Package ‘xml2’

January 17, 2026
Title Parse XML
Version 1.5.2

Description Bindings to 'libxml2' for working with XML data using a simple,
consistent interface based on 'XPath' expressions. Also supports XML schema
validation; for "XSLT" transformations see the 'xslt' package.

License MIT + file LICENSE
URL https://xml2.r-1ib.org, https://r-1ib.r-universe.dev/xml2

BugReports https://github.com/r-1ib/xml2/issues
Depends R (>=3.6.0)
Imports cli, methods, rlang (>=1.1.0)

Suggests covr, curl, httr, knitr, mockery, rmarkdown, testthat (>=
3.2.0), xslt

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements libxml2: libxml2-dev (deb), libxml2-devel (rpm)

Collate 'S4.R''as_list.R' xml_parse.R' 'as_xml_document.R’
'classes.R' 'format.R' 'import-standalone-obj-type.R’'
'import-standalone-purrr.R' 'import-standalone-types-check.R'
'init.R' 'nodeset_apply.R' 'paths.R" 'utils.R' 'xml2-package.R’
'xml_attr.R' 'xml_children.R' 'xml_document.R' 'xml_find.R'
'xml_missing.R' 'xml_modify.R' 'xml_name.R' 'xml_namespaces.R'
'xml_node.R' 'xml_nodeset.R"' 'xml_path.R' 'xml_schema.R'
'xml_serialize.R' xml_structure.R' 'xml_text.R" 'xml_type.R'
'xml_url.R' 'xml_write.R' 'zzz.R'

Config/testthat/edition 3

NeedsCompilation yes

https://xml2.r-lib.org
https://r-lib.r-universe.dev/xml2
https://github.com/r-lib/xml2/issues

Contents

Author Hadley Wickham [aut],

Jim Hester [aut],

Jeroen Ooms [aut, cre],

Posit Software, PBC [cph, fnd],

R Foundation [ctb] (Copy of R-project homepage cached as example)

Maintainer Jeroen Ooms <jeroenooms@gmail .com>
Repository CRAN
Date/Publication 2026-01-17 16:10:02 UTC

Contents
as_lISt . . . L e 3
as_xml_document L. e e e 4
download_xml e e 4
read_xml e 6
url_absolute L e 8
Url_escape e e e 9
url_parse e e e e 10
write XM L e e e e 10
xml2_example 12
xmLattr L e e e e 12
xml_cdata oL e 14
xml_children e 14
XML COMMENT o e e e e 16
xml_dtd e 16
xml_find_all e 17
XMI_NAme e e e e e e e e e e 19
xml_new_document L e e 20
XMLNS . . . e e 21
XMI_NS_SIIP . . . o o e e e e e e e e e 22
xml_path e 23
xml_replace L. e e e 23
xml_serialize e e e e 24
XMI_SEt_Namespace e e e e e e e 25
XMI_SIIUCture e e e e e 26
XMI_tEXt e e e e 26
xml_type e e e e 27
xmlourl ..o e e 28
xml_validate e 29

Index

as_list 3

as_list Coerce xml nodes to a list.

Description

This turns an XML document (or node or nodeset) into the equivalent R list. Note that this is
as_list(), not as.list(): lapply() automatically calls as.list() on its inputs, so we can’t
override the default.

Usage
as_list(x, ns = character(), ...)
Arguments
X A document, node, or node set.
ns Optionally, a named vector giving prefix-url pairs, as produced by xml_ns(). If
provided, all names will be explicitly qualified with the ns prefix, i.e. if the ele-
ment bar is defined in namespace foo, it will be called foo:bar. (And similarly
for attributes). Default namespaces must be given an explicit name. The ns is
ignored when using xml_name<-() and xml_set_name().
Needed for compatibility with generic. Unused.
Details

as_list currently only handles the four most common types of children that an element might
have:

¢ Other elements, converted to lists.

 Attributes, stored as R attributes. Attributes that have special meanings in R (class(),
comment (), dim(), dimnames(), names(), row.names () and tsp()) are escaped with *.’

e Text, stored as a character vector.

Examples

as_list(read_xml("<foo> a <c><![CDATA[<d></d>]]></c></fo0>"))
as_list(read_xml("<foo> <bar><baz /></bar> </foo>"))
as_list(read_xml("<foo id = 'a'></foo>"))
as_list(read_xml("<foo><bar id='a'/><bar id='b'/></fo0>"))

4 download_xml

as_xml_document Coerce a R list to xml nodes.

Description

This turns an R list into the equivalent XML document. Not all R lists will produce valid XML, in
particular there can only be one root node and all child nodes need to be named (or empty) lists. R
attributes become XML attributes and R names become XML node names.

