
Package ‘weird’
January 27, 2026

Title Functions and Data Sets for ``That's Weird: Anomaly Detection
Using R'' by Rob J Hyndman

Description All functions and data sets required for the examples in the book
Hyndman (2026) ``That's Weird: Anomaly Detection Using R'' <https:
//OTexts.com/weird/>.
All packages needed to run the examples are also loaded.

Version 2.0.0

Depends R (>= 4.1.0)

Imports aplpack, broom, cli (>= 1.0.0), crayon (>= 1.3.4), dbscan,
distributional, dplyr (>= 0.7.4), evd, ggplot2 (>= 3.1.1),
grDevices, ks, lookout (>= 2.0.0), mvtnorm, purrr (>= 0.2.4),
RANN, rlang, robustbase, rstudioapi (>= 0.7), stray, vctrs

Suggests testthat (>= 3.0.0), tidyr

URL https://pkg.robjhyndman.com/weird/,

https://github.com/robjhyndman/weird

BugReports https://github.com/robjhyndman/weird/issues

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Rob Hyndman [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-2140-5352>),

RStudio [cph]

Maintainer Rob Hyndman <Rob.Hyndman@monash.edu>

Repository CRAN

Date/Publication 2026-01-27 06:10:03 UTC

1

https://OTexts.com/weird/
https://OTexts.com/weird/
https://pkg.robjhyndman.com/weird/
https://github.com/robjhyndman/weird
https://github.com/robjhyndman/weird/issues
https://orcid.org/0000-0002-2140-5352

2 cricket_batting

Contents
cricket_batting . 2
dist_density . 3
dist_kde . 4
fetch_wine_reviews . 5
fr_mortality . 6
gg_bagplot . 7
gg_density . 8
gg_density_layer . 9
gg_hdrboxplot . 10
glosh_scores . 12
grubbs_anomalies . 13
hampel_anomalies . 14
hdr_table . 15
kde_bandwidth . 16
lof_scores . 17
n01 . 18
oldfaithful . 18
peirce_anomalies . 19
stray_anomalies . 20
stray_scores . 21
surprisals . 22
surprisals.lm . 23
surprisals.numeric . 25

Index 29

cricket_batting Cricket batting data for international test players

Description

A dataset containing career batting statistics for all international test players (men and women) up
to 6 October 2025.

Usage

cricket_batting

Format

A data frame with 3968 rows and 15 variables:

Player Player name in form of "initials surname"

Country Country played for

Start First year of test playing career

End Last year of test playing career

dist_density 3

Matches Number of matches played

Innings Number of innings batted

NotOuts Number of times not out

Runs Total runs scored

HighScore Highest score in an innings

HighScoreNotOut Was highest score not out?

Average Batting average at end of career

Hundreds Total number of 100s scored

Fifties Total number of 50s scored

Ducks Total number of 0s scored

Gender "Men" or "Women"

Value

Data frame

Source

https://www.espncricinfo.com/

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 1.4, https://OTexts.
com/weird/.

Examples

cricket_batting |>
filter(Innings > 20) |>
select(Player, Country, Matches, Runs, Average, Hundreds, Fifties, Ducks) |>
arrange(desc(Average))

dist_density Create distributional object based on a specified density

Description

Creates a distributional object using a density specified as pair of vectors giving (x, f(x)). The
density is assumed to be piecewise linear between the points provided, and 0 outside the range of x.

Usage

dist_density(x, density)

https://www.espncricinfo.com/
https://OTexts.com/weird/
https://OTexts.com/weird/

4 dist_kde

Arguments

x Numerical vector of ordinates, or a list of such vectors.

density Numerical vector of density values, or a list of such vectors.

Examples

dist_density(seq(-4, 4, by = 0.01), dnorm(seq(-4, 4, by = 0.01)))

dist_kde Create distributional object based on a kernel density estimate

Description

Creates a distributional object using a kernel density estimate with a Gaussian kernel obtained from
the kde() function. The bandwidth can be specified; otherwise the kde_bandwidth() function is
used. The cdf, quantiles and moments are consistent with the kde. Generating random values from
the kde is equivalent to a smoothed bootstrap.

Usage

dist_kde(
y,
h = NULL,
H = NULL,
method = c("normal", "robust", "plugin", "lookout"),
...

)

Arguments

y Numerical vector or matrix of data, or a list of such objects. If a list is provided,
then all objects should be of the same dimension. e.g., all vectors, or all matrices
with the same number of columns.

h Bandwidth for univariate distribution. Ignored if y has 2 or more columns. If
NULL, the kde_bandwidth function is used.

H Bandwidth matrix for multivariate distribution. If NULL, the kde_bandwidth
function is used.

method The method of bandwidth estimation to use. See kde_bandwidth() for details.
Ignored if h or H are specified.

