
The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun

Support: https://github.com/lualatex/luamplib

2026/01/29 v2.38.4

Abstract

Package to have metapost code typeset directly in a document with LuaTEX

Contents

1 Documentation 2
1.1 TEX . 3

1.1.1 \mplibforcehmode . 3
1.1.2 \everymplib, \everyendmplib . 3
1.1.3 \mplibsetformat . 3
1.1.4 \mplibnumbersystem . 4
1.1.5 \mplibshowlog . 4
1.1.6 \mpliblegacybehavior . 4
1.1.7 \mplibtextextlabel . 5
1.1.8 \mplibcodeinherit . 6
1.1.9 \mplibglobaltextext . 6
1.1.10 Separate metapost instances . 6
1.1.11 \mplibverbatim . 7
1.1.12 \mpdim . 7
1.1.13 \mpcolor . 7
1.1.14 \mpfig, \endmpfig . 8
1.1.15 About cache files . 8
1.1.16 About figure box metric . 9
1.1.17 luamplib.cfg . 9
1.1.18 Tagged PDF . 9

1.2 MetaPost . 11
1.2.1 mplibdimen, mplibcolor . 11
1.2.2 mplibtexcolor, mplibrgbtexcolor . 11
1.2.3 withmplibcolors . 11
1.2.4 withtransparency . 12

1

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod . 12
1.2.6 withfademethod . 13
1.2.7 mplibgraphictext . 14
1.2.8 mplibglyph . 15
1.2.9 mplibdrawglyph, and its friends . 15
1.2.10 mpliboutlinetext . 16
1.2.11 \mppattern, withmppattern . 16
1.2.12 asgroup . 19
1.2.13 \mplibgroup . 20
1.2.14 mpliblength, mplibuclength . 21
1.2.15 mplibsubstring, mplibucsubstring . 21

1.3 Lua . 21
1.3.1 runscript . 21
1.3.2 luamplib.instances . 22
1.3.3 luamplib.process_mplibcode . 22
1.3.4 luamplib.registerpattern . 22
1.3.5 luamplib.registergroup . 23

2 Implementation 23
2.1 Lua module . 23
2.2 TEXpackage . 91

3 The GNU GPL License v2 112

1 Documentation

This package aims at providing a simple way to typeset directly metapost code in a document
with LuaTEX. LuaTEX is built with the Lua mplib library, that runs metapost code. This package
is basically a wrapper for the Lua mplib functions and some TEX functions to have the output
of the mplib functions in the PDF.

Using this package is easy: in Plain, type your metapost code between the macros
\mplibcode and \endmplibcode, and in LATEX in the mplibcode environment.

The resulting metapost figures are put in a TEX hboxwith dimensions adjusted to the meta-
post code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib.tex files from
ConTEXt. They have been adapted to LATEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

• Possibility to use btex ... etex to typeset TEX code. textext 〈string〉 is a more versatile
macro equivalent to TEX 〈string〉 from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

2

• Possibility to use verbatimtex ... etex to run a TEX code. VerbatimTeX 〈string〉 is a more
versatile macro corresponding to verbatimtex command. Of course the behavior can-
not be the same as the stand-alone mpost, so that you cannot include \documentclass,
\usepackage etc. When these TEX commands are found in verbatimtex ... etex, the entire
code will be ignored.

The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

• In the past, the package required PDF mode in order to have some output. Starting with
v2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool currently
supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TEX, MetaPost, and Lua interfaces.

1.1 TEX

1.1.1 \mplibforcehmode

When this macro is declared, every metapost figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.1

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the Lua table entry containing metapost code which
will be automatically inserted at the beginning and ending of each metapost code chunk.

\everymplib{ beginfig(0); }
\everyendmplib{ endfig; }
\begin{mplibcode}
% beginfig/endfig not needed
draw fullcircle scaled 1cm;

\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for metapost: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{〈format name〉}.

n.b. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided bymetafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

1Actually these commands redefine \prependtomplibbox. So you can redefine this macro with anything suitable
before a box. But see § 1.1.18 on Tagged PDF.

3

transparency (texdoc metafun § 8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=〈numeric〉" to the sentence. (0 ≤ 〈numeric〉 ≤ 1)

From v2.36, withtransparency is available with plain format as well. See below § 1.2.4.

shading (texdoc metafun § 8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TEX side. For instance, when withshadecolors("orange", 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or l3color’s expression.
From v2.36, shading is available with plain format as well with extended functionality.
See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where 〈string〉 should be "" (empty), "isolated", "knockout", or "isolated,knockout". Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable}2 is declared, log messages returned by the meta-
post process will be printed to the .log file. This is the TEX side interface for luamplib.showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

Legacy behavior By default, \mpliblegacybehavior{enable} is already declared for backward
compatibility, in which case TEX code in verbatimtex ... etex that comes just before beginfig()
will be inserted before the following metapost figure box. In this way, each figure box can be
freely moved horizontally or vertically. Also, a box number can be assigned to a figure box,
allowing it to be reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(0); ... endfig;

2As for user’s setting, enable, true and yes are identical; all others are identical to disable.
3But the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

4

verbatimtex \leavevmode etex; beginfig(1); ... endfig;
verbatimtex \leavevmode\lower 1ex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;

\endmplibcode

n.b. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TEX code in verbatimtex ... etex between beginfig() and endfig will be

inserted after flushing out the metapost figure. An example:4

\mplibcode
D := sqrt(2)**9;
beginfig(0);

draw fullcircle scaled D;

diameter: 22.62764bp.VerbatimTeX("\gdef\Dia{" & decimal D & "}");
endfig;

\endmplibcode
diameter: \Dia bp.

New and recommended way By contrast, when \mpliblegacybehavior{disable} is declared,
any verbatimtex ... etex, along with btex ... etex, will be run sequentially one by one. So,
some TEX code in verbatimtex ... etex will have effect on btex ... etex codes thereafter.

\begin{mplibcode}
beginfig(0);

draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,0); % bold face
draw btex GHI etex shifted (2cm,0); % bold face

endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text", origin) thereafter is exactly the same as label(textext
"my text", origin).

n.b. In the background, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TEX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (^), 95 (_), 123 ({), 125 (}), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TEX.

4But the recommended way to access metapost variables from TEX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

5

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants,
and macros defined by previous metapost code chunks. On the other hand, \mplibcodeinherit
{disable} will make each code chunk being treated as an independent instance, never affected
by previous code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other metapost macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. The command
still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(0);} \everyendmplib{ endfig;}
\mplibcode
label(btex $\sqrt{2}$ etex, origin);
draw fullcircle scaled 20;

√
2

√
2picture pic; pic := currentpicture;

\endmplibcode
\mplibcode
currentpicture := pic scaled 2;

\endmplibcode

1.1.10 Separate metapost instances

luamplib v2.22 has added the support for several named metapost instances in LATEX environ-
ment mplibcode or Plain TEX commands \mplibcode ... \endmplibcode. The syntax for LATEX is:

\begin{mplibcode}[instanceName]
% some mp code

\end{mplibcode}

The behavior is as follows.

• All the variables and functions are shared only among all the environments belonging
to the same instance.

• \mplibcodeinherit only affects the environments with no instance name set (since if a
name is set, the code is intended to be reused at some point).

• btex ... etex boxes are also shared and do not require \mplibglobaltextext.

• When an instance names is set, respective \currentmpinstancename is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.

6

Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceName]{...}
\everyendmplib[instanceName]{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TEX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},0)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}
;

1.1.13 \mpcolor[...]{...}

With \mpcolor command, color names or expressions of color, xcolor and l3color module/pack-
ages can be used in the mplibcode environment (after withcolor command, in principle). See
the example above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color com-
mand. For spot colors, l3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and
xespotcolor (in DVI mode) packages are supported as well.

n.b. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a metapost image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a metapost color expression if
possible, users can issue the sentence as follows without worrying about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}
;

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7
;

7

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for LATEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TEX macros \mpfig ... \endmpfig and its starred version \mpfig* ...
\endmpfig to save typing toil. The former is roughly the same as follows:

\begin{mplibcode}[@mpfig]
beginfig(0)

token list declared by \everymplib[@mpfig]
...
token list declared by \everyendmplib[@mpfig]

endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:

\begin{mplibcode}[@mpfig]
...

\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, metapost codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor 1/3[red,white]); }
\mpfig* input boxes \endmpfig
\mpfig Box 1
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

• \mplibmakenocache{〈filename〉[,〈filename〉,...]}

• \mplibcancelnocache{〈filename〉[,〈filename〉,...]}

where 〈filename〉 is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,

8

$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{〈directory path〉}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MPllx, \MPlly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the LATEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=〈text〉 starts a Figure tag by default and sets an alternate text of the figure from the 〈text〉.
BBox info will be added automatically to the PDF. This key is needed for ordinary meta-
post figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within metapost code as well: VerbatimTeX
"\mplibalttext{〈text〉}";

actualtext=〈text〉 starts a Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the 〈text〉. If in vertical mode, horizontal mode will be forced by \noindent command.5
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
metapost code as well: VerbatimTeX "\mplibactualtext{〈text〉}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TEX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be

5It is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

9

forced by \noindent command.6 BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TEX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TEX-text boxes is strongly
discouraged.

Note that the text in a TEX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For
example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)

draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;

√
2√
3√
5√
7√
x

draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;

endfig;
\end{mplibcode}

off Given this key, nothing will be tagged by luamplib.

tag=〈name〉 You can choose a tag name, default value being Figure.7 For instance, you can set
‘tag=Formula, alt=〈text〉’ to get a Formula element with its alternate text.8

adjust-BBox=〈dimens〉 You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=〈key-val list〉 This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{〈key-val list〉}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
...

\end{mplibcode}

\mpfig[alt=drawing of a square box]
...

\endmpfig

6The key text also shares the limitation mentioned in the previous footnote.
7The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses LATEX’s regular math formula tagging, for which the text key is needed.

10

\usemplibgroup[alt=drawing of a triangle]{...}

\mppattern{...} % see below
\mpfig[off] % do not tag this figure

...
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=〈name〉 or instancename=〈name〉
is also allowed in addition to the raw instance name as shown above.

1.2 MetaPost

1.2.1 mplibdimen ..., mplibcolor ...

These are metapost interfaces for the TEX commands \mpdim and \mpcolor (see above § 1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
metapost operators can also be used in external .mp files, which cannot have TEX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a metapost operator that converts a TEX
color expression to a metapost color expression, that can be used anywhere color expression
is expected as well as after the withcolor command.9 For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a metapost error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor 〈string〉 always returns rgb-model expressions.

n.b. Spot colors are forced to cmyk or rgbmodel, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using themacro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
(〈fill color expr〉, 〈stroke color expr〉). When the argument is in string type, it is regarded as
the color expression of TEX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40
withpen pencircle scaled 2
withmplibcolors ("orange!60", 2/3red)
;

9Since v2.38.1, the operation of mplibtexcolor is the same as that of mplibcolor if the color specified is not a spot
color or a named color in DVI mode.

11

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency(〈number〉 | 〈string〉, 〈numeric〉) is provided for plain format as well as meta-
fun. The first argument accepts a number or a name of alternative transparency methods (see
texdoc metafun § 8.2 Figure 8.1). The second argument accepts a numeric expression denoting
opacity.

\mpfig
fill unitsquare scaled 40

withcolor 1/3[blue,white]
withtransparency (1, 0.5) % or ("normal", 0.5)
;

fill fullcircle scaled 40
withcolor red
withtransparency (1, 0.5)
;

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same asmetafun’s new shadingmethod (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro namewhich onlyworks withmetafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

• Textual pictures as well as paths can have shading effect. The term textual picture means
a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see below
§ 1.2.7), or infont operator, though technically only the last one is a true textual picture.
Note that the transparency group in which path or text objects are filled without color
(see below § 1.2.12 and § 1.2.13) can also be regarded as a textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear"
withshadingvector (0,3)
withshadingstep (

withshadingfraction 1/2
withshadingcolors (red,green) TEX)

withshadingstep (
withshadingfraction 1
withshadingcolors (green,blue)

)
;

12

• When shading a picture generated by ‘infont’ operator, the effect of withshadingvector
and that of withshadingdirection will be the same, as luamplib considers only the bound-
ing box of the picture.

As shown, the syntax is 〈path〉 | 〈textual picture〉 withshadingmethod 〈string〉, where the latter
shall be either "linear" or "circular". Other macros for optional values are:

withshadingvector 〈pair〉 Starting and ending points (as time value) on the path.

withshadingdirection 〈pair〉 Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin 〈pair〉 The center of starting and ending circles. Default value: center p,
where p is the operand of withshadingmethod.

withshadingradius 〈pair〉 Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor 〈numeric〉 Multiplier of the radii. This is no-op in linear mode. Default
value: 1.2

withshadingcenter 〈pair〉 Values for shifting starting center. For instance, (0,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform 〈string〉 where 〈string〉 shall be "yes" (respect transform) or "no" (ignore
transform). Default value: "no" for pictures made by infont operator; "yes" for all other
cases.

withshadingdomain 〈pair〉 Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction 〈numeric〉 Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors (〈color expr〉, 〈color expr〉) Starting and ending colors, default value being
(white, black). String-type argument is regarded as the color expression of TEX side.

withshadingstroke 〈string〉 where 〈string〉 shall be "yes" or "no". Only meaningful when the
shading object is a 〈path〉; if "yes", we get the path stroked and then shaded. More
efficient than issueing two sentences.

1.2.6 ... withfademethod ...

This is a metapost operator which makes the color of an object gradiently transparent. The
syntax is 〈path〉 | 〈picture〉 withfademethod 〈string〉, the latter being either "linear" or "circular".
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand

13

of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.

Related macros to control optional values are:

withfadeopacity (〈numeric〉, 〈numeric〉) sets the starting opacity and the ending opacity, de-
fault value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector (〈pair〉, 〈pair〉) sets the starting and ending points. Default value in the linear
mode is (llcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius (〈numeric〉, 〈numeric〉) sets the radii of starting and ending circles. This is
no-op in the linear mode. Default value is (0, abs(center p - urcorner p)), meaning
that fading starts from the center and ends at the four corners of the bounding box.

withfadebbox (〈pair〉, 〈pair〉) sets the bounding box of the fading area, default value being
(llcorner p, urcorner p). Though this option is not needed in most cases, there could
be cases when users want to explicitly control the bounding box. Particularly, see the
description below at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bp]{mill} etex;
draw mill

withfademethod "circular"
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, 0)
;

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext 〈string〉 is a metapost operator, the effect of which is similar to that of Con-
TEXt’s graphictext or our own mpliboutlinetext (see below § 1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3
fakebold 2.3 % fontspec option Funn

y
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue
;

14

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white" and
"black" respectively.10 When the color expression is given in string type, it is regarded as color,
xcolor or l3color’s expression. All from mplibgraphictext to the end of sentence will compose an
anonymous picture, which can be drawn or assigned to a variable. Incidentally, withfillcolor
and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be compatible with
graphictext.

n.b. In some cases, especially when processing complicated TEX code, mplibgraphictext
will produce better results than ConTEXt or even than our own mpliboutlinetext, not tomention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.11 Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

1.2.8 mplibglyph ... of ...

From v2.30, we provide a newmetapost operator mplibglyph, which returns a metapost picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, metapost primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(0)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf" % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]" % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TEX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph is quite similar to the result of glyph
primitive, metapost’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph 〈picture〉 command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

n.b. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect" to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd" to the last path.

10Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
11But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

15

n.b. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what youwant: in such cases, you have to issue the command
draw 〈the last path〉 withpostscript "both" (or "eoboth" to apply even-odd rule).12

As this could be somewhat annoying to users, luamplib v2.38.0 or later provides the fol-
lowing commands as well: mplibfillandstrokeglyph 〈picture〉, mplibstrokeglyph 〈picture〉, and
mplibfillglyph 〈picture〉, the last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)
;

1.2.10 mpliboutlinetext (...)

From v2.31, a new metapost operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see themetafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!33})
(withpen pencircle scaled .2 withcolor 2/3red)
scaled 3
;

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

n.b. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{〈name〉} ... \endmppattern define a tiling pattern cell associated with
the 〈name〉. metapost command withmppattern, the syntax being 〈cyclic path〉 | 〈textual picture〉
withmppattern 〈string〉, will fill the given path or text with the tiling pattern cell of the 〈name〉
by replicating it horizontally and vertically.13 As said before at § 1.2.5, the textual picture here
means any text typeset by TEX, mostly the result of the btex command (and its derivatives) or
the infont operator.

12metafun provides macros nofill, eofill, fillup, eofillup etc. (seemetafun manual § 2.11), which luamplib with
plain format does not provide currently.

13withpattern is an operator virtually the same as withmppattern, but the former forces a metapost picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), 〈cyclic path〉 withmppattern 〈string〉 works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern
Key Value Type Explanation
xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells
yshift number vertical shifting of pattern cells
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed
colored or coloured boolean false for uncolored pattern. default: true

* in string type, numbers are separated by spaces

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below

xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}

]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]
;

draw (left--right) scaled 5
withcolor 2/3[red,white]
;

\endmpfig
\endmppattern % or \end{mppattern}

\mpfig
draw fullcircle scaled 50

withpostscript "collect"
;

draw fullcircle scaled 120
withmppattern "mypatt"
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth"
;

\endmpfig

The available options, actually elements of a Lua table, are listed in Table 1. For the sake
of convenience, the width and height values of the tiling pattern cell will be written down into
the log file (depth is always zero). Users can refer to them for option setting.