Usage
as_xml_document(x, ...)
Arguments
X A document, node, or node set.
Needed for compatibility with generic. Unused.
Examples

as_xml_document(list(x = list()))

Nesting multiple nodes
as_xml_document(list(foo = list(bar = list(baz = list()))))

attributes are stored as R attributes
as_xml_document(list(foo = structure(list(), id = "a")))
as_xml_document(list(foo = list(

bar = structure(list(), id = "a"),

bar = structure(list(), id = "b")
)))

download_xml Download a HTML or XML file

Description

Libcurl implementation of C_download (the "internal" download method) with added support for
https, ftps, gzip, etc. Default behavior is identical to download.file(), but request can be fully
configured by passing a custom curl: :handle().

download_xml 5

Usage
download_xml(
url,
file = basename(url),
quiet = TRUE,
mode = "wb",
handle = curl::new_handle()
)
download_html(
url,
file = basename(url),
quiet = TRUE,
mode = "wb",
handle = curl::new_handle()
)
Arguments
url A character string naming the URL of a resource to be downloaded.
file A character string with the name where the downloaded file is saved.
quiet If TRUE, suppress status messages (if any), and the progress bar.
mode A character string specifying the mode with which to write the file. Useful
values are "w"”, "wb" (binary), "a" (append) and "ab".
handle a curl handle object
Details

The main difference between curl_download and curl_fetch_diskis that curl_download checks
the http status code before starting the download, and raises an error when status is non-successful.
The behavior of curl_fetch_disk on the other hand is to proceed as normal and write the error
page to disk in case of a non success response.

The curl_download function does support resuming and removes the temporary file if the down-
load did not complete successfully. For a more advanced download interface which supports con-
current requests and resuming large files, have a look at the multi_download function.

Value

Path of downloaded file (invisibly).

See Also

curl_download

6 read_xml

Examples

Not run:
download_html("http://tidyverse.org/index.html")

End(Not run)

read_xml Read HTML or XML.

Description

Read HTML or XML.

Usage
read_xml(x, encoding = "", ..., as_html = FALSE, options = "NOBLANKS")

read_html(
X’
encoding = "",

L

options = c("RECOVER"”, "NOERROR", "NOBLANKS", "HUGE")
)

S3 method for class 'character'
read_xml(x, encoding = "", ..., as_html = FALSE, options = "NOBLANKS")

S3 method for class 'raw'
read_xml(

X,

encoding = "",

nn

base_url = ,
as_html
options

)

FALSE,
"NOBLANKS”

S3 method for class 'connection'
read_xml(

X,

encoding = "",

n = 64 x 1024,

verbose = FALSE,

base_url = "",
as_html = FALSE,

options = "NOBLANKS"

read_xml

Arguments

X

encoding

as_html

options

base_url

A string, a connection, or a raw vector.

A string can be either a path, a url or literal xml. Urls will be converted into
connections either using base: :url or, if installed, curl::curl. Local paths
ending in .gz, .bz2, .xz, .zip will be automatically uncompressed.

If a connection, the complete connection is read into a raw vector before being
parsed.

Specify a default encoding for the document. Unless otherwise specified XML
documents are assumed to be in UTF-8 or UTF-16. If the document is not
UTEF-8/16, and lacks an explicit encoding directive, this allows you to supply a
default.

Additional arguments passed on to methods.

Optionally parse an xml file as if it’s html.

Set parsing options for the libxml2 parser. Zero or more of
RECOVER recover on errors

NOENT substitute entities

DTDLOAD load the external subset

DTDATTR default DTD attributes

DTDVALID validate with the DTD

NOERROR suppress error reports

NOWARNING suppress warning reports

PEDANTIC pedantic error reporting

NOBLANKS remove blank nodes

SAX1 use the SAX1 interface internally

XINCLUDE Implement XInclude substitution

NONET Forbid network access

NODICT Do not reuse the context dictionary
NSCLEAN remove redundant namespaces declarations
NOCDATA merge CDATA as text nodes
NOXINCNODE do not generate XINCLUDE START/END nodes

COMPACT compact small text nodes; no modification of the tree allowed af-
terwards (will possibly crash if you try to modify the tree)

OLD10 parse using XML-1.0 before update 5

NOBASEFIX do not fixup XINCLUDE xml:base uris

HUGE relax any hardcoded limit from the parser

OLDSAX parse using SAX2 interface before 2.7.0

IGNORE_ENC ignore internal document encoding hint

BIG_LINES Store big lines numbers in text PSVI field

When loading from a connection, raw vector or literal html/xml, this allows you

to specify a base url for the document. Base urls are used to turn relative urls
into absolute urls.

If file is a connection, the number of bytes to read per iteration. Defaults to
64kb.

