Package ‘stringfish’

January 18, 2026
Title Alt String Implementation
Version 0.18.0
Date 2026-01-17
Maintainer Travers Ching <traversc@gmail.com>

Description Provides an extendable, performant and multithreaded 'alt-
string' implementation backed by 'C++' vectors and strings.

License GPL-3

Biarch true

Encoding UTF-8

Depends R (>=3.6.0)

SystemRequirements GNU make

LinkingTo Rcpp (>=0.12.18.3), RcppParallel (>=5.1.4)
Imports Rcpp, ReppParallel

Suggests qs2, knitr, rmarkdown, usethis, dplyr, stringr, rlang
VignetteBuilder knitr

RoxygenNote 7.3.3

Copyright Copyright for the bundled 'PCRE2’ library is held by
University of Cambridge, Zoltan Herczeg and Tilera Coporation
(Stack-less Just-In-Time compiler); Copyright for the bundled
'xxHash' code is held by Yann Collet.

URL https://github.com/traversc/stringfish

BugReports https://github.com/traversc/stringfish/issues
NeedsCompilation yes

Author Travers Ching [aut, cre, cph],

Phillip Hazel [ctb] (Bundled PCRE2 code),

Zoltan Herczeg [ctb, cph] (Bundled PCRE2 code),

University of Cambridge [cph] (Bundled PCRE2 code),

Tilera Corporation [cph] (Stack-less Just-In-Time compiler bundled with
PCRE2),

Yann Collet [ctb, cph] (Yann Collet is the author of the bundled xxHash
code)

https://github.com/traversc/stringfish
https://github.com/traversc/stringfish/issues

2 convert_to_sf

Repository CRAN
Date/Publication 2026-01-18 06:10:12 UTC

Contents
convert_to_sf L e e 2
et SIHNG_LYPE e e e e 3
materialize L e e e e e e e e e e 4
random_Strings e e e e e e e 4
sf_assign e e 5
sf_collapse e 6
sf_compare e e e 7
sfoconcat e e 8
sfoends L e 8
sfogrepl . ..o e 9
sfogsub ..o 10
SEICONV e 11
st match e 12
sf_nchar e 13
SEpaste 14
sf_readlines e e e 15
SESplit. . . o 15
sfostarts e e e e e 16
ST SUDSIT L e 17
sf_tolower e e e 18
S_toupper 18
sftrim e e e e 19
ST VECIOT . . . o e, 20
sf_writeines L e e e 21
string_identical 21

Index 23

convert_to_sf convert_to_sf
Description

Converts a character vector to a stringfish vector

Usage

convert_to_sf(x)

sf_convert(x)

get_string_type 3

Arguments

X A character vector

Details

3

Converts a character vector to a stringfish vector. The opposite of ‘materialize‘.

Value

The converted character vector

Examples

if(getRversion() >= "3.5.0") {
x <- convert_to_sf(letters)

3

get_string_type get_string_type

Description

Returns the type of the character vector

Usage
get_string_type(x)

Arguments

X the vector

Details

"non

A function that returns the type of character vector. Possible values are "normal vector”, "stringfish

non

vector", "stringfish vector (materialized)" or "other alt-rep vector"
Value

The type of vector
Examples

if(getRversion() >= "3.5.0") {

x <- sf_vector(10)

get_string_type(x) # returns "stringfish vector’
x <- character(10)

get_string_type(x) # returns "normal vector”

3

I

4 random_strings

materialize materialize

Description

Materializes an alt-rep object

Usage

materialize(x)

Arguments

X An alt-rep object

Details

Materializes any alt-rep object and then returns it. Note: the object is materialized regardless of
whether the return value is assigned to a variable.