... Other arguments are passed to kde.

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 2.7 and 3.9, https:
//OTexts.com/weird/.

https://OTexts.com/weird/
https://OTexts.com/weird/

fetch_wine_reviews 5

Examples

dist_kde(c(rnorm(200), rnorm(100, 5)))
dist_kde(cbind(rnorm(200), rnorm(200, 5)))

fetch_wine_reviews Wine prices and points

Description

A data set containing data on wines from 44 countries, taken from Wine Enthusiast Magazine during
the week of 15 June 2017. The data are downloaded and returned.

Usage

fetch_wine_reviews()

Format

A data frame with 110,203 rows and 8 columns:

country Country of origin

state State or province of origin

region Region of origin

winery Name of vineyard that made the wine

variety Variety of grape

points Points allocated by WineEnthusiast reviewer on a scale of 0-100

price Price of a bottle of wine in $US

year Year of wine extracted from title

Value

Data frame

Source

https://www.kaggle.com/

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 1.4, https://OTexts.
com/weird/.

https://www.kaggle.com/
https://OTexts.com/weird/
https://OTexts.com/weird/

6 fr_mortality

Examples

Not run:
wine_reviews <- fetch_wine_reviews()
wine_reviews |>

ggplot(aes(x = points, y = price)) +
geom_jitter(height = 0, width = 0.2, alpha = 0.1) +
scale_y_log10()

End(Not run)

fr_mortality French mortality rates by age and sex

Description

A data set containing French mortality rates between the years 1816 and 1999, by age and sex.

Usage

fr_mortality

Format

A data frame with 31,648 rows and 4 columns.

Value

Data frame

Source

Human Mortality Database https://www.mortality.org

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 1.4, https://OTexts.
com/weird/.

Examples

fr_mortality

https://www.mortality.org
https://OTexts.com/weird/
https://OTexts.com/weird/

gg_bagplot 7

gg_bagplot Bagplot

Description

Produces a bivariate bagplot. A bagplot is analagous to a univariate boxplot, except it is in two
dimensions. Like a boxplot, it shows the median, a region containing 50% of the observations, a
region showing the remaining observations other than outliers, and any outliers.

Usage

gg_bagplot(data, var1, var2, color = "#00659e", show_points = FALSE, ...)

Arguments

data A data frame or matrix containing the data.
var1 The name of the first variable to plot (a bare expression).
var2 The name of the second variable to plot (a bare expression).
color The base color to use for the median. Other colors are generated as a mixture of

color with white.
show_points A logical argument indicating if a regular bagplot is required (FALSE), or if a

scatterplot in the same colors is required (TRUE).
... Other arguments are passed to the compute.bagplot function.

Value

A ggplot object showing a bagplot or scatterplot of the data.

Author(s)

Rob J Hyndman

References

Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The bagplot: A bivariate boxplot. The American
Statistician, 52(4), 382–387.

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 5.6, https://OTexts.
com/weird/.

See Also

bagplot

Examples

gg_bagplot(n01, v1, v2)
gg_bagplot(n01, v1, v2, show_points = TRUE)

https://OTexts.com/weird/
https://OTexts.com/weird/

8 gg_density

gg_density Produce ggplot of densities from distributional objects in 1 or 2 di-
mensions

Description

Produce ggplot of densities from distributional objects in 1 or 2 dimensions

Usage

gg_density(
object,
prob = seq(9)/10,
hdr = NULL,
show_points = FALSE,
show_mode = FALSE,
show_anomalies = FALSE,
colors = c("#0072b2", "#D55E00", "#009E73", "#CC79A7", "#E69F00", "#56B4E9", "#F0E442",

"#333333"),
alpha = NULL,
jitter = FALSE,
ngrid = 501

)

Arguments

object distribution object from the distributional package or dist_kde()

prob Probability of the HDRs to be drawn.

hdr Character string describing how the HDRs are to be shown. Options are "none",
"fill", "points" and "contours" (the latter only for bivariate plots). If NULL, then
"none" is used for univariate distributions and "contours" for bivariate.

show_points If TRUE, then individual observations are plotted.

show_mode If TRUE, then the mode of the distribution is shown as a point.

show_anomalies If TRUE, then the observations with surprisal probabilities less than 0.005 (using
a GPD approximation) are shown in black.

colors Color palette to use. If there are more than length(colors) distributions, they
are recycled. Default is the Okabe-Ito color palette.

alpha Transparency of points. Ignored if show_points is FALSE. Defaults to min(1,
500/n), where n is the number of observations plotted.

jitter For univariate distributions, when jitter is TRUE and show_points is TRUE,
a small amount of vertical jittering is applied to the observations. Ignored for
bivariate distributions.

ngrid Number of grid points to use for the density function.

gg_density_layer 9

Details

This function produces a ggplot of a density from a distributional object. For univariate densities, it
produces a line plot of the density function, with an optional ribbon showing some highest density
regions (HDRs) and/or the observations. For bivariate densities, it produces ah HDR contour plot
of the density function, with the observations optionally shown as points. The mode can also be
drawn as a point. The combination of hdr = "fill", show_points = TRUE, show_mode = TRUE, and
prob = c(0.5, 0.99) is equivalent to showing HDR boxplots.