8 url_absolute

verbose When reading from a slow connection, this prints some output on every iteration
so you know its working.

Value

An XML document. HTML is normalised to valid XML - this may not be exactly the same trans-
formation performed by the browser, but it’s a reasonable approximation.

Setting the ''user agent'' header

When performing web scraping tasks it is both good practice — and often required — to set the user

agent request header to a specific value. Sometimes this value is assigned to emulate a browser in or-

der to have content render in a certain way (e.g. Mozilla/5.0 (Windows NT 5.1; rv:52.0) Gecko/20100101 Firefox/52.
to emulate more recent Windows browsers). Most often, this value should be set to provide the web

resource owner information on who you are and the intent of your actions like this Google scraping

bot user agent identifier: Googlebot/2.1 (+http://www.google.com/bot.html).

You can set the HTTP user agent for URL-based requests using httr: :set_config() and httr: :user_agent():
httr::set_config(httr::user_agent("me@example.com; +https://example.com/info.html"))

httr::set_config() changes the configuration globally, httr: :with_config() can be used to
change configuration temporarily.

Examples

Literal xml/html is useful for small examples
read_xml ("<foo><bar /></foo>")

read_html ("<html><title>Hi<title></html>")
read_html ("<html><title>Hi")

From a local path
read_html(system.file("extdata”, "r-project.html”, package = "xml2"))

Not run:

From a url

cd <- read_xml(xml2_example("cd_catalog.xml"))
me <- read_html("http://had.co.nz")

End(Not run)

url_absolute Convert between relative and absolute urls.

Description

Convert between relative and absolute urls.

https://en.wikipedia.org/wiki/User_agent
https://en.wikipedia.org/wiki/User_agent

url_escape

Usage

url_absolute(x, base)

url_relative(x, base)

Arguments
X A character vector of urls relative to that base
base A string giving a base url.

Value

A character vector of urls

See Also

xml_url to retrieve the URL associated with a document

Examples

url_absolute(c(".", "..", "/", "/x"), "http://hadley.nz/a/b/c/d")

url_relative("http://hadley.nz/a/c", "http://hadley.nz")
url_relative("http://hadley.nz/a/c”, "http://hadley.nz/")
url_relative("http://hadley.nz/a/c"”, "http://hadley.nz/a/b")
url_relative("http://hadley.nz/a/c", "http://hadley.nz/a/b/")

url_escape Escape and unescape urls.

Description

Escape and unescape urls.

Usage
url_escape(x, reserved = "")
url_unescape(x)

Arguments

X A character vector of urls.

reserved A string containing additional characters to avoid escaping.

10 write_xml

Examples

url_escape(”a b c")
url_escape(”a b c”, "")

url_unescape("a%20b%2fc")
url_unescape("%C2%B5")

url_parse Parse a url into its component pieces.

Description

Parse a url into its component pieces.

Usage

url_parse(x)

Arguments

X A character vector of urls.

Value

A dataframe with one row for each element of x and columns: scheme, server, port, user, path,
query, fragment.

Examples

url_parse("http://had.co.nz/")
url_parse("http://had.co.nz:1234/")
url_parse("http://had.co.nz:1234/?a=1&b=2")
url_parse("http://had.co.nz:1234/?a=18&b=2#def")

write_xml Write XML or HTML to disk.

Description

This writes out both XML and normalised HTML. The default behavior will output the same format
which was read. If you want to force output pass option = "as_xml" or option = "as_html"
respectively.

write_xml 11
Usage
write_xml(x, file, ...)

S3 method for class 'xml_document'
write_xml(x, file, ..., options = "format"”, encoding = "UTF-8")

write_html(x, file, ...)

S3 method for class 'xml_document'

write_html(x, file, ..., options = "format”, encoding = "UTF-8")
Arguments
X A document or node to write to disk. It’s not possible to save nodesets containing

more than one node.
file Path to file or connection to write to.
additional arguments passed to methods.
options default: ‘format’. Zero or more of
format Format output
no_declaration Drop the XML declaration
no_empty_tags Remove empty tags
no_xhtml Disable XHTMLI rules
require_xhtml Force XHTML rules
as_xml Force XML output
as_html Force HTML output

format_whitespace Format with non-significant whitespace

encoding The character encoding to use in the document. The default encoding is ‘UTF-
8’. Available encodings are specified athttp://xmlsoft.org/html/libxml-encoding.
html#xmlCharEncoding.
Examples

h <- read_html ("<p>Hi!</p>")

tmp <- tempfile(fileext = ".xml")
write_xml(h, tmp, options = "format")
readLines(tmp)

write formatted HTML output
write_html(h, tmp, options = "format"”)
readLines(tmp)

http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding
http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding

12 xml_attr

xml2_example Get path to a xml2 example

Description

xml2 comes bundled with a number of sample files in its ‘inst/extdata’ directory. This function
makes them easy to access.

