A BTEX Package for Typesetting
Crossword Puzzles and More*

Gerd Neugebauer
Brechklinge 10
69256 Mauer (Germany)
Net: gene@gerd-neugebauer.de

Documentation date: 2026/02/11

Abstract

cwpuzzle.dtx provides a package to typeset crossword puzzles. The lead-
ing philosophy is that the puzzle and the solution are typeset from the same
source.

The package can be used to produce several types of puzzles like the
classical crossword puzzle, a number puzzle, and fill-in puzzles. In addition
to the block separated puzzles the thick line delimited puzzles are supported
as well.

Contents

1 About Crossword Puzzles
1.1 Classical Crossword Puzzles
1.2 Number Crossword Puzzles
1.3 Fill-In Crossword Puzzles
1.4 Line delimited Crossword Puzzles
1.5 Solutions

2 Input of Crossword Puzzles

3 Other Grid-based Puzzles
3.1 Sudoku
3.2 Kakuro

4 Parameters and Options

5 Further Plans
5.1 General
5.2 The Related Program

*This file documents cwpuzzle.dtx version 1.14 as of 2026,/02/11.

s 0w w W

N

6 The Implementation 16

6.1 Basic Definitions and Parameters 16
6.2 The Frame of the Crossword Puzzle 16
6.3 Predefined Cell Types 20
6.4 Clues. e e 22
6.5 Numbers. e 24
6.6 Sudoku 25
6.7 Kakuro 26
6.8 Imitialization 27

1 About Crossword Puzzles

Crossword puzzles are can be a an amusing but also a challenging hobby. Unfor-
tunately at the time of this writing I am not aware of any good package to typeset
crossword puzzles with IXTEX. Thus I decided to make one which at least fits my
needs.

There are several types of crossword puzzles among. This package can only
be used to typeset several of them. The basic assumption in this package is that
puzzles are rectangular arrangements of boxes. Some of these boxes are black and
others are prepared to take single letters. Each word in the grid is enclosed in
black boxes or the outside.

Optionally there may be rectangular regions left blank inside the puzzle. They
can be used to place ads or other informative texts inside the puzzle.

1.1 Classical Crossword Puzzles

Across 1 unit of measure Down 1 n 3 unit of mea-
2 % 5 sectioning unit sure 4 non-proportional
font

The “classical” type of a crossword puzzle words are marked with numbers and
each word is accompanied with a clue which should help (or confuse) the reader.
Those clues are listed after the frame of the puzzle.

1.2 Number Crossword Puzzles

The following letters are used: AEPRSTX

1 2 3 4 5 6 7

The “number puzzle” variant contains only numbers instead of letters. Differ-
ent numbers denote different letters. There are no clues. The reader is assumed to
find a complete list of letters by filling appropriate words into the grid. Sometimes
a word is already entered into the grid to ease the start.

1.3 Fill-In Crossword Puzzles

Words of length 2: EX SP TT
Words of length 3: AST ETA
Words of length 4: PART

The “fill-in puzzle” variant consists of a frame containing only black and white
boxes. Additionally a list of words is given which have to be put into the frame
until none is left and the frame is completed.

Puzzle (env.)

1.4 Line delimited Crossword Puzzles

The crossword puzzles we have seen before had the property that words are either
delimited by the outer border or by a solid block. In addition line delimited puzzles
are common. In this case a thicker line is drawn to indicate the end of a line.

T 2 B & 5

- Across 1 unit of measure Down 1 class option 2
4 3 math function 6 list of math function 3 7 4 all
8\ tables 7 p 8 key in angle brackets 5 IATEX

Q place picture element

In the example above we can see another feature. This feature is that two
letters are circled. This can be used to indicate letters for a solution word of the
crossword puzzle.

6

1.5 Solutions

E|X
DOE E
PIA|R|T

Often it is not only desirable to typeset the unsolved crossword puzzle but also
the solution. This means that all the letters have to be filled in. This should
be possible with the same source as the questions to avoid typos or redundancies
leading to additional work.

Several variants of solutions come to mind. Primarily the solution should show
the letters and suppress any clues. One major distinction is also whether or not
the numbers of the words should be shown in the solution as well.

Finally there are the lists of letters in numbered puzzles. In the solution they
will show the letters in them as well.

BEX The following letters are used: AEPRSTX
I8 E
XIS|R|P|A|E|T
P|A|R

2 Input of Crossword Puzzles

The basic idea behind this package is that a crossword puzzle is specified in a
separate file. The actual appearance of the puzzle is controlled by several options.
Thus it should be possible to produce the unsolved and the solved puzzle from the
same source. Before we describe the various options we will have a look at the
basic environments and macros used to specified a crossword puzzle.

This package provides the environment Puzzle which typesets the frame of a

crossword puzzle. This environment takes two arguments. These arguments are
the number of columns and the number of the rows of the puzzle. This means
that essentially only rectangular puzzles can be typeset.

The example from section 1.1 has been entered as follows:

\begin{Puzzle}{5}{3}%
[* |* |[1JEIX |* |.
[[2]A1[3ISIT |* |[4]TI.
[* |[5]PIA IR IT |.
\end{Puzzle}

In this example we can see that inside the Puzzle environment there is one special
character. This is the bar |. This bar is an active character in TEX. Thus you
can think of it like a macro.

The | macro takes three arguments. The first two arguments are optional, i.e.
enclosed in brackets if present. The first optional argument denotes the number
for numbered boxes. The second optional argument specifies the formatting of the
cell.

The third argument is either empty {} or it consists of a single character. This
argument describes the action to be performed.

e If this argument is a letter then it is simply shown in the solution and
suppressed in the unsolved crossword puzzle.

o If this argument is an asterisk * then a black box is produced.

o If this argument is a dot . then this marks the end of the current row. The
next box is typeset at the beginning of the following row.

e If this argument is empty {} then a white box is typeset. This box does not
contain a letter, nor does it have a frame. This macro can be used to leave
room for larger boxed with ads. Alternatively this can be used to disable
certain boxes to make a non-rectangular crossword puzzle.

\begin{Puzzle}{5}{5}

({r 1{¥ [1[11s].

({3 I[2IMI1 |[3IDI.
41Tl M IE IS .
[{+ I[BINIE |G |.

€+ {3 1 .
\end{Puzzle}
1
2 3
4 Across: 2| 4x 5~ Down: 1 ~ 2 log-like
function 3 log-like func-
5 tion

Note that white-space is ignored after the arguments but not between the bar
and the arguments.

The formatting of the cell is controlled by the second optional argument of the
| macro. This optional argument may contain a list of several characters. Each of
these characters is interpreted from left to right. The following list describes the
meaning of the built-in characters.

8 The letter f produces a simple frame around the cell. This
| [8] [£1X is the default if nothing is specified.
The character . produces no additional rendering it can

8
be used to overwrite the default rendering which is to
|81 L.1X place a frame around the cell.
The character * produces a black box. This is the same
| (8] [¥]X effect which can be achieved by providing the character *

to be filled into the cell for the solution.

The letter O produces an oval as drawn with the BTEX
| [8][0]X macro \oval.

The letter o produces an oval inside a frame. T is is an
| [8] [0]X abbreviation for the two letters fO.
The letter t produces a frame with a thicker line at the
top. The thickness of this line is controlled by the macro
\PuzzleThickline.
The letter T produces a thicker line at the top of the
cell. The thickness of this line is controlled by the macro
\PuzzleThickline.
The letter b produces a frame with a thicker line at the
bottom. The thickness of this line is controlled by the
macro \PuzzleThickline.
The letter B produces a thicker line at the bottom of the
cell. The thickness of this line is controlled by the macro
\PuzzleThickline.
The letter 1 produces a frame with a thicker line at the
left side of the cell. The thickness of this line is controlled
by the macro \PuzzleThickline.
The letter L produces a thicker line at the left side of the
cell. The thickness of this line is controlled by the macro
\PuzzleThickline.
The letter r produces a frame with a thicker line at the
right side of the cell. The thickness of this line is con-
trolled by the macro \PuzzleThickline.
The letter R produces a thicker line at the right side of
the cell. The thickness of this line is controlled by the
macro \PuzzleThickline.
The character / produces a line crossing the cell from
[[8][/1X lower left to upper right.