As for matrix option, metapost code such as "rotated 30 slanted .2" is allowed as well as
the string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’

17

operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern cell, resources option is
needed: for instance, resources="/ExtGState 1 0 R". However, as luamplib automatically in-
cludes the resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern cell which shall
have no color at all (i.e. withoutcolor command is needed for the cells made from metapost
code). Uncolored pattern will be painted later by the color of a metapost object. An example:

\begin{mppattern}{pattnocolor}
[

colored = false,
matrix = "slanted .3 rotated 30",

]
\tiny\TeX

\end{mppattern}

\begin{mplibcode}
beginfig(1)

picture tex;
tex = mpliboutlinetext.p ("\bfseries \TeX");
for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]
scaled 8
withmppattern "pattnocolor"
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern
;

endfor
endfig;

\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)

draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor" TEXwithmplibcolors (
2/3[red,white], % paints the pattern
2/3 red

)
;

endfig;
\end{mplibcode}

18

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well asmetafun format. The syntax
is exactly the same: 〈picture〉 | 〈path〉 asgroup "" | "isolated" | "knockout" | "isolated,knockout",
which will return a metapost picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.

The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TEX code or in other metapost code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TEX and metapost macros as follows:

withgroupname 〈string〉 associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

\usemplibgroup{〈name〉} is a TEX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the bounding box will be shifted to the origin.

usemplibgroup 〈string〉 is a metapost command which will add a transparency group of the
name to the currentpicture. Contrary to the TEX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox (〈pair〉, 〈pair〉) sets the bounding box of the transparency group, default value
being (llcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot lft llcorner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TEX and metapost commands:

\mpfig
draw image(

fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;

)
asgroup ""
withgroupname "mygroup"
withtransparency (1, 1/2)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

\noindent
\clap{\vrule width 10bp height .25bp depth .25bp}%
\clap{\vrule width .5bp height 5bp depth 5bp}%
\usemplibgroup{mygroup}

19

\mpfig
usemplibgroup "mygroup"

withtransparency (1, 1/3)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

Also note that normally the transparency groups are not affected by outer color commands.
However, if you have made the original transparency group using withoutcolor command, col-
ors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TEXmacros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros
from TEX side. The syntax is similar to the \mppattern command (see above § 1.2.11).

An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
[% options: see below

asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 20 rotated 45 ;
draw (left--right) scaled 20 rotated -45 ;

\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx" scaled 1.5

withtransparency (1, 0.5)
;

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As shown, you can reuse the mplibgroup using the TEX command \usemplibgroup or the
metapost command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TEX code (not by metapost
code) respects original height and depth.

20

Table 2: options for \mplibgroup
Key Value Type Explanation
asgroup string "", "isolated", "knockout", or "isolated,knockout"
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

* in string type, numbers are separated by spaces

1.2.14 mpliblength ..., mplibuclength ...

mpliblength 〈string〉 returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the metapost primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abçdéf" returns 6, not 8.

On the other hand, mplibuclength 〈string〉 returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Äpfel", where Ä is encoded using two codepoints
(U+0041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.15 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring 〈pair〉 of 〈string〉 is a unicode-aware version equivalent to the metapost’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abçdéf" returns "çdé", and
mplibsubstring (5,2) of "abçdéf" returns "édç".

On the other hand, mplibucsubstring 〈pair〉 of 〈string〉 returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (0,1) of "Äpfel", where Ä is en-
coded using two codepoints (U+0041 and U+0308), returns "Ä", not "A". This operator requires
lua-uni-algos package.

1.3 Lua

1.3.1 runscript ...

A goodmany metapostmacros described in this documentation have been implemented using
the primitive runscript. With runscript 〈string〉, you can run a Lua code chunk from metapost
side and get some metapost code returned by Lua if you want. As the functionality is provided
by the mplib library itself, luamplib does not have much to say about it.

One thing is worthmentioning, however: if you return a Lua table to the metapost process,
it is automatically converted to a relevant metapost data type such as pair, color, cmykcolor or
transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the metapost color expression
(1,0,0) automatically.

21

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib.instances, through which
metapost variables are also easily accessible from Lua side, as documented in LuaTEX manual
§ 11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b = 1 > 2;
numeric n; n = 3;
string s; s = "MetaPost";
path p; p = unitsquare;

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")
local t = myinstance:get_path "p"
for k,v in pairs(t) do

print(k, type(v)=='table' and table.concat(v,' ') or v)
end

}

Of course, this sort of Lua code can also be run inside metapost code using runscript command.
Again, of course you can access a metapost variable using your own TEX macro. For example:

\def\mpnumeric#1#2{\directlua{
tex.sprint(tostring(luamplib.instances["#1"]:get_numeric"#2"))

}}
\mpnumeric{myinstance}{n}\relax 3.0

1.3.3 Lua function luamplib.process_mplibcode

Users can run a metapost code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("") which means that
it has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can affect the process of
process_mplibcode.

1.3.4 Lua function luamplib.registerpattern

This is the Lua interface for \mppattern ... \endmppattern described above at § 1.2.11.

luamplib.registerpattern (<number> box register, <string> pattern name, <table> options)

22

Table 3: elements in luamplib table (partial)
Key Type Related TEX macro Cf.
codeinherit boolean \mplibcodeinherit § 1.1.8
everyendmplib table \everyendmplib § 1.1.2
everymplib table \everymplib § 1.1.2
getcachedir function (〈string〉) \mplibcachedir § 1.1.15
globaltextext boolean \mplibglobaltextext § 1.1.9
legacyverbatimtex boolean \mpliblegacybehavior § 1.1.6
noneedtoreplace table \mplibmakenocache § 1.1.15
numbersystem string \mplibnumbersystem § 1.1.4
setformat function (〈string〉) \mplibsetformat § 1.1.3
showlog boolean \mplibshowlog § 1.1.5
textextlabel boolean \mplibtextextlabel § 1.1.7
verbatiminput boolean \mplibverbatim § 1.1.11

The first argument is the register of a box containing a pattern cell, which should be pre-
pared in advance by the user. For instance, \setbox0=\hbox{\tiny\TeX}, or corresponding Lua
code using tex.setbox function; then the argument should be 0.

As for the third argument, see above Table 1. The argument cannot be absent, but can be
an empty table, i.e. { }.

1.3.5 Lua function luamplib.registergroup

This is the Lua interface for \mplibgroup ... \endmplibgroup described above at § 1.2.13.

luamplib.registergroup (<number> box register, <string> group name, <table> options)

The first argument is the register of a box prepared in advance by the user. When the
contents of the box have been generated from TEX (not metapost) code, please make sure that
both of the TEX macros ‘MPllx’ and ‘MPlly’ are defined as ‘0’ before invoking the Lua function.

As for the third argument, see above Table 2. The argument cannot be absent, but can be
an empty table, i.e. { }.

Reusing an mplibgroup, \usemplibgroup{〈name〉}, is basically the same as running the TEX
macro ‘luamplib.group.〈name〉’. If you need the boxresource index, inspect this macro using
token.get_macro function.

2 Implementation

2.1 Lua module
1
2 luatexbase.provides_module {
3 name = "luamplib",
4 version = "2.38.4",

23

5 date = "2026/01/29",
6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7 }
8

Use the luamplib namespace, since mplib is for the metapost library itself. ConTEXt uses
metapost.

9 luamplib = luamplib or { }
10 local luamplib = luamplib
11
12 local format, abs = string.format, math.abs
13

Use our own function for warn/info/err.
14 local function termorlog (target, text, kind)
15 if text then
16 local mod, write, append = "luamplib", texio.write_nl, texio.write
17 kind = kind
18 or target == "term" and "Warning (more info in the log)"
19 or target == "log" and "Info"
20 or target == "term and log" and "Warning"
21 or "Error"
22 target = kind == "Error" and "term and log" or target
23 local t = text:explode"\n+"
24 write(target, format("Module %s %s:", mod, kind))
25 if #t == 1 then
26 append(target, format(" %s", t[1]))
27 else
28 for _,line in ipairs(t) do
29 write(target, line)
30 end
31 write(target, format("(%s) ", mod))
32 end
33 append(target, format(" on input line %s", tex.inputlineno))
34 write(target, "")
35 if kind == "Error" then error() end
36 end
37 end
38 local function warn (...) -- beware '%' symbol
39 termorlog("term and log", select("#",...) > 1 and format(...) or ...)
40 end
41 local function info (...)
42 termorlog("log", select("#",...) > 1 and format(...) or ...)
43 end
44 local function err (...)
45 termorlog("error", select("#",...) > 1 and format(...) or ...)
46 end
47
48 luamplib.showlog = luamplib.showlog or false
49

24

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack
53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox
56 local texruntoks = tex.runtoks
57 if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest")
59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro
62 local mplib = require ('mplib')
63 local kpse = require ('kpse')
64 local lfs = require ('lfs')
65 local lfsattributes = lfs.attributes
66 local lfsisdir = lfs.isdir
67 local lfsmkdir = lfs.mkdir
68 local lfstouch = lfs.touch
69 local ioopen = io.open
70

Some helper functions, prepared for the case when l-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if lfsisdir(name) then
77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")
79 if fh then
80 fh:close(); os.remove(name)
81 return true
82 end
83 end
84 end
85 local mk_full_path = lfs.mkdirp or lfs.mkdirs or function(path)
86 local full = ""
87 for sub in path:gmatch("(/*[^\\/]+)") do
88 full = full .. sub
89 lfsmkdir(full)
90 end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib
regarding make_text, we might have to make cache files modified from input files.

First of all, determine the directory to store cache files.

25

93 local outputdir, cachedir
94 if lfstouch then
95 for i,v in ipairs{'TEXMFVAR','TEXMF_OUTPUT_DIRECTORY','.','TEXMFOUTPUT'} do
96 local var = i == 3 and v or kpse.var_value(v)
97 if var and var ~= "" then
98 for _,vv in next, var:explode(os.type == "unix" and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")

100 if not lfsisdir(dir) then
101 mk_full_path(dir)
102 end
103 if is_writable(dir) then
104 outputdir = dir
105 break
106 end
107 end
108 if outputdir then break end
109 end
110 end
111 end
112 outputdir = outputdir or '.'
113 function luamplib.getcachedir(dir)
114 dir = dir:gsub("##","#")
115 dir = dir:gsub("^~",
116 os.type == "windows" and os.getenv("UserProfile") or os.getenv("HOME"))
117 if lfstouch and dir then
118 if lfsisdir(dir) then
119 if is_writable(dir) then
120 cachedir = dir
121 else
122 warn("Directory '%s' is not writable!", dir)
123 end
124 else
125 warn("Directory '%s' does not exist!", dir)
126 end
127 end
128 end

Some basic metapost files not necessary to make cache files.
129 local noneedtoreplace = {
130 ["boxes.mp"] = true, -- ["format.mp"] = true,
131 ["graph.mp"] = true, ["marith.mp"] = true, ["mfplain.mp"] = true,
132 ["mpost.mp"] = true, ["plain.mp"] = true, ["rboxes.mp"] = true,
133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,
134 ["metafun.mp"] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv"] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv"] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv"] = true, ["mp-core.mpiv"] = true,
138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv"] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv"] = true, ["mp-luas.mpiv"] = true,

26

141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv"] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,
144 }
145 luamplib.noneedtoreplace = noneedtoreplace
146

Pattern formats to replace btex and verbatimtex ... etex in input files, if needed.
147 local name_b = "%f[%a_]"
148 local name_e = "%f[^%a_]"
149 local btex_etex = name_b.."btex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
150 local verbatimtex_etex = name_b.."verbatimtex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
151

Function luamplib.finder
152 local currenttime = os.time()
153 do
154 local luamplibtime = lfsattributes(kpse.find_file"luamplib.lua", "modification")

format.mp is much complicated, so specially treated.
155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")
157 if not fh then return file end
158 local data = fh:read("*all"); fh:close()
159 fh = ioopen(newfile,"w")
160 if not fh then return file end
161 fh:write(
162 "let normalinfont = infont;\n",
163 "primarydef str infont name = rawtextext(str) enddef;\n",
164 data,
165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$^{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"
168); fh:close()
169 lfstouch(newfile,currenttime,ofmodify)
170 return newfile
171 end
172 local function replaceinputmpfile (name,file)
173 local ofmodify = lfsattributes(file,"modification")
174 if not ofmodify then return file end
175 local newfile = name:gsub("%W","_")
176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then
178 local nf = lfsattributes(newfile)
179 if nf and nf.mode == "file" and
180 ofmodify == nf.modification and luamplibtime < nf.access then
181 return nf.size == 0 and file or newfile
182 end
183 end
184 if name == "format.mp" then return replaceformatmp(file,newfile,ofmodify) end
185 local fh = ioopen(file,"r")

27

186 if not fh then return file end
187 local data = fh:read("*all"); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTEX
manual, which is not the case of standalone metapost though.
188 local count,cnt = 0,0
189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
190 count = count + cnt
191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt
193 if count == 0 then
194 noneedtoreplace[name] = true
195 fh = ioopen(newfile,"w");
196 if fh then
197 fh:close()
198 lfstouch(newfile,currenttime,ofmodify)
199 end
200 return file
201 end
202 fh = ioopen(newfile,"w")
203 if not fh then return file end
204 fh:write(data); fh:close()
205 lfstouch(newfile,currenttime,ofmodify)
206 return newfile
207 end

As the finder function for mplib, use the kpse library and make it behave like as if metapost
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse
209 do
210 local exe = 0
211 while arg[exe-1] do
212 exe = exe-1
213 end
214 mpkpse = kpse.new(arg[exe], "mpost")
215 end
216 local special_ftype = {
217 pfb = "type1 fonts",
218 enc = "enc files",
219 }
220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then
222 if name and name ~= "mpout.log" then
223 kpse.record_output_file(name) -- recorder
224 end
225 return name
226 else
227 ftype = special_ftype[ftype] or ftype
228 local file = mpkpse:find_file(name,ftype)
229 if file then

28

230 if lfstouch and ftype == "mp" and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)
232 end
233 else
234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end
236 if file then
237 kpse.record_input_file(file) -- recorder
238 end
239 return file
240 end
241 end
242 end
243

For the main function: process
plain or metafun, though we cannot support metafun format fully.

244 local currentformat = "plain"
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false
249 local mplibinstances = {}
250 luamplib.instances = mplibinstances
251 local has_instancename = false
252
253 local process
254 do
255 local function reporterror (result, prevlog)
256 if not result then
257 err("no result object returned")
258 else
259 local t, e, l = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)
260 local log = l or t or "no-term"
261 log = log:gsub("%(Please type a command or say `end'%)",""):gsub("\n+","\n")
262 if result.status > 0 then
263 local first = log:match"(.-\n! .-)\n! "
264 if first then
265 termorlog("term", first)
266 termorlog("log", log, "Warning")
267 else
268 warn(log)
269 end
270 if result.status > 1 then
271 err(e or "see above messages")
272 end
273 elseif prevlog then

29

274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match"\n>>? .+"
276 if show then
277 termorlog("term", show, "Info (more info in the log)")
278 info(log)
279 elseif luamplib.showlog and log:find"%g" then
280 info(log)
281 end
282 end
283 return log
284 end
285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.
286 if not math.initialseed then math.randomseed(currenttime) end
287 local function luamplibload (name)
288 local mpx = mplib.new {
289 ini_version = true,
290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.
291 make_text = luamplib.maketext,
292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,
295 random_seed = math.random(4095),
296 utf8_mode = true,
297 extensions = 1,
298 }

Append our own metapost preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{
300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),
301 luamplib.preambles.mplibcode,
302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or "",
304 }
305 local result, log
306 if not mpx then
307 result = { status = 99, error = "out of memory"}
308 else
309 result = mpx:execute(preamble)
310 end
311 log = reporterror(result)
312 return mpx, result, log
313 end

30

https://github.com/lualatex/luamplib/issues/21

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)
315 local currfmt
316 if instancename and instancename ~= "" then
317 currfmt = instancename
318 has_instancename = true
319 else
320 currfmt = tableconcat{
321 currentformat,
322 luamplib.numbersystem or "scaled",
323 tostring(luamplib.textextlabel),
324 tostring(luamplib.legacyverbatimtex),
325 }
326 has_instancename = false
327 end
328 local mpx = mplibinstances[currfmt]
329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then
331 mpx:finish()
332 end
333 local log = ""
334 if standalone or not mpx then
335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx
337 end
338 local converted, result = false, {}
339 if mpx and data then
340 result = mpx:execute(data)
341 local log = reporterror(result, log)
342 if log then
343 if result.fig then
344 converted = luamplib.convert(result)
345 end
346 end
347 else
348 err"Mem file unloadable. Maybe generated with a different version of mplib?"
349 end
350 return converted, result
351 end
352 end
353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355

make_text and some run_script uses LuaTEX’s tex.runtoks.
356 local catlatex = luatexbase.registernumber("catcodetable@latex")
357 local catat11 = luatexbase.registernumber("catcodetable@atletter")

tex.scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-

31

iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536*(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is
true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.
363 local texboxes = { globalid = 0, localid = 4096 }
364 local process_tex_text
365 do
366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z
368 withprescript "mplibtexboxid=%i:%f:%f")'
369 function process_tex_text (str, maketext)
370 if str then
371 if not maketext then str = str:gsub("\r.-$","") end
372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global" or ""
374 local tex_box_id
375 if global == "" then
376 tex_box_id = texboxes.localid + 1
377 texboxes.localid = tex_box_id
378 else
379 local boxid = texboxes.globalid + 1
380 texboxes.globalid = boxid
381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount'allocationnumber'
383 end
384 if str:find"^%[taggingoff%]" then
385 str = str:gsub("^%[taggingoff%]%s*","")
386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))
388 else
389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))
391 end
392 local box = texgetbox(tex_box_id)
393 local wd = box.width / factor
394 local ht = box.height / factor
395 local dp = box.depth / factor
396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
397 end
398 return ""