Value

A ggplot object.

Author(s)

Rob J Hyndman

Examples

Univariate densities
kde <- dist_kde(c(rnorm(500), rnorm(500, 4, .5)))
gg_density(kde,

hdr = "fill", prob = c(0.5, 0.95), color = "#c14b14",
show_mode = TRUE, show_points = TRUE, jitter = TRUE

)
c(dist_normal(), kde) |>

gg_density(hdr = "fill", prob = c(0.5, 0.95))
Bivariate density
tibble(y1 = rnorm(5000), y2 = y1 + rnorm(5000)) |>

dist_kde() |>
gg_density(show_points = TRUE, alpha = 0.1, hdr = "fill")

gg_density_layer Add ggplot layer of densities from distributional objects in 1 dimension

Description

Add ggplot layer of densities from distributional objects in 1 dimension

Usage

gg_density_layer(object, scale = 1, ngrid = 501, ...)

Arguments

object distribution object from the distributional package or dist_kde()

scale Scaling factor for the density function.

ngrid Number of grid points to use for the density function.

... Additional arguments are passed to geom_line.

10 gg_hdrboxplot

Details

This function adds a ggplot layer of a density from a distributional object. For univariate densities,
it adds a line plot of the density function. For bivariate densities, it adds a contour plot of the density
function.

Value

A ggplot layer

Author(s)

Rob J Hyndman

Examples

dist_mixture(
dist_normal(-2, 1),
dist_normal(2, 1),
weights = c(1 / 3, 2 / 3)

) |>
gg_density() +
gg_density_layer(dist_normal(-2, 1), linetype = "dashed", scale = 1 / 3) +
gg_density_layer(dist_normal(2, 1), linetype = "dashed", scale = 2 / 3)

gg_hdrboxplot HDR plot

Description

Produces a 1d or 2d box plot of HDR regions. The darker regions contain observations with higher
probability, while the lighter regions contain points with lower probability. Observations outside the
largest HDR are shown as individual points. Anomalies with leave-one-out surprisal probabilities
less than 0.005 are optionally shown in black.

Usage

gg_hdrboxplot(
data,
var1,
var2 = NULL,
prob = c(0.5, 0.99),
color = "#0072b2",
show_points = FALSE,
show_anomalies = TRUE,
alpha = NULL,
jitter = TRUE,
ngrid = 501,
...

)

gg_hdrboxplot 11

Arguments

data A data frame or matrix containing the data.

var1 The name of the first variable to plot (a bare expression).

var2 Optionally, the name of the second variable to plot (a bare expression).

prob A numeric vector specifying the coverage probabilities for the HDRs.

color The base color to use for the mode. Colors for the HDRs are generated by
whitening this color.

show_points A logical argument indicating if a regular HDR plot is required (FALSE), or
whether to show the individual observations in the same colors (TRUE).

show_anomalies A logical argument indicating if the surprisal anomalies should be shown (in
black). These are points with leave-one-out surprisal probability values less
than 0.005 (using a GPD approximation), and which lie outside the 99% HDR
region.

alpha Transparency of points. Ignored if show_points is FALSE. Defaults to min(1,
500/n), where n is the number of observations plotted.

jitter A logical value indicating if the points should be vertically jittered for the 1d
box plots to reduce overplotting.

ngrid Number of grid points to use for the density function.

... Other arguments passed to dist_kde.

Details

The original HDR boxplot proposed by Hyndman (1996), can be produced with show_anomalies
= FALSE, jitter = FALSE, alpha = 1, and all other arguments set to their defaults.

Value

A ggplot object showing an HDR plot or scatterplot of the data.

Author(s)

Rob J Hyndman

References

Hyndman, R J (1996) Computing and Graphing Highest Density Regions, The American Statisti-
cian, 50(2), 120–126. https://robjhyndman.com/publications/hdr/

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 5.7, https://OTexts.
com/weird/.

See Also

surprisals, hdr_table

https://robjhyndman.com/publications/hdr/
https://OTexts.com/weird/
https://OTexts.com/weird/

12 glosh_scores

Examples

df <- data.frame(x = c(rnorm(1000), rnorm(1000, 5, 1), 10))
gg_hdrboxplot(df, x, show_anomalies = TRUE)
cricket_batting |>

filter(Innings > 20) |>
gg_hdrboxplot(Average)

oldfaithful |>
gg_hdrboxplot(duration, waiting, show_points = TRUE)

glosh_scores GLOSH scores

Description

Compute Global-Local Outlier Score from Hierarchies. This is based on hierarchical clustering
where the minimum cluster size is k. The resulting outlier score is a measure of how anomalous
each observation is. The function uses dbscan::hdbscan to do the calculation.