Value

X

Examples

if(getRversion() >= "3.5.0") {

x <- sf_vector(10)

sf_assign(x, 1, "hello world")
sf_assign(x, 2, "another string")
x <- materialize(x)

b

random_strings random_strings

Description

A function that generates random strings

Usage

random_strings(N, string_size = 50, charset = "abcdefghijklmnopgrstuvwxyz",
vector_mode = "stringfish")

sf_assign 5

Arguments

N The number of strings to generate

string_size The length of the strings

charset The characters used to generate the random strings (default: abcdefghijklmnopqrstu-
VWXYZ)
vector_mode The type of character vector to generate (either stringfish or normal, default:
stringfish)
Details

The function uses the PCRE2 library, which is also used internally by R. Note: the order of
paramters is switched compared to the ‘gsub‘ base R function, with subject being first. See also:
https://www.pcre.org/current/doc/html/pcre2api.html for more documentation on match syntax.

Value

A character vector of the random strings

See Also

gsub

Examples

if(getRversion() >= "3.5.0") {
set.seed(1)

X <- random_strings(1e6, 80, "ACGT", vector_mode = "stringfish")
}
sf_assign sf_assign
Description

Assigns a new string to a stringfish vector or any other character vector

Usage

sf_assign(x, i, e)

Arguments
X the vector
i the index to assign to

e the new string to replace at i in x

6 sf_collapse

Details

A function to assign a new element to an existing character vector. If the the vector is a stringfish
vector, it does so without materialization.

Value

No return value, the function assigns an element to an existing stringfish vector

Examples

if(getRversion() >= "3.5.0") {

x <- sf_vector(10)

sf_assign(x, 1, "hello world")
sf_assign(x, 2, "another string")

}

sf_collapse sf_collapse

Description

Pastes a series of strings together separated by the ‘collapse‘ parameter

Usage

sf_collapse(x, collapse)

Arguments
X A character vector
collapse A single string
Details

This works the same way as ‘paste0(x, collapse=collapse)*

Value

A single string with all values in ‘x* pasted together, separated by ‘collapse’.

See Also

paste(, paste

sf_compare

Examples

if(getRversion() >= "3.5.0") {
x <= c("hello”, "\\xe4\\xb8\\x96\\xe7\\x95\\x8c")
Encoding(x) <- "UTF-8"

sf_collapse(x, " ") # "hello world” in Japanese
sf_collapse(letters, "") # returns the alphabet
3
sf_compare sf_compare
Description

Returns a logical vector testing equality of strings from two string vectors

Usage

sf_compare(x, y, nthreads = getOption("stringfish.nthreads”, 1L))

sf_equals(x, y, nthreads = getOption("stringfish.nthreads”, 1L))

Arguments
X A character vector of length 1 or the same non-zero length as y
y Another character vector of length 1 or the same non-zero length as y
nthreads Number of threads to use

Details

Note: the function tests for both string and encoding equality

Value

A logical vector

Examples

if(getRversion() >= "3.5.0") {
sf_compare(letters, "a")

}

8 sf_ends

sf_concat sf_concat

Description

Appends vectors together

Usage

sf_concat(...)

sfc(...)

Arguments

Any number of vectors, coerced to character vector if necessary

Value

A concatenated stringfish vector

Examples

if(getRversion() >= "3.5.0") {
sf_concat(letters, 1:5)
}

sf_ends sf_ends

Description

A function for detecting a pattern at the end of a string

Usage

sf_ends(subject, pattern, ...)
Arguments

subject A character vector

pattern A string to look for at the start

Parameters passed to sf_grepl

sf__grepl 9

Value

A logical vector true if there is a match, false if no match, NA is the subject was NA

See Also

endsWith, sf_starts

Examples

if(getRversion() >= "3.5.0") {
x <- c("alpha"”, "beta"”, "gamma", "delta”, "epsilon")
sf_ends(x, "a")

}

sf_grepl sf_grepl

Description

A function that matches patterns and returns a logical vector

Usage

sf_grepl(subject, pattern, encode_mode = "auto”, fixed = FALSE,
nthreads = getOption("stringfish.nthreads”, 1L))