Usage

xml2_example(path = NULL)

Arguments
path Name of file. If NULL, the example files will be listed.
xml_attr Retrieve an attribute.
Description

xml_attrs() retrieves all attributes values as a named character vector, xml_attrs() <-orxml_set_attrs()
sets all attribute values. xml_attr () retrieves the value of single attribute and xml_attr() <-or
xml_set_attr() modifies its value. If the attribute doesn’t exist, it will return default, which

defaults to NA. xm1_has_attr() tests if an attribute is present.

Usage

xml_attr(x, attr, ns = character(), default = NA_character_)
xml_has_attr(x, attr, ns = character())

xml_attrs(x, ns = character())

xml_attr(x, attr, ns = character()) <- value

xml_set_attr(x, attr, value, ns = character())

xml_attrs(x, ns = character()) <- value

xml_set_attrs(x, value, ns = character())

xml_attr 13

Arguments
X A document, node, or node set.
attr Name of attribute to extract.
ns Optionally, a named vector giving prefix-url pairs, as produced by xml_ns(). If
provided, all names will be explicitly qualified with the ns prefix, i.e. if the ele-
ment bar is defined in namespace foo, it will be called foo:bar. (And similarly
for attributes). Default namespaces must be given an explicit name. The ns is
ignored when using xml_name<-() and xml_set_name().
default Default value to use when attribute is not present.
value character vector of new value.
Value

xml_attr() returns a character vector. NA is used to represent of attributes that aren’t defined.
xml_has_attr() returns a logical vector.

xml_attrs() returns a named character vector if x X is single node, or a list of character vectors if
given a nodeset

Examples

x <= read_xml("<root id='1'><child id ='a' /><child id='b' d='b'/></root>")
xml_attr(x, "id")

xml_attr(x, "apple”)

xml_attrs(x)

kids <- xml_children(x)
kids

xml_attr(kids, "id")
xml_has_attr(kids, "id")
xml_attrs(kids)

Missing attributes give missing values
xml_attr(xml_children(x), "d")
xml_has_attr(xml_children(x), "d")

If the document has a namespace, use the ns argument and
qualified attribute names

x <- read_xml('

<root xmlns:b="http://bar.com” xmlns:f="http://foo.com">

<doc b:id="b" f:id="f" id="" />

</root>

D)

doc <- xml_children(x)[[1]]

ns <- xml_ns(x)

xml_attrs(doc)
xml_attrs(doc, ns)

If you don't supply a ns spec, you get the first matching attribute

14 xml_children

xml_attr(doc, "id")
xml_attr(doc, "b:id", ns)
xml_attr(doc, "id”, ns)

Can set a single attribute with “xml_attr() <-~ or ~xml_set_attr()"
xml_attr(doc, "id") <- "one”

xml_set_attr(doc, "id", "two")

Or set multiple attributes with “xml_attrs()~ or “xml_set_attrs()"

xml_attrs(doc) <- c("b:id" = "one", "f:id" = "two", "id" = "three")
xml_set_attrs(doc, c("b:id” = "one”, "f:id” = "two", "id" = "three"))
xml_cdata Construct a cdata node
Description

Construct a cdata node

Usage

xml_cdata(content)

Arguments

content The CDATA content, does not include <! [CDATA[

Examples

x <= xml_new_root("root")
xml_add_child(x, xml_cdata("<d/>"))
as.character(x)

xml_children Navigate around the family tree.

Description

xml_children returns only elements, xml_contents returns all nodes. xml_length returns the
number of children. xml_parent returns the parent node, xml_parents returns all parents up to
the root. xml_siblings returns all nodes at the same level. xml_child makes it easy to specify a
specific child to return.

xml_children 15
Usage

xml_children(x)

xml_child(x, search = 1, ns = xml_ns(x))

xml_contents(x)

xml_parents(x)

xml_siblings(x)

xml_parent(x)

xml_length(x, only_elements = TRUE)

xml_root(x)

Arguments
X A document, node, or node set.
search For xml_child, either the child number to return (by position), or the name of
the child node to return. If there are multiple child nodes with the same name,
the first will be returned
ns Optionally, a named vector giving prefix-url pairs, as produced by xml_ns (). If

provided, all names will be explicitly qualified with the ns prefix, i.e. if the ele-
ment bar is defined in namespace foo, it will be called foo:bar. (And similarly
for attributes). Default namespaces must be given an explicit name. The ns is
ignored when using xml_name<-() and xml_set_name().

only_elements For xml_length, should it count all children, or just children that are elements
(the default)?