32

399 end
400 end
401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-
mands should be used with graphical objects. Attempt to support l3color as well.
402 if is_defined'color_select:n' then
403 run_tex_code{
404 "\\newcatcodetable\\luamplibcctabexplat",
405 "\\begingroup",
406 "\\catcode`@=11 ",
407 "\\catcode`_=11 ",
408 "\\catcode`:=11 ",
409 "\\savecatcodetable\\luamplibcctabexplat",
410 "\\endgroup",
411 }
412 end
413 local ccexplat = luatexbase.registernumber"luamplibcctabexplat"
414
415 local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)
417 local t, tt = { }, res:gsub("[%[%]]","",2):explode()
418 local be = tt[1]:find"^%d" and 1 or 2
419 for i=be, #tt do
420 if not tonumber(tt[i]) then break end
421 t[#t+1] = tt[i]
422 end
423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata
424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro"mplibtmpb":explode","
426 end
427 return t
428 end
429 do
430 local colfmt = ccexplat and "l3color" or "xcolor"
431 local mplibcolorfmt = {
432 xcolor = tableconcat{
433 [[\begingroup\let\XC@mcolor\relax]],
434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}]],
435 [[\color%s\endgroup]],
436 },
437 l3color = tableconcat{
438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}]],
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}]],
440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}]],
441 [[\color_select:n%s\endgroup]],
442 },
443 }

33

444 function process_color (str)
445 if str then
446 if not str:find("%b{}") then
447 str = format("{%s}",str)
448 end
449 local myfmt = mplibcolorfmt[colfmt]
450 if colfmt == "l3color" and is_defined"color" then
451 if str:find("%b[]") then
452 myfmt = mplibcolorfmt.xcolor
453 else
454 for _,v in ipairs(str:match"{(.+)}":explode"!") do
455 if not v:find("^%s*%d+%s*$") then
456 local pp = get_macro(format("l__color_named_%s_prop",v))
457 if not pp or pp == "" then
458 myfmt = mplibcolorfmt.xcolor
459 break
460 end
461 end
462 end
463 end
464 end
465 run_tex_code(myfmt:format(str), ccexplat or catat11)
466 local t = texgettoks"mplibtmptoks"
467 if not pdfmode then
468 if t:find"^hsb" or not t:find"%d" then
469 t = "color push " .. t
470 elseif not t:find"^pdf" then
471 t = t:gsub("%a+ (.+)","pdf:bc [%1]")
472 end
473 end
474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end
476 return ""
477 end
478 function process_mplibcolor(str)
479 local res = process_color(str)
480 if res:find" cs " or res:find"@pdf.obj" or res:find"color push" then return res end
481 res = colorsplit(res:match'"mpliboverridecolor=(.+)"')
482 return format("(%s)", tableconcat(res, ","))
483 end
484 end
485

for \mpdim or mplibdimen
486 local function process_dimen (str)
487 if str then
488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}]], str))
490 return format("begingroup %s endgroup", texgettoks"mplibtmptoks")
491 end

34

492 return ""
493 end
494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then
497 run_tex_code(str)
498 end
499 return ""
500 end
501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TEX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str
508 end
509 return ""
510 end
511 local function process_verbatimtex_infig (str)
512 if str then
513 return format('special "postmplibverbtex=%s";', str)
514 end
515 return ""
516 end
517

For metafun format. see issue #79.
518 mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.
523 catcodes = catcodes or {}
524 local catcodes = catcodes
525 catcodes.numbers = catcodes.numbers or {}
526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers.texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers.luacatcodes = catcodes.numbers.luacatcodes or catlatex
529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers.txtcatcodes = catcodes.numbers.txtcatcodes or catlatex

35

533

Now luamplib.runscript
534 do
535 local runscript_funcs = {
536 luamplibtext = process_tex_text,
537 luamplibcolor = process_mplibcolor,
538 luamplibdimen = process_dimen,
539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,
542 }

A function from ConTEXt general.
543 local function mpprint(buffer,...)
544 for i=1,select("#",...) do
545 local value = select(i,...)
546 if value ~= nil then
547 local t = type(value)
548 if t == "number" then
549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string" then
551 buffer[#buffer+1] = value
552 elseif t == "table" then
553 buffer[#buffer+1] = "(" .. tableconcat(value,",") .. ")"
554 else -- boolean or whatever
555 buffer[#buffer+1] = tostring(value)
556 end
557 end
558 end
559 end
560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then
563 local f = runscript_funcs[id]
564 if f then
565 local t = f(str)
566 if t then return t end
567 end
568 end
569 local f = loadstring(code)
570 if type(f) == "function" then
571 local buffer = {}
572 function mp.print(...)
573 mpprint(buffer,...)
574 end
575 local res = {f()}
576 buffer = tableconcat(buffer)
577 if buffer and buffer ~= "" then
578 return buffer

36

579 end
580 buffer = {}
581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)
583 end
584 return ""
585 end
586 end
587

luamplib.maketext
588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\0PerCent\0")
592 :gsub("%%.-\n", "")
593 :gsub("%%.-$", "")
594 :gsub("%zPerCent%z", "\\%%")
595 :gsub("\r.-$", "")
596 :gsub("%s+", " ")
597 end
598 function luamplib.maketext (str, what)
599 if str and str ~= "" then
600 str = protecttexcontents(str)
601 if what == 1 then
602 if not str:find("\\documentclass"..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then
607 if luamplib.in_the_fig then
608 return process_verbatimtex_infig(str)
609 else
610 return process_verbatimtex_prefig(str)
611 end
612 else
613 return process_verbatimtex_text(str)
614 end
615 end
616 else
617 return process_tex_text(str, true) -- bool is for 'char13'
618 end
619 end
620 return ""
621 end
622 end
623

luamplib’s metapost color operators

37

624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
626 if res:find" cs " or res:find"@pdf.obj" then
627 if not rgb then
628 warn("%s is a spot color. Forced to CMYK", str)
629 end
630 run_tex_code({
631 "\\color_export:nnN{",
632 str,
633 "}{",
634 rgb and "space-sep-rgb" or "space-sep-cmyk",
635 "}\\mplib_@tempa",
636 },ccexplat)
637 return get_macro"mplib_@tempa":explode()
638 end
639 local t = colorsplit(res)
640 if #t == 3 or not rgb then return t end
641 if #t == 4 then
642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end
644 return { t[1], t[1], t[1] }
645 end
646
647 luamplib.shadecolor = function (str)
648 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
649 if res:find" cs " or res:find"@pdf.obj" then -- spot color shade: l3 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone3005 }
{ Separation }
{

name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}

}
\color_set:nnn{spotA}{pantone3005}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}

\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_set:nnn{spotC}{pantone1215}{1}

\color_model_new:nnn { pantone2040 }

38

{ Separation }
{

name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}

}
\color_set:nnn{spotD}{pantone2040}{1}

\ExplSyntaxOff
\begin{document}
\begin{mplibcode}
beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm

withshadingmethod "linear"
withshadingvector (0,1)
withshadingstep (

withshadingfraction .5
withshadingcolors ("spotB","spotC")

)
withshadingstep (

withshadingfraction 1
withshadingcolors ("spotC","spotD")

)
;

endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_model_new:nnn { pantone+black }
{ DeviceN }
{ names = {pantone1215,black} }

\color_set:nnn{purepantone}{pantone+black}{1,0}
\color_set:nnn{pureblack} {pantone+black}{0,1}
\ExplSyntaxOff
\begin{document}
\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30

withshadingmethod "linear"

39

withshadingcolors ("purepantone","pureblack")
;

\endmpfig
\end{document}

650 run_tex_code({
651 [[\color_export:nnN{]], str, [[}{backend}\mplib_@tempa]],
652 },ccexplat)
653 local name, value = get_macro'mplib_@tempa':match'{(.-)}{(.-)}'
654 local t, obj = res:explode()
655 if pdfmode then
656 obj = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else
658 obj = t[2]
659 end
660 return format('(1) withprescript"mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end
662 return colorsplit(res)
663 end
664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"^[%d%.:]+$" then
668 col = col:explode":"
669 for i=1,#col do
670 col[i] = format("%.3f", col[i])
671 end
672 if pdfmode then
673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col," ")
676 end
677 return format("[%s]", tableconcat(col," "))
678 end
679 col = process_color(col):match'"mpliboverridecolor=(.+)"'
680 if pdfmode then
681 local t = col:explode()
682 local b = filldraw == "fill" and 1 or #t/2+1
683 local e = b == 1 and #t/2 or #t
684 return tableconcat(t," ", b, e)
685 end
686 return format("[%s]", tableconcat(colorsplit(col)," "))
687 end
688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")
690 stroke = graphictextcolor(stroke, "stroke")
691 local bc = pdfmode and "" or "pdf:bc "
692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)

40

693 end
694 end
695

Remove trailing zeros for smaller PDF
696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub("%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext
699 local function getrulemetric (box, curr, bp)
700 local running = -1073741824
701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd
703 ht = ht == running and box.height or ht
704 dp = dp == running and box.depth or dp
705 if bp then
706 return wd/factor, ht/factor, dp/factor
707 end
708 return wd, ht, dp
709 end
710

luamplib’s mplibgraphictext operator
711 do
712 local emboldenfonts = { }
713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width
715 if not width then
716 local f
717 local function getglyph(n)
718 while n do
719 if n.head then
720 getglyph(n.head)
721 elseif n.font and n.font > 0 then
722 f = n.font; break
723 end
724 n = node.getnext(n)
725 end
726 end
727 getglyph(curr)
728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width
730 end
731 return width
732 end
733 local function getrulewhatsit (line, wd, ht, dp)
734 line, wd, ht, dp = line/1000, wd/factor, ht/factor, dp/factor
735 local pl
736 local fmt = "%f w %f %f %f %f re %s"

41

737 if pdfmode then
738 pl = node.new("whatsit","pdf_literal")
739 pl.mode = 0
740 else
741 fmt = "pdf:content "..fmt
742 pl = node.new("whatsit","special")
743 end
744 pl.data = fmt:format(line, 0, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue"
746 node.setglue(ss, 0, 65536, 65536, 2, 2)
747 pl.next = ss
748 return pl
749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined"ver@tagpdf.sty" then
752 tag_update_attrs = function (n, curr)
753 while n do
754 n.attr = curr.attr
755 if n.head then
756 tag_update_attrs(n.head, curr)
757 end
758 n = node.getnext(n)
759 end
760 end
761 else
762 tag_update_attrs = function() end
763 end
764 local function embolden (box, curr, fakebold)
765 local head = curr
766 while curr do
767 if curr.head then
768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then
770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then
772 if curr.leader.head then
773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule" then
775 local glue = node.effective_glue(curr, box)
776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist" then
779 wd = glue
780 else
781 ht, dp = 0, glue
782 end
783 local pl = getrulewhatsit(line, wd, ht, dp)

42

784 local pack = box.id == node.id"hlist" and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")
786 tag_update_attrs(list,curr)
787 head = node.insert_after(head, curr, list)
788 head, curr = node.remove(head, curr)
789 end
790 elseif curr.id == node.id"rule" and curr.subtype == 0 then
791 local line = getemboldenwidth(curr, fakebold)
792 local wd,ht,dp = getrulemetric(box, curr)
793 if box.id == node.id"vlist" then
794 ht, dp = 0, ht+dp
795 end
796 local pl = getrulewhatsit(line, wd, ht, dp)
797 local list
798 if box.id == node.id"hlist" then
799 list = node.hpack(pl, wd, "exactly")
800 else
801 list = node.vpack(pl, ht+dp, "exactly")
802 end
803 tag_update_attrs(list,curr)
804 head = node.insert_after(head, curr, list)
805 head, curr = node.remove(head, curr)
806 elseif curr.id == node.id"glyph" and curr.font > 0 then
807 local f = curr.font
808 local key = format("%s:%s",f,fakebold)
809 local i = emboldenfonts[key]
810 if not i then
811 local ft = font.getfont(f) or font.getcopy(f)
812 if pdfmode then
813 width = ft.size * fakebold / factor * 10
814 emboldenfonts.width = width
815 ft.mode, ft.width = 2, width
816 i = font.define(ft)
817 else
818 if ft.format ~= "opentype" and ft.format ~= "truetype" then
819 goto skip_type1
820 end
821 local name = ft.name:gsub('"',''):gsub(';$','')
822 name = format('%s;embolden=%s;',name,fakebold)
823 _, i = fonts.constructors.readanddefine(name,ft.size)
824 end
825 emboldenfonts[key] = i
826 end
827 curr.font = i
828 end
829 ::skip_type1::
830 curr = node.getnext(curr)
831 end
832 return head

43

833 end
834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)
836 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil
838 local box = texgetbox(id)
839 box.head = embolden(box, box.head, fakebold)
840 local colors = luamplib.fillandstrokecolor(fc, dc)
841 return format('%s %s)', fmt, colors)
842 end
843 end
844

luamplib’s mplibglyph operator

845 do
846 local function mperr (str)
847 return format("hide(errmessage %q)", str)
848 end
849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then
852 r = r - 360
853 elseif r < -180 then
854 r = r + 360
855 end
856 return r
857 end
858 local function turning (t)
859 local r, n = 0, #t
860 for i=1,2 do
861 tableinsert(t, t[i])
862 end
863 for i=1,n do
864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end
866 return r/360
867 end
868 local function glyphimage(t, fmt)
869 local q,p,r = {{},{}}
870 for i,v in ipairs(t) do
871 local cmd = v[#v]
872 if cmd == "m" then
873 p = {format('(%s,%s)',v[1],v[2])}
874 r = {{x=v[1],y=v[2]}}
875 else
876 local nt = t[i+1]
877 local last = not nt or nt[#nt] == "m"
878 if cmd == "l" then
879 local pt = t[i-1]

44

880 local seco = pt[#pt] == "m"
881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else
883 tableinsert(p, format('--(%s,%s)',v[1],v[2]))
884 tableinsert(r, {x=v[1],y=v[2]})
885 end
886 if last then
887 tableinsert(p, '--cycle')
888 end
889 elseif cmd == "c" then
890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1],v[2],v[3],v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then
892 tableinsert(p, '..cycle')
893 else
894 tableinsert(p, format('..(%s,%s)',v[5],v[6]))
895 if last then
896 tableinsert(p, '--cycle')
897 end
898 tableinsert(r, {x=v[5],y=v[6]})
899 end
900 else
901 return mperr"unknown operator"
902 end
903 if last then
904 tableinsert(q[turning(r) > 0 and 1 or 2], tableconcat(p))
905 end
906 end
907 end
908 r = { }
909 if fmt == "opentype" then
910 for _,v in ipairs(q[1]) do
911 tableinsert(r, format('addto currentpicture contour %s;',v))
912 end
913 for _,v in ipairs(q[2]) do
914 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
915 end
916 else
917 for _,v in ipairs(q[2]) do
918 tableinsert(r, format('addto currentpicture contour %s;',v))
919 end
920 for _,v in ipairs(q[1]) do
921 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
922 end
923 end
924 return format('image(%s)', tableconcat(r))
925 end
926 if not table.tofile then require"lualibs-lpeg"; require"lualibs-table"; end
927 function luamplib.glyph (f, c)
928 local filename, subfont, instance, kind, shapedata

45

929 local fid = tonumber(f) or font.id(f)
930 if fid > 0 then
931 local fontdata = font.getfont(fid) or font.getcopy(fid)
932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance
934 filename = filename and filename:gsub("^harfloaded:","")
935 else
936 local name
937 f = f:match"^%s*(.+)%s*$"
938 name, subfont, instance = f:match"(.+)%((%d+)%)%[(.-)%]$"
939 if not name then
940 name, instance = f:match"(.+)%[(.-)%]$" -- SourceHanSansK-VF.otf[Heavy]
941 end
942 if not name then
943 name, subfont = f:match"(.+)%((%d+)%)$" -- Times.ttc(2)
944 end
945 name = name or f
946 subfont = (subfont or 0)+1
947 instance = instance and instance:lower()
948 for _,ftype in ipairs{"opentype", "truetype"} do
949 filename = kpse.find_file(name, ftype.." fonts")
950 if filename then
951 kind = ftype; break
952 end
953 end
954 end
955 if kind ~= "opentype" and kind ~= "truetype" then
956 f = fid and fid > 0 and tex.fontname(fid) or f
957 if kpse.find_file(f, "tfm") then
958 return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
959 else
960 return mperr"font not found"
961 end
962 end
963 local time = lfsattributes(filename,"modification")
964 local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
965 local h = format(string.rep('%02x', 256/8), string.byte(sha2.digest256(k), 1, -1))
966 local newname = format("%s/%s.lua", cachedir or outputdir, h)
967 local newtime = lfsattributes(newname,"modification") or 0
968 if time == newtime then
969 shapedata = require(newname)
970 end
971 if not shapedata then
972 shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename,subfont,instance)
973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?" end
974 table.tofile(newname, shapedata, "return")
975 lfstouch(newname, time, time)
976 end
977 local gid = tonumber(c)

46

978 if not gid then
979 local uni = utf8.codepoint(c)
980 for i,v in pairs(shapedata.glyphs) do
981 if c == v.name or uni == v.unicode then
982 gid = i; break
983 end
984 end
985 end
986 if not gid then return mperr"cannot get GID (glyph id)" end
987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments
989 if not t then return "image()" end
990 for i,v in ipairs(t) do
991 if type(v) == "table" then
992 for ii,vv in ipairs(v) do
993 if type(vv) == "number" then
994 t[i][ii] = format("%.0f", vv * fac)
995 end
996 end
997 end
998 end
999 kind = shapedata.format or kind

1000 return glyphimage(t, kind)
1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do
1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z
1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert
1008 function outline_vert (res, box, curr, xshift, yshift)
1009 local b2u = box.dir == "LTL"
1010 local dy = (b2u and -box.depth or box.height)/factor
1011 local ody = dy
1012 while curr do
1013 if curr.id == node.id"rule" then
1014 local wd, ht, dp = getrulemetric(box, curr, true)
1015 local hd = ht + dp
1016 if hd ~= 0 then
1017 dy = dy + (b2u and dp or -ht)
1018 if wd ~= 0 and curr.subtype == 0 then
1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)
1020 end
1021 dy = dy + (b2u and ht or -dp)
1022 end
1023 elseif curr.id == node.id"glue" then
1024 local vwidth = node.effective_glue(curr,box)/factor