Arguments
subject The subject character vector to search
pattern The pattern to search for
encode_mode "auto", "UTF-8" or "byte". Determines multi-byte (UTF-8) characters or single-
byte characters are used.
fixed determines whether the pattern parameter should be interpreted literally or as a
regular expression
nthreads Number of threads to use
Details

The function uses the PCRE2 library, which is also used internally by R. The encoding is based

on the pattern string (or forced via the encode_mode parameter). Note: the order of paramters is

switched compared to the ‘grepl‘ base R function, with subject being first. See also: https://www.pcre.org/current/doc/html/pc
for more documentation on match syntax.

Value

A logical vector with the same length as subject

10 sf_gsub

See Also

grepl

Examples

if(getRversion() >= "3.5.0") {
x <- sf_vector(10)
sf_assign(x, 1, "hello world")
pattern <- "*hello”
sf_grepl(x, pattern)

3

sf_gsub sf_gsub

Description

A function that performs pattern substitution

Usage

sf_gsub(subject, pattern, replacement, encode_mode = "auto”, fixed = FALSE,
nthreads = getOption("stringfish.nthreads"”, 1L))

Arguments
subject The subject character vector to search
pattern The pattern to search for
replacement The replacement string
encode_mode "auto", "UTF-8" or "byte". Determines multi-byte (UTF-8) characters or single-
byte characters are used.
fixed determines whether the pattern parameter should be interpreted literally or as a
regular expression
nthreads Number of threads to use
Details

The function uses the PCRE2 library, which is also used internally by R. However, syntax may be
slightly different. E.g.: capture groups: "\1" in R, but "$1" in PCRE2 (as in Perl). The encoding
of the output is determined by the pattern (or forced using encode_mode parameter) and encodings
should be compatible. E.g: mixing ASCII and UTF-8 is okay, but not UTF-8 and latinl. Note:
the order of paramters is switched compared to the ‘gsub‘ base R function, with subject being first.
See also: https://www.pcre.org/current/doc/html/pcre2api.html for more documentation on match
syntax.

sf_iconv 11

Value

A stringfish vector of the replacement string

See Also

gsub

Examples

if(getRversion() >= "3.5.0") {
x <- "hello world”

pattern <- "*hello (.+)"
replacement <- "goodbye $1"
sf_gsub(x, pattern, replacement)

}

sf_iconv sf_iconv

Description

Converts encoding of one character vector to another

Usage

sf_iconv(x, from, to, nthreads = getOption("stringfish.nthreads"”, 1L))

Arguments
X An alt-rep object
from the encoding to assume of ‘x*
nthreads Number of threads to use
to the new encoding
Details

3

This is an analogue to the base R function ‘iconv‘. It converts a string from one encoding (e.g.

latin1 or UTF-8) to another

Value

the converted character vector as a stringfish vector

See Also

iconv

12 sf_match

Examples

if(getRversion() >= "3.5.0") {
x <- "fa\xE7ile"

Encoding(x) <- "latinl”
sf_iconv(x, "latin1", "UTF-8")
3

sf_match sf_match

Description

Returns a vector of the positions of x in table

Usage

sf_match(x, table, nthreads = getOption("stringfish.nthreads"”, 1L))

Arguments
X A character vector to search for in table
table A character vector to be matched against x
nthreads Number of threads to use

Details

Note: similarly to the base R function, long "table" vectors are not supported. This is due to the
maximum integer value that can be returned (‘.Machine$integer.max ‘)

Value

An integer vector of the indicies of each x element’s position in table

See Also

match

Examples

if(getRversion() >= "3.5.0") {
sf_match("c", letters)
3

st _nchar 13

sf_nchar sf_nchar

Description

Counts the number of characters in a character vector

Usage

sf_nchar(x, type = "chars”, nthreads = getOption("stringfish.nthreads"”, 1L))

Arguments
X A character vector
type The type of counting to perform ("chars" or "bytes", default: "chars")
nthreads Number of threads to use

Details

Returns the number of characters per string. The type of counting only matters for UTF-8 strings,
where a character can be represented by multiple bytes.