The character , produces a line crossing the cell from up-
[[8][,]1X per left to lower right.

The character S produces the solution, i.e. the content

of the cell is typeset. No decorations are placed around.
| [8] [S1X For this purpose it should be combined with some other

formatting characters.

100N

| [8] [t1X

]

| (8] [T]1X

| [8] [b]X

— [[8][BIX

| (8] [11X

| (8] [LIX

| [8] [r1X

| [8] [RI1X

- N

\PuzzleDefineCell

\DefineColorCell

\Frame

Whenever you try to use an undefined specification for the cell frame a warning
is printed and the letter is ignored.

You can define additional cell renderings of your own. For this purpose the
macro \PuzzleDefineCell is provided. It takes two arguments. The first ar-
gument contains the key under which the rendering should be addressed in the
optional second argument of the macro |. The second argument contains the re-
placement text like in \newcommand. This replacement text can make use of two
arguments. They are addressed with #1 and #2. The first one contains the x
coordinate of the cell to be rendered. The second one its y coordinate.

The following example shows for instance the definition of a new cell type
addressed by the key + which draws a thick frame around the cell.

\PuzzleDefineCell{+}{
\PuzzleThicklines
\put (#1,#2) {\framebox(1,1){}}
}

Finally we show how to define a cell type consisting of a colored box. The box
itself is drawn with the help of the macro \colorbox. Thus it is necessary to load
the package color which defines this macro.

The two invocations show the combination with the f specifier. The specifier
f is the default and used only if the user does not provide the optional argument.
Thus we need to provide the f we we want to have it additionally.

\definecolor{gray}{gray}{.9}
\PuzzleDefineCell{c}{{%
\put (#1,#2) {\makebox(1,1){%

\fboxsep=0pt 1
\colorbox{gray}{\makebox(1,1){}}}} AAAW
1 —
\begin{Puzzle}{2}{2}
[[1]1[c£1X | {} l.
{3 | [2] [cIX |.
\end{Puzzle}

The macro \DefineColorCell simplifies this task by encapsulating the defi-
nition above. It has two arguments. The first one is the key character and the
second one is th name of the color to use for the background.

\definecolor{gray}{gray}{.9}
\PuzzleDefineColorCell{c}{gray}
\begin{Puzzle}{2}{2}
I{} [[1] [cflX . 2
[[2]1 [c1X I{} .
\end{Puzzle}

The macro \Frame can be used to typeset ads or other text into larger boxes
inside the frame of the crossword puzzle. For this purpose five arguments are
required. The first two arguments are used to specify the lower left corner of the
frame. The lower left corner has the coordinates 0,0 and the numbers increase
upwards and to the right.

The third argument is the width of the frame and the fourth argument is the
height of the frame measured in number of boxes. Finally, the fifth argument

PuzzleClues (env.)

Clue

\PuzzleLetters

contains the text to be typeset. Per default it is typeset in a mini-page of the
appropriate width centered horizontally and vertically.

\begin{Puzzle}{8}{6}
\Frame{2}{2}{4}{2}{\sffamily Crossword\\Puzzle}
| [1]1E]|* I [2IN |U IL [[3IL |* | [41v].
| [6]TI[6]RIT A IN |G |[7ILIE |.
A 1u I{} I{* {r 1{3 |81clc |I.
| * IL I{r I{} {3 1{3 |[E |=* |.
[[9]BIE IT | [10JA|* | [11]L|1 M
[F 1% |[12]L|A B |E L Ix
\end{Puzzle}
1 2 3 4
5 6 7
8 Across: 2 empty Down: 1n 25>
Crossword 5 A 8 carbon copy 3 logarithm 47~ 6
Puzzle (letter.sty) 9 8 11 black rectangle 7 [
limes 12 mark it 9 bold face 10 A 11
9 10 11 <
12
The clues in the classical crossword puzzle are typeset with the use of the

environment PuzzleClues. This environment takes one argument which is typeset
before the clues. The environment takes roughly the half of the text width and
make a mini-page with this width. Thus two invocations of this environment are
typeset side by side.

Alternatively if the solution is typeset then the environment PuzzleClues has
no effect.

\begin{PuzzleClues}{\textbf{Across}}/
\Clue{1}{EX}{unit of measurel}’,
\Clue{2}{ASTH\ (\ast\) }%
\Clue{5}{PART} sectioning unit}}

\end{PuzzleClues}),

\begin{PuzzleClues}{\textbf{Down}}%
\Clue{1}HETAM\ (\eta\)}%
\Clue{3}{SP}{unit of measurel}’,
\Clue{4}{TT}{nonproportional fontl}’

\end{PuzzleClues}/,

The environment PuzzleClues defines one local macro. This macro is named
\Clue and takes three arguments. The first argument is the number of the word.
This should correspond to the number in the puzzle frame. The second argument
is the word itself. Currently this not used at all. Finally the third argument is
the clue for the word.

If the unsolved puzzle is typeset then the first and the third argument are used.
Otherwise all arguments are silently absorbed.

The macro \PuzzleLetters can be used to typeset the list of used letters
in numbered crossword puzzles. It has one argument which are the used letters
(preferably in alphabetical order.

\PuzzleNumbers The macro \PuzzleNumbers can be used to generate a numbered list of boxes
for the numbered crossword puzzles. The user is supposed to collect the found
letters here.

PuzzleWords (env.) The environment PuzzleWords can be sued to typeset the list of words for a
fill-in puzzle. It takes one argument. This is the length of the words listed. For
each length there should be an invocation of this environment. The words in this
environment are supposed to be ordered alphabetically.

\Word The macro \Word is defined inside the environment PuzzleWords. It takes one
argument which is the word itself.

\begin{PuzzleWords}{2}
\Word{EX}%
\Word{SP}/,
\Word{TT}%

\end{PuzzleWords}/,

\begin{PuzzleWords}{3}
\Word{AST}%
\Word{ETA}Y,

\end{PuzzleWords}/,

\begin{PuzzleWords}{4}
\Word{PART}%

\end{PuzzleWords}/,

3 Other Grid-based Puzzles

In addition to the crossword puzzles other puzzles based on a grid can also be
typeset with this package. The basic principle is the same. Just some minor
simplifications have been provided.

3.1 Sudoku

A Sudoku is a puzzle on a 9 x 9 grid. It is filled with nine numbers. Each number
occurs only once in each row, each column and each of the nine 3 x 3 boxes.
Initially some of the numbers are shown. The goal is to fill in all missing digits.

2 9
3 119 6 |5 2
8 4
9 5
) 2 3 6
7 2
4 7
8 215)7 3
) 8

Sudoku (env.) The input for a Sudoku is given in a specialized environment. Since the size is
fixed there is no need to specify a size. We separate the cells with a pipe symbol
and mark the end of a line with a dot. To mark those cells contianing the hints
we preceed the number with an asterisk.

The Sudoku shown above is typeset from the following source:

\begin{Sudoku}
| 71%2| 4] 1| 3| 5| 6]*9] 8].
[%3] 8|*1|*9| 7|*6|*5| 4]|*2].
| 91 61 51*8] 21*4] 1] 3| 71.
| 21%9] 6] 7| 1| 8] 3|x5] 4].
x5 1| 81*2| 4[*3| 9] 7|*6].
| 41*7| 3| 6| 5] 9| 8[*2| 1].
| 61 3| 91%4| 81x7| 2| 1| 5].
%8| 4[*2|*5| 9[*1|x7]| 6]*3].
| 11+5] 71 3| 61 2| 4|*8| 9].

\end{Sudoku}

As for crossword puzzles the macro \PuzzleSolution can be used to switch
to solution mode. Then all numbers are shown. The parameters to modify the
appearance of a puzzle work here as well.