47

1025 if curr.leader then
1026 local curr, kind = curr.leader, curr.subtype
1027 if curr.id == node.id"rule" then
1028 local wd = getrulemetric(box, curr, true)
1029 if wd ~= 0 then
1030 local hd = vwidth
1031 local dy = dy + (b2u and 0 or -hd)
1032 if hd ~= 0 and curr.subtype == 0 then
1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)
1034 end
1035 end
1036 elseif curr.head then
1037 local hd = (curr.height + curr.depth)/factor
1038 if hd <= vwidth then
1039 local dy, n, iy = dy, 0, 0
1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)
1042 local ndy = math.ceil(ady / hd) * hd
1043 local diff = ndy - ady
1044 n = math.floor((vwidth-diff) / hd)
1045 dy = dy + (b2u and diff or -diff)
1046 else
1047 n = math.floor(vwidth / hd)
1048 if kind == 101 then
1049 local side = vwidth % hd / 2
1050 dy = dy + (b2u and side or -side)
1051 elseif kind == 102 then
1052 iy = vwidth % hd / (n+1)
1053 dy = dy + (b2u and iy or -iy)
1054 end
1055 end
1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd
1058 iy = b2u and iy or -iy
1059 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1060 for i=1,n do
1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy = dy + hd + iy
1063 end
1064 end
1065 end
1066 end
1067 dy = dy + (b2u and vwidth or -vwidth)
1068 elseif curr.id == node.id"kern" then
1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)
1070 elseif curr.id == node.id"vlist" then
1071 dy = dy + (b2u and curr.depth or -curr.height)/factor
1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor

48

1074 elseif curr.id == node.id"hlist" then
1075 dy = dy + (b2u and curr.depth or -curr.height)/factor
1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor
1078 end
1079 curr = node.getnext(curr)
1080 end
1081 return res
1082 end
1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l = box.dir == "TRT"
1085 local dx = r2l and (discwd or box.width/factor) or 0
1086 local dirs = { { dir = r2l, dx = dx } }
1087 while curr do
1088 if curr.id == node.id"dir" then
1089 local sign, dir = curr.dir:match"(.)(...)"
1090 local level, newdir = curr.level, r2l
1091 if sign == "+" then
1092 newdir = dir == "TRT"
1093 if r2l ~= newdir then
1094 local n = node.getnext(curr)
1095 while n do
1096 if n.id == node.id"dir" and n.level+1 == level then break end
1097 n = node.getnext(n)
1098 end
1099 n = n or node.tail(curr)
1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end
1102 dirs[level] = { dir = r2l, dx = dx }
1103 else
1104 local level = level + 1
1105 newdir = dirs[level].dir
1106 if r2l ~= newdir then
1107 dx = dirs[level].dx
1108 end
1109 end
1110 r2l = newdir
1111 elseif curr.char and curr.font and curr.font > 0 then
1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char
1114 local scale = ft.size / factor / 1000
1115 local slant = (ft.slant or 0)/1000
1116 local extend = (ft.extend or 1000)/1000
1117 local squeeze = (ft.squeeze or 1000)/1000
1118 local expand = 1 + (curr.expansion_factor or 0)/1000000
1119 local xscale, yscale = scale * extend * expand, scale * squeeze
1120 dx = dx - (r2l and curr.width/factor*expand or 0)
1121 local xoff, yoff = (curr.xoffset or 0)/factor, (curr.yoffset or 0)/factor
1122 local xpos, ypos = dx + xshift + xoff, yshift + yoff

49

1123 local vertical = ""
1124 if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
1125 if ft.shared.features.vertical then -- luatexko
1126 vertical = "rotated 90"
1127 local data = ft.characters[curr.char] or { }
1128 if ft.hb then
1129 local hoff, voff = (data.luatexko_hoff or 0)/factor, (data.luatexko_voff or 0)/factor
1130 local charraise = (ft.luatexko_charraise or 0)/factor
1131 xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise
1132 else
1133 local cmds = data.commands or { {0,0}, {0,0} }
1134 local voff, hoff = -cmds[1][2]/factor, cmds[2][2]/factor
1135 xpos, ypos = xpos + hoff, ypos + voff
1136 end
1137 elseif curr ~= box.head then -- luatexja
1138 vertical = "rotated 90"
1139 local en = ft.parameters.quad/factor/2
1140 xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
1141 end
1142 end
1143 local image
1144 if ft.format == "opentype" or ft.format == "truetype" then
1145 image = luamplib.glyph(curr.font, gid)
1146 else
1147 local name, scale = ft.name, 1
1148 local vf = font.read_vf(name, ft.size)
1149 if vf and vf.characters[gid] then
1150 local cmds = vf.characters[gid].commands or {}
1151 for _,v in ipairs(cmds) do
1152 if v[1] == "char" then
1153 gid = v[2]
1154 elseif v[1] == "font" and vf.fonts[v[2]] then
1155 name = vf.fonts[v[2]].name
1156 scale = vf.fonts[v[2]].size / ft.size
1157 end
1158 end
1159 end
1160 image = format("glyph %s of %q scaled %f", gid, name, scale)
1161 end
1162 res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
1163 #res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
1164 dx = dx + (r2l and 0 or curr.width/factor*expand)
1165 elseif curr.replace then
1166 local width = node.dimensions(curr.replace)/factor
1167 dx = dx - (r2l and width or 0)
1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and 0 or width)
1170 elseif curr.id == node.id"rule" then
1171 local wd, ht, dp = getrulemetric(box, curr, true)

50

1172 if wd ~= 0 then
1173 local hd = ht + dp
1174 dx = dx - (r2l and wd or 0)
1175 if hd ~= 0 and curr.subtype == 0 then
1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end
1178 dx = dx + (r2l and 0 or wd)
1179 end
1180 elseif curr.id == node.id"glue" then
1181 local width = node.effective_glue(curr, box)/factor
1182 dx = dx - (r2l and width or 0)
1183 if curr.leader then
1184 local curr, kind = curr.leader, curr.subtype
1185 if curr.id == node.id"rule" then
1186 local wd, ht, dp = getrulemetric(box, curr, true)
1187 local hd = ht + dp
1188 if hd ~= 0 then
1189 wd = width
1190 if wd ~= 0 and curr.subtype == 0 then
1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end
1193 end
1194 elseif curr.head then
1195 local wd = curr.width/factor
1196 if wd <= width then
1197 local dx = r2l and dx+width or dx
1198 local n, ix = 0, 0
1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)
1201 local ndx = math.ceil(adx / wd) * wd
1202 local diff = ndx - adx
1203 n = math.floor((width-diff) / wd)
1204 dx = dx + (r2l and -diff-wd or diff)
1205 else
1206 n = math.floor(width / wd)
1207 if kind == 101 then
1208 local side = width % wd /2
1209 dx = dx + (r2l and -side-wd or side)
1210 elseif kind == 102 then
1211 ix = width % wd / (n+1)
1212 dx = dx + (r2l and -ix-wd or ix)
1213 end
1214 end
1215 wd = r2l and -wd or wd
1216 ix = r2l and -ix or ix
1217 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1218 for i=1,n do
1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix

51

1221 end
1222 end
1223 end
1224 end
1225 dx = dx + (r2l and 0 or width)
1226 elseif curr.id == node.id"kern" then
1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)
1228 elseif curr.id == node.id"math" then
1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)
1230 elseif curr.id == node.id"vlist" then
1231 dx = dx - (r2l and curr.width/factor or 0)
1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and 0 or curr.width/factor)
1234 elseif curr.id == node.id"hlist" then
1235 dx = dx - (r2l and curr.width/factor or 0)
1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and 0 or curr.width/factor)
1238 end
1239 curr = node.getnext(curr)
1240 end
1241 return res
1242 end
1243 function luamplib.outlinetext (text)
1244 local fmt = process_tex_text(text)
1245 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)
1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252

lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require'lua-uni-graphemes'
1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)
1258 end
1259 return t
1260 end
1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step = { }
1263 if grph then
1264 t = luamplib.getunicodegraphemes(s)
1265 else
1266 t = { }
1267 for _, c in utf8.codes(s) do

52

1268 table.insert(t, utf8.char(c))
1269 end
1270 end
1271 if b <= e then
1272 b, step = b+1, 1
1273 else
1274 e, step = e+1, -1
1275 end
1276 for i = b, e, step do
1277 table.insert(tt, t[i])
1278 end
1279 s = table.concat(tt):gsub('"','"&ditto&"')
1280 return string.format('"%s"', s)
1281 end
1282

metapost preambles

1283 luamplib.preambles = {
1284 preamble = [[
1285 boolean mplib ; mplib := true ;
1286 let dump = endinput ;
1287 let normalfontsize = fontsize;
1288 input %s ;
1289]],
1290 mplibcode = [[
1291 texscriptmode := 2;
1292 def rawtextext primary t = runscript("luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript("luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript("luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript("luamplibverbtex{"&t&"}") enddef;
1296 if known context_mlib:
1297 defaultfont := "cmtt10";
1298 let infont = normalinfont;
1299 let fontsize = normalfontsize;
1300 vardef thelabel@#(expr p,z) =
1301 if string p :
1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :
1304 p shifted (z + labeloffset*mfun_laboff@# -
1305 (mfun_labxf@#*lrcorner p + mfun_labyf@#*ulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*llcorner p))
1307 fi
1308 enddef;
1309 else:
1310 vardef textext@# primary t = rawtextext (t) enddef;
1311 def message expr t =
1312 if string t: runscript("mp.report[=["&t&"]=]") else: errmessage "Not a string" fi
1313 enddef;
1314 def withtransparency (expr a, t) =

53

1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t
1317 enddef;
1318 vardef ddecimal primary p =
1319 decimal xpart p & " " & decimal ypart p
1320 enddef;
1321 vardef boundingbox primary p =
1322 if (path p) or (picture p) :
1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p
1324 else :
1325 origin
1326 fi -- cycle
1327 enddef;
1328 fi
1329 def resolvedcolor(expr s) =
1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef;
1332 def colordecimals primary c =
1333 if cmykcolor c:
1334 decimal cyanpart c & ":" & decimal magentapart c & ":" &
1335 decimal yellowpart c & ":" & decimal blackpart c
1336 elseif rgbcolor c:
1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:
1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi
1340 else:
1341 decimal c
1342 fi
1343 enddef;
1344 def externalfigure primary filename =
1345 draw rawtextext("\includegraphics{"& filename &"}")
1346 enddef;
1347 def TEX = textext enddef;
1348 def mplibtexcolor primary c =
1349 runscript("return luamplib.gettexcolor('"& c &"')")
1350 enddef;
1351 def mplibrgbtexcolor primary c =
1352 runscript("return luamplib.gettexcolor('"& c &"','rgb')")
1353 enddef;
1354 def mplibgraphictext primary t =
1355 begingroup;
1356 mplibgraphictext_ (t)
1357 enddef;
1358 def mplibgraphictext_ (expr t) text rest =
1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;
1361 picture graphictextpic; graphictextpic := nullpicture;
1362 numeric fb; string fc, dc; fb:=2; fc:="white"; dc:="black";
1363 let scale = scaled;

54

1364 def fakebold primary c = hide(fb:=c;) enddef;
1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;
1366 def drawcolor primary c = hide(dc:=colordecimals c;) enddef;
1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;
1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;
1371 let fillcolor = fakebold; let drawcolor = fakebold;
1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1373 image(draw runscript("return luamplib.graphictext([===["&t&"]===],"
1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)
1375 endgroup;
1376 enddef;
1377 def mplibglyph expr c of f =
1378 runscript (
1379 "return luamplib.glyph('"
1380 & if numeric f: decimal fi f
1381 & "','"
1382 & if numeric c: decimal fi c
1383 & "')"
1384)
1385 enddef;
1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;
1387 def mplibdrawglyph expr g =
1388 luamplib_tmp_num_ := 0;
1389 for item within g:
1390 fill pathpart item
1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1392 endfor
1393 enddef;
1394 let mplibfillglyph = mplibdrawglyph;
1395 def mplibstrokeglyph expr g =
1396 luamplib_tmp_num_ := 0;
1397 for item within g:
1398 draw pathpart item
1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1400 endfor
1401 enddef;
1402 def mplibfillandstrokeglyph expr g =
1403 luamplib_tmp_num_ := 0;
1404 for item within g:
1405 draw pathpart item withpostscript
1406 if incr luamplib_tmp_num_ < length g: "collect"; else: "both" fi
1407 endfor
1408 enddef;
1409 def withmplibcolors (expr f, s) =
1410 runscript("return luamplib.fillandstrokecolor('" &
1411 if not string f: colordecimals fi f & "','" &
1412 if not string s: colordecimals fi s & "')")

55

1413 enddef;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =
1415 def mplib_do_outline_options_f = f enddef;
1416 def mplib_do_outline_options_d = d enddef;
1417 def mplib_do_outline_options_r = r enddef;
1418 enddef;
1419 def mplib_do_outline_text_set_f (text f) text r =
1420 def mplib_do_outline_options_f = f enddef;
1421 def mplib_do_outline_options_r = r enddef;
1422 enddef;
1423 def mplib_do_outline_text_set_u (text f) text r =
1424 def mplib_do_outline_options_f = f enddef;
1425 enddef;
1426 def mplib_do_outline_text_set_d (text d) text r =
1427 def mplib_do_outline_options_d = d enddef;
1428 def mplib_do_outline_options_r = r enddef;
1429 enddef;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =
1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef;
1435 def mplib_do_outline_text_set_n text r =
1436 def mplib_do_outline_options_r = r enddef;
1437 enddef;
1438 def mplib_do_outline_text_set_p = enddef;
1439 def mplib_fill_outline_text =
1440 for n=1 upto mpliboutlinenum:
1441 i:=0;
1442 for item within mpliboutlinepic[n]:
1443 i:=i+1;
1444 fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
1445 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect"; fi
1446 endfor
1447 endfor
1448 enddef;
1449 def mplib_draw_outline_text =
1450 for n=1 upto mpliboutlinenum:
1451 for item within mpliboutlinepic[n]:
1452 draw pathpart item mplib_do_outline_options_d;
1453 endfor
1454 endfor
1455 enddef;
1456 def mplib_filldraw_outline_text =
1457 for n=1 upto mpliboutlinenum:
1458 i:=0;
1459 for item within mpliboutlinepic[n]:
1460 i:=i+1;
1461 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):

56

1462 fill pathpart item mplib_do_outline_options_f withpostscript "collect";
1463 else:
1464 draw pathpart item mplib_do_outline_options_f withpostscript "both";
1465 fi
1466 endfor
1467 endfor
1468 enddef;
1469 vardef mpliboutlinetext@# (expr t) text rest =
1470 save kind; string kind; kind := str @#;
1471 save i; numeric i;
1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;
1473 def mplib_do_outline_options_d = enddef;
1474 def mplib_do_outline_options_f = enddef;
1475 def mplib_do_outline_options_r = enddef;
1476 runscript("return luamplib.outlinetext[===["&t&"]===]");
1477 image (addto currentpicture also image (
1478 if kind = "f":
1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;
1481 elseif kind = "d":
1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;
1484 elseif kind = "b":
1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;
1487 mplib_draw_outline_text;
1488 elseif kind = "u":
1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;
1491 elseif kind = "r":
1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;
1494 mplib_fill_outline_text;
1495 elseif kind = "p":
1496 mplib_do_outline_text_set_p;
1497 mplib_draw_outline_text;
1498 else:
1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;
1501 fi;
1502) mplib_do_outline_options_r;)
1503 enddef ;
1504 def withmppattern primary p =
1505 withprescript "mplibpattern=" & if numeric p: decimal fi p
1506 enddef;
1507 primarydef t withpattern p =
1508 image(
1509 if cycle t:
1510 fill

57

1511 else:
1512 draw
1513 fi
1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)
1515 enddef;
1516 vardef mplibtransformmatrix (text e) =
1517 save t; transform t;
1518 t = identity e;
1519 runscript("luamplib.transformmatrix = {"
1520 & decimal xxpart t & ","
1521 & decimal yxpart t & ","
1522 & decimal xypart t & ","
1523 & decimal yypart t & ","
1524 & decimal xpart t & ","
1525 & decimal ypart t & ","
1526 & "}");
1527 enddef;
1528 primarydef p withfademethod s =
1529 if picture p:
1530 image(
1531 draw p;
1532 draw center p withprescript "mplibfadestate=stop";
1533)
1534 else:
1535 p withprescript "mplibfadestate=stop"
1536 fi
1537 withprescript "mplibfadetype=" & s
1538 withprescript "mplibfadebbox=" &
1539 decimal (xpart llcorner p -1/4) & ":" &
1540 decimal (ypart llcorner p -1/4) & ":" &
1541 decimal (xpart urcorner p +1/4) & ":" &
1542 decimal (ypart urcorner p +1/4)
1543 enddef;
1544 def withfadeopacity (expr a,b) =
1545 withprescript "mplibfadeopacity=" &
1546 decimal a & ":" &
1547 decimal b
1548 enddef;
1549 def withfadevector (expr a,b) =
1550 withprescript "mplibfadevector=" &
1551 decimal xpart a & ":" &
1552 decimal ypart a & ":" &
1553 decimal xpart b & ":" &
1554 decimal ypart b
1555 enddef;
1556 let withfadecenter = withfadevector;
1557 def withfaderadius (expr a,b) =
1558 withprescript "mplibfaderadius=" &
1559 decimal a & ":" &

