.5206 0.2861 0.0000 0.7473
#> xLag3 4.5697 2.4800 -0.3389 9.4727
#> xLag7 0.4021 2.4920 -4.5302 5.3289
#> xLag4 3.1388 2.1988 -1.2131 7.4859
#> xLag6 1.0523 2.2024 -3.3068 5.4065
#> xLag5 1.8102 2.0943 -2.3349 5.9507
#>
#> Error standard deviation: 0.3549
#> Sample size: 132
#> Number of estimated parameters: 8
#> Number of degrees of freedom: 124
#> Information criteria:
#> AIC AICc BIC BICc
#> 109.9315 111.1022 132.9939 135.8521While the original adam() function allows selecting ETS
components and explanatory variables, it does not allow selecting the
most suitable distribution and / or ARIMA components. This is what
auto.adam() function is for.
In order to do the selection of the most appropriate distribution, you need to provide a vector of those that you want to check:
testModel <- auto.adam(BJsales, "XXX", silent=FALSE,
distribution=c("dnorm","dlaplace","ds"),
h=12, holdout=TRUE)
#> Evaluating models with different distributions... dnorm , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. dlaplace , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. ds , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |-
#> The best ARIMA is selected. Done!
testModel
#> Time elapsed: 0.38 seconds
#> Model estimated using auto.adam() function: ETS(AAdN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 237.6128
#> Persistence vector g:
#> alpha beta
#> 0.9448 0.2979
#> Damping parameter: 0.8789
#> Sample size: 138
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 134
#> Information criteria:
#> AIC AICc BIC BICc
#> 483.2257 483.5264 494.9347 495.6756
#>
#> Forecast errors:
#> ME: 2.817; MAE: 2.967; RMSE: 3.654
#> sCE: 14.869%; Asymmetry: 88%; sMAE: 1.305%; sMSE: 0.026%
#> MASE: 2.491; RMSSE: 2.382; rMAE: 0.957; rRMSE: 0.954This process can also be done in parallel on either the automatically
selected number of cores (e.g. parallel=TRUE) or on the
specified by user (e.g. parallel=4):
If you want to add ARIMA or regression components, you can do it in
the exactly the same way as for the adam() function. Here
is an example of ETS+ARIMA:
testModel <- auto.adam(BJsales, "AAN", orders=list(ar=2,i=0,ma=0), silent=TRUE,
distribution=c("dnorm","dlaplace","ds","dgnorm"),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.17 seconds
#> Model estimated using auto.adam() function: ETS(AAN)+ARIMA(2,0,0)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 240.9035
#> Persistence vector g:
#> alpha beta
#> 0.3161 0.1483
#>
#> ARMA parameters of the model:
#> Lag 1
#> AR(1) 0.7715
#> AR(2) 0.2285
#>
#> Sample size: 138
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 133
#> Information criteria:
#> AIC AICc BIC BICc
#> 491.8070 492.2616 506.4433 507.5631
#>
#> Forecast errors:
#> ME: 2.872; MAE: 3.027; RMSE: 3.731
#> sCE: 15.159%; Asymmetry: 87.9%; sMAE: 1.332%; sMSE: 0.027%
#> MASE: 2.541; RMSSE: 2.432; rMAE: 0.976; rRMSE: 0.974However, this way the function will just use ARIMA(2,0,0) and fit it
together with ETS(A,A,N). If you want it to select the most appropriate
ARIMA orders from the provided (e.g. up to AR(2), I(1) and MA(2)), you
need to add parameter select=TRUE to the list in
orders:
testModel <- auto.adam(BJsales, "XXN", orders=list(ar=2,i=2,ma=2,select=TRUE),
distribution="default", silent=FALSE,
h=12, holdout=TRUE)
#> Evaluating models with different distributions... default , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. Done!
testModel
#> Time elapsed: 0.11 seconds
#> Model estimated using auto.adam() function: ETS(AAdN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 237.6128
#> Persistence vector g:
#> alpha beta
#> 0.9448 0.2979
#> Damping parameter: 0.8789
#> Sample size: 138
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 134
#> Information criteria:
#> AIC AICc BIC BICc
#> 483.2257 483.5264 494.9347 495.6756
#>
#> Forecast errors:
#> ME: 2.817; MAE: 2.967; RMSE: 3.654
#> sCE: 14.869%; Asymmetry: 88%; sMAE: 1.305%; sMSE: 0.026%
#> MASE: 2.491; RMSSE: 2.382; rMAE: 0.957; rRMSE: 0.954Knowing how to work with adam(), you can use similar
principles, when dealing with auto.adam(). Just keep in
mind that the provided persistence, phi,
initial, arma and B won’t work,
because this contradicts the idea of the model selection.
Finally, there is also the mechanism of automatic outliers detection,
which extracts residuals from the best model, flags observations that
lie outside the prediction interval of the width level in
sample and then refits auto.adam() with the dummy variables
for the outliers. Here how it works:
testModel <- auto.adam(AirPassengers, "PPP", silent=FALSE, outliers="use",
distribution="default",
h=12, holdout=TRUE)
#> Evaluating models with different distributions... default , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |-\-
#> The best ARIMA is selected.
#> Dealing with outliers...
testModel
#> Time elapsed: 3.93 seconds
#> Model estimated using auto.adam() function: ETSX(MMM)+SARIMA(2,0,0)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 462.403
#> Persistence vector g (excluding xreg):
#> alpha beta gamma
#> 0.4120 0.0000 0.2028
#>
#> ARMA parameters of the model:
#> Lag 12
#> AR(1) 0.2484
#> AR(2) 0.4580
#>
#> Sample size: 132
#> Number of estimated parameters: 7
#> Number of degrees of freedom: 125
#> Information criteria:
#> AIC AICc BIC BICc
#> 938.8059 939.7092 958.9855 961.1907
#>
#> Forecast errors:
#> ME: -21.218; MAE: 21.218; RMSE: 26.231
#> sCE: -97.001%; Asymmetry: -100%; sMAE: 8.083%; sMSE: 0.999%
#> MASE: 0.881; RMSSE: 0.837; rMAE: 0.279; rRMSE: 0.255If you specify outliers="select", the function will
create leads and lags 1 of the outliers and then select the most
appropriate ones via the regressors parameter of adam.
If you want to know more about ADAM, you are welcome to visit the online monograph.