7124111356198
3181197 |6])5(4]|2
916(508121411]3|7
2196718354
511|812 |4|3]19|7|6
4171316(5(9]8|2]|1
613[904(8|7]2|1]|5
814259 |1716(3
115713624819

Since the characters in the solution are numbers only we can use the following
definition to colorize the cells in the solution.

\def\PuzzleSolutionContent#1{\fboxsep=0pt
\def\myColor{}%

\ifcase#1

\def\myColor{white}J,0
\or\def\myColor{redl}’1
\or\def\myColor{green}y2
\or\def\myColor{yellow}},3
\or\def\myColor{orange}/4
\or\def\myColor{lime}%5
\or\def\myColor{purple}/.6
\or\def\myColor{violet}7
\or\def\myColor{teal}%8
\or\def\myColor{brown}%9
\else\def\myColor{white}’*

\fi
\colorbox{\myColor}{\makebox(1,1) {#1}}}

10

With the help of the package xcolor for the predefined colors we get the following
output:

Note that this definition has to be restricted to a local block if you have solu-
tions for other puzzle types in the same document.

3.2 Kakuro

In a Kakuro the cells are filled with digits. Each “word” consists of different digits;
i.e. a number can not be repeated in a consecutive horizontal or vertical sequence
of numbers.

The hints for the “words” are the sums of the digits.

v v v v
13 37 41 7
4 » 14 »
3
13 » 3p
v
7 20
11 »
23 »
8
9 »
v
3
11 » 6 »
4
5p 7
1
Kakuro (env.) The input for a Kakuro is given in a specialized environment. It takes the

width and the height as arguments. We separate the cells with a pipe symbol and
mark the end of a line with a dot. To mark those cells contianing the initial digits
we preceed the digit with an asterisk.
The hints are enteres in angle brackets. They contain the horizontal and verti-
cal sums separated by a colon. The sums can be empty if none should be typeset.
The Kakuro shown above is typeset from the following source:

\begin{Kakuro}{6}{9}
| - |<:13> [<:37> | - |<:41> |<:7> | - |
|<4:> |*3 | 1 |<14:>] 8 | 6 | - |.
|<13:> | 9 [* 7 [<3:20>] 2 | 1 | - |.
I<11:> | 1 | 2 | 3 | 5 | - | - |

11

| - [<23:> | 6 |* 8 | 9 | - | - |

| - |<29:3>| 8 | 9 | 7 | 5 | - |

[<11:> | 2 () [<6:> |* 4 | 2 | - |

[<6:> | 1 | 4 I<7:> | 6 | 1 | - |

lfF -1 -1 - 1-=-1- 1 =1 = "
\end{Kakuro}

As for crossword puzzles the macro \PuzzleSolution can be used to switch

to solution mode. Then all numbers are shown.
PuzzleSolution

\PuzzleUnitlength=14pt
\sffamily\footnotesize

1 8|6 \begin{Kakuro}{6}{9}
7 N | = 1<:13> [<:37>] - |<:41>|<:7> | - |
|<4:> |* 3 | 1 I<14:>] 8 | 6 | - |
112]3]5 [<13:>] 9 %7 1<3:20>] 2 | 1 | - |
6 9 [<11:>] 1 | 2 | 3 | 8 | - 1 -1
) 715 | - 1<23:> | 6 [x8 9 1 - |-
| - 1<29:3>] 8 | 9 | 7 | 5 | -|
219 \[*]2 l<11:>] 2 | 9 |<6:> |x4 | 2 | - |
1]4 6|1 [<6:> 1 1 | 4 I<7:> | 6 | 1 | - |
fF -1 -1 -1-=- "1 -1 =1=1

\end{Kakuro}

4 Parameters and Options

The package cwpuzzle can be controlled by a rich set of macros. In addition
some settings can be performed with style options. The following style options
are recognized:

numbered The solution numbering is turned on.

nocenter The puzzle is not typeset in a centered paragraph of its own.
unboxed The clues are not enclosed in mini-pages and centered on the page.
normalsize The puzzle is set in normalsize. This is the default.

small The puzzle is set in small. The size of the cell and the font size of the
solution are adjusted accordingly.

large The puzzle is set in large. The size of the cell and the font size of the
solution are adjusted accordingly.

huge The puzzle is set in huge. The size of the cell and the font size of the
solution are adjusted accordingly.

Huge The puzzle is set in Huge. The size of the cell and the font size of the
solution are adjusted accordingly.

german

12

\PuzzleUnitlength

\PuzzleBlackBox

\PuzzleFont
\PuzzleNumberFont
\PuzzleClueFont

\PuzzleWordsText

\PuzzleLettersText

\PuzzleSolution

\PuzzleUnsolved

\PuzzlePutNumber

ngerman The build in texts are switched to german variants. The defaults are
English. This options is also in effect when given to the document class.
The style inherits it from there.

The style options can be passed to the style in the usual way:

\usepackage [nocenter ,unboxed, small]{cwpuzzle}

The fine tuning can be achieved with the help of several macros. Those macros
are described below.

The length \PuzzleUnitlength determines the width and height of each single
box in the frame of a crossword puzzle. The default value is 20pt.

The macro \PuzzleBlackBox contains the commands to produce the black
boxes. It has to produce at most of width and height of \PuzzleUnitlength. Per
default it just produces a black rectangle of this size.

The following list shows some variants which can be achieved by redefining the
macro \PuzzleBlackBox.

. \renewcommand{\PuzzleBlackBox}{\rule{.75\PuzzleUnitlength}%
{.75\PuzzleUnitlength}}

@ \renewcommand{\PuzzleBlackBox}{\framebox (.75, .75){%
\framebox(.5,.5){}}}

Additional effects can be achieved by using shades of gray (with the graphics
package).

The macro \PuzzleFont contains the font changing command issued before
the frame of the crossword puzzle.

The macro \PuzzleNumberFont contains the font changing command issued
before a number in the frame of the crossword puzzle is typeset.

The macro \PuzzleClueFont contains the font changing command issued be-
fore the clues are typeset.

The macro \PuzzleWordsText contains the text which is typeset at the begin-
ning of the environment PuzzleWords. It has one argument which contains the
length of the words listed.

The macro \PuzzleLettersText contains the text which is typeset at the
beginning of the macro \PuzzleLetters.

The macro \PuzzleSolution arranges everything that the following puzzles
are typeset in the “solution” mode, i.e. the letters are shown and the clues are
suppressed.

This macros has one optional argument which has to be true or false. This
argument determines whether or not the numbers should also be shown in the
solution. The default is false which means that the numbers are suppressed in
the solution.

The macro \PuzzleUnsolved arranges everything that the following puzzles
are typeset in the “unsolved” mode, i.e. the letters are suppressed and the clues
are shown.

The macro \PuzzlePutNumber is a configuration macro which typesets the
number in a cell. The first argument is the x coordinate. The second argument is
the y coordinate. The third argument is the number to be typeset. The coordinates
are integer numbers. The coordinate (0,0) is the lower left corner.

13

\PuzzleHook

\PuzzleLineThickness
\PuzzlePre

\PuzzlePost
\PuzzleCluePre
\PuzzleCluePost
\PuzzleContent
\PuzzleSolutionContent

\SudokuLinethickness
\KakuroNumberFont

\KakuroHintType

The macro \PuzzleHook is called at the end of the Puzzle environment. It
can be used to place additional graphical elements in the puzzle frame.

The following example shows a crossword puzzle which we have seen before
and the definition for the \PuzzleHook.

1

\newcommand\PuzzleHook{

2 : \put (0,2){\line(1,-1){2}}
/ \put (0,3){\line(1,1){2}}
\put (5,2) {\line(-1,-1){2}}
5 \put (5,3){\1ine(-1,1){2}}
}

The macro \PuzzleLineThickness contains the width of the line used to frame
the cells.

This macro contains the code to be inserted before a puzzle is typeset. It is
initialized to begin a new paragraph and center the puzzle.

This macro contains the code to be inserted after a puzzle is typeset. It is
initialized to end the paragraph and center the puzzle.

This macro contains the code to be inserted before the clues are typeset in
normal mode. It is initialized to end the paragraph and center the puzzle.