58

1560 decimal b
1561 enddef;
1562 def withfadebbox (expr a,b) =
1563 withprescript "mplibfadebbox=" &
1564 decimal xpart a & ":" &
1565 decimal ypart a & ":" &
1566 decimal xpart b & ":" &
1567 decimal ypart b
1568 enddef;
1569 primarydef p asgroup s =
1570 image(
1571 draw center p
1572 withprescript "mplibgroupbbox=" &
1573 decimal (xpart llcorner p -1/4) & ":" &
1574 decimal (ypart llcorner p -1/4) & ":" &
1575 decimal (xpart urcorner p +1/4) & ":" &
1576 decimal (ypart urcorner p +1/4)
1577 withprescript "gr_state=start"
1578 withprescript "gr_type=" & s;
1579 draw p;
1580 draw center p withprescript "gr_state=stop";
1581)
1582 enddef;
1583 def withgroupbbox (expr a,b) =
1584 withprescript "mplibgroupbbox=" &
1585 decimal xpart a & ":" &
1586 decimal ypart a & ":" &
1587 decimal xpart b & ":" &
1588 decimal ypart b
1589 enddef;
1590 def withgroupname expr s =
1591 withprescript "mplibgroupname=" & s
1592 enddef;
1593 def usemplibgroup primary s =
1594 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group."& s &"\endcsname}")
1595 shifted runscript("return luamplib.trgroupshifts['" & s & "']")
1596 enddef;
1597 path mplib_shade_path ;
1598 numeric mplib_shade_step ; mplib_shade_step := 0 ;
1599 numeric mplib_shade_fx, mplib_shade_fy ;
1600 numeric mplib_shade_lx, mplib_shade_ly ;
1601 numeric mplib_shade_nx, mplib_shade_ny ;
1602 numeric mplib_shade_dx, mplib_shade_dy ;
1603 numeric mplib_shade_tx, mplib_shade_ty ;
1604 primarydef p withshadingmethod m =
1605 p
1606 if picture p :
1607 withprescript "sh_operand_type=picture"
1608 if textual p or (length p > 1):

59

1609 withprescript "sh_transform=no"
1610 mplib_with_shade_method (boundingbox p, m)
1611 else:
1612 withprescript "sh_transform=yes"
1613 mplib_with_shade_method (pathpart p, m)
1614 fi
1615 else :
1616 withprescript "sh_transform=yes"
1617 mplib_with_shade_method (p, m)
1618 fi
1619 enddef;
1620 def mplib_with_shade_method (expr p, m) =
1621 hide(mplib_with_shade_method_analyze(p))
1622 withprescript "sh_domain=0 1"
1623 withprescript "sh_color=into"
1624 withprescript "sh_color_a=" & colordecimals white
1625 withprescript "sh_color_b=" & colordecimals black
1626 withprescript "sh_first=" & ddecimal point 0 of p
1627 withprescript "sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_lx)
1628 withprescript "sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)
1629 if m = "linear" :
1630 withprescript "sh_type=linear"
1631 withprescript "sh_factor=1"
1632 withprescript "sh_center_a=" & ddecimal llcorner p
1633 withprescript "sh_center_b=" & ddecimal urcorner p
1634 else :
1635 withprescript "sh_type=circular"
1636 withprescript "sh_factor=1.2"
1637 withprescript "sh_center_a=" & ddecimal center p
1638 withprescript "sh_center_b=" & ddecimal center p
1639 withprescript "sh_radius_a=" & decimal 0
1640 withprescript "sh_radius_b=" & decimal mplib_max_radius(p)
1641 fi
1642 enddef;
1643 def mplib_with_shade_method_analyze(expr p) =
1644 mplib_shade_path := p ;
1645 mplib_shade_step := 1 ;
1646 mplib_shade_fx := xpart point 0 of p ;
1647 mplib_shade_fy := ypart point 0 of p ;
1648 mplib_shade_lx := mplib_shade_fx ;
1649 mplib_shade_ly := mplib_shade_fy ;
1650 mplib_shade_nx := 0 ;
1651 mplib_shade_ny := 0 ;
1652 mplib_shade_dx := abs(mplib_shade_fx - mplib_shade_lx) ;
1653 mplib_shade_dy := abs(mplib_shade_fy - mplib_shade_ly) ;
1654 for i=1 upto length(p) :
1655 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;
1656 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;
1657 if mplib_shade_tx > mplib_shade_dx :

60

1658 mplib_shade_nx := i + 1 ;
1659 mplib_shade_lx := xpart point i of p ;
1660 mplib_shade_dx := mplib_shade_tx ;
1661 fi ;
1662 if mplib_shade_ty > mplib_shade_dy :
1663 mplib_shade_ny := i + 1 ;
1664 mplib_shade_ly := ypart point i of p ;
1665 mplib_shade_dy := mplib_shade_ty ;
1666 fi ;
1667 endfor ;
1668 enddef;
1669 vardef mplib_max_radius(expr p) =
1670 max (
1671 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1672 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1673 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1674 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1675)
1676 enddef;
1677 def withshadingstep (text t) =
1678 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1679 withprescript "sh_step=" & decimal mplib_shade_step
1680 t
1681 enddef;
1682 def withshadingradius expr a =
1683 withprescript "sh_radius_a=" & decimal (xpart a)
1684 withprescript "sh_radius_b=" & decimal (ypart a)
1685 enddef;
1686 def withshadingorigin expr a =
1687 withprescript "sh_center_a=" & ddecimal a
1688 withprescript "sh_center_b=" & ddecimal a
1689 enddef;
1690 def withshadingvector expr a =
1691 withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
1692 withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)
1693 enddef;
1694 def withshadingdirection expr a =
1695 withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1696 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1697 enddef;
1698 def withshadingtransform expr a =
1699 withprescript "sh_transform=" & a
1700 enddef;
1701 def withshadingcenter expr a =
1702 withprescript "sh_center_a=" & ddecimal (
1703 center mplib_shade_path shifted (
1704 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,
1705 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1706)

61

1707)
1708 enddef;
1709 def withshadingdomain expr d =
1710 withprescript "sh_domain=" & ddecimal d
1711 enddef;
1712 def withshadingfactor expr f =
1713 withprescript "sh_factor=" & decimal f
1714 enddef;
1715 def withshadingfraction expr a =
1716 if mplib_shade_step > 0 :
1717 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1718 fi
1719 enddef;
1720 def withshadingcolors (expr a, b) =
1721 if mplib_shade_step > 0 :
1722 withprescript "sh_color=into"
1723 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1724 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1725 else :
1726 withprescript "sh_color=into"
1727 withprescript "sh_color_a=" & colordecimals a
1728 withprescript "sh_color_b=" & colordecimals b
1729 fi
1730 enddef;
1731 def withshadingstroke expr a =
1732 withprescript "sh_stroking=" & a
1733 enddef;
1734 def mpliblength primary t =
1735 runscript("return utf8.len[===[" & t & "]===]")
1736 enddef;
1737 def mplibsubstring expr p of t =
1738 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1739 & decimal xpart p & ","
1740 & decimal ypart p & ")")
1741 enddef;
1742 def mplibuclength primary t =
1743 runscript("return #luamplib.getunicodegraphemes[===[" & t & "]===]")
1744 enddef;
1745 def mplibucsubstring expr p of t =
1746 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1747 & decimal xpart p & ","
1748 & decimal ypart p & ",true)")
1749 enddef;
1750]],
1751 legacyverbatimtex = [[
1752 def specialVerbatimTeX (text t) = runscript("luamplibprefig{"&t&"}") enddef;
1753 def normalVerbatimTeX (text t) = runscript("luamplibinfig{"&t&"}") enddef;
1754 let VerbatimTeX = specialVerbatimTeX;
1755 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&

62

1756 "runscript(" &ditto& "luamplib.in_the_fig=true" &ditto& ");";
1757 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1758 "runscript(" &ditto&
1759 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&
1760 "luamplib.in_the_fig=false" &ditto& ");";
1761]],
1762 textextlabel = [[
1763 let luampliboriginalinfont = infont;
1764 primarydef s infont f =
1765 if (s < char 32)
1766 or (s = char 35) % #
1767 or (s = char 36) % $
1768 or (s = char 37) % %
1769 or (s = char 38) % &
1770 or (s = char 92) % \
1771 or (s = char 94) % ^
1772 or (s = char 95) % _
1773 or (s = char 123) % {
1774 or (s = char 125) % }
1775 or (s = char 126) % ~
1776 or (s = char 127) :
1777 s luampliboriginalinfont f
1778 else :
1779 rawtextext(s)
1780 fi
1781 enddef;
1782 def fontsize expr f =
1783 begingroup
1784 save size; numeric size;
1785 size := mplibdimen("1em");
1786 if size = 0: 10pt else: size fi
1787 endgroup
1788 enddef;
1789]],
1790 }
1791

process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.

1792 luamplib.verbatiminput = false
1793 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1794 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1795 function luamplib.process_mplibcode (data, instancename)
1796 texboxes.localid = 4096

This is needed for legacy behavior
1797 if luamplib.legacyverbatimtex then
1798 luamplib.figid, tex_code_pre_mplib = 1, {}
1799 end
1800 local everymplib = luamplib.everymplib[instancename]

63

1801 local everyendmplib = luamplib.everyendmplib[instancename]
1802 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1803 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.
1804 if luamplib.verbatiminput then
1805 data = data:gsub("\\mpcolor%s+(.-%b{})","mplibcolor(\"%1\")")
1806 :gsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")
1807 :gsub("\\mpdim%s+(\\%a+)","mplibdimen(\"%1\")")
1808 :gsub(btex_etex, "btex %1 etex ")
1809 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1810 else

If not mplibverbatim, expand mplibcode data, so that users can use TEX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.
1811 local t = { } -- to store btex, verbatimtex, string
1812 data = data:gsub(btex_etex, function(str)
1813 t[#t+1] = str
1814 return format("btex \\unexpanded{!l!u!a!%s!m!p!l!} etex ", #t) -- space
1815 end)
1816 :gsub(verbatimtex_etex, function(str)
1817 t[#t+1] = str
1818 return format("verbatimtex \\unexpanded{!l!u!a!%s!m!p!l!} etex;", #t) -- semicolon
1819 end)
1820 :gsub('"(.-)"', function(str)
1821 t[#t+1] = str
1822 return format('"\\unexpanded{!l!u!a!%s!m!p!l!}"', #t)
1823 end)
1824 :gsub("\\%%", "\0PerCent\0")
1825 :gsub("%%.-\n","\n")
1826 :gsub("%zPerCent%z", "\\%%")
1827 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1828 data = texgettoks"mplibtmptoks"

Next line to address issue #55
1829 :gsub("##", "#")
1830 :gsub("!l!u!a!(%d+)!m!p!l!", function(str) return t[tonumber(str)] or str end)
1831 end
1832 process(data, instancename)
1833 end
1834

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.
1835 local figcontents = { post = { } }
1836 local function put2output(a,...)
1837 figcontents[#figcontents+1] = type(a) == "string" and format(a,...) or a
1838 end
1839 local function pdf_startfigure(n,llx,lly,urx,ury)

64

1840 put2output("\\mplibstarttoPDF{%f}{%f}{%f}{%f}",llx,lly,urx,ury)
1841 end
1842 local function pdf_stopfigure()
1843 put2output("\\mplibstoptoPDF")
1844 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.
1845 local function pdf_literalcode (...)
1846 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1847 end
1848 local start_pdf_code = pdfmode
1849 and function() pdf_literalcode"q" end
1850 or function() put2output"\\special{pdf:bcontent}" end
1851 local stop_pdf_code = pdfmode
1852 and function() pdf_literalcode"Q" end
1853 or function() put2output"\\special{pdf:econtent}" end
1854

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.
1855 local function put_tex_boxes (object,prescript)
1856 local box = prescript.mplibtexboxid:explode":"
1857 local n,tw,th = box[1],tonumber(box[2]),tonumber(box[3])
1858 if n and tw and th then
1859 local op = object.path
1860 local first, second, fourth = op[1], op[2], op[4]
1861 local tx, ty = first.x_coord, first.y_coord
1862 local sx, rx, ry, sy = 1, 0, 0, 1
1863 if tw ~= 0 then
1864 sx = (second.x_coord - tx)/tw
1865 rx = (second.y_coord - ty)/tw
1866 if sx == 0 then sx = 0.00001 end
1867 end
1868 if th ~= 0 then
1869 sy = (fourth.y_coord - ty)/th
1870 ry = (fourth.x_coord - tx)/th
1871 if sy == 0 then sy = 0.00001 end
1872 end
1873 start_pdf_code()
1874 pdf_literalcode("%f %f %f %f %f %f cm",sx,rx,ry,sy,tx,ty)
1875 put2output("\\mplibputtextbox{%i}",n)
1876 stop_pdf_code()
1877 end
1878 end
1879

Colors
1880 local do_preobj_CR
1881 do
1882 local prev_override_color
1883 function do_preobj_CR(object,prescript)

65

1884 if object.postscript == "collect" then return end
1885 local override = prescript and prescript.mpliboverridecolor
1886 if override then
1887 if pdfmode then
1888 pdf_literalcode(override)
1889 override = nil
1890 else
1891 put2output("\\special{%s}",override)
1892 prev_override_color = override
1893 end
1894 else
1895 local cs = object.color
1896 if cs and #cs > 0 then
1897 pdf_literalcode(luamplib.colorconverter(cs))
1898 prev_override_color = nil
1899 elseif not pdfmode then
1900 override = prev_override_color
1901 if override then
1902 put2output("\\special{%s}",override)
1903 end
1904 end
1905 end
1906 return override
1907 end
1908 end
1909

For transparency, shading, fading, and pattern

1910 local pdfmanagement = is_defined'pdfmanagement_add:nnn'
1911 local pdfobjs, pdfetcs = {}, {}
1912 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain"
1913 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain"
1914 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain"
1915 local function update_pdfobjs (os, stream)
1916 local key = os
1917 if stream then key = key..stream end
1918 local on = key and pdfobjs[key]
1919 if on then
1920 return on,false
1921 end
1922 if pdfmode then
1923 if stream then
1924 on = pdf.immediateobj("stream",stream,os)
1925 elseif os then
1926 on = pdf.immediateobj(os)
1927 else
1928 on = pdf.reserveobj()
1929 end
1930 else

66

1931 on = pdfetcs.cnt or 1
1932 if stream then
1933 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1934 elseif os then
1935 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,os))
1936 else
1937 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1938 end
1939 pdfetcs.cnt = on + 1
1940 end
1941 if key then
1942 pdfobjs[key] = on
1943 end
1944 return on,true
1945 end
1946 pdfetcs.resfmt = pdfmode and "%s 0 R" or "@mplibpdfobj%s"
1947 if pdfmode then
1948 pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
1949 local getpageres = pdfetcs.getpageres
1950 local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
1951 local initialize_resources = function (name)
1952 local tabname = format("%s_res",name)
1953 pdfetcs[tabname] = { }
1954 if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
1955 local obj = pdf.reserveobj()
1956 setpageres(format("%s/%s %i 0 R", getpageres() or "", name, obj))
1957 luatexbase.add_to_callback("finish_pdffile", function()
1958 pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabname])))
1959 end,
1960 format("luamplib.%s.finish_pdffile",name))
1961 end
1962 end
1963 pdfetcs.fallback_update_resources = function (name, res)
1964 local tabname = format("%s_res",name)
1965 if not pdfetcs[tabname] then
1966 initialize_resources(name)
1967 end
1968 if luatexbase.callbacktypes.finish_pdffile then
1969 local t = pdfetcs[tabname]
1970 t[#t+1] = res
1971 else
1972 local tpr, n = getpageres() or "", 0
1973 tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)
1974 if n == 0 then
1975 tpr = format("%s/%s<<%s>>", tpr, name, res)
1976 end
1977 setpageres(tpr)
1978 end
1979 end

67

1980 else
1981 texsprint {
1982 "\\luamplibatfirstshipout{",
1983 "\\special{pdf:obj @MPlibTr<<>>}",
1984 "\\special{pdf:obj @MPlibSh<<>>}",
1985 "\\special{pdf:obj @MPlibCS<<>>}",
1986 "\\special{pdf:obj @MPlibPt<<>>}}",
1987 }
1988 pdfetcs.resadded = { }
1989 pdfetcs.fallback_update_resources = function (name,res,obj)
1990 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
1991 if not pdfetcs.resadded[name] then
1992 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
1993 pdfetcs.resadded[name] = obj
1994 end
1995 end
1996 end
1997

Transparency

1998 local function add_extgs_resources (on, new)
1999 local key = format("MPlibTr%s", on)
2000 if new then
2001 local val = format(pdfetcs.resfmt, on)
2002 if pdfmanagement then
2003 texsprint {
2004 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "}{", val, "}"
2005 }
2006 else
2007 local tr = format("/%s %s", key, val)
2008 if is_defined(pdfetcs.pgfextgs) then
2009 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2010 elseif is_defined"TRP@list" then
2011 texsprint(catat11,{
2012 [[\if@filesw\immediate\write\@auxout{]],
2013 [[\string\g@addto@macro\string\TRP@list{]],
2014 tr,
2015 [[}}\fi]],
2016 })
2017 if not get_macro"TRP@list":find(tr) then
2018 texsprint(catat11,[[\global\TRP@reruntrue]])
2019 end
2020 else
2021 pdfetcs.fallback_update_resources("ExtGState",tr,"@MPlibTr")
2022 end
2023 end
2024 end
2025 return key
2026 end

68

2027
2028 local do_preobj_TR
2029 do
2030 local transparancy_modes = {
2031 [0] = "Normal",
2032 "Normal", "Multiply", "Screen", "Overlay",
2033 "SoftLight", "HardLight", "ColorDodge", "ColorBurn",
2034 "Darken", "Lighten", "Difference", "Exclusion",
2035 "Hue", "Saturation", "Color", "Luminosity",
2036 "Compatible",
2037 normal = "Normal", multiply = "Multiply", screen = "Screen",
2038 overlay = "Overlay", softlight = "SoftLight", hardlight = "HardLight",
2039 colordodge = "ColorDodge", colorburn = "ColorBurn", darken = "Darken",
2040 lighten = "Lighten", difference = "Difference", exclusion = "Exclusion",
2041 hue = "Hue", saturation = "Saturation", color = "Color",
2042 luminosity = "Luminosity", compatible = "Compatible",
2043 }
2044 function do_preobj_TR(object,prescript)
2045 if object.postscript == "collect" then return end
2046 local opaq = prescript and prescript.tr_transparency
2047 if opaq then
2048 local key, on, os, new
2049 local mode = prescript.tr_alternative or 1
2050 mode = transparancy_modes[tonumber(mode) or mode:lower()]
2051 if not mode then
2052 mode = prescript.tr_alternative
2053 warn("unsupported blend mode: '%s'", mode)
2054 end
2055 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)
2056 for i,v in ipairs{ {mode,opaq},{"Normal",1} } do
2057 os = format("<</BM/%s/ca %s/CA %s/AIS false>>",v[1],v[2],v[2])
2058 on, new = update_pdfobjs(os)
2059 key = add_extgs_resources(on,new)
2060 if i == 1 then
2061 pdf_literalcode("/%s gs",key)
2062 else
2063 return format("/%s gs",key)
2064 end
2065 end
2066 end
2067 end
2068 end
2069

Shading with metafun format.