Usage

glosh_scores(y, k = 10, ...)

Arguments

y Numerical matrix or vector of data

k Minimum cluster size. Default: 5.

... Additional arguments passed to dbscan::hdbscan

Value

Numerical vector containing GLOSH values

Author(s)

Rob J Hyndman

See Also

dbscan::glosh

Examples

y <- c(rnorm(49), 5)
glosh_scores(y)

grubbs_anomalies 13

grubbs_anomalies Statistical tests for anomalies using Grubbs’ test and Dixon’s test

Description

Grubbs’ test (proposed in 1950) identifies possible anomalies in univariate data using z-scores as-
suming the data come from a normal distribution. Dixon’s test (also from 1950) compares the
difference in the largest two values to the range of the data. Critical values for Dixon’s test have
been computed using simulation with interpolation using a quadratic model on logit(alpha) and
log(log(n)).

Usage

grubbs_anomalies(y, alpha = 0.05)

dixon_anomalies(y, alpha = 0.05, two_sided = TRUE)

Arguments

y numerical vector of observations

alpha size of the test.

two_sided If TRUE, both minimum and maximums will be considered. Otherwise only the
maximum will be used. (Take negative values to consider only the minimum
with two_sided=FALSE.)

Details

Grubbs’ test is based on z-scores, and a point is identified as an anomaly when the associated
absolute z-score is greater than a threshold value. A vector of logical values is returned, where
TRUE indicates an anomaly. This version of Grubbs’ test looks for outliers anywhere in the sample.
Grubbs’ original test came in several variations which looked for one outlier, or two outliers in one
tail, or two outliers on opposite tails. These variations are implemented in the grubbs.test func-
tion. Dixon’s test only considers the maximum (and possibly the minimum) as potential outliers.

Value

A logical vector

Author(s)

Rob J Hyndman

14 hampel_anomalies

References

Grubbs, F. E. (1950). Sample criteria for testing outlying observations. Annals of Mathematical
Statistics, 21(1), 27–58.

Dixon, W. J. (1950). Analysis of extreme values. Annals of Mathematical Statistics, 21(4), 488–506.

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 4.4, https://OTexts.
com/weird/.

See Also

grubbs.test, dixon.test

Examples

x <- c(rnorm(1000), 5:10)
tibble(x = x) |> filter(grubbs_anomalies(x))
tibble(x = x) |> filter(dixon_anomalies(x))
y <- c(rnorm(1000), 5)
tibble(y = y) |> filter(grubbs_anomalies(y))
tibble(y = y) |> filter(dixon_anomalies(y))

hampel_anomalies Identify anomalies using the Hampel filter

Description

The Hampel filter is designed to find anomalies in time series data using mean absolute deviations
in the vicinity of each observation.

Usage

hampel_anomalies(y, bandwidth, k = 3)

Arguments

y numeric vector containing time series

bandwidth integer width of the window around each observation

k numeric number of standard deviations to declare an outlier

Details

First, a moving median is calculated using windows of size 2 * bandwidth + 1. Then the median
absolute deviations from this moving median are calculated in the same moving windows. A point is
declared an anomaly if its MAD is value is more than k standard deviations. The MAD is converted
to a standard deviation using MAD * 1.482602, which holds for normally distributed data. The first
bandwidth and last bandwidth observations cannot be declared anomalies.

https://OTexts.com/weird/
https://OTexts.com/weird/

hdr_table 15

Value

logical vector identifying which observations are anomalies.

Author(s)

Rob J Hyndman

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 9.2, https://OTexts.
com/weird/.

Examples

set.seed(1)
df <- tibble(

time = seq(41),
y = c(rnorm(20), 5, rnorm(20))

) |>
mutate(hampel = hampel_anomalies(y, bandwidth = 3, k = 4))

df |> ggplot(aes(x = time, y = y)) +
geom_line() +
geom_point(data = df |> filter(hampel), col = "red")

hdr_table Table of Highest Density Regions

Description

Compute a table of highest density regions (HDR) for a distributional object. The HDRs are re-
turned as a tibble with one row per interval and columns: prob (giving the probability coverage),
density (the value of the density at the boundary of the HDR), For one dimensional density func-
tions, the tibble also has columns lower (the lower ends of the intervals), and upper (the upper ends
of the intervals).