Value

An integer vector of the number of characters

See Also

nchar

Examples

if(getRversion() >= "3.5.0") {

x <- "fa\xE7ile"

Encoding(x) <- "latinl”

x <- sf_iconv(x, "latin1”, "UTF-8")

}

14

sf_paste

sf_paste sf_paste

Description

Pastes a series of strings together

Usage
sf_paste(..., sep = "", nthreads = getOption("stringfish.nthreads"”, 1L))
Arguments
Any number of character vector strings
sep The seperating string between strings
nthreads Number of threads to use
Details

This works the same way as ‘paste0(..., sep=sep)*

Value

A character vector where elements of the arguments are pasted together

See Also

paste0, paste

Examples

if(getRversion() >= "3.5.0") {
x <- letters

y <- LETTERS

sf_paste(x,y, sep = ":")

}

st readLines

15

sf_readlLines sf_readLines

Description

A function that reads a file line by line

Usage
sf_readLines(file, encoding = "UTF-8")

Arguments

file The file name

encoding The encoding to use (Default: UTF-8)
Details

A function for reading in text data using ‘std::ifstream®.

Value

A stringfish vector of the lines in a file

See Also

readLines

Examples

if(getRversion() >= "3.5.0") {
file <- tempfile()
sf_writeLines(letters, file)
sf_readlLines(file)

}

sf_split sf_split

Description

A function to split strings by a delimiter

Usage

sf_split(subject, split, encode_mode = "auto”, fixed = FALSE,

nthreads = getOption("stringfish.nthreads"”, 1L))

16 sf_starts

Arguments
subject A character vector
split A delimiter to split the string by
encode_mode "auto", "UTF-8" or "byte". Determines multi-byte (UTF-8) characters or single-
byte characters are used.
fixed determines whether the split parameter should be interpreted literally or as a
regular expression
nthreads Number of threads to use
Value

A list of stringfish character vectors

See Also

strsplit

Examples

if(getRversion() >= "3.5.0") {
sf_split(datasets::state.name, "\\s") # split U.S. state names by any space character

}

sf_starts sf_starts

Description

A function for detecting a pattern at the start of a string

Usage
sf_starts(subject, pattern, ...)
Arguments
subject A character vector
pattern A string to look for at the start
Parameters passed to sf_grepl
Value

A logical vector true if there is a match, false if no match, NA is the subject was NA

See Also

startsWith, sf_ends

st _substr 17

Examples

if(getRversion() >= "3.5.0") {
x <- c("alpha"”, "beta"”, "gamma", "delta”, "epsilon")
sf_starts(x, "a")

}

sf_substr sf_substr

Description

Extracts substrings from a character vector

Usage
sf_substr(x, start, stop, nthreads = getOption("stringfish.nthreads”, 1L))

Arguments
X A character vector
start The begining to extract from
stop The end to extract from
nthreads Number of threads to use
Details

This works the same way as ‘substr‘, but in addition allows negative indexing. Negative indicies
count backwards from the end of the string, with -1 being the last character.

Value

A stringfish vector of substrings

See Also

substr

Examples

if(getRversion() >= "3.5.0") {

x <- c("fa\xE7ile"”, "hello world")

Encoding(x) <- "latinl”

x <- sf_iconv(x, "latin1”, "UTF-8")

sf_substr(x, 4, -1) # extracts from the 4th character to the last
[1] "ile" "lo world”

}

18

sf_toupper

sf_tolower sf_tolower

Description

A function converting a string to all lowercase

Usage

sf_tolower(x)

Arguments

X A character vector

Details

Note: the function only converts ASCII characters.

Value

A stringfish vector where all uppercase is converted to lowercase

See Also

tolower

Examples

if(getRversion() >= "3.5.0") {
x <- LETTERS
sf_tolower(x)

}

sf_toupper sf_toupper

Description

A function converting a string to all uppercase

Usage

sf_toupper(x)

sf trim 19

Arguments

X A character vector

Details

Note: the function only converts ASCII characters.

Value

A stringfish vector where all lowercase is converted to uppercase

See Also

toupper

Examples

if(getRversion() >= "3.5.0") {
x <- letters

sf_toupper(x)

3

sf_trim sf_trim

Description

A function to remove leading/trailing whitespace

Usage

sf_trim(subject, which = c("both”, "left”, "right”), whitespace = "[\\t\\r\\n]", ...)
Arguments

subject A character vector

which "both", "left", or "right" determines which white space is removed

whitespace Whitespace characters (default: "[\t\r\\n]")

Parameters passed to sf_gsub

Value

A stringfish vector of trimmed whitespace

See Also

trimws

20 sf_vector

Examples

if(getRversion() >= "3.5.0") {

x <= c(" alpha ", " beta”, " gamma ", "delta ", "epsilon ")
sf_trim(x)
3
sf_vector sf_vector
Description

Creates a new stringfish vector

Usage

sf_vector(len)

Arguments

len length of the new vector

Details

This function creates a new stringfish vector, an alt-rep character vector backed by a C++ "std::vector"
as the internal memory representation. The vector type is "sfstring", which is a simple C++ class
containing a "std::string" and a single byte (uint8_t) representing the encoding.

Value

A new (empty) stringfish vector

Examples

if(getRversion() >= "3.5.0") {

x <- sf_vector(10)

sf_assign(x, 1, "hello world")
sf_assign(x, 2, "another string")

}

sf_writeLines

21

sf_writelLines sf_writeLines

Description

A function that reads a file line by line

Usage

sf_writeLines(text, file, sep = "\n", na_value = "NA", encode_mode = "UTF-8")
Arguments

text A character to write to file

file Name of the file to write to

sep The line separator character(s)

na_value What to write in case of a NA string

encode_mode "UTF-8" or "byte". If "UTF-8", all strings are re-encoded as UTF-8.
Details

A function for writing text data using ‘std::ofstream‘.

See Also

writeLines

Examples

if(getRversion() >= "3.5.0") {
file <- tempfile()
sf_writeLines(letters, file)
sf_readLines(file)

3

string_identical string_identical

Description

A stricter comparison of string equality

Usage

string_identical(x, y)

22 string_identical

Arguments

X A character vector

y Another character to compare to X
Value

TRUE if strings are identical, including encoding

See Also

identical

Examples

x <- "fa\xE7ile”

Encoding(x) <- "latinl”

y <- iconv(x, "latin1", "UTF-8")
identical(x, y) # TRUE
string_identical(x, y) # FALSE

Index

convert_to_sf, 2
get_string_type, 3
materialize, 4
random_strings, 4

sf_assign, 5
sf_collapse, 6
sf_compare, 7
sf_concat, 8
sf_convert (convert_to_sf), 2
sf_ends, 8

sf_equals (sf_compare), 7
sf_grepl, 9
sf_gsub, 10
sf_iconv, 11
sf_match, 12
sf_nchar, 13
sf_paste, 14
sf_readLines, 15
sf_split, 15
sf_starts, 16
sf_substr, 17
sf_tolower, 18
sf_toupper, 18
sf_trim, 19
sf_vector, 20
sf_writelLines, 21
sfc (sf_concat), 8
string_identical, 21

	convert_to_sf
	get_string_type
	materialize
	random_strings
	sf_assign
	sf_collapse
	sf_compare
	sf_concat
	sf_ends
	sf_grepl
	sf_gsub
	sf_iconv
	sf_match
	sf_nchar
	sf_paste
	sf_readLines
	sf_split
	sf_starts
	sf_substr
	sf_tolower
	sf_toupper
	sf_trim
	sf_vector
	sf_writeLines
	string_identical
	Index