2070 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates,steps,fractions)
2071 for _,v in ipairs{ca,cb} do
2072 for i,vv in ipairs(v) do
2073 for ii,vvv in ipairs(vv) do

69

2074 v[i][ii] = tonumber(vvv) and format("%.3f",vvv) or vvv
2075 end
2076 end
2077 end
2078 local fun2fmt,os = "<</FunctionType 2/Domain[%s]/C0[%s]/C1[%s]/N 1>>"
2079 if steps > 1 then
2080 local list,bounds,encode = { },{ },{ }
2081 for i=1,steps do
2082 if i < steps then
2083 bounds[i] = format("%.3f", fractions[i] or 1)
2084 end
2085 encode[2*i-1] = 0
2086 encode[2*i] = 1
2087 os = fun2fmt:format(domain,tableconcat(ca[i],' '),tableconcat(cb[i],' '))
2088 :gsub(decimals,rmzeros)
2089 list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
2090 end
2091 os = tableconcat {
2092 "<</FunctionType 3",
2093 format("/Bounds[%s]", tableconcat(bounds,' ')),
2094 format("/Encode[%s]", tableconcat(encode,' ')),
2095 format("/Functions[%s]", tableconcat(list, ' ')),
2096 format("/Domain[%s]>>", domain),
2097 } :gsub(decimals,rmzeros)
2098 else
2099 os = fun2fmt:format(domain,tableconcat(ca[1],' '),tableconcat(cb[1],' '))
2100 :gsub(decimals,rmzeros)
2101 end
2102 local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
2103 os = tableconcat {
2104 format("<</ShadingType %i", shtype),
2105 format("/ColorSpace %s", colorspace),
2106 format("/Function %s", objref),
2107 format("/Coords[%s]", coordinates),
2108 "/Extend[true true]/AntiAlias true>>",
2109 } :gsub(decimals,rmzeros)
2110 local on, new = update_pdfobjs(os)
2111 if new then
2112 local key, val = format("MPlibSh%s", on), format(pdfetcs.resfmt, on)
2113 if pdfmanagement then
2114 texsprint {
2115 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}{", val, "}"
2116 }
2117 else
2118 local res = format("/%s %s", key, val)
2119 pdfetcs.fallback_update_resources("Shading",res,"@MPlibSh")
2120 end
2121 end
2122 return on

70

2123 end
2124
2125 local do_preobj_SH
2126 do
2127 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2128 run_tex_code({
2129 [[\color_model_new:nnn]],
2130 format("{mplibcolorspace_%s}", names:gsub(",","_")),
2131 format("{DeviceN}{names={%s}}", names),
2132 [[\edef\mplib_@tempa{\pdf_object_ref_last:}]],
2133 }, ccexplat)
2134 local colorspace = get_macro'mplib_@tempa'
2135 t[names] = colorspace
2136 return colorspace
2137 end })
2138 local function color_normalize(ca,cb)
2139 if #cb == 1 then
2140 if #ca == 4 then
2141 cb[1], cb[2], cb[3], cb[4] = 0, 0, 0, 1-cb[1]
2142 else -- #ca = 3
2143 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2144 end
2145 elseif #cb == 3 then -- #ca == 4
2146 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], 0
2147 end
2148 end
2149 function do_preobj_SH(object, prescript)
2150 local shade_no
2151 local sh_type = prescript and prescript.sh_type
2152 if not sh_type then
2153 return
2154 else
2155 local domain = prescript.sh_domain or "0 1"
2156 local centera = (prescript.sh_center_a or "0 0"):explode()
2157 local centerb = (prescript.sh_center_b or "0 0"):explode()
2158 local transform = prescript.sh_transform == "yes"
2159 local sx,sy,sr,dx,dy = 1,1,1,0,0
2160 if transform then
2161 local first = (prescript.sh_first or "0 0"):explode()
2162 local setx = (prescript.sh_set_x or "0 0"):explode()
2163 local sety = (prescript.sh_set_y or "0 0"):explode()
2164 local x,y = tonumber(setx[1]) or 0, tonumber(sety[1]) or 0
2165 if x ~= 0 and y ~= 0 then
2166 local path = object.path
2167 local path1x = path[1].x_coord
2168 local path1y = path[1].y_coord
2169 local path2x = path[x].x_coord
2170 local path2y = path[y].y_coord
2171 local dxa = path2x - path1x

71

2172 local dya = path2y - path1y
2173 local dxb = setx[2] - first[1]
2174 local dyb = sety[2] - first[2]
2175 if dxa ~= 0 and dya ~= 0 and dxb ~= 0 and dyb ~= 0 then
2176 sx = dxa / dxb ; if sx < 0 then sx = - sx end
2177 sy = dya / dyb ; if sy < 0 then sy = - sy end
2178 sr = math.sqrt(sx^2 + sy^2)
2179 dx = path1x - sx*first[1]
2180 dy = path1y - sy*first[2]
2181 end
2182 end
2183 end
2184 local ca, cb, colorspace, steps, fractions
2185 ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode":" }
2186 cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode":" }
2187 steps = tonumber(prescript.sh_step) or 1
2188 if steps > 1 then
2189 fractions = { prescript.sh_fraction_1 or 0 }
2190 for i=2,steps do
2191 fractions[i] = prescript[format("sh_fraction_%i",i)] or (i/steps)
2192 ca[i] = (prescript[format("sh_color_a_%i",i)] or "0"):explode":"
2193 cb[i] = (prescript[format("sh_color_b_%i",i)] or "1"):explode":"
2194 end
2195 end
2196 if prescript.mplib_spotcolor then
2197 ca, cb = { }, { }
2198 local names, pos, objref = { }, -1, ""
2199 local script = object.prescript:explode"\13+"
2200 for i=#script,1,-1 do
2201 if script[i]:find"mplib_spotcolor" then
2202 local t, name, value = script[i]:explode"="[2]:explode":"
2203 value, objref, name = t[1], t[2], t[3]
2204 if not names[name] then
2205 pos = pos+1
2206 names[name] = pos
2207 names[#names+1] = name
2208 end
2209 t = { }
2210 for j=1,names[name] do t[#t+1] = 0 end
2211 t[#t+1] = value
2212 tableinsert(#ca == #cb and ca or cb, t)
2213 end
2214 end
2215 for _,t in ipairs{ca,cb} do
2216 for _,tt in ipairs(t) do
2217 for i=1,#names-#tt do tt[#tt+1] = 0 end
2218 end
2219 end
2220 if #names == 1 then

72

2221 colorspace = objref
2222 else
2223 colorspace = pdfetcs.clrspcs[tableconcat(names,",")]
2224 end
2225 else
2226 local model = 0
2227 for _,t in ipairs{ca,cb} do
2228 for _,tt in ipairs(t) do
2229 model = model > #tt and model or #tt
2230 end
2231 end
2232 for _,t in ipairs{ca,cb} do
2233 for _,tt in ipairs(t) do
2234 if #tt < model then
2235 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2236 end
2237 end
2238 end
2239 colorspace = model == 4 and "/DeviceCMYK"
2240 or model == 3 and "/DeviceRGB"
2241 or model == 1 and "/DeviceGray"
2242 or err"unknown color model"
2243 end
2244 if sh_type == "linear" then
2245 local coordinates = format("%f %f %f %f",
2246 dx + sx*centera[1], dy + sy*centera[2],
2247 dx + sx*centerb[1], dy + sy*centerb[2])
2248 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates,steps,fractions)
2249 elseif sh_type == "circular" then
2250 local factor = prescript.sh_factor or 1
2251 local radiusa = factor * prescript.sh_radius_a
2252 local radiusb = factor * prescript.sh_radius_b
2253 local coordinates = format("%f %f %f %f %f %f",
2254 dx + sx*centera[1], dy + sy*centera[2], sr*radiusa,
2255 dx + sx*centerb[1], dy + sy*centerb[2], sr*radiusb)
2256 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates,steps,fractions)
2257 else
2258 err"unknown shading type"
2259 end
2260 end
2261 return shade_no, prescript.sh_stroking == "yes"
2262 end
2263 end
2264

Shading Patterns: we can apply shading to textual pictures as well as paths.

2265 if not pdfmode then
2266 pdfetcs.patternresources = {}
2267 end

73

2268 local function add_pattern_resources (key, val)
2269 if pdfmanagement then
2270 texsprint {
2271 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}{", val, "}"
2272 }
2273 else
2274 local res = format("/%s %s", key, val)
2275 if is_defined(pdfetcs.pgfpattern) then
2276 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2277 else
2278 pdfetcs.fallback_update_resources("Pattern",res,"@MPlibPt")
2279 if not pdfmode then
2280 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2281 end
2282 end
2283 end
2284 end
2285 function luamplib.dolatelua (on, os)
2286 local h, v = pdf.getpos()
2287 h = format("%f", h/factor) :gsub(decimals,rmzeros)
2288 v = format("%f", v/factor) :gsub(decimals,rmzeros)
2289 if pdfmode then
2290 pdf.obj(on, format("<<%s/Matrix[1 0 0 1 %s %s]>>", os, h, v))
2291 pdf.refobj(on)
2292 else
2293 local shift = os:explode()
2294 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then
2295 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shading]], h, v)
2296 end
2297 end
2298 end
2299 local function do_preobj_shading (object, prescript)
2300 if not prescript or not prescript.sh_operand_type then return end
2301 local on = do_preobj_SH(object, prescript)
2302 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))
2303 on = update_pdfobjs()
2304 if pdfmode then
2305 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",os,"]]) }" })
2306 else

Why @xpos @ypos do not work properly⁇?
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth,\the\paperheight}

2307 if is_defined"RecordProperties" then
2308 put2output(tableconcat{
2309 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z

74

2310 \\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 \z
2311 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2312 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2313]>>}"
2314 })
2315 else
2316 local shift = prescript.sh_matrixshift or "0 0"
2317 texsprint{ "\\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 ",shift,"]>>}" }
2318 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",shift,"]]) }" })
2319 end
2320 end
2321 local key, val = format("MPlibPt%s", on), format(pdfetcs.resfmt, on)
2322 add_pattern_resources(key,val)
2323 pdf_literalcode("/Pattern cs/%s scn", key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2324 prescript.sh_type = nil
2325 end
2326

Tiling Patterns
2327 pdfetcs.patterns = { }
2328 local function gather_resources (optres)
2329 local t, do_pattern = { }, not optres
2330 local names = {"ExtGState","ColorSpace","Shading"}
2331 if do_pattern then
2332 names[#names+1] = "Pattern"
2333 end
2334 if pdfmode then
2335 if pdfmanagement then
2336 for _,v in ipairs(names) do
2337 if ltx.__pdf.Page.Resources[v] then
2338 t[#t+1] = format("/%s %s 0 R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2339 end
2340 end
2341 else
2342 local res = pdfetcs.getpageres() or ""
2343 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2344 res = res .. texgettoks'mplibtmptoks'
2345 if do_pattern then return res end
2346 res = res:explode"/+"
2347 for _,v in ipairs(res) do
2348 v = v:match"^%s*(.-)%s*$"
2349 if not v:find"Pattern" and not optres:find(v) then
2350 t[#t+1] = "/" .. v
2351 end
2352 end
2353 end
2354 else
2355 if pdfmanagement then

75

2356 for _,v in ipairs(names) do
2357 run_tex_code ({
2358 "\\mplibtmptoks\\expanded{{",
2359 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
2360 "{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
2361 },ccexplat)
2362 t[#t+1] = texgettoks'mplibtmptoks'
2363 end
2364 elseif is_defined(pdfetcs.pgfextgs) then
2365 run_tex_code ({
2366 "\\mplibtmptoks\\expanded{{",
2367 "\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
2368 "\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
2369 do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or "",
2370 "}}",
2371 }, catat11)
2372 t[#t+1] = texgettoks'mplibtmptoks'
2373 if pdfetcs.resadded.Shading then
2374 t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
2375 end
2376 else
2377 for _,v in ipairs(names) do
2378 local vv = pdfetcs.resadded[v]
2379 if vv then
2380 t[#t+1] = format("/%s %s", v, vv)
2381 end
2382 end
2383 end
2384 end
2385 if do_pattern then return tableconcat(t) end
2386 -- get pattern resources
2387 local mytoks
2388 if pdfmanagement then
2389 run_tex_code ({
2390 "\\mplibtmptoks\\expanded{{",
2391 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}",
2392 "{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "}}",
2393 },ccexplat)
2394 mytoks = texgettoks"mplibtmptoks"
2395 if not pdfmode then
2396 mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
2397 end
2398 elseif is_defined(pdfetcs.pgfextgs) then
2399 if pdfmode then
2400 mytoks = get_macro"pgf@sys@pgf@resource@list@patterns"
2401 else
2402 local tt, abc = {}, get_macro"pgfutil@abc" or ""
2403 for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
2404 tt[#tt+1] = v

76

2405 end
2406 mytoks = tableconcat(tt)
2407 end
2408 else
2409 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2410 mytoks = tt and tableconcat(tt)
2411 end
2412 if mytoks and mytoks ~= "" then
2413 t[#t+1] = format("/Pattern<<%s>>",mytoks)
2414 end
2415 return tableconcat(t)
2416 end
2417 function luamplib.registerpattern (boxid, name, opts)
2418 local box = texgetbox(boxid)
2419 local wd = format("%.3f",box.width/factor)
2420 local hd = format("%.3f",(box.height+box.depth)/factor)
2421 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2422 if opts.xstep == 0 then opts.xstep = nil end
2423 if opts.ystep == 0 then opts.ystep = nil end
2424 if opts.colored == nil then
2425 opts.colored = opts.coloured
2426 if opts.colored == nil then
2427 opts.colored = true
2428 end
2429 end
2430 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2431 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2432 if opts.matrix and opts.matrix:find"%a" then
2433 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2434 process(data,"@mplibtransformmatrix")
2435 local t = luamplib.transformmatrix
2436 opts.matrix = format("%f %f %f %f", t[1], t[2], t[3], t[4])
2437 opts.xshift = opts.xshift or format("%f",t[5])
2438 opts.yshift = opts.yshift or format("%f",t[6])
2439 end
2440 local attr = {
2441 "/Type/Pattern",
2442 "/PatternType 1",
2443 format("/PaintType %i", opts.colored and 1 or 2),
2444 "/TilingType 2",
2445 format("/XStep %s", opts.xstep or wd),
2446 format("/YStep %s", opts.ystep or hd),
2447 format("/Matrix[%s %s %s]", opts.matrix or "1 0 0 1", opts.xshift or 0, opts.yshift or 0),
2448 }
2449 local optres = opts.resources or ""
2450 optres = optres .. gather_resources(optres)
2451 local patterns = pdfetcs.patterns
2452 if pdfmode then
2453 if opts.bbox then

77

2454 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2455 end
2456 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2457 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2458 patterns[name] = { id = index, colored = opts.colored }
2459 else
2460 local cnt = #patterns + 1
2461 local objname = "@mplibpattern" .. cnt
2462 local metric = format("bbox %s", opts.bbox or format("0 0 %s %s",wd,hd))
2463 texsprint {
2464 "\\expandafter\\newbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2465 "\\global\\setbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2466 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2467 "\\special{pdf:bcontent}",
2468 "\\special{pdf:bxobj ", objname, " ", metric, "}",
2469 "\\raise\\dp\\csname luamplib.patternbox.", cnt, "\\endcsname",
2470 "\\box\\csname luamplib.patternbox.", cnt, "\\endcsname",
2471 "\\special{pdf:put @resources <<", optres, ">>}",
2472 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2473 "\\special{pdf:econtent}}",
2474 }
2475 patterns[cnt] = objname
2476 patterns[name] = { id = cnt, colored = opts.colored }
2477 end
2478 end
2479
2480 local do_preobj_PAT
2481 do
2482 local function pattern_colorspace (cs)
2483 local on, new = update_pdfobjs(format("[/Pattern %s]", cs))
2484 if new then
2485 local key, val = format("MPlibCS%i",on), format(pdfetcs.resfmt,on)
2486 if pdfmanagement then
2487 texsprint {
2488 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}{", val, "}"
2489 }
2490 else
2491 local res = format("/%s %s", key, val)
2492 if is_defined(pdfetcs.pgfcolorspace) then
2493 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2494 else
2495 pdfetcs.fallback_update_resources("ColorSpace",res,"@MPlibCS")
2496 end
2497 end
2498 end
2499 return on
2500 end
2501 function do_preobj_PAT(object, prescript)
2502 local name = prescript and prescript.mplibpattern