Value

A node or nodeset (possibly empty). Results are always de-duplicated.

Examples

x <- read_xml("<foo> <bar><boo /></bar> <baz/> </foo>")
xml_children(x)

xml_children(xml_children(x))
xml_siblings(xml_children(x)[[1]]1)

Note the each unique node only appears once in the output
xml_parent(xml_children(x))

Mixed content

x <- read_xml("<foo> a c <d>e</d> f</foo>")

Childen gets the elements, contents gets all node types
xml_children(x)

16 xml_dtd

xml_contents(x)

xml_length(x)
xml_length(x, only_elements = FALSE)

xml_child makes it easier to select specific children
xml_child(x)

xml_child(x, 2)

xml_child(x, "baz")

xml_comment Construct a comment node

Description

Construct a comment node

Usage

xml_comment(content)

Arguments

content The comment content

Examples

x <= xml_new_document()

r <- xml_add_child(x, "root")
xml_add_child(r, xml_comment("Hello!"))
as.character(x)

xml_dtd Construct a document type definition

Description

This is used to create simple document type definitions. If you need to create a more complicated
definition with internal subsets it is recommended to parse a string directly with read_xm1().

Usage

nn

xml_dtd(name = "", external_id = "", system_id = "")

xml_find_all 17

Arguments

name The name of the declaration

external_id The external ID of the declaration

system_id The system ID of the declaration
Examples

r <- xml_new_root(

xml_dtd(
"html",

"-//W3C//DTD XHTML 1.0 Transitional//EN",
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd"”
)
)

Use read_xml directly for more complicated DTD
d <- read_xml(
'<!DOCTYPE doc [
<!ELEMENT doc (#PCDATA)>
<!ENTITY foo " test ">

1>
<doc>This is a valid document &foo; !</doc>'
)
xml_find_all Find nodes that match an xpath expression.
Description

Xpath is like regular expressions for trees - it’s worth learning if you’re trying to extract nodes from
arbitrary locations in a document. Use xml_find_all to find all matches - if there’s no match you’ll
get an empty result. Use xml_find_first to find a specific match - if there’s no match you’ll get
an xml_missing node.

Usage
xml_find_all(x, xpath, ns = xml_ns(x), ...)

S3 method for class 'xml_nodeset'
xml_find_all(x, xpath, ns = xml_ns(x), flatten = TRUE, ...)

xml_find_first(x, xpath, ns = xml_ns(x))
xml_find_num(x, xpath, ns = xml_ns(x))

xml_find_int(x, xpath, ns = xml_ns(x))

18 xml_find_all

xml_find_chr(x, xpath, ns xml_ns(x))

xml_find_lgl(x, xpath, ns = xml_ns(x))

Arguments
X A document, node, or node set.
xpath A string containing an xpath (1.0) expression.
ns Optionally, a named vector giving prefix-url pairs, as produced by xml_ns (). If
provided, all names will be explicitly qualified with the ns prefix, i.e. if the ele-
ment bar is defined in namespace foo, it will be called foo:bar. (And similarly
for attributes). Default namespaces must be given an explicit name. The ns is
ignored when using xml_name<-() and xml_set_name().
Further arguments passed to or from other methods.
flatten A logical indicating whether to return a single, flattened nodeset or a list of
nodesets.
Value

xml_find_all returns a nodeset if applied to a node, and a nodeset or a list of nodesets if applied
to a nodeset. If there are no matches, the nodeset(s) will be empty. Within each nodeset, the result
will always be unique; repeated nodes are automatically de-duplicated.

xml_find_first returns a node if applied to a node, and a nodeset if applied to a nodeset. The
output is always the same size as the input. If there are no matches, xml_find_first will return a
missing node; if there are multiple matches, it will return the first only.

xml_find_num, xml_find_chr, xml_find_lgl return numeric, character and logical results re-
spectively.

Deprecated functions

xml_find_one() has been deprecated. Instead use xml_find_first().

See Also

xml_ns_strip() to remove the default namespaces

Examples

x <= read_xml("<foo><bar><baz/></bar><baz/></foo>")
xml_find_all(x, ".//baz")
xml_path(xml_find_all(x, ".//baz"))

Note the difference between .// and //

// finds anywhere in the document (ignoring the current node)
.// finds anywhere beneath the current node

(bar <- xml_find_all(x, ".//bar"))

xml_find_all(bar, ".//baz")

xml_find_all(bar, "//baz")

xml_name 19

Find all vs find one ——===—==-———--——mm oo
x <- read_xml("<body>
<p>Some text.</p>
<p>Some other text.</p>
<p>No bold here!</p>
</body>")
para <- xml_find_all(x, ".//p")