This macro contains the code to be inserted after the clues are typeset in
normal mode. It is initialized to end the paragraph and center the puzzle.

This macro contains the content of a cell during formatting this cell. This
enables the cell formating macro to access it.

This macro processes the letter in solution mode. It takes one argument, the
letter. This macro can be redefinied to achieve special effects for the solution.

This macro contains the thickness of the thick lines in a sudoku.

This macro contains the definition of the font switching macros used when
typesetting a Kakuro hint.

This macro contains the cell type used when typesetting a Kakuro hint. It can
be used to redefine the appearance.

5 Further Plans

5.1 General

Maybe I will add a mode for further variants of crossword puzzles sometimes.
Maybe I can add support for further languages if someone provides the appro-
priate texts. Contributions are welcome.

5.2 The Related Program

There is a related program written in Perl/Tk. This program can be used to
manually construct crossword puzzles and save them in a format suitable for this
package. Other features include the creation of a proper frame and filling with
words.

Right now I have not prepared a distribution of this program yet since this
program requires dictionaries which I can not distribute legally.

14

The crossword examples in this documentation have been computed with the
help of the cwp program.

15

\PuzzleClueFont

\PuzzleFont

\PuzzleNumberFont

\PuzzleHook

6 The Implementation

The crossword puzzle is basically implemented with the BKTEX picture environ-
ment. This gives us enough flexibility and provides an high enough abstraction
such that we do not have to fiddle around with to many low level details.

The natural unit in a crossword puzzle is a box which is empty or black. Thus
the unitlength is set to the width (and height) of such a box.

6.1 Basic Definitions and Parameters

First we identify this package.
1 \ProvidesPackage{cwpuzzle}[\filedate gene]

Next we load the package amssymb neended for the triangles used in Kakuros.
2 \RequirePackage{amssymb}
The dimen register \PuzzleUnitlength stores the height and width of a box
of the puzzle. The default is 20pt which is also shown in this documentation.

3 \newdimen\PuzzleUnitlength
4 \PuzzleUnitlength=20pt

The macro \PuzzleClueFont contains font changing commands issued before the
clues are typeset.

5 \newcommand\PuzzleClueFont{\footnotesize}

The macro \PuzzleFont contains font changing commands issued before the puz-
zle is typeset.

6 \newcommand\PuzzleFont{\rmfamily\normalsize}

The macro \PuzzleNumberFont contains font changing commands issued before
the numbers in a puzzle are typeset.

7 \newcommand\PuzzleNumberFont{\sffamily\scriptsize}

Puzzles are typeset with the IATEX picture environment. At the end of this en-
vironment the macro \PuzzleHook is called. The package produces an empty
default. Users may want to use this place to typeset additional elements on top
of the puzzle.

The puzzle uses a \unitlength of \PuzzleUnitlength. Thus it is rather easy
to address the boxes in the puzzle.

8 \let\PuzzleHook=\relax

6.2 The Frame of the Crossword Puzzle

To describe the coordinates where the next box should be typeset we need two
counters for the coordinates. These counters are now allocated (even though we
could use temporary counters from KTEX).

9 \newcount\Puzzle@X
10 \newcount\Puzzle@Y

16

Puzzle (env.)

\PuzzleLineThickness

\PuzzlePre

\PuzzlePost

11 \begingroup

12 \catcode‘\|=13

13 \gdef\Puzzle@@solution{

14 \let|=\Puzzle@Box@@solution

15 \let\Frame=\Puzzle@Frame@@solution
16 }

17 \gdef\Puzzle@@normal{

18 \let|=\Puzzle@Box@@normal

19 \let\Frame=\Puzzle@Frame@@normal
20 }

21 \endgroup

The environment Puzzle typesets the frame of a crossword puzzle. It is im-
plemented utilizing a picture environment. The unitlength is set to the
\PuzzleUnitlength. Thus the navigation is fairly easy. The basic unit is width
and height of a single box.

The macros which are local to the environment are activated. Thus we avoid
collisions with other packages where the same macro names might be used.

Finally the counter which contain the x and the y coordinate have to be ini-
tialized.

The last action in the picture environment is the expansion of the macro
\PuzzleHook. This can be used to include additional material in the picture
environment. Primarily I have use this to include the ads. But now there is the
macro \Frame for this purpose.

22 \newenvironment{Puzzle} [2] {\PuzzlePre
23 \catcode‘\|[=13

24 \@nameuse{Puzzle@@\Puzzle@TYPE}),

25 \unitlength=\PuzzleUnitlength

26 \linethickness{\PuzzleLineThickness}/,
27 \PuzzleQY=#2

28 \begin{picture} (#1,#2)

29 \Puzzle@Box@@normal.

30 H%

31 \PuzzleHook

32 \end{picture}\PuzzlePost

33 }

The macro \PuzzleLineThickness contains the width of the line used to frame
the cells.

34 \newcommand\PuzzleLineThickness{.25pt}

This macro contains the code to be inserted before a puzzle is typeset. It is
initialized to begin a new paragraph and center the puzzle.

35 \newcommand\PuzzlePre{/,

36 \par\noindent\mbox{}\hfill

37}

This macro contains the code to be inserted after a puzzle is typeset. It is initial-
ized to end the paragraph and center the puzzle.

38 \newcommand\PuzzlePost{%

39 \hfill\null\par\noindent

40 }

17

\Puzzle@Frame@@normal

\Puzzle@Frame@@solution

\PuzzleBlackBox

\Puzzle@Box@@normal

\Puzzle@Box@@normal@

The macro Puzzle@Frame is used to place additional rectangular regions into the
puzzle frame. This frame can contain arbitrary text which is typeset in a centered
environment.

This macro takes five arguments. The first two arguments are the coordinates
of the upper left corner of the frame. The coordinates are logical coordinates
starting from the lower left corner of the puzzle. The next two arguments are the
width and the height of the frame given in the number of boxes covered. Finally
the fifth argument contains the text which should appear in this frame.

41 \newcommand\Puzzle@Frame@@normal [6] {\put (#1, #2) {\framebox (#3, #4) {%
42 \begin{minipage}{#3\unitlength}\begin{center} #5
43 \end{center}\end{minipage}}}}

For the solution the framed ads are simply ignored.
44 \newcommand\Puzzle@Frame@@solution[5]{}

The macro \PuzzleBlackBox is called to typeset the black boxes. It should pro-
duce a box of at most width and height of \PuzzleUnitlength.

45 \newcommand\PuzzleBlackBox{\rule{\PuzzleUnitlength}{\PuzzleUnitlength}}

The macro \Puzzle@Box@@normal performs all tasks when a box should be typeset
in “normal” mode. The arguments are evaluated and the appropriate type of box
typeset or other actions performed.

46 \newcommand\Puzzle@Box@@normal [1] [1{%

47 \def\Puzzle@tmp@{#1}Y

48 \Puzzle@Box@@normalQ@

49 }

The macro \Puzzle@Box@@normal®@ performs all tasks when a box should be type-
set in “normal” mode. The arguments are evaluated and the appropriate type of
box typeset or other actions performed.

50 \newcommand\Puzzle®@Box@@normal@[2] [f]1{%

51 \def\PuzzleContent{#2}/,

52 \def\Puzzle@tmp{#2}/,

53 \if\Puzzle@tmp.

54 \Puzzle@X=0

55 \advance\Puzzle@Y-1

56 \else

57 \ifx\Puzzle@tmp\Qempty

58 \else

59 \if\Puzzle@tmp*

60 \Puzzle@Cell@Loop *#1{}/,
61 \else

62 \Puzzle@Cell@Loop #1{}%
63 \fi

64 \fi

65 \ifx\@empty\Puzzle@tmp@\else
66 \PuzzlePutNumber{\Puzzle@X}{\Puzz1le@Y}{\Puzzle@tmpQ@}’
67 \fi

68 \advance\Puzzle@X 1

69 \fi

70 }

18

\PuzzlePutNumber

\Puzzle@Cell@Loop

\Puzzle@Box@@solution

\Puzzle@Box@@solution@

The macro \PuzzlePutNumber is a configuration macro which typesets the number
in a cell. The first argument is the x coordinate. The second argument is the y
coordinate. The third argument is the number to be typeset.