78

2503 if not name then return end
2504 local patterns = pdfetcs.patterns
2505 local patt = patterns[name]
2506 local index = patt and patt.id or err("cannot get pattern object '%s'", name)
2507 local key = format("MPlibPt%s",index)
2508 if patt.colored then
2509 pdf_literalcode("/Pattern cs /%s scn", key)
2510 else
2511 local color = prescript.mpliboverridecolor
2512 if not color then
2513 local t = object.color
2514 color = t and #t>0 and luamplib.colorconverter(t)
2515 end
2516 if not color then return end
2517 local cs
2518 if color:find" cs " or color:find"@pdf.obj" then
2519 local t = color:explode()
2520 if pdfmode then
2521 cs = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2522 color = t[3]
2523 else
2524 cs = t[2]
2525 color = t[3]:match"%[(.+)%]"
2526 end
2527 else
2528 local t = colorsplit(color)
2529 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2530 color = tableconcat(t," ")
2531 end
2532 pdf_literalcode("/MPlibCS%i cs %s /%s scn", pattern_colorspace(cs), color, key)
2533 end
2534 if not patt.done then
2535 local val = pdfmode and format("%s 0 R",index) or patterns[index]
2536 add_pattern_resources(key,val)
2537 end
2538 patt.done = true
2539 end
2540 end
2541

Fading

2542 pdfetcs.fading = { }
2543 local function do_preobj_FADE (object, prescript)
2544 local fd_type = prescript and prescript.mplibfadetype
2545 local fd_stop = prescript and prescript.mplibfadestate
2546 if not fd_type then
2547 return fd_stop -- returns "stop" (if picture) or nil
2548 end
2549 local bbox = prescript.mplibfadebbox:explode":"

79

2550 local dx, dy = -bbox[1], -bbox[2]
2551 local vec = prescript.mplibfadevector; vec = vec and vec:explode":"
2552 if not vec then
2553 if fd_type == "linear" then
2554 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right
2555 else
2556 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4])/2
2557 vec = {centerx, centery, centerx, centery} -- center for both circles
2558 end
2559 end
2560 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
2561 if fd_type == "linear" then
2562 coords = format("%f %f %f %f", tableunpack(coords))
2563 elseif fd_type == "circular" then
2564 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]
2565 local radius = (prescript.mplibfaderadius or "0:"..math.sqrt(width^2+height^2)/2):explode":"
2566 tableinsert(coords, 3, radius[1])
2567 tableinsert(coords, radius[2])
2568 coords = format("%f %f %f %f %f %f", tableunpack(coords))
2569 else
2570 err("unknown fading method '%s'", fd_type)
2571 end
2572 fd_type = fd_type == "linear" and 2 or 3
2573 local opaq = (prescript.mplibfadeopacity or "1:0"):explode":"
2574 local on, os, new
2575 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray", {{opaq[1]}}, {{opaq[2]}}, coords, 1)
2576 os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
2577 on = update_pdfobjs(os)
2578 bbox = format("0 0 %f %f", bbox[3]+dx, bbox[4]+dy)
2579 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
2580 :gsub(decimals,rmzeros)
2581 os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
2582 on = update_pdfobjs(os)
2583 local resources = format(pdfetcs.resfmt, on)
2584 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
2585 local attr = tableconcat{
2586 "/Subtype/Form",
2587 "/BBox[", bbox, "]",
2588 "/Matrix[1 0 0 1 ", format("%f %f", -dx,-dy), "]",
2589 "/Resources ", resources,
2590 "/Group ", format(pdfetcs.resfmt, on),
2591 } :gsub(decimals,rmzeros)
2592 on = update_pdfobjs(attr, streamtext)
2593 os = "<</SMask<</S/Luminosity/G " .. format(pdfetcs.resfmt, on) .. ">>>>"
2594 on, new = update_pdfobjs(os)
2595 local key = add_extgs_resources(on,new)
2596 start_pdf_code()
2597 pdf_literalcode("/%s gs", key)
2598 if fd_stop then return "standalone" end

80

2599 return "start"
2600 end
2601

Transparency Group

2602 pdfetcs.tr_group = { shifts = { } }
2603 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2604 local function do_preobj_GRP (object, prescript)
2605 local grstate = prescript and prescript.gr_state
2606 if not grstate then return end
2607 local trgroup = pdfetcs.tr_group
2608 if grstate == "start" then
2609 trgroup.name = prescript.mplibgroupname or "lastmplibgroup"
2610 trgroup.isolated, trgroup.knockout = false, false
2611 for _,v in ipairs(prescript.gr_type:explode",+") do
2612 trgroup[v] = true
2613 end
2614 trgroup.bbox = prescript.mplibgroupbbox:explode":"
2615 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2616 elseif grstate == "stop" then
2617 local llx,lly,urx,ury = tableunpack(trgroup.bbox)
2618 put2output(tableconcat{
2619 "\\egroup",
2620 format("\\wd\\mplibscratchbox %fbp", urx-llx),
2621 format("\\ht\\mplibscratchbox %fbp", ury-lly),
2622 "\\dp\\mplibscratchbox 0pt",
2623 })
2624 local grattr = format("/Group<</S/Transparency/I %s/K %s>>",trgroup.isolated,trgroup.knockout)
2625 local res = gather_resources()
2626 local bbox = format("%f %f %f %f", llx,lly,urx,ury) :gsub(decimals,rmzeros)
2627 if pdfmode then
2628 put2output(tableconcat{
2629 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",
2630 "/BBox[", bbox, "]", grattr, "} resources{", res, "}\\mplibscratchbox",
2631 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2632 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}]],
2633 [[\wd\mplibscratchbox 0pt\ht\mplibscratchbox 0pt\dp\mplibscratchbox 0pt]],
2634 [[\box\mplibscratchbox]],
2635 "}\\endgroup",
2636 "\\expandafter\\xdef\\csname luamplib.group.", trgroup.name, "\\endcsname{",
2637 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2638 "\\useboxresource \\the\\lastsavedboxresourceindex",
2639 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2640 "\\box\\mplibscratchbox}",
2641 })
2642 else
2643 trgroup.cnt = (trgroup.cnt or 0) + 1
2644 local objname = format("@mplibtrgr%s", trgroup.cnt)
2645 put2output(tableconcat{

81

2646 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",
2647 "\\unhbox\\mplibscratchbox",
2648 "\\special{pdf:put @resources <<", res, ">>}",
2649 "\\special{pdf:exobj <<", grattr, ">>}",
2650 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2651 "\\special{pdf:uxobj ", objname, "}",
2652 "}\\endgroup",
2653 })
2654 token.set_macro("luamplib.group."..trgroup.name, tableconcat{
2655 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2656 "\\special{pdf:uxobj ", objname, "}",
2657 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2658 "\\box\\mplibscratchbox",
2659 }, "global")
2660 end
2661 trgroup.shifts[trgroup.name] = { llx, lly }
2662 end
2663 return grstate
2664 end
2665 function luamplib.registergroup (boxid, name, opts)
2666 local box = texgetbox(boxid)
2667 local wd, ht, dp = node.getwhd(box)
2668 local res = (opts.resources or "") .. gather_resources()
2669 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }
2670 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2671 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2672 if opts.matrix and opts.matrix:find"%a" then
2673 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2674 process(data,"@mplibtransformmatrix")
2675 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2676 end
2677 local grtype = 3
2678 if opts.bbox then
2679 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2680 grtype = 2
2681 end
2682 if opts.matrix then
2683 attr[#attr+1] = format("/Matrix[%s]", opts.matrix)
2684 grtype = opts.bbox and 4 or 1
2685 end
2686 if opts.asgroup then
2687 local t = { isolated = false, knockout = false }
2688 for _,v in ipairs(opts.asgroup:explode",+") do t[v] = true end
2689 attr[#attr+1] = format("/Group<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout)
2690 end
2691 local trgroup = pdfetcs.tr_group
2692 trgroup.shifts[name] = { get_macro'MPllx', get_macro'MPlly' }
2693 local whd
2694 if pdfmode then

82

2695 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2696 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2697 token.set_macro("luamplib.group."..name, tableconcat{
2698 "\\useboxresource ", index,
2699 }, "global")
2700 whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2701 else
2702 trgroup.cnt = (trgroup.cnt or 0) + 1
2703 local objname = format("@mplibtrgr%s", trgroup.cnt)
2704 texsprint {
2705 "\\expandafter\\newbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2706 "\\global\\setbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2707 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2708 "\\special{pdf:bcontent}",
2709 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",
2710 "\\unhbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2711 "\\special{pdf:put @resources <<", res, ">>}",
2712 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2713 "\\special{pdf:econtent}}",
2714 }
2715 token.set_macro("luamplib.group."..name, tableconcat{
2716 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "}}",
2717 "\\wd\\mplibscratchbox ", wd, "sp",
2718 "\\ht\\mplibscratchbox ", ht, "sp",
2719 "\\dp\\mplibscratchbox ", dp, "sp",
2720 "\\box\\mplibscratchbox",
2721 }, "global")
2722 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2723 end
2724 info("w/h/d of group '%s': %s", name, whd)
2725 end
2726

luamplib.convert: flushing figures

2727 do
2728 local function stop_special_effects(fade,opaq,over)
2729 if fade then -- fading
2730 stop_pdf_code()
2731 end
2732 if opaq then -- opacity
2733 pdf_literalcode(opaq)
2734 end
2735 if over then -- color
2736 if over:find"pdf:bc" then
2737 put2output"\\special{pdf:ec}"
2738 else
2739 put2output"\\special{color pop}"
2740 end
2741 end

83

2742 end
2743

For parsing prescript materials.
2744 local function script2table(s)
2745 local t = {}
2746 for _,i in ipairs(s:explode("\13+")) do
2747 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2748 if k and v and k ~= "" and not t[k] then
2749 t[k] = v
2750 end
2751 end
2752 return t
2753 end
2754

Codes below to insert PDF lieterals are mostly from ConTEXt general, with small changes when
needed.
2755 local function pdf_textfigure(font,size,text,width,height,depth)
2756 text = text:gsub(".",function(c)
2757 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2758 end)
2759 put2output("\\mplibtextext{%s}{%f}{%s}{%s}{%s}",font,size,text,0,0)
2760 end
2761
2762 local bend_tolerance = 131/65536
2763
2764 local rx, sx, sy, ry, tx, ty, divider = 1, 0, 0, 1, 0, 0, 1
2765
2766 local function pen_characteristics(object)
2767 local t = mplib.pen_info(object)
2768 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty
2769 divider = sx*sy - rx*ry
2770 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2771 end
2772
2773 local function concat(px, py) -- no tx, ty here
2774 return (sy*px-ry*py)/divider,(sx*py-rx*px)/divider
2775 end
2776
2777 local function curved(ith,pth)
2778 local d = pth.left_x - ith.right_x
2779 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and
2780 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2781 d = pth.left_y - ith.right_y
2782 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2783 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2784 return false
2785 end
2786 end

84

2787 return true
2788 end
2789
2790 local function flushnormalpath(path,open)
2791 local pth, ith
2792 for i=1,#path do
2793 pth = path[i]
2794 if not ith then
2795 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2796 elseif curved(ith,pth) then
2797 pdf_literalcode("%f %f %f %f %f %f c",
2798 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2799 else
2800 pdf_literalcode("%f %f l",pth.x_coord,pth.y_coord)
2801 end
2802 ith = pth
2803 end
2804 if not open then
2805 local one = path[1]
2806 if curved(pth,one) then
2807 pdf_literalcode("%f %f %f %f %f %f c",
2808 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2809 else
2810 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2811 end
2812 elseif #path == 1 then -- special case .. draw point
2813 local one = path[1]
2814 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2815 end
2816 end
2817
2818 local function flushconcatpath(path,open)
2819 pdf_literalcode("%f %f %f %f %f %f cm", sx, rx, ry, sy, tx ,ty)
2820 local pth, ith
2821 for i=1,#path do
2822 pth = path[i]
2823 if not ith then
2824 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2825 elseif curved(ith,pth) then
2826 local a, b = concat(ith.right_x,ith.right_y)
2827 local c, d = concat(pth.left_x,pth.left_y)
2828 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2829 else
2830 pdf_literalcode("%f %f l",concat(pth.x_coord, pth.y_coord))
2831 end
2832 ith = pth
2833 end
2834 if not open then
2835 local one = path[1]

85

2836 if curved(pth,one) then
2837 local a, b = concat(pth.right_x,pth.right_y)
2838 local c, d = concat(one.left_x,one.left_y)
2839 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2840 else
2841 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2842 end
2843 elseif #path == 1 then -- special case .. draw point
2844 local one = path[1]
2845 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2846 end
2847 end
2848

Finally, flush figures by inserting PDF literals.
2849 local function flush (result,flusher)
2850 if result then
2851 local figures = result.fig
2852 if figures then
2853 for f=1, #figures do
2854 info("flushing figure %s",f)
2855 local figure = figures[f]
2856 local objects = figure:objects()
2857 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or 0)
2858 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2859 local bbox = figure:boundingbox()
2860 local llx, lly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2861 if urx < llx then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.
(issue #70) Original code of ConTEXt general was:

-- invalid
pdf_startfigure(fignum,0,0,0,0)
pdf_stopfigure()

2862 else

For legacy behavior, insert ‘pre-fig’ TEX code here.
2863 if tex_code_pre_mplib[f] then
2864 put2output(tex_code_pre_mplib[f])
2865 end
2866 pdf_startfigure(fignum,llx,lly,urx,ury)
2867 start_pdf_code()
2868 if objects then
2869 local savedpath = nil
2870 local savedhtap = nil
2871 for o=1,#objects do
2872 local object = objects[o]
2873 local objecttype = object.type

86

The following 10 lines are part of btex...etex patch. Again, colors are processed at this stage.
2874 local prescript = object.prescript
2875 prescript = prescript and script2table(prescript) -- prescript is now a table
2876 local cr_over = do_preobj_CR(object,prescript) -- color
2877 local tr_opaq = do_preobj_TR(object,prescript) -- opacity
2878 local fading_ = do_preobj_FADE(object,prescript) -- fading
2879 local trgroup = do_preobj_GRP(object,prescript) -- transparency group
2880 local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
2881 local shading_ = do_preobj_shading(object,prescript) -- shading pattern
2882 if prescript and prescript.mplibtexboxid then
2883 put_tex_boxes(object,prescript)
2884 elseif objecttype == "start_bounds" or objecttype == "stop_bounds" then --skip
2885 elseif objecttype == "start_clip" then
2886 local evenodd = not object.istext and object.postscript == "evenodd"
2887 start_pdf_code()
2888 flushnormalpath(object.path,false)
2889 pdf_literalcode(evenodd and "W* n" or "W n")
2890 elseif objecttype == "stop_clip" then
2891 stop_pdf_code()
2892 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2893 elseif objecttype == "special" then

Collect TEX codes that will be executed after flushing. Legacy behavior.
2894 if prescript and prescript.postmplibverbtex then
2895 figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
2896 end
2897 elseif objecttype == "text" then
2898 local ot = object.transform -- 3,4,5,6,1,2
2899 start_pdf_code()
2900 pdf_literalcode("%f %f %f %f %f %f cm",ot[3],ot[4],ot[5],ot[6],ot[1],ot[2])
2901 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
2902 stop_pdf_code()
2903 elseif not trgroup and fading_ ~= "stop" then
2904 local evenodd, collect, both = false, false, false
2905 local postscript = object.postscript
2906 if not object.istext then
2907 if postscript == "evenodd" then
2908 evenodd = true
2909 elseif postscript == "collect" then
2910 collect = true
2911 elseif postscript == "both" then
2912 both = true
2913 elseif postscript == "eoboth" then
2914 evenodd = true
2915 both = true
2916 end
2917 end
2918 if collect then
2919 if not savedpath then

87

2920 savedpath = { object.path or false }
2921 savedhtap = { object.htap or false }
2922 else
2923 savedpath[#savedpath+1] = object.path or false
2924 savedhtap[#savedhtap+1] = object.htap or false
2925 end
2926 else

Removed from ConTEXt general: color stuff.