By default, if you apply xml_find_all to a nodeset, it finds all matches,
de-duplicates them, and returns as a single nodeset. This means you

never know how many results you'll get

xml_find_all(para, ".//b")

If you set flatten to FALSE, though, xml_find_all will return a list of
nodesets, where each nodeset contains the matches for the corresponding
node in the original nodeset.

xml_find_all(para, ".//b", flatten = FALSE)

xml_find_first only returns the first match per input node. If there are 0
matches it will return a missing node

xml_find_first(para, ".//b")

xml_text(xml_find_first(para, ".//b"))

Namespaces ———————— -
If the document uses namespaces, you'll need use xml_ns to form
a unique mapping between full namespace url and a short prefix
x <- read_xml('
<root xmlns:f = "http://foo.com” xmlns:g = "http://bar.com">
<f:doc><g:baz /></f:doc>
<f:doc><g:baz /></f:doc>
</root>
D)
xml_find_all(x, ".//f:doc")
xml_find_all(x, ".//f:doc”, xml_ns(x))

xml_name The (tag) name of an xml element.

Description

The (tag) name of an xml element.

Modify the (tag) name of an element

Usage

xml_name(x, ns = character())

xml_name(x, ns = character()) <- value

xml_set_name(x, value, ns = character())

20

Arguments

X

ns

value

Value

A character vector.

Examples

xml _new_document

A document, node, or node set.

Optionally, a named vector giving prefix-url pairs, as produced by xml_ns (). If
provided, all names will be explicitly qualified with the ns prefix, i.e. if the ele-
ment bar is defined in namespace foo, it will be called foo:bar. (And similarly
for attributes). Default namespaces must be given an explicit name. The ns is
ignored when using xml_name<-() and xml_set_name().

a character vector with replacement name.

x <= read_xml("<bar>123</bar>")

xml_name (x)

y <- read_xml("<bar><baz>1</baz>abc<foo /></bar>")
z <- xml_children(y)
xml_name(xml_children(y))

xml_new_document

Create a new document, possibly with a root node

Description

xml_new_document creates only a new document without a root node. In most cases you should
instead use xml_new_root, which creates a new document and assigns the root node in one step.

Usage

xml_new_document(version = "1.0", encoding = "UTF-8")

xml_new_root(
.value,

L

.copy = inherits(.value, "xml_node"),
.version = "1.0",
.encoding = "UTF-8"

xml _ns 21

Arguments
version The version number of the document.
encoding The character encoding to use in the document. The default encoding is ‘UTF-
8’. Available encodings are specified athttp://xmlsoft.org/html/libxml-encoding.
html#xmlCharEncoding.
.value node to insert.
If named attributes or namespaces to set on the node, if unnamed text to assign
to the node.
.copy whether to copy the . value before replacing. If this is FALSE then the node will
be moved from it’s current location.
.version The version number of the document, passed to xml_new_document(version).
.encoding The encoding of the document, passed to xml_new_document (encoding).
Value

A xml_document object.

xml_ns XML namespaces.

Description

xml_ns extracts all namespaces from a document, matching each unique namespace url with the
prefix it was first associated with. Default namespaces are named d1, d2 etc. Use xml_ns_rename
to change the prefixes. Once you have a namespace object, you can pass it to other functions to
work with fully qualified names instead of local names.

Usage
xml_ns(x)
xml_ns_rename(old, ...)
Arguments
X A document, node, or node set.
old, ... An existing xml_namespace object followed by name-value (old prefix-new pre-
fix) pairs to replace.
Value

A character vector with class xml_namespace so the default display is a little nicer.

http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding
http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding

22

Examples

X <- read_xml("'
<root>
<doc1 xmlns
<doc2 xmlns
</root>
D)

xml_ns(x)

"http://foo.com”"><baz /></docl1>
"http://bar.com"”><baz /></doc2>

When there are default namespaces, it's a good idea to rename
them to give informative names:

ns <- xml_ns_rename(xml_ns(x), d1 = "foo"”, d2 = "bar")

ns

Now we can pass ns to other xml function to use fully qualified names
baz <- xml_children(xml_children(x))

xml_name (baz)

xml_name(baz, ns)

xml_find_all(x, "//baz")
xml_find_all(x, "//foo:baz", ns)

str(as_list(x))
str(as_list(x, ns))

xml_ns_strip

xml_ns_strip Strip the default namespaces from a document

Description

Strip the default namespaces from a document

Usage

xml_ns_strip(x)

Arguments

X A document, node, or node set.