71 \def\PuzzlePutNumber#1#2#3{J,

72 \put (#1,#2) {\makebox (1, .95) [t1]{\PuzzleNumberFont\,#3}}/

73 }

The macro \Puzzle@Cell@Loop processes its arguments until an empty argument
is found. For each argument it is tried to invoke the corresponding cell drawing
macro.

74 \def\Puzzle@Cell@Loop#1{/

75 \def\PuzzleQ@tmp{#1},
76 \ifx\Puzzle@tmp\Qempty

77 \let\Puzzle@tmp\relax

78 \else

79 \expandafter\ifx\csname Puzzle@Cell@@#1\endcsname\relax

80 \typeout{cwpuzzle: Cell type #1 is undefined. I am ignoring itl}}
81 \else

82 \csname Puzzle@Cell@@#1\endcsname{\Puzzle@X}{\Puzzle@Y}/,
83 \fi

84 \let\Puzzle@tmp\Puzzle@Cell@Loop

85 \fi

86 \Puzzle@tmp

87 }

The macro \Puzzle@Box@@solution performs all tasks when a box should be
typeset in “solution” mode. The arguments are evaluated and the appropriate
type of box typeset or other actions performed.

88 \newcommand\Puzzle®@Box@@solution[1] [1{%

89 \def\Puzzle@tmp@{#11}J,

90 \Puzzle@Box@@solution®

91 }

The macro \Puzzle@Box@@solution® performs all tasks when a box should be
typeset in “solution” mode. The arguments are evaluated and the appropriate
type of box typeset or other actions performed.
92 \newcommand\Puzzle@Box@@solution®@[2] [£]1{%

93 \def\Puzzle@tmp{#2}/,
94 \if\Puzzle@tmp.

95 \Puzzle@X=0

96 \advance\Puzzle@Y-1

97 \else

98 \ifx\Puzzle@tmp\Qempty

99 \else

100 \if\Puzzle@tmp*

101 \Puzzle@Cell@Loop *#1{}/,
102 \else

103 \Puzzle@Cell@Loop #1{}%
104 \put (\Puzzle@X, \Puzzle@Y) {\PuzzleSolutionContent{#2}1}7
105 \fi

106 \fi

107 \def\Puzzle@tmp{#1}/

108 \ifx\Puzzle@tmp\Q@empty\else

19

\PuzzleSolutionContent

\PuzzleDefineCell

\PuzzleDefineColorCell

\PuzzleThickine

\Puzz1e@Cell@QT

\Puzzle@Cell@@t

109 \ifPuzzle@SolutionNumbered

110 \PuzzlePutNumber{\Puzzle@X}{\Puzzle@Y}{\Puzzle@tmp@}/
111 \fi

112 \fi

113 \advance\Puzzle@X 1

114 \fi

115 }

The macro \PuzzleSolutionContent procees the character in solution mode. Per
default it converts the argument to upper case and sets it in a box of size 1 x 1.

116 \def\PuzzleSolutionContent#1{\makebox(1,1){\uppercase{#1}}}

6.3 Predefined Cell Types

In this section a series of frame types are defined.

The macro \PuzzleDefineCell is a user command to define a new cell type. The

first argument contains the key under which the cell type should be addressed.

This key should be expandable and should result into a single letter. Special

effects can be achieved with keys constituted of non letters or several characters.
The second argument contains the code to be stored for the key given.

117 \newcommand\PuzzleDefineCell [2] {

118 \global\@namedef{Puzzle@Cell@Q#1}##1##2{#2},

119 }

120 \newcommand\PuzzleDefineColorCell [2]{

121 \global\@namedef{Puzzle@Cell@Q#1}##1##2{},

122 \fboxsep=0pt

123 \put (##1,##2) {\makebox (1, 1) {\colorbox{#2}{\makebox(1,1){}}}}
124 ivA

125 }

The parameter \PuzzleThickine contains the expansion text to be inserted.
whenever a thick line is required. This means that this macro arranges everything
that a thick line is drawn. Usually it contains an invocation to \linethickness.
It can be redefined to achieve other effects like even thicker lines or colored lines.
Note that the macro is used inside a group in the predefined cell types.

126 \def\PuzzleThickline{\linethickness{2pt}}

The letter T produces a thicker line at the top of the cell. The thickness of this
line is controlled by the macro \PuzzleThickline.

127 \PuzzleDefineCell{T}{{%

128 \advance#2 1

129 \PuzzleThickline

130 \put (#1,#2){{\1ine(1,0){1}}}

131 }}

The letter t produces a frame with a thicker line at the top. The thickness of this
line is controlled by the macro \PuzzleThickline.

132 \PuzzleDefineCell{t}{{%
133 \put (#1,#2) {\framebox(1,1){}}

20

\Puzz1le@Cell@OB

\Puzzle@Cell@@b

\Puzzle@Cell@Q1l

\Puzzle@Cell@QL

\Puzzle@Cell@Qr

\Puzz1le@Cell@GOR

134 \advance#2 1

135 \PuzzleThickline

136 \put (#1,#2) {{\1line(1,0){1}}}
137 }}

The letter B produces a thicker line at the bottom of the cell. The thickness of
this line is controlled by the macro \PuzzleThickline.

138 \PuzzleDefineCell{B}{{%

139 \PuzzleThickline

140 \put (#1,#2){{\1line(1,0){1}}}

141 }}

The letter b produces a frame with a thicker line at the bottom. The thickness of
this line is controlled by the macro \PuzzleThickline.

142 \PuzzleDefineCell{b}{{%

143 \put (#1,#2) {\framebox(1,1){}}
144 \PuzzleThickline

145 \put (#1,#2){{\1line(1,0){1}}}
146 }}

The letter 1 produces a frame with a thicker line at the left side of the cell. The
thickness of this line is controlled by the macro \PuzzleThickline.

147 \PuzzleDefineCell{1}{{%

148 \put (#1,#2){\framebox(1,1){}}

149 \PuzzleThickline

150 \put (#1,#2){{\1line(0,1){1}}}

151 }}

The letter L produces a thicker line at the left side of the cell. The thickness of
this line is controlled by the macro \PuzzleThickline.

152 \PuzzleDefineCell{L}{{%

153 \PuzzleThickline

154 \put (#1,#2){{\1ine(0,1){1}}}

155 }}

The letter r produces a frame with a thicker line at the right side of the cell. The
thickness of this line is controlled by the macro \PuzzleThickline.

156 \PuzzleDefineCell{r}{{%

157 \put (#1,#2) {\framebox(1,1){}}

158 \advance #1 1

159 \PuzzleThickline

160 \put (#1,#2){{\1ine(0,1){1}}}

161 }}

The letter R produces a thicker line at the right side of the cell. The thickness of
this line is controlled by the macro \PuzzleThickline.

162 \PuzzleDefineCell{R}{{%

163 \advance #1 1

164 \PuzzleThickline

165 \put (#1,#2){{\1ine(0,1){1}}}
166 }}

21

\Puzzle@Cell@Qf

\Puzzle@Cell@@S

\Puzzle@Cell@@.

\Puzz1le@Cell@Q0

\Puzzle@Cell@@o

\Puzzle@Cell@@x*

\Puzzle@Cell@Q/

\Puzzle@Cell@@

\Puzzle@Clue@@normal

\Puzzle@Clue@@solution

The letter f produces a simple frame around the cell. This is the default if nothing
is specified.

167 \PuzzleDefineCell{f}{{%

168 \put (#1,#2){\framebox(1,1){}}

169 }}

The letter S produces the solution without any other formatting around it.

170 \PuzzleDefineCell{S}{{%
171 \put (#1,#2) {\makebox (1, 1) {\expandafter\uppercase{\PuzzleContent}}}
172 }}

The character . produces no additional rendering it can be used to overwrite the
default rendering which is to place a frame around the cell.