2927 local ml = object.miterlimit
2928 if ml and ml ~= miterlimit then
2929 miterlimit = ml
2930 pdf_literalcode("%f M",ml)
2931 end
2932 local lj = object.linejoin
2933 if lj and lj ~= linejoin then
2934 linejoin = lj
2935 pdf_literalcode("%i j",lj)
2936 end
2937 local lc = object.linecap
2938 if lc and lc ~= linecap then
2939 linecap = lc
2940 pdf_literalcode("%i J",lc)
2941 end
2942 local dl = object.dash
2943 if dl then
2944 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2945 if d ~= dashed then
2946 dashed = d
2947 pdf_literalcode(dashed)
2948 end
2949 elseif dashed then
2950 pdf_literalcode("[] 0 d")
2951 dashed = false
2952 end
2953 local path = object.path
2954 local transformed, penwidth = false, 1
2955 local open = path and path[1].left_type and path[#path].right_type
2956 local pen = object.pen
2957 if pen then
2958 if pen.type == 'elliptical' then
2959 transformed, penwidth = pen_characteristics(object) -- boolean, value
2960 pdf_literalcode("%f w",penwidth)
2961 if objecttype == 'fill' then
2962 objecttype = 'both'
2963 end
2964 else -- calculated by mplib itself
2965 objecttype = 'fill'
2966 end

88

2967 end

Added : shading
2968 local shade_no, shade_stroking = do_preobj_SH(object,prescript) -- shading
2969 if shade_no then
2970 pdf_literalcode"q /Pattern cs"
2971 objecttype = false
2972 end
2973 if transformed then
2974 start_pdf_code()
2975 end
2976 if path then
2977 if savedpath then
2978 for i=1,#savedpath do
2979 local path = savedpath[i]
2980 if transformed then
2981 flushconcatpath(path,open)
2982 else
2983 flushnormalpath(path,open)
2984 end
2985 end
2986 savedpath = nil
2987 end
2988 if transformed then
2989 flushconcatpath(path,open)
2990 else
2991 flushnormalpath(path,open)
2992 end
2993 if objecttype == "fill" then
2994 pdf_literalcode(evenodd and "h f*" or "h f")
2995 elseif objecttype == "outline" then
2996 if both then
2997 pdf_literalcode(evenodd and "h B*" or "h B")
2998 else
2999 pdf_literalcode(open and "S" or "h S")
3000 end
3001 elseif objecttype == "both" then
3002 pdf_literalcode(evenodd and "h B*" or "h B")
3003 end
3004 end
3005 if transformed then
3006 stop_pdf_code()
3007 end
3008 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.
3009 if path then
3010 if transformed then
3011 start_pdf_code()
3012 end

89

3013 if savedhtap then
3014 for i=1,#savedhtap do
3015 local path = savedhtap[i]
3016 if transformed then
3017 flushconcatpath(path,open)
3018 else
3019 flushnormalpath(path,open)
3020 end
3021 end
3022 savedhtap = nil
3023 evenodd = true
3024 end
3025 if transformed then
3026 flushconcatpath(path,open)
3027 else
3028 flushnormalpath(path,open)
3029 end
3030 if objecttype == "fill" then
3031 pdf_literalcode(evenodd and "h f*" or "h f")
3032 elseif objecttype == "outline" then
3033 pdf_literalcode(open and "S" or "h S")
3034 elseif objecttype == "both" then
3035 pdf_literalcode(evenodd and "h B*" or "h B")
3036 end
3037 if transformed then
3038 stop_pdf_code()
3039 end
3040 end

Added to ConTEXt general: post-object colors and shading stuff. Beware q ... Q scope.

3041 if shade_no then -- shading
3042 pdf_literalcode("W%s %s /MPlibSh%s sh Q",
3043 evenodd and "*" or "", shade_stroking and "s" or "n", shade_no)
3044 end
3045 end
3046 end
3047 if fading_ == "start" then
3048 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3049 elseif trgroup == "start" then
3050 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3051 elseif fading_ == "stop" then
3052 local se = pdfetcs.fading.specialeffects
3053 if se then stop_special_effects(se[1], se[2], se[3]) end
3054 elseif trgroup == "stop" then
3055 local se = pdfetcs.tr_group.specialeffects
3056 if se then stop_special_effects(se[1], se[2], se[3]) end
3057 else
3058 stop_special_effects(fading_, tr_opaq, cr_over)
3059 end

90

3060 if fading_ or trgroup then -- extgs resetted
3061 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
3062 end
3063 end
3064 end
3065 stop_pdf_code()
3066 pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.
3067 for _,v in ipairs(figcontents) do
3068 if type(v) == "table" then
3069 texsprint"\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint"}"
3070 else
3071 texsprint(v)
3072 end
3073 end
3074 if #figcontents.post > 0 then texsprint(figcontents.post) end
3075 figcontents = { post = { } }
3076 end
3077 end
3078 end
3079 end
3080 end
3081
3082 function luamplib.convert (result, flusher)
3083 flush(result, flusher)
3084 return true -- done
3085 end
3086 end
3087
3088 function luamplib.colorconverter (cr)
3089 local n = #cr
3090 if n == 4 then
3091 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]
3092 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g 0 G"
3093 elseif n == 3 then
3094 local r, g, b = cr[1], cr[2], cr[3]
3095 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3096 else
3097 local s = cr[1]
3098 return format("%.3f g %.3f G",s,s), "0 g 0 G"
3099 end
3100 end

2.2 TEX package

First we need to load some packages.

3101 \ifcsname ProvidesPackage\endcsname

91

We need LATEX 2024-06-01 as we use ltx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.
3102 \NeedsTeXFormat{LaTeX2e}
3103 \ProvidesPackage{luamplib}
3104 [2026/01/29 v2.38.4 mplib package for LuaTeX]
3105 \fi
3106 \ifdefined\newluafunction\else
3107 \input ltluatex
3108 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by LATEX kernel.
In Plain, atbegshi.sty is loaded.
3109 \ifnum\outputmode=0
3110 \ifdefined\AddToHookNext
3111 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}
3112 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}
3113 \def\luamplibateveryshipout{\AddToHook{shipout/background}}
3114 \else
3115 \input atbegshi.sty
3116 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3117 \let\luamplibatfirstshipout\AtBeginShipoutFirst
3118 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3119 \fi
3120 \fi

Loading of lua code.
3121 \directlua{require("luamplib")}

legacy commands. Seems we don’t need it, but no harm.
3122 \ifx\pdfoutput\undefined
3123 \let\pdfoutput\outputmode
3124 \fi
3125 \ifx\pdfliteral\undefined
3126 \protected\def\pdfliteral{\pdfextension literal}
3127 \fi

Set the format for metapost.
3128 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.
3129 \ifnum\pdfoutput>0
3130 \let\mplibtoPDF\pdfliteral
3131 \else
3132 \def\mplibtoPDF#1{\special{pdf:literal direct #1}}
3133 \ifcsname PackageInfo\endcsname
3134 \PackageInfo{luamplib}{only dvipdfmx is supported currently}
3135 \else
3136 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}

92

3137 \fi
3138 \fi

To make mplibcode typeset always in horizontal mode.
3139 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3140 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3141 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.
3142 \def\mplibsetupcatcodes{%
3143 %catcode`\{=12 %catcode`\}=12
3144 \catcode`\#=12 \catcode`\^=12 \catcode`\~=12 \catcode`_=12
3145 \catcode`\&=12 \catcode`\$=12 \catcode`\%=12 \catcode`\^^M=12
3146 }

Make btex...etex box zero-metric.
3147 \def\mplibputtextbox#1{\vbox to 0pt{\vss\hbox to 0pt{\raise\dp#1\copy#1\hss}}}

use Transparency Group
3148 \protected\def\usemplibgroup#1#{\usemplibgroupmain}
3149 \def\usemplibgroupmain#1{%
3150 \prependtomplibbox\hbox dir TLT\bgroup
3151 \csname luamplib.group.#1\endcsname
3152 \egroup
3153 }
3154 \protected\def\mplibgroup#1{%
3155 \begingroup
3156 \def\MPllx{0}\def\MPlly{0}%
3157 \def\mplibgroupname{#1}%
3158 \mplibgroupgetnexttok
3159 }
3160 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3161 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3162 \def\mplibgroupbranch{%
3163 \ifx [\nexttok
3164 \expandafter\mplibgroupopts
3165 \else
3166 \ifx\mplibsptoken\nexttok
3167 \expandafter\expandafter\expandafter\mplibgroupskipspace
3168 \else
3169 \let\mplibgroupoptions\empty
3170 \expandafter\expandafter\expandafter\mplibgroupmain
3171 \fi
3172 \fi
3173 }
3174 \def\mplibgroupopts[#1]{\def\mplibgroupoptions{#1}\mplibgroupmain}
3175 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3176 \protected\def\endmplibgroup{\egroup
3177 \directlua{ luamplib.registergroup(
3178 \the\mplibscratchbox, '\mplibgroupname', {\mplibgroupoptions}
3179)}%

93

3180 \endgroup
3181 }

Patterns
3182 {\def\:{\global\let\mplibsptoken= } \: }
3183 \protected\def\mppattern#1{%
3184 \begingroup
3185 \def\mplibpatternname{#1}%
3186 \mplibpatterngetnexttok
3187 }
3188 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3189 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3190 \def\mplibpatternbranch{%
3191 \ifx [\nexttok
3192 \expandafter\mplibpatternopts
3193 \else
3194 \ifx\mplibsptoken\nexttok
3195 \expandafter\expandafter\expandafter\mplibpatternskipspace
3196 \else
3197 \let\mplibpatternoptions\empty
3198 \expandafter\expandafter\expandafter\mplibpatternmain
3199 \fi
3200 \fi
3201 }
3202 \def\mplibpatternopts[#1]{%
3203 \def\mplibpatternoptions{#1}%
3204 \mplibpatternmain
3205 }
3206 \def\mplibpatternmain{%
3207 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3208 }
3209 \protected\def\endmppattern{%
3210 \egroup
3211 \directlua{ luamplib.registerpattern(
3212 \the\mplibscratchbox, '\mplibpatternname', {\mplibpatternoptions}
3213)}%
3214 \endgroup
3215 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3216 \def\mpfiginstancename{@mpfig}
3217 \protected\def\mpfig{%
3218 \begingroup
3219 \futurelet\nexttok\mplibmpfigbranch
3220 }
3221 \def\mplibmpfigbranch{%
3222 \ifx *\nexttok
3223 \expandafter\mplibprempfig
3224 \else
3225 \ifx [\nexttok

94

3226 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig
3227 \else
3228 \expandafter\expandafter\expandafter\mplibmainmpfig
3229 \fi
3230 \fi
3231 }
3232 \def\mplibgobbleoptsmpfig[#1]{\mplibmainmpfig}
3233 \def\mplibmainmpfig{%
3234 \begingroup
3235 \mplibsetupcatcodes
3236 \mplibdomainmpfig
3237 }
3238 \long\def\mplibdomainmpfig#1\endmpfig{%
3239 \endgroup
3240 \directlua{
3241 local legacy = luamplib.legacyverbatimtex
3242 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""
3243 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3244 luamplib.legacyverbatimtex = false
3245 luamplib.everymplib["\mpfiginstancename"] = ""
3246 luamplib.everyendmplib["\mpfiginstancename"] = ""
3247 luamplib.process_mplibcode(
3248 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===].." "..everyendmpfig.." endfig;",
3249 "\mpfiginstancename")
3250 luamplib.legacyverbatimtex = legacy
3251 luamplib.everymplib["\mpfiginstancename"] = everympfig
3252 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3253 }%
3254 \endgroup
3255 }
3256 \def\mplibprempfig#1{%
3257 \begingroup
3258 \mplibsetupcatcodes
3259 \mplibdoprempfig
3260 }
3261 \long\def\mplibdoprempfig#1\endmpfig{%
3262 \endgroup
3263 \directlua{
3264 local legacy = luamplib.legacyverbatimtex
3265 local everympfig = luamplib.everymplib["\mpfiginstancename"]
3266 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]
3267 luamplib.legacyverbatimtex = false
3268 luamplib.everymplib["\mpfiginstancename"] = ""
3269 luamplib.everyendmplib["\mpfiginstancename"] = ""
3270 luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\mpfiginstancename")
3271 luamplib.legacyverbatimtex = legacy
3272 luamplib.everymplib["\mpfiginstancename"] = everympfig
3273 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3274 }%

95

3275 \endgroup
3276 }
3277 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.
3278 \unless\ifcsname ver@luamplib.sty\endcsname
3279 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3280 \protected\def\mplibcode{%
3281 \begingroup
3282 \futurelet\nexttok\mplibcodebranch
3283 }
3284 \def\mplibcodebranch{%
3285 \ifx [\nexttok
3286 \expandafter\mplibcodegetinstancename
3287 \else
3288 \global\let\currentmpinstancename\empty
3289 \expandafter\mplibcodeindeed
3290 \fi
3291 }
3292 \def\mplibcodeindeed{%
3293 \begingroup
3294 \mplibsetupcatcodes
3295 \mplibdocode
3296 }
3297 \long\def\mplibdocode#1\endmplibcode{%
3298 \endgroup
3299 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\currentmpinstancename")}%
3300 \endgroup
3301 }
3302 \protected\def\endmplibcode{endmplibcode}
3303 \else

The LATEX-specific part: a new environment.
3304 \newenvironment{mplibcode}[1][]{%
3305 \xdef\currentmpinstancename{#1}%
3306 \mplibtmptoks{}\ltxdomplibcode
3307 }{}
3308 \def\ltxdomplibcode{%
3309 \begingroup
3310 \mplibsetupcatcodes
3311 \ltxdomplibcodeindeed
3312 }
3313 \def\mplib@mplibcode{mplibcode}
3314 \long\def\ltxdomplibcodeindeed#1\end#2{%
3315 \endgroup
3316 \mplibtmptoks\expandafter{\the\mplibtmptoks#1}%
3317 \def\mplibtemp@a{#2}%
3318 \ifx\mplib@mplibcode\mplibtemp@a
3319 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3320 \end{mplibcode}%

96

3321 \else
3322 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3323 \expandafter\ltxdomplibcode
3324 \fi
3325 }
3326 \fi

User settings.
3327 \def\mplibshowlog#1{\directlua{
3328 local s = string.lower("#1")
3329 if s == "enable" or s == "true" or s == "yes" then
3330 luamplib.showlog = true
3331 else
3332 luamplib.showlog = false
3333 end
3334 }}
3335 \def\mpliblegacybehavior#1{\directlua{
3336 local s = string.lower("#1")
3337 if s == "enable" or s == "true" or s == "yes" then
3338 luamplib.legacyverbatimtex = true
3339 else
3340 luamplib.legacyverbatimtex = false
3341 end
3342 }}
3343 \def\mplibverbatim#1{\directlua{
3344 local s = string.lower("#1")
3345 if s == "enable" or s == "true" or s == "yes" then
3346 luamplib.verbatiminput = true
3347 else
3348 luamplib.verbatiminput = false
3349 end
3350 }}
3351 \newtoks\mplibtmptoks

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables
3352 \ifcsname ver@luamplib.sty\endcsname
3353 \protected\def\everymplib{%
3354 \begingroup
3355 \mplibsetupcatcodes
3356 \mplibdoeverymplib
3357 }
3358 \protected\def\everyendmplib{%
3359 \begingroup
3360 \mplibsetupcatcodes
3361 \mplibdoeveryendmplib
3362 }
3363 \newcommand\mplibdoeverymplib[2][]{%
3364 \endgroup
3365 \directlua{
3366 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===]

97

3367 }%
3368 }
3369 \newcommand\mplibdoeveryendmplib[2][]{%
3370 \endgroup
3371 \directlua{
3372 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3373 }%
3374 }
3375 \else
3376 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#1}}
3377 \protected\def\everymplib#1#{%
3378 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3379 \begingroup
3380 \mplibsetupcatcodes
3381 \mplibdoeverymplib
3382 }
3383 \long\def\mplibdoeverymplib#1{%
3384 \endgroup
3385 \directlua{
3386 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3387 }%
3388 }
3389 \protected\def\everyendmplib#1#{%
3390 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3391 \begingroup
3392 \mplibsetupcatcodes
3393 \mplibdoeveryendmplib
3394 }
3395 \long\def\mplibdoeveryendmplib#1{%
3396 \endgroup
3397 \directlua{
3398 luamplib.everyendmplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3399 }%
3400 }
3401 \fi

TEX macros for dimen/color
3402 \def\mpdim#1{ runscript("luamplibdimen{#1}") }
3403 \def\mpcolor#1#{\domplibcolor{#1}}
3404 \def\domplibcolor#1#2{ runscript("luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.
3405 \def\mplibnumbersystem#1{\directlua{
3406 local t = "#1"
3407 if t == "binary" then t = "decimal" end
3408 luamplib.numbersystem = t
3409 }}

Settings for .mp cache files.
3410 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,}

98

3411 \def\mplibdomakenocache#1,{%
3412 \ifx\empty#1\empty
3413 \expandafter\mplibdomakenocache
3414 \else
3415 \ifx*#1\else
3416 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3417 \expandafter\expandafter\expandafter\mplibdomakenocache
3418 \fi
3419 \fi
3420 }
3421 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,}
3422 \def\mplibdocancelnocache#1,{%
3423 \ifx\empty#1\empty
3424 \expandafter\mplibdocancelnocache
3425 \else
3426 \ifx*#1\else
3427 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%
3428 \expandafter\expandafter\expandafter\mplibdocancelnocache
3429 \fi
3430 \fi
3431 }
3432 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.
3433 \def\mplibtextextlabel#1{\directlua{
3434 local s = string.lower("#1")
3435 if s == "enable" or s == "true" or s == "yes" then
3436 luamplib.textextlabel = true
3437 else
3438 luamplib.textextlabel = false
3439 end
3440 }}
3441 \def\mplibcodeinherit#1{\directlua{
3442 local s = string.lower("#1")
3443 if s == "enable" or s == "true" or s == "yes" then
3444 luamplib.codeinherit = true
3445 else
3446 luamplib.codeinherit = false
3447 end
3448 }}
3449 \def\mplibglobaltextext#1{\directlua{
3450 local s = string.lower("#1")
3451 if s == "enable" or s == "true" or s == "yes" then
3452 luamplib.globaltextext = true
3453 else
3454 luamplib.globaltextext = false
3455 end
3456 }}

The followings are from ConTEXt general, mostly.

99

We use a dedicated scratchbox.
3457 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.
3458 \def\mplibstarttoPDF#1#2#3#4{%
3459 \prependtomplibbox
3460 \hbox dir TLT\bgroup
3461 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3462 \xdef\MPurx{#3}\xdef\MPury{#4}%
3463 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3464 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3465 \parskip0pt%
3466 \leftskip0pt%
3467 \parindent0pt%
3468 \everypar{}%
3469 \setbox\mplibscratchbox\vbox\bgroup
3470 \noindent
3471 }
3472 \def\mplibstoptoPDF{%
3473 \par
3474 \egroup %
3475 \setbox\mplibscratchbox\hbox %
3476 {\hskip-\MPllx bp%
3477 \raise-\MPlly bp%
3478 \box\mplibscratchbox}%
3479 \setbox\mplibscratchbox\vbox to \MPheight
3480 {\vfill
3481 \hsize\MPwidth
3482 \wd\mplibscratchbox0pt%
3483 \ht\mplibscratchbox0pt%
3484 \dp\mplibscratchbox0pt%
3485 \box\mplibscratchbox}%
3486 \wd