Usage

hdr_table(object, prob)

Arguments

object Distributional object such as that returned by dist_kde()

prob Vector of probabilities giving the HDR coverage (between 0 and 1)

Value

A tibble

https://OTexts.com/weird/
https://OTexts.com/weird/

16 kde_bandwidth

Author(s)

Rob J Hyndman

Examples

Univariate HDRs
c(dist_normal(), dist_kde(c(rnorm(100), rnorm(100, 3, 1)))) |>

hdr_table(c(0.5, 0.95))
dist_kde(oldfaithful$duration) |> hdr_table(0.95)
Bivariate HDRs
dist_kde(oldfaithful[, c("duration", "waiting")]) |> hdr_table(0.90)

kde_bandwidth Robust bandwidth estimation for kernel density estimation

Description

Bandwidth matrices are estimated using either a robust version of the normal reference rule, or
using the approach of Hyndman, Kandanaarachchi & Turner (2026).

Usage

kde_bandwidth(data, method = c("robust", "normal", "plugin", "lookout"), ...)

Arguments

data A numeric matrix or data frame.
method A character string giving the method to use. Possibilities are: "normal" (normal

reference rule), "robust" (a robust version of the normal reference rule, the
default), "plugin" (a plugin estimator), and "lookout" (the bandwidth matrix
estimate of Hyndman, Kandanaarachchi & Turner, 2026).

... Additional arguments are ignored unless method = "lookout", when they are
passed to lookout::find_tda_bw().

Value

A matrix of bandwidths (or a scalar in the case of univariate data).

Author(s)

Rob J Hyndman

References

Rob J Hyndman, Sevvandi Kandanaarachchi & Katharine Turner (2026) "When lookout sees crackle:
Anomaly detection via kernel density estimation", unpublished. https://robjhyndman.com/publications/
lookout2.html

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 2.7 and 3.9, https:
//OTexts.com/weird/.

https://robjhyndman.com/publications/lookout2.html
https://robjhyndman.com/publications/lookout2.html
https://OTexts.com/weird/
https://OTexts.com/weird/

lof_scores 17

Examples

Univariate bandwidth calculation
kde_bandwidth(oldfaithful$duration)
Bivariate bandwidth calculation
kde_bandwidth(oldfaithful[, c("duration", "waiting")])

lof_scores Local outlier factors

Description

Compute local outlier factors using k nearest neighbours. A local outlier factor is a measure of
how anomalous each observation is based on the density of neighbouring points. The function uses
dbscan::lof to do the calculation.

Usage

lof_scores(y, k = 10, ...)

Arguments

y Numerical matrix or vector of data

k Number of neighbours to include. Default: 5.

... Additional arguments passed to dbscan::lof

Value

Numerical vector containing LOF values

Author(s)

Rob J Hyndman

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 7.3, https://OTexts.
com/weird/.

See Also

dbscan::lof

Examples

y <- c(rnorm(49), 5)
lof_scores(y)

https://OTexts.com/weird/
https://OTexts.com/weird/

18 oldfaithful

n01 Multivariate standard normal data

Description

A synthetic data set containing 1000 observations on 10 variables generated from independent stan-
dard normal distributions.

Usage

n01

Format

A data frame with 1000 rows and 10 columns.

Value

Data frame

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 1.4, https://OTexts.
com/weird/.

Examples

n01

oldfaithful Old faithful eruption data

Description

A data set containing data on recorded eruptions of the Old Faithful Geyser in Yellowstone National
Park, Wyoming, USA, from 14 January 2017 to 29 December 2023. Recordings are incomplete,
especially during the winter months when observers may not be present.

Usage

oldfaithful

https://OTexts.com/weird/
https://OTexts.com/weird/

peirce_anomalies 19

Format

A data frame with 2097 rows and 4 columns:

time Time eruption started

recorded_duration Duration of eruption as recorded

duration Duration of eruption in seconds

waiting Time to the following eruption in seconds

Value

Data frame

Source

https://geysertimes.org

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 1.4, https://OTexts.
com/weird/.

Examples

oldfaithful |>
ggplot(aes(x = duration, y = waiting)) +
geom_point()

peirce_anomalies Anomalies according to Peirce’s and Chauvenet’s criteria

Description

Peirce’s criterion and Chauvenet’s criterion were both proposed in the 1800s as a way of determin-
ing what observations should be rejected in a univariate sample.

Usage

peirce_anomalies(y)

chauvenet_anomalies(y)

Arguments

y numerical vector of observations

https://geysertimes.org
https://OTexts.com/weird/
https://OTexts.com/weird/

20 stray_anomalies

Details

These functions take a univariate sample y and return a logical vector indicating which observations
should be considered anomalies according to either Peirce’s criterion or Chauvenet’s criterion.

Value

A logical vector

Author(s)

Rob J Hyndman

References

Peirce, B. (1852). Criterion for the rejection of doubtful observations. The Astronomical Journal,
2(21), 161–163.