Examples

X <= read_xml(

"<foo xmlns = 'http://foo.com'>

<baz/>

<bar xmlns = 'http://bar.com'>
<baz/>

</bar>

</foo>"

xml_path 23

)

Need to specify the default namespaces to find the baz nodes
xml_find_all(x, "//d1:baz")
xml_find_all(x, "//d2:baz")

After stripping the default namespaces you can find both baz nodes directly
xml_ns_strip(x)
xml_find_all(x, "//baz")

xml_path Retrieve the xpath to a node

Description

This is useful when you want to figure out where nodes matching an xpath expression live in a
document.

Usage

xml_path(x)

Arguments

X A document, node, or node set.

Value

A character vector.

Examples

x <- read_xml("<foo><bar><baz /></bar><baz /></foo>")
xml_path(xml_find_all(x, ".//baz"))

xml_replace Modify a tree by inserting, replacing or removing nodes

Description

xml_add_sibling() and xml_add_child() are used to insert a node as a sibling or a child.
xml_add_parent () adds a new parent in between the input node and the current parent. xml_replace()
replaces an existing node with a new node. xml_remove () removes a node from the tree.

24 xml_serialize
Usage
xml_replace(.x, .value, ..., .copy = TRUE)
xml_add_sibling(.x, .value, ..., .where = c("after”, "before"), .copy = TRUE)
xml_add_child(.x, .value, ..., .where = length(xml_children(.x)), .copy = TRUE)
xml_add_parent(.x, .value, ...)
xml_remove(.x, free = FALSE)
Arguments
X a document, node or nodeset.
.value node to insert.
If named attributes or namespaces to set on the node, if unnamed text to assign
to the node.
.copy whether to copy the . value before replacing. If this is FALSE then the node will
be moved from it’s current location.
.where to add the new node, for xml_add_child the position after which to add, use @
for the first child. For xml_add_sibling either ‘"before"” or ‘"after"” indicating
if the new node should be before or after . x.
free When removing the node also free the memory used for that node. Note if you
use this option you cannot use any existing objects pointing to the node or its
children, it is likely to crash R or return garbage.
Details
Care needs to be taken when using xml_remove(),
xml_serialize Serializing XML objects to connections.
Description
Serializing XML objects to connections.
Usage

xml_serialize(object, connection, ...)

xml_unserialize(connection, ...)

xml_set_namespace 25

Arguments
object R object to serialize.
connection an open connection or (for serialize) NULL or (for unserialize) araw vector
(see ‘Details’).
Additional arguments passed to read_xml().
Value

For serialize, NULL unless connection = NULL, when the result is returned in a raw vector.

For unserialize an R object.

Examples

library(xml2)

X <- read_xml("<a>
<c>123</c>
<c>456</c>

")

b <- xml_find_all(x, "//b")
out <- xml_serialize(b, NULL)
xml_unserialize(out)

xml_set_namespace Set the node’s namespace

Description

The namespace to be set must be already defined in one of the node’s ancestors.

Usage

xml_set_namespace(.x, prefix = "", uri = "")
Arguments

.X a node

prefix The namespace prefix to use

uri The namespace URI to use
Value

the node (invisibly)

26 xml_text

xml_structure Show the structure of an html/xml document.

Description

Show the structure of an html/xml document without displaying any of the values. This is useful if
you want to get a high level view of the way a document is organised. Compared to xml_structure,
html_structure prints the id and class attributes.

Usage
xml_structure(x, indent = 2, file = "")
html_structure(x, indent = 2, file = "")
Arguments
X HTML/XML document (or part there of)
indent Number of spaces to ident
file a connection, or a character string naming the file to print to. If "" (the default),
cat prints to the standard output connection, the console unless redirected by
sink. If it is "|cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.
Examples

xml_structure(read_xml ("<a><c/><c/><d/>"))

rproj <- read_html(system.file("extdata"”, "r-project.html”, package = "xml2"))
xml_structure(rproj)
xml_structure(xml_find_all(rproj, ".//p"))

h <- read_html("<body><p id = 'a'></p><p class = 'c d'></p></body>")
html_structure(h)

xml_text Extract or modify the text

Description

xml_text returns a character vector, xml_double returns a numeric vector, xml_integer returns
an integer vector.

xml_type

Usage
xml_text(x, trim = FALSE)
xml_text(x) <- value
xml_set_text(x, value)
xml_double(x)

xml_integer(x)

Arguments
X A document, node, or node set.
trim If TRUE will trim leading and trailing spaces.
value character vector with replacement text.
Value

A character vector, the same length as x.

Examples

x <- read_xml("<p>This is some text. This is bold!</p>")
xml_text(x)
xml_text(xml_children(x))

x <- read_xml("<x>This is some text. <x>This is some nested text.</x></x>")
xml_text(x)
xml_text(xml_find_all(x, "//x"))

x <- read_xml("<p> Some text </p>")
xml_text(x, trim = TRUE)

xml_double() and xml_integer() are useful for extracting numeric attributes
x <- read_xml("<plot><point x='1' y='2"' /><point x='2"' y='1"' /></plot>")
xml_integer(xml_find_all(x, "//@x"))

xml_type Determine the type of a node.

Description

Determine the type of a node.

Usage

xml_type(x)

28

Arguments

X A document, node, or node set.

Examples

x <- read_xml("<foo> a <![CDATAL blah]1></foo>")
xml_type(x)
xml_type(xml_contents(x))

xml_url

xml_url The URL of an XML document

Description

This is useful for interpreting relative urls with url_relative().

Usage

xml_url(x)

Arguments

X A node or document.

Value

A character vector of length 1. Returns NA if the name is not set.

Examples

catalog <- read_xml(xml2_example(”cd_catalog.xml"))
xml_url(catalog)

x <- read_xml("<foo/>")
xml_url(x)

xml_validate 29

xml_validate Validate XML schema

Description

Validate an XML document against an XML 1.0 schema.

Usage

xml_validate(x, schema)

Arguments

X A document, node, or node set.

schema an XML document containing the schema

Value

TRUE or FALSE

Examples

Example from https://msdn.microsoft.com/en-us/library/ms256129(v=vs.110).aspx
doc <- read_xml(system.file("extdata/order-doc.xml”, package = "xml2"))

schema <- read_xml(system.file("extdata/order-schema.xml”, package = "xml2"))
xml_validate(doc, schema)

Index

as_list, 3
as_xml_document, 4

class(), 3
comment(), 3
connection, 25, 26
curl::handle(), 4
curl_download, 5

dimQ), 3

dimnames(), 3
download.file(), 4
download_html (download_xml), 4
download_xml, 4

html_structure (xml_structure), 26
httr::set_config(), 8
httr::user_agent(), 8
httr::with_config(), 8

multi_download, 5
names(), 3

read_html (read_xml), 6
read_xml, 6
read_xml(), 25
row.names(), 3

sink, 26

tsp(), 3

url_absolute, 8

url_escape, 9

url_parse, 10

url_relative (url_absolute), 8
url_relative(), 28
url_unescape (url_escape), 9

write_html (write_xml), 10

30

write_xml, 10

xml2_example, 12

xml_add_child (xml_replace), 23
xml_add_parent (xml_replace), 23
xml_add_sibling (xml_replace), 23
xml_attr, 12
xml_attr<-(xml_attr), 12
xml_attrs (xml_attr), 12
xml_attrs<-(xml_attr), 12
xml_cdata, 14

xml_child (xml_children), 14
xml_children, 14
xml_comment, 16

xml_contents (xml_children), 14
xml_double (xml_text), 26
xml_dtd, 16

xml_find_all, 17

xml_find_chr (xml_find_all), 17
xml_find_first (xml_find_all), 17
xml_find_int (xml_find_all), 17
xml_find_lgl (xml_find_all), 17
xml_find_num (xml_find_all), 17
xml_find_one (xml_find_all), 17
xml_has_attr (xml_attr), 12
xml_integer (xml_text), 26
xml_length (xml_children), 14
xml_name, 19

xml_name<- (xml_name), 19
xml_new_document, 20
xml_new_root (xml_new_document), 20
xml_ns, 21
xml_ns(), 3, 13, 15,18, 20
xml_ns_rename (xml_ns), 21
xml_ns_strip, 22
xml_ns_strip(), I8

xml_parent (xml_children), 14
xml_parents (xml_children), 14
xml_path, 23

xml_remove (xml_replace), 23

INDEX

xml_replace, 23

xml_root (xml_children), 14
xml_serialize, 24

xml_set_attr (xml_attr), 12
xml_set_attrs (xml_attr), 12
xml_set_name (xml_name), 19
xml_set_name(), 3, 13, 15, 18, 20
xml_set_namespace, 25
xml_set_text (xml_text), 26
xml_siblings (xml_children), 14
xml_structure, 26

xml_text, 26

xml_text<- (xml_text), 26
xml_type, 27

xml_unserialize (xml_serialize), 24
xml_url, 9, 28

xml_validate, 29

31

	as_list
	as_xml_document
	download_xml
	read_xml
	url_absolute
	url_escape
	url_parse
	write_xml
	xml2_example
	xml_attr
	xml_cdata
	xml_children
	xml_comment
	xml_dtd
	xml_find_all
	xml_name
	xml_new_document
	xml_ns
	xml_ns_strip
	xml_path
	xml_replace
	xml_serialize
	xml_set_namespace
	xml_structure
	xml_text
	xml_type
	xml_url
	xml_validate
	Index