173 \PuzzleDefineCell{.}{}

The letter O produces an oval as drawn with the INTEX macro \oval.

174 \PuzzleDefineCell{0}{{%
175 \put (\the#1.5,\the#2.5){\oval(1,1){}}
176 }}

The letter o produces an oval inside a frame. T is is an abbreviation for the two
letters fO.

177 \PuzzleDefineCell{o}{{%

178 \put (#1,#2) {\framebox(1,1){}}

179 \put (\the#1.5,\the#2.5){\oval(1,1){}}
180 }}

The letter * produces a solid black box.

181 \PuzzleDefineCell{*}{%
182 \put (#1,#2) {\framebox(1,1) {\PuzzleBlackBox}}
183 }

The character / produces a line crossing the cell from lower left to upper right.

184 \PuzzleDefineCell{/}{{%
185 \put (#1,#2){{\1line(1,1){1}}}
186 }}

The character , produces a line crossing the cell from upper left to lower right.

187 \PuzzleDefineCell{,}{{%

188 \advance#2 1

189 \put (#1,#2) {{\1line(1,-1){1}}}
190 }}

6.4 Clues

The first and the third argument are shown as clue. This macro is used for unsolved
puzzles.

191 \newcommand\Puzzle@Clue@@normal [3] {\textsf{#1} #3 }

In solutions clues are simply suppressed. Thus all three arguments are discarded.
192 \newcommand\Puzzle@Clue@@solution[3]{}

22

Puzzle@Clues@@normal (env.)

\PuzzleCluePre

\PuzzleClueWidth

\PuzzleCluePost

Puzzle@Clues@@solution (env.)

\PuzzleWordsText

Puzzle@Words@@normal (env.)

Puzzle@Words@@solution (env.)

The environment Puzzle@Clues@0@normal is mapped to PuzzleClues in “normal”
mode. It typesets its contents in a mini-page of approximately half text width.
193 \newenvironment{Puzzle@Clues@@normall} [1]{}

194 \let\Clue\Puzzle@Clue@@normal

195 \PuzzleCluePre

196 \PuzzleClueFont{#11}/,

197 }{\PuzzleCluePost }

The macro \PuzzleCluePre contains the code which is inserted before the clues
are typeset in normal mode.

198 \newcommand\PuzzleCluePre{/,

199 \null\hfill

200 \begin{minipage} [t]{\PuzzleClueWidth}V

201 }

The macro \PuzzleClueWidth contains the default width of the PuzzleClue envi-
ronment.

202 \newcommand\PuzzleClueWidth{.45\textwidth}

The macro \PuzzleCluePost contains the code which is inserted after the clues
are typeset in normal mode.

203 \newcommand\PuzzleCluePost{

204 \end{minipage}\hfill\null

205 }

The environment Puzzle@Clues@8solution is mapped to PuzzleClues in “solu-
tion” mode. It just suppresses any output.

206 \newenvironment{Puzzle@Clues@@solution} [1]{%

207 \let\Clue\Puzzle@Clue@@solution

208 H}

The macro \PuzzleWordsText is the text typeset at the beginning of the envi-
ronment PuzzleWords. It takes one argument which is the length of the words
listed.

209 \newcommand\PuzzleWordsText [1]{Words of length #1: }

The environment Puzzle@Words@@normal will be mapped to the environment
PuzzleWords in “normal” mode. It just arranges that words are typeset after
the \PuzzleWordsText has shown the length of the words. Finally a new para-
graph is started.

210 \newenvironment{Puzzle@Words@@normall} [1]{%

211 \PuzzleWordsText{#11}%

212 \let\Word\relax

213 }\par}

The environment Puzzle@Words@@solution will be mapped to the environment
PuzzleWords in “solution” mode. It arranges things that the contents is silently
ignored.

214 \newenvironment{Puzzle@Words@@solution} [1]{%

215 \newcommand\Word [1]{}%

216 M2

23

\PuzzleNumbers

\Puzzle@Numbers

\PuzzleLettersText

\PuzzleLetters

\Puzzle@TYPE

\PuzzleSolution

6.5 Numbers

The macro \PuzzleNumbers will produce a list of boxes with numbers for letters.
It is intended for numbered crossword puzzles.

217 \newcommand\PuzzleNumbers [1] {\begingroup

218 \@nameuse{Puzzle@Q\Puzzle@TYPE}/,

219 \Puzzle@Y=0

220 \Puzzle@X=1

221 \unitlength=\PuzzleUnitlength

222 \Puzzle@Numbers#1.\endgroup}

The macro \Puzzle@Numbers loops through the arguments until it finds a dot.
For each argument it produces a box, either with the numbers or with the letters
or both, depending on the current settings.

The loop is implemented via recursion. The box is typeset by the | macro
which takes care of the current settings. For this purpose this character has to be
made active temporarily.

223 \begingroup
224 \catcode ‘\|=13
225 \gdef\PuzzleONumbers#1{J,

226 \if#1.

227 \let\next\relax

228 \else

229 \begin{picture}(1,1)

230 \xdef\X{\the\Puzzle@X}/,
231 \Puzzle@X=0

232 | \XT{#1}%

233 \end{picturel}y,

234 \let\next\Puzzle@Numbers
235 \advance\Puzzle@X 1

236 \fi

237 \next

238 }

239 \endgroup

The macro \PuzzleLettersText contains the text typeset at the beginning of the
\PuzzleLetters environment.

240 \newcommand\PuzzleLettersText{The following letters are used: }

The macro \PuzzleLetters is intended to show the letters used in a numbered
crossword puzzle. The argument is the (sorted) list of characters used.

241 \newcommand\PuzzleLetters[1]{\PuzzleLettersText #1\par}

The macro \Puzzle@TYPE contains the type of the puzzle. It is used find the
appropriate initialization macro.

242 \newcommand\Puzzle@TYPE{normal}

The macro \PuzzleSolution arranges everything that the following puzzles are
typeset in the “solution” mode, i.e. the letters are shown and the clues are sup-
pressed.

This macros has one optional argument which has to be true or false. This
argument determines whether or not the numbers should also be shown in the

24

solution. The default is false which means that the numbers are suppressed in
the solution.

243 \newcommand\PuzzleSolution[1] [false]{%

244 \@nameuse{Puzzle@SolutionNumbered#1}/,

245 \let\Kakuro@HINT\Kakuro@nohint

246 \let\PuzzleClues\Puzzle@Clues@@solution

247 \let\endPuzzleClues\endPuzzle@Clues@@solution
248 \let\PuzzleWords\Puzzle@Words@@solution

249 \let\endPuzzleWords\endPuzzle@Words@@solution
250 \def\Puzzle@TYPE{solution}

251 }

\PuzzleUnsolved The macro \PuzzleUnsolved arranges everything that the following puzzles are
typeset in the “unsolved” mode, i.e. the letters are suppressed and the clues are
shown.

252 \newcommand\PuzzleUnsolved{’

253 \let\Kakuro@HINT\Kakuro@hint

254 \let\PuzzleClues\Puzzle@Clues@®@normal

255 \let\endPuzzleClues\endPuzzle@Clues@@normal
256 \let\PuzzleWords\Puzzle@Words@@normal

257 \let\endPuzzleWords\endPuzzle@Words@@normal
258 \xdef\Puzzle@TYPE{normall}}

The boolean Puzzle@SolutionNumbered determines whether or not the solu-
tion should contain numbers. Initially it is set to “false”.

259 \newif\ifPuzzle@SolutionNumbered
260 \Puzzle@SolutionNumberedfalse

6.6 Sudoku

The challenge for the sudoku is to implement a convenient input syntax.

Sudoku (env.) The environemnt Sudoku is used to typeset the puzzle. The implementation defines
the begin and end macro separately.
261 \begingroup
262 \catcode‘\|=13
263 \gdef\Sudoku{\begin{Puzzle}{9}{9}%

264 \PuzzleFont

265 \def\PuzzleContent{}

266 \let\Puzzle@pipe=1%

267 \def\PPa{\Puzzle@pipe[] [£S]}%

268 \def |##1{\ifx##1x\1let\next\PPa\else

269 \Puzzle@pipe{##1}\let\next\relax\fi\next}
270}

271 \endgroup

The macro \endSudoku contains the code to be expanded at the end of the
environment. It draws the field with the 3 x 3 boxes.

