Package ‘teal.code’

January 20, 2026
Type Package
Title Code Storage and Execution Class for 'teal' Applications
Version 0.7.1
Date 2026-01-19

Description Introduction of 'qenv' S4 class, that facilitates code
execution and reproducibility in 'teal' applications.

License Apache License 2.0

URL https://insightsengineering.github.io/teal.code/,
https://github.com/insightsengineering/teal.code

BugReports https://github.com/insightsengineering/teal.code/issues
Depends methods, R (>=4.0)
Imports checkmate (>=2.1.0), cli (>= 3.4.0), evaluate (>= 1.0.0),
grDevices, lifecycle (>= 0.2.0), rlang (>= 1.1.0), stats, utils
Suggests knitr (>= 1.42), rmarkdown (>= 2.23), shiny (>= 1.6.0),
testthat (>= 3.1.8), withr (>= 2.0.0)
VignetteBuilder knitr, rmarkdown
RdMacros lifecycle

Config/Needs/verdepcheck mllg/checkmate, r-lib/cli, r-lib/lifecycle,
r-lib/rlang, r-lib/cli, yihui/knitr, rstudio/rmarkdown,
rstudio/shiny, r-lib/testthat, r-lib/withr

Config/Needs/website insightsengineering/nesttemplate
Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Collate 'genv-c.R''genv-class.R' 'qenv-errors.R' 'qenv-concat.R'
'genv-constructor.R' 'genv-eval_code.R' 'genv-extract.R’
'genv-get_code.R' 'genv-get_env.R' 'genv-get_messages.r'
'qenv-get_outputs.R' 'qenv-get_var.R' 'qenv-get_warnings.R'
'genv-join.R' 'qenv-length.R' 'qenv-show.R' 'genv-within.R'
'teal.code-package.R' 'utils-get_code_dependency.R' 'utils.R'

1

https://insightsengineering.github.io/teal.code/
https://github.com/insightsengineering/teal.code
https://github.com/insightsengineering/teal.code/issues

2 c.genv
NeedsCompilation no
Author Dawid Kaledkowski [aut, cre],
Aleksander Chlebowski [aut],
Marcin Kosinski [aut],
Pawel Rucki [aut],
Nikolas Burkoff [aut],
Mahmoud Hallal [aut],
Maciej Nasinski [aut],
Konrad Pagacz [aut],
Junlue Zhao [aut],
Chendi Liao [rev],
Dony Unardi [rev],
F. Hoffmann-La Roche AG [cph, fnd]
Maintainer Dawid Kaledkowski <dawid.kaledkowski@roche.com>
Repository CRAN
Date/Publication 2026-01-20 09:00:02 UTC
Contents
C.BNV . v v v v e it e e e e e e e e e e e e e e e 2
CONCAL v i i e it et e e e e e e e e e e e e 3
dev_SUPPIeSS . . . v . i e e e e e e e e e e 4
eval_code e e e e 5
GeL_COde e e e 6
GELLENV . . .t i e e e e e e e e e 8
GEELMESSAZES « « & v v v e e e e e e e e e e e e e e e e 8
GELOULPULS . . o v v v o e 9
GELLVAT . . v v e e e e e e e e e e e e e 10
GEL_WArNINGS v e e e e e e e e e e e e e e e 10
JEMV . . v v e e e e e e e e e e e e e e e 11
show,genv-method 12
SUDSEL-ENV v v o e e e e e e e e e e e e e e e e 12
within.genv e 13
Index 15
c.genv Join genv objects
Description

[Deprecated] Instead of join() use c().

concat 3

Usage

S3 method for class 'genv'
c(...)

S3 method for class 'genv.error'

c(...)
join(...)

Arguments

function is deprecated.

Examples

g <- genv()
gl <- within(q, {
irisl <- iris
mtcarsl <- mtcars
1)
gl <- within(ql, iris2 <- iris)
g2 <- within(ql, mtcars2 <- mtcars)
qq <- c(al, qg2)
cat(get_code(qq))

concat Concatenate two qenv objects

Description

Combine two genv objects by simple concatenate their environments and the code.

Usage

concat(x, y)

Arguments
X (genv)
y (genv)
Details

We recommend to use the join method to have a stricter control in case x and y contain duplicated
bindings and code. RHS argument content has priority over the LHS one.

4 dev_suppress

Value

genv object.

Examples

g <- genv()

gl <- eval_code(q, expression(irisl <- iris, mtcarsl <- mtcars))
g2 <- ql

gl <- eval_code(ql, "iris2 <- iris")

g2 <- eval_code(g2, "mtcars2 <- mtcars")

qq <- concat(ql, g2)

get_code(qq)

dev_suppress Suppresses plot display in the IDE by opening a PDF graphics device

Description
This function opens a PDF graphics device using grDevices: :pdf to suppress the plot display in
the IDE. The purpose of this function is to avoid opening graphic devices directly in the IDE.
Usage

dev_suppress(x)

Arguments

X lazy binding which generates the plot(s)

Details

The function uses base: :on.exit to ensure that the PDF graphics device is closed (using grDevices: :dev.off)
when the function exits, regardless of whether it exits normally or due to an error. This is necessary
to clean up the graphics device properly and avoid any potential issues.

Value

No return value, called for side effects.

Examples

dev_suppress(plot(1:10))

eval _code 5

eval_code Evaluate code in genv

Description

Evaluate code in genv

Usage
eval_code(object, code, ...)
Arguments
object (genv)
code (character, language or expression) code to evaluate. It is possible to pre-
serve original formatting of the code by providing a character or an expression
being a result of parse(keep.source = TRUE).
(dots) additional arguments passed to future methods.
Details

eval_code() evaluates given code in the genv environment and appends it to the code slot. Thus, if
the genv had been instantiated empty, contents of the environment are always a result of the stored
code.

Value

genv environment with code/expr evaluated or genv. error if evaluation fails.

See Also

within.genv

Examples
evaluate code in genv
g <- genv()
g <- eval_code(q, "a <- 1")
g <- eval_code(q, "b <- 2L # with comment")
g <- eval_code(q, quote(library(checkmate)))
g <- eval_code(q, expression(assert_number(a)))

6 get_code

get_code Get code from genv

Description

Retrieves the code stored in the genv.

Usage
get_code(object, deparse = TRUE, names = NULL, ...)
Arguments
object (genv)
deparse (logical (1)) flag specifying whether to return code as character or expression.
names (character) [Experimental] vector of object names to return the code for. For
more details see the "Extracting dataset-specific code" section.
internal usage, please ignore.
Value

The code used in the genv in the form specified by deparse.

Extracting dataset-specific code

get_code(object, names) limits the returned code to contain only those lines needed to create
the requested objects. The code stored in the genv is analyzed statically to determine which lines
the objects of interest depend upon. The analysis works well when objects are created with standard
infix assignment operators (see ?assignOps) but it can fail in some situations.

Consider the following examples:

Case 1: Usual assignments.

ql <-
within(genv(), {
foo <- function(x) {

x + 1
3
X <- 0@
y <= foo(x)

D

get_code(ql, names = "y")

x has no dependencies, so get_code(data, names = "x") will return only the second call.
y depends on x and foo, so get_code(data, names = "y") will contain all three calls.

Case 2: Some objects are created by a function’s side effects.

get_code 7

g2 <-
within(genv(){
foo <- function() {
X <<- x + 1

3

X <- 0
foo()
y <- X

D
get_code(g2, names = "y")

Here, y depends on x but x is modified by foo as a side effect (not by reassignment) and so
get_code(data, names = "y") will not return the foo() call.

To overcome this limitation, code dependencies can be specified manually. Lines where side effects
occur can be flagged by adding "# @linksto <object name>" at the end.

Note that within evaluates code passed to expr as is and comments are ignored. In order to include
comments in code one must use the eval_code function instead.

q3 <-
eval_code(genv(), "
foo <- function() {
X <<= x + 1

}
x <- 0
foo() # @linksto x
y <= X
)

get_code(q3, names = "y")

Now the foo() call will be properly included in the code required to recreate y.

Note that two functions that create objects as side effects, assign and data, are handled automati-
cally.

Here are known cases where manual tagging is necessary:

* non-standard assignment operators, e.g. %<>%
* objects used as conditions in if statements: if (<condition>)
* objects used to iterate over in for loops: for(i in <sequence>)

* creating and evaluating language objects, e.g. eval(<call>)

Examples

retrieve code
g <- within(genv(), {
a<-1
b <-2
1)
get_code(q)
get_code(q, deparse = FALSE)

get_messages

get_code(q, names = "a")
g <- genv()
g <- eval_code(q, code = c("a <= 1", "b <= 2"))
get_code(q, names = "a")
get_env Access environment included in genv
Description

The access of environment included in the genv that contains all data objects.

Usage

get_env(object)

Arguments

object (genv).

Value

An environment stored in genv with all data objects.

Examples
g <- genv()
gl <- within(q, {
a<-5
b <- data.frame(x = 1:10)
1))

get_env(ql)

get_messages Get messages from genv object

Description

Retrieve all messages raised during code evaluation in a genv.

Usage

get_messages(object)

get_outputs 9

Arguments

object (genv)

Value

character containing warning information or NULL if no messages.

Examples

data_g <- genv()
data_qg <- eval_code(data_qg, "iris_data <- iris")
warning_genv <- eval_code(

data_q,

bquote(p <- hist(iris_data[, .("Sepal.Length”)], ff =""))
)

cat(get_messages(warning_qgenv))

get_outputs Get outputs

Description

[Experimental]

eval_code evaluates code silently so plots and prints don’t show up in the console or graphic
devices. If one wants to use an output outside of the genv (e.g. use a graph in renderPlot) then
use get_outputs.

Usage

get_outputs(object)

Arguments

object (genv)

Value

13

list of outputs generated in a ‘genv’

Examples

g <- eval_code(
genv(),
quote({
a<-1
print("I'm an output”)
plot(1)

10 get_warnings

b))
)
get_outputs(q)

get_var Get object from qenv

Description

[Deprecated] Instead of get_var () use native R operators/functions: x[[name]], x$name or get ():

Usage

get_var(...)

S3 method for class 'genv.error'

x[[i]]
Arguments
function is deprecated.
X (genv)
i (character (1)) variable name.
get_warnings Get warnings from qenv object
Description

Retrieve all warnings raised during code evaluation in a genv.

Usage

get_warnings(object)

Arguments

object (genv)

Value

character containing warning information or NULL if no warnings.

genv 11

Examples

data_g <- genv()
data_qg <- eval_code(data_qg, "iris_data <- iris")
warning_qgenv <- eval_code(

data_gq,

bquote(p <- hist(iris_datal, .("Sepal.Length”)], ff = ""))
)

cat(get_warnings(warning_genv))

genv Instantiates a genv environment

Description

[Stable]

Instantiates a genv environment.

Usage

genv()

Details

genv class has following characteristics:
¢ Itinherits from the environment and methods such as $, get (), 1s(), as.list(), parent.env()
work out of the box.

* genv is alocked environment, and data modification is only possible through the eval_code ()
and within.qgenv() functions.

« It stores metadata about the code used to create the data (see get_code()).
* It supports slicing (see subset-genv)

e It is immutable which means that each code evaluation does not modify the original genv
environment directly. See the following code:

gl <= genv()

g2 <- eval_code(ql, "a <= 1")
identical(ql, q2) # FALSE

Value

genv environment.

See Also

eval_code(), get_var(), subset-genv, get_env(),get_warnings(), join(), concat()

12 subset-genv

Examples

g <- genv()

g2 <- within(g, a <- 1)
1s(qg2)

g2%a

show, genv-method Display qenv object

Description

Prints the genv object.

Usage
S4 method for signature 'genv'
show(object)

Arguments

object (genv)

Value

object, invisibly.

Examples

g <= genv()
gl <- eval_code(q, expression(a <- 5, b <- data.frame(x = 1:10)))
ql

subset-genv Subsets gqenv

Description

Subsets genv environment and limits the code to the necessary needed to build limited objects.

Usage

S3 method for class 'genv'
x[names, ...]

within.qenv 13

Arguments
X (genv)
names (character) names of objects included in genv to subset. Names not present in
genv are skipped.
internal usage, please ignore.
Examples
q <- genv()
g <- eval_code(q, "a <- 1;b<-2")
ql"a"]
q[C(”a", "b")]
within.genv Evaluate code in genv
Description

Evaluate code in genv

Usage
S3 method for class 'genv'
within(data, expr, ...)
Arguments
data (genv)
expr (expression) to evaluate. Must be inline code, see Using language objects. ..

named argument value will substitute a symbol in the expr matched by the
name. For practical usage see Examples section below.

Details

within() is a convenience method that wraps eval_code to provide a simplified way of passing
expression. within accepts only inline expressions (both simple and compound) and allows to
substitute expr with ... named argument values. Functions that trigger side effects like options
or set.seed can be linked to specific objects for further code retrieval (with get_code), but only
through eval_code where code input as character. within works on expressions that do not
preserve comments, hence you can not use # @linksto tag explained in get_code.

Using language objects with within

Passing language objects to expr is generally not intended but can be achieved with do.call. Only
single expressions will work and substitution is not available. See examples.

14 within.genv

Examples

evaluate code using within

g <- genv()

g <- within(q, ¢
i <- iris

1)

g <- within(q, ¢
m <- mtcars
f <- faithful
1)
q
get_code(q)

inject values into code

g <- genv()

g <- within(qg, i <- iris)

within(q, print(dim(subset(i, Species == "virginica"))))

within(q, print(dim(subset(i, Species == species)))) # fails

within(q, print(dim(subset(i, Species == species))), species = "versicolor")
species_external <- "versicolor”

within(q, print(dim(subset(i, Species == species))), species = species_external)

pass language objects

expr <- expression(i <- iris, m <- mtcars)
within(q, expr) # fails

do.call(within, list(qg, expr))

exprlist <- list(expression(i <- iris), expression(m <- mtcars))
within(q, exprlist) # fails
do.call(within, list(q, do.call(c, exprlist)))

Index

[.genv (subset-genv), 12
[[.genv.error (get_var), 10
$,11

as.list(), 11
base::on.exit, 4

c(),2

c.qgenv, 2

concat, 3

concat(), /1

concat,qgenv,genv-method (concat), 3

concat,qgenv,qgenv.error-method (concat),
3

concat,qenv.error,ANY-method (concat), 3

dev_suppress, 4
dots, 5

eval_code, 5

eval_code(), 11

eval_code, genv-method (eval_code), 5

eval_code,genv.error-method
(eval_code), 5

get(), 10, 11

get_code, 6

get_code(), 11

get_code,genv-method (get_code), 6

get_code,genv.error-method (get_code), 6

get_env, 8

get_env(), 11

get_env,genv-method (get_env), 8

get_env,genv.error-method (get_env), 8

get_messages, 8

get_messages,NULL-method
(get_messages), 8

get_messages, genv-method
(get_messages), 8

15

get_messages,qgenv.error-method
(get_messages), 8
get_outputs, 9
get_outputs,genv-method (get_outputs), 9
get_var, 10
get_var(), 10, 11
get_warnings, 10
get_warnings(), 11
get_warnings,NULL-method
(get_warnings), 10
get_warnings,genv-method
(get_warnings), 10
get_warnings,qgenv.error-method
(get_warnings), 10
grDevices: :dev.off, 4
grDevices: :pdf, 4

join (c.qgenv), 2
join(), 2,11

1s(), 11
parent.env(), /1
genv, 11, 12, 13

show, genv-method, 12
show-genv (show, genv-method), 12
subset-genv, 12

within (within.qgenv), 13
within.genv, 5, 13
within.genv(), 11

	c.qenv
	concat
	dev_suppress
	eval_code
	get_code
	get_env
	get_messages
	get_outputs
	get_var
	get_warnings
	qenv
	show,qenv-method
	subset-qenv
	within.qenv
	Index