Chauvenet, W. (1863). ’Method of least squares’. Appendix to Manual of Spherical and Practical
Astronomy, Vol.2, Lippincott, Philadelphia, pp.469-566.

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Section 4.3, https://OTexts.
com/weird/.

Examples

y <- rnorm(1000)
tibble(y = y) |> filter(peirce_anomalies(y))
tibble(y = y) |> filter(chauvenet_anomalies(y))

stray_anomalies Stray anomalies

Description

Test if observations are anomalies according to the stray algorithm.

Usage

stray_anomalies(y, ...)

Arguments

y A vector, matrix, or data frame consisting of numerical variables.

... Other arguments are passed to find_HDoutliers.

Value

Numerical vector containing logical values indicating if the observation is identified as an anomaly
using the stray algorithm.

https://OTexts.com/weird/
https://OTexts.com/weird/

stray_scores 21

Author(s)

Rob J Hyndman

References

P D Talagala, R J Hyndman and K Smith-Miles (2021) Anomaly detection in high-dimensional
data, Journal of Computational and Graphical Statistics, 30(2), 360-374.

Examples

Univariate data
y <- c(6, rnorm(49))
stray_anomalies(y)
Bivariate data
y <- cbind(rnorm(50), c(5, rnorm(49)))
stray_anomalies(y)

stray_scores Stray scores

Description

Compute stray scores indicating how anomalous each observation is.

Usage

stray_scores(y, ...)

Arguments

y A vector, matrix, or data frame consisting of numerical variables.

... Other arguments are passed to find_HDoutliers.

Value

Numerical vector containing stray scores.

Author(s)

Rob J Hyndman

References

P D Talagala, R J Hyndman and K Smith-Miles (2021) Anomaly detection in high-dimensional
data, Journal of Computational and Graphical Statistics, 30(2), 360-374.

22 surprisals

Examples

Univariate data
y <- c(6, rnorm(49))
scores <- stray_scores(y)
threshold <- stray::find_threshold(scores, alpha = 0.01, outtail = "max", p = 0.5, tn = 50)
which(scores > threshold)

surprisals Surprisals and surprisal probabilities

Description

A surprisal is given by s = − log f(y) where f is the density or probability mass function of the
estimated or assumed distribution, and y is an observation. This is returned by surprisals(). A
surprisal probability is the probability of a surprisal at least as extreme as s. This is returned by
surprisals_prob()

Usage

surprisals(object, ...)

surprisals_prob(
object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
...

)

Arguments

object A model or numerical data set

... Other arguments are passed to the appropriate method.

approximation Character string specifying the method to use in computing the surprisal proba-
bilities. See Details below.

threshold_probability

Probability threshold when computing the GPD approximation. This is the prob-
ability below which the GPD is fitted. Only used if approximation = "gpd".

Details

The surprisal probabilities may be computed in three different ways.

1. When approximation = "none" (the default), the surprisal probabilities are computed us-
ing the same distribution that was used to compute the surprisal values. Under this option,
surprisal probabilities are equal to 1 minus the coverage probability of the largest HDR that
contains each value. Surprisal probabilities smaller than 1e-6 are returned as 1e-6.

surprisals.lm 23

2. When approximation = "gdp", the surprisal probabilities are computed using a Generalized
Pareto Distribution fitted to the most extreme surprisal values (those with probability less than
threshold_probability). For surprisal probabilities greater than threshold_probability,
the value of threshold_probability is returned. Under this option, the distribution is used
for computing the surprisal values but not for determining their probabilities. Due to extreme
value theory, the resulting probabilities should be relatively insensitive to the distribution used
in computing the surprisal values.

3. When approximation = "rank", the surprisal probability of each observation is estimated
using the proportion of observations with greater surprisal values; i.e., 1 - rank(s)/n where
rank(s) is the rank of the surprisal value s among all surprisal values, and n is the number of
observations. This is a nonparametric approach that is also insensitive to the distribution used
in computing the surprisal values.

Value

A numerical vector containing the surprisals or surprisal probabilities.

Author(s)

Rob J Hyndman

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Chapter 6, https://OTexts.
com/weird/.

See Also

For specific methods, see surprisals.numeric() and surprisals.lm(),

surprisals.lm Surprisals and surprisal probabilities computed from a model

Description

A surprisal is given by s = − log f(y) where f is the density or probability mass function of the
estimated or assumed distribution, and y is an observation. This is returned by surprisals(). A
surprisal probability is the probability of a surprisal at least as extreme as s. This is returned by
surprisals_prob()

Usage

S3 method for class 'lm'
surprisals(object, loo = FALSE, ...)

S3 method for class 'lm'
surprisals_prob(

https://OTexts.com/weird/
https://OTexts.com/weird/

24 surprisals.lm

object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
loo = FALSE,
...

)

S3 method for class 'gam'
surprisals(object, ...)

S3 method for class 'gam'
surprisals_prob(
object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
...

)

Arguments

object A model object such as returned by lm, glm, or gam. This includes a specified
conditional probability distribution which is used to compute surprisal values.

loo Should leave-one-out surprisals be computed? For computational reasons, this
is only available for lm objects.

... Other arguments are ignored.

approximation Character string specifying the method to use in computing the surprisal proba-
bilities. See Details below.

threshold_probability

Probability threshold when computing the GPD approximation. This is the prob-
ability below which the GPD is fitted. Only used if approximation = "gpd".

Details

The surprisal probabilities may be computed in three different ways.

1. When approximation = "none" (the default), the surprisal probabilities are computed us-
ing the same distribution that was used to compute the surprisal values. Under this option,
surprisal probabilities are equal to 1 minus the coverage probability of the largest HDR that
contains each value. Surprisal probabilities smaller than 1e-6 are returned as 1e-6.

2. When approximation = "gdp", the surprisal probabilities are computed using a Generalized
Pareto Distribution fitted to the most extreme surprisal values (those with probability less than
threshold_probability). For surprisal probabilities greater than threshold_probability,
the value of threshold_probability is returned. Under this option, the distribution is used
for computing the surprisal values but not for determining their probabilities. Due to extreme
value theory, the resulting probabilities should be relatively insensitive to the distribution used
in computing the surprisal values.

3. When approximation = "rank", the surprisal probability of each observation is estimated
using the proportion of observations with greater surprisal values; i.e., 1 - rank(s)/n where

surprisals.numeric 25

rank(s) is the rank of the surprisal value s among all surprisal values, and n is the number of
observations. This is a nonparametric approach that is also insensitive to the distribution used
in computing the surprisal values.

Value

A numerical vector containing the surprisals or surprisal probabilities.

Author(s)

Rob J Hyndman

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Chapter 6, https://OTexts.
com/weird/.

See Also

For specific methods, see surprisals.numeric() and surprisals.lm(),

Examples

A linear model (i.e., a conditional Gaussian distribution)
lm_of <- lm(waiting ~ duration, data = oldfaithful)
oldfaithful |>

mutate(
fscore = surprisals_prob(lm_of),
prob = surprisals_prob(lm_of, loo = TRUE),

) |>
ggplot(aes(

x = duration, y = waiting,
color = prob < 0.01

)) +
geom_point()

A Poisson GLM
glm_breaks <- glm(breaks ~ wool + tension, data = warpbreaks, family = poisson)
warpbreaks |>

mutate(prob = surprisals_prob(glm_breaks)) |>
filter(prob < 0.05)

surprisals.numeric Surprisals and surprisal probabilities computed from data

Description

A surprisal is given by s = − log f(y) where f is the density or probability mass function of the
estimated or assumed distribution, and y is an observation. This is returned by surprisals(). A
surprisal probability is the probability of a surprisal at least as extreme as s. This is returned by
surprisals_prob()

https://OTexts.com/weird/
https://OTexts.com/weird/

26 surprisals.numeric

Usage

S3 method for class 'numeric'
surprisals(object, distribution = dist_kde(object, ...), loo = FALSE, ...)

S3 method for class 'matrix'
surprisals(object, distribution = dist_kde(object, ...), loo = FALSE, ...)

S3 method for class 'data.frame'
surprisals(object, distribution = dist_kde(object, ...), loo = FALSE, ...)

S3 method for class 'numeric'
surprisals_prob(
object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
distribution = dist_kde(object, ...),
loo = FALSE,
...

)

S3 method for class 'matrix'
surprisals_prob(
object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
distribution = dist_kde(object, ...),
loo = FALSE,
...

)

S3 method for class 'data.frame'
surprisals_prob(
object,
approximation = c("none", "gpd", "rank"),
threshold_probability = 0.1,
distribution = dist_kde(object, ...),
loo = FALSE,
...

)

Arguments

object A numerical data set (either a vector, matrix, or a data.frame containing only
numerical columns).

distribution A distribution object. By default, a kernel density estimate is computed from
the data object.

loo Should leave-one-out surprisals be computed?

surprisals.numeric 27

... Other arguments are passed to the appropriate method.

approximation Character string specifying the method to use in computing the surprisal proba-
bilities. See Details below. For a multivariate data set, it needs to be set to either
"gpd" or "rank".

threshold_probability

Probability threshold when computing the GPD approximation. This is the prob-
ability below which the GPD is fitted. Only used if approximation = "gpd".

Details

The surprisal probabilities may be computed in three different ways.

1. When approximation = "none" (the default), the surprisal probabilities are computed us-
ing the same distribution that was used to compute the surprisal values. Under this option,
surprisal probabilities are equal to 1 minus the coverage probability of the largest HDR that
contains each value. Surprisal probabilities smaller than 1e-6 are returned as 1e-6.

2. When approximation = "gdp", the surprisal probabilities are computed using a Generalized
Pareto Distribution fitted to the most extreme surprisal values (those with probability less than
threshold_probability). For surprisal probabilities greater than threshold_probability,
the value of threshold_probability is returned. Under this option, the distribution is used
for computing the surprisal values but not for determining their probabilities. Due to extreme
value theory, the resulting probabilities should be relatively insensitive to the distribution used
in computing the surprisal values.

3. When approximation = "rank", the surprisal probability of each observation is estimated
using the proportion of observations with greater surprisal values; i.e., 1 - rank(s)/n where
rank(s) is the rank of the surprisal value s among all surprisal values, and n is the number of
observations. This is a nonparametric approach that is also insensitive to the distribution used
in computing the surprisal values.

Value

A numerical vector containing the surprisals or surprisal probabilities.

Author(s)

Rob J Hyndman

References

Rob J Hyndman (2026) "That’s weird: Anomaly detection using R", Chapter 6, https://OTexts.
com/weird/.

See Also

dist_kde

https://OTexts.com/weird/
https://OTexts.com/weird/

28 surprisals.numeric

Examples

Univariate data
tibble(

y = c(5, rnorm(49)),
p_kde = surprisals_prob(y, loo = TRUE),
p_normal = surprisals_prob(y, distribution = dist_normal()),
p_zscore = 2 * (1 - pnorm(abs(y)))

)
tibble(

y = n01$v1,
prob1 = surprisals_prob(y),
prob2 = surprisals_prob(y, loo = TRUE),
prob3 = surprisals_prob(y, distribution = dist_normal()),
prob4 = surprisals_prob(y, distribution = dist_normal(), approximation = "gpd")

) |>
arrange(prob1)

Bivariate data
tibble(

x = rnorm(50),
y = c(5, rnorm(49)),
prob = surprisals_prob(cbind(x, y), approximation = "gpd")

)
oldfaithful |>

mutate(
s = surprisals(cbind(duration, waiting), loo = TRUE),
p = surprisals_prob(cbind(duration, waiting), loo = TRUE, approximation = "gpd")

) |>
arrange(p)

Index

∗ datasets
cricket_batting, 2
fr_mortality, 6
n01, 18
oldfaithful, 18

bagplot, 7

chauvenet_anomalies (peirce_anomalies),
19

compute.bagplot, 7
cricket_batting, 2

dist_density, 3
dist_kde, 4, 8, 9, 11, 27
dixon.test, 14
dixon_anomalies (grubbs_anomalies), 13

fetch_wine_reviews, 5
find_HDoutliers, 20, 21
fr_mortality, 6

gam, 24
geom_line, 9
gg_bagplot, 7
gg_density, 8
gg_density_layer, 9
gg_hdrboxplot, 10
glm, 24
glosh, 12
glosh_scores, 12
grubbs.test, 13, 14
grubbs_anomalies, 13

hampel_anomalies, 14
hdbscan, 12
hdr_table, 11, 15

kde, 4
kde_bandwidth, 4, 16
kde_bandwidth(), 4

lm, 24
lof, 17
lof_scores, 17
lookout::find_tda_bw(), 16

n01, 18

oldfaithful, 18

peirce_anomalies, 19

stray_anomalies, 20
stray_scores, 21
surprisals, 11, 22
surprisals.data.frame

(surprisals.numeric), 25
surprisals.gam (surprisals.lm), 23
surprisals.lm, 23
surprisals.lm(), 23, 25
surprisals.matrix (surprisals.numeric),

25
surprisals.numeric, 25
surprisals.numeric(), 23, 25
surprisals_prob (surprisals), 22
surprisals_prob.data.frame

(surprisals.numeric), 25
surprisals_prob.gam (surprisals.lm), 23
surprisals_prob.lm (surprisals.lm), 23
surprisals_prob.matrix

(surprisals.numeric), 25
surprisals_prob.numeric

(surprisals.numeric), 25

wine_reviews (fetch_wine_reviews), 5

29

	cricket_batting
	dist_density
	dist_kde
	fetch_wine_reviews
	fr_mortality
	gg_bagplot
	gg_density
	gg_density_layer
	gg_hdrboxplot
	glosh_scores
	grubbs_anomalies
	hampel_anomalies
	hdr_table
	kde_bandwidth
	lof_scores
	n01
	oldfaithful
	peirce_anomalies
	stray_anomalies
	stray_scores
	surprisals
	surprisals.lm
	surprisals.numeric
	Index