272 \gdef\endSudoku{¥%

273 \multiput(0,0) (1,0)9{\framebox(1,1){}}
274 \multiput(0,1) (1,0)9{\framebox(1,1){}}
275 \multiput(0,2) (1,0)9{\framebox(1,1){}}
276 \multiput(0,3) (1,0)9{\framebox(1,1){}}

25

277 \multiput(0,4) (1,0)9{\framebox(1,1){}}
278 \multiput(0,5) (1,0)9{\framebox(1,1){}}
279 \multiput(0,6) (1,0)9{\framebox(1,1){}}
280 \multiput(0,7) (1,0)9{\framebox(1,1){}}
281 \multiput(0,8) (1,0)9{\framebox(1,1){}}
282 \linethickness{\SudokuLinethickness}/
283 \put(0,0) {\framebox(9,9){}}

284 \put(3,0){\framebox(3,9){}}

285 \put(0,3){\framebox(9,3){}}

286 \end{Puzzle}}

\SudokuLinethickness The macro \SudokuLinethickness contains the thickness od thick lines in a Su-
doku.

287 \newcommand\SudokuLinethickness{2pt}

6.7 Kakuro

\KakuroNumberFont The macro \KakuroNumberFont is used to typeset the hints, i.e. the horizontal
and vertical sums.

288 \newcommand\KakuroNumberFont{\sffamily\tiny}

\Kakuro@cell The macro \Kakuro@cell is used to typeset the cells. It analyzes the argument
and acts accordingly.

289 \def\Kakuro@cell#1{J,

290 \ifx#1. \def\next{\Puzzle@pipe.}%
201 \else\ifx#1< \let\next\Kakuro@HINT

292 \else\ifx#1* \let\next\Kakuro®@always
293 \else\ifx#1- \let\next\KakuroQempty
294 \else\Puzzle@pipe#1 \let\next\relax

205 \fi\fi\fi\fi

296 \next

297 Y

\Kakuro®@always The macro \Kakuro@always is used to draw a cell with an inital number.
298 \def\Kakuro@always{\Puzzle@pipe [] [£S]}%

\Kakuro@empty The macro \Kakuro@empty is used to drae an empty cell.
299 \def \Kakuro@empty{\Puzzle@pipe{}}/

\Kakuro@hint The macro \Kakuro@hint is used to draw hints.

300 \def\Kakuro@hint#1:#2>{J,

301 \def\x{#2}%

302 \ifx\x\empty\else

303 \put (\Puzzle@X,\Puzzle@Y){%

304 \makebox (1, .8) [r]{\parbox{.95\unitlength}{/

305 \raggedright\KakuroNumberFont
306 \blacktriangledown\\#2}}}
307 \fi

308 \def\x{#11}%

309 \ifx\x\empty\else

310 \put (\Puzzle@X,\Puzzle@Y){%

311 \makebox(1,1.2){\parbox{.95\unitlength}{%
312 \raggedleft\KakuroNumberFont

26

\Kakuro@nohint

\Kakuro@HINT

Kakuro (env.)

\KakuroHintType

313 #1 \blacktriangleright\\\mbox{}}}}
314 \fi
315 \Puzzle@pipe[] [\KakuroHintTypel{ }}%

The macro \Kakuro@nohint is used to suppress hints in solution mode.

316 \def\Kakuro@nohint#1:#2>{}
317 \Puzzle@pipe[]1[,1{ }}%

The macro \Kakuro@HINT contains the definition to be used to typeset hints. This
indirection is needed to suppress hints in solution mode.

318 \1let\Kakuro@HINT\Kakuro@hint

The environemnt Kakuro is used to typeset the puzzle. The implementation defines
the begin and end macro separately to cope with catcode changes.

319 \begingroup

320 \catcode‘\|=13

321 \gdef\Kakuro#1#2{\begin{Puzzle}H#1}{#2}/

322 \catcode‘\|=13

323 \let\Puzzle@pipe=|

324 \let|=\Kakuro@cell

325 }

326 \endgroup

The macro \endKakuro contains the code to be expanded at the end of the
environment.

327 \def\endKakuro{\end{Puzzlel}}

The macro \KakuroHintType contains the cell type for typesetting hint cells. It
can be used to achieve a different look and feel.

328 \def\KakuroHintType{,}

6.8 Initialization

Finally we arrange that the default behavior is to typeset an unsolved crossword
puzzle.

329 \PuzzleUnsolved

Now, that everything is in place we can arrange some package options.

330 \DeclareOption{numbered}{\Puzzle@SolutionNumberedtrue}
331 \DeclareOption{nocenter}{\let\PuzzlePre=\relax
332 \let\PuzzlePost=\relax}

333 \DeclareOption{unboxed}{\let\PuzzleCluePre=\relax
334 \let\PuzzleCluePost=\relax}

335 \DeclareOption{normalsize}{\PuzzleUnitlength=20pt
336 \def\PuzzleFont{\rmfamily\normalsizel}}

337 \DeclareOption{small}{\PuzzleUnitlength=16pt

338 \def\PuzzleFont{\rmfamily\small}}

339 \DeclareOption{large}{\PuzzleUnitlength=24pt

340 \def\PuzzleFont{\rmfamily\largel}}

341 \DeclareOption{huge}{\PuzzleUnitlength=32pt
342 \def\PuzzleFont{\rmfamily\huge}
343 \def\PuzzleNumberFont{\large}

27

344
345 }

\def\PuzzleClueFont{\large}

346 \DeclareOption{Huge}{\PuzzleUnitlength=38pt

347 \def\PuzzleFont{\rmfamily\Huge}
348 \def\PuzzleNumberFont{\Large}
349 \def\PuzzleClueFont{\Largel}

350 }

351 \DeclareOption{german}{%
352
353
354 }
355 \DeclareOption{ngerman}{%
356
357
358 }
359 \ProcessOptions\relax

That’s all.

Change History

1.10
General: Font changing macros
modernized 8, 27
\Kakuro@cell: Font changing
macros modernized 26
\KakuroNumberFont: Font
changing macros modernized 26
\PuzzleFont: Font changing
macros modernized 16
\PuzzleNumberFont: Font
changing macros modernized 16
1.13
Sudoku: Minor fix for the solution
mode 25
1.14
General: huge option added 27
\PuzzleClueWidth:
PuzzleClueWidth introduced. 23
1.3
General: First public release. 1
1.4
\Puzzle@Box@@normal: Minor bug
fix. Using \ifx instead of \if. 18
\Puzzle@Box@@solution: Minor
bug fix. Using \ifx instead of
\Nif. L 19
1.5
\Puzzle@Box@@normal:
Reimplemented to cope with
two optional arguments. 18

28

\renewcommand\PuzzleWordsText [1] {Worte der L\"ange #1: }J
\renewcommand\PuzzleLettersText{Benutzte Buchstaben: 1}

\renewcommand\PuzzleWordsText [1]{Worte der L\"ange #1: 1}/
\renewcommand\PuzzleLettersText{Benutzte Buchstaben: }J,

\Puzzle@Box@@normal®@: Extracted
from \Puzzle@Box@@normal.
\Puzzle@Box@@solution:
Reimplemented to cope with
two optional arguments.
\Puzzle@Box@@solution®:
Reimplemented to cope with
two optional arguments.
\Puzzle@Cell@0@: New
\Puzzle@Cell@@*: New
\Puzzle@Cell@Q.:
\Puzzle@Cell@Q/:
\Puzz1le@CellQ®B:
\Puzzle@Cell@@b:
\Puzzle@Cell@Qf:
\Puzzle@Cell@QL:
\Puzzle@Cell@Q1:
\Puzzle@Cell@Q0:
\Puzzle@Cell@Qo:
\Puzzle@Cell@GR:
\Puzzle@Cell@Or:
\Puzzle@Cell@QT:
\Puzzle@Cell@Qt:
\Puzzle@Cell@Loop: New
\PuzzleDefineCell: New
\PuzzleDefineColorCell: New
\PuzzleLineThickness: New
\PuzzlePost: New
\PuzzlePre: New
\PuzzlePutNumber: New

18

1.6
General: Several style options
defined
1.7
\Puzzle@Box@@normal®:
\PuzzleContent added to
transport the letter to the
formatting macro.
\Puzz1le@Cell@@S: New
1.8
Kakuro: New
\Kakuro@always: New
\Kakuro@cell: New
\Kakuro@empty: New

29

\Kakuro@HINT: New 27
\Kakuro@hint: New 26
\Kakuro@nohint: New 27
\KakuroHintType: New 27
\KakuroNumberFont: New 26
Sudoku: New 25
\SudokuLinethickness: New 26
1.9
\Puzzle@Box@@solution®@: Macro
PuzzleSolutionContent
introduced as extension point 19
\PuzzleSolutionContent: Macro
PuzzleSolutionContent
introduced as extension point 20

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

B
\blacktriangledown 306
\blacktriangleright 313

C
\Clue 8, 194, 207
\colorbox 123

D
\DeclareOption 330, 331, 333

335, 337, 339, 341, 346, 351, 355
\DefineColorCell 7

E
\empty 302, 309
\endKakuro 327
\endPuzzle@Clues@@normal 255
\endPuzzle@Clues@@solution 247
\endPuzzle@Words@@normal 257
\endPuzzle@Words@@solution 249
\endPuzzleClues 247, 255
\endPuzzleWords 249, 257
\endSudoku 272
environments:

Kakuro 11, 319
Puzzle 4, 22
Puzzle@Clues@@normal 193
Puzzle@Clues@@solution 206
Puzzle@Words@@normal 210
Puzzle@Words@@solution 214
PuzzleClues 8
PuzzleWords 9
Sudoku 10, 261
\expandafter 79, 171

F
\fboxsSep 122
\Frame 7, 15, 19

H
\Huge 347
\huge 342

I
\ifPuzzle@SolutionNumbered . 109, 259

K
\Kakuro 321
Kakuro (env.) 11, 319

30

\Kakuro@always 292, 298
\Kakuro@cell 289, 324
\Kakuro@empty 293, 299
\Kakuro@HINT 245, 253, 291, 318
\Kakuro@hint 253, 300, 318
\Kakuro@nohint 245, 316
\KakuroHintType 14, 315, 328
\KakuroNumberFont 14, 288, 305, 312
L
\Large 348, 349
\line 130, 136, 140,
145, 150, 154, 160, 165, 185, 189
\linethickness 26, 126, 282
M
\multiput 273, 274,

275, 276, 277, 278, 279, 280, 281

N
\next 227, 234, 237, 268,
269, 290, 291, 292, 293, 294, 296
O
Noval 175, 179
P
\parbox 304, 311
\PPa0.0.. ... 267, 268
\ProcessOptions 359
Puzzle (env.) 4, 22
\Puzzle@@normal 17
\Puzzle@®@solution 13
\Puzzle@Box@@normal 18, 29, 46
\Puzzle@Box@@normal® 48, 50
\Puzzle@Box@@solution 14, 88
\Puzzle@Box@@solution@ 90, 92
\Puzzle@Cell@@ 187
\Puzzle@Cell@®@* 181
\Puzzle@Cell@Q@. 173
\Puzzle@Cell@Q/ 184
\Puzzle@Cell@OB 138
\Puzzle@Cell@@b 142
\Puzzle@Cell@Qf 167
\Puzzle@Cell@QL 152
\Puzzle@Cell@@1l 147
\Puzzle@Cell@@0 174
\Puzzle@Cell@G0 177

\Puzzle@Cell@@R 162
\Puzzle@Cell@Or 156
\Puzzle@Cell@@S 170
\Puzzle@Cell@@T 127
\Puzzle@Cell@Ot 132
\Puzzle@Cell@Loop 60, 62, 74, 101, 103
\Puzzle@Clue@®@normal 191, 194
\Puzzle@Clue@@solution 192, 207
\Puzzle@Clues@@normal 254
Puzzle@Clues@@normal (env.) 193
\Puzzle@Clues@@solution 246
Puzzle@Clues@@solution (env.) 206
\Puzzle@Frame@@normal 19, 41
\Puzzle@Frame@@solution 15, 44
\Puzzle@Numbers 222, 223
\Puzzle@pipe 266, 267, 269
290, 294, 298, 299, 315, 317, 323
\Puzzle@SolutionNumberedfalse .. 260
\Puzzle@SolutionNumberedtrue . 330

\Puzzle@tmp .. 52, 53, 57, 59, 75, 76

77, 84, 86, 93, 94, 98, 100, 107, 108
\Puzzle@tmp@ 47, 65, 66, 89, 110
\Puzz1le@TYPE ... 24, 218, 242, 250, 258
\Puzzle@Words@@normal 256
Puzzle@Words@@normal (env.) 210
\Puzzle@Words@@solution 248
Puzzle@Words@@solution (env.) 214
\Puzzle@X 9

54, 66, 68, 82, 95, 104, 110,

113, 220, 230, 231, 235, 303, 310
\Puzzle@®Y 10, 27, 55

66, 82, 96, 104, 110, 219, 303, 310
\PuzzleBlackBox 13, 45, 182
\PuzzleClueFont 5, 13, 196, 344, 349
\PuzzleCluePost 14, 197, 203, 334
\PuzzleCluePre 14, 195, 198, 333
\PuzzleClues 246, 254
PuzzleClues (env.) 8
\PuzzleClueWidth 200, 202
\PuzzleContent 14, 51, 171, 265
\PuzzleDefineCell

7, 117, 127, 132, 138

31

142, 147, 152, 156, 162, 167,
170, 173, 174, 177, 181, 184, 187

\PuzzleDefineColorCell 120
\PuzzleFont 6,

18, 264, 336, 338, 340, 342, 347
\PuzzleHook 8, 14, 31
\Puzzleletters 8, 241
\PuzzleLettersText

13, 240, 241, 353, 357

\PuzzleLineThickness 14, 26, 34
\PuzzleNumberFont . 7, 13, 72, 343, 348
\PuzzleNumbers 9, 217
\PuzzlePost 14, 32, 38, 332
\PuzzlePre 14, 22, 35, 331
\PuzzlePutNumber 13, 66, 71, 110
\PuzzleSolution 13, 243
\PuzzleSolutionContent 14, 104, 116
\PuzzleThickine 126
\PuzzleThickline 126, 129,
135, 139, 144, 149, 153, 159, 164
\PuzzleUnitlength 3,4, 13,
25, 45, 221, 335, 337, 339, 341, 346
\PuzzleUnsolved 13, 252, 329
\PuzzleWords 248, 256
PuzzleWords (env.) 9
\PuzzleWordsText 13, 209, 211, 352, 356
S

\Sudoku 263

Sudoku (env.) 10, 261

\SudokuLinethickness 14, 282, 287
T

\typeout 80
\)\%

\WOTA « oo 9, 212, 215
X

N 230, 232

\X 301, 302, 308, 309

	Contents
	1 About Crossword Puzzles
	1.1 Classical Crossword Puzzles
	1.2 Number Crossword Puzzles
	1.3 Fill-In Crossword Puzzles
	1.4 Line delimited Crossword Puzzles
	1.5 Solutions

	2 Input of Crossword Puzzles
	3 Other Grid-based Puzzles
	3.1 Sudoku
	3.2 Kakuro

	4 Parameters and Options
	5 Further Plans
	5.1 General
	5.2 The Related Program

	6 The Implementation
	6.1 Basic Definitions and Parameters
	6.2 The Frame of the Crossword Puzzle
	6.3 Predefined Cell Types
	6.4 Clues
	6.5 Numbers
	6.6 Sudoku
	6.7 Kakuro
	6.8 Initialization

	Change History
	Index
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	S
	T
	W
	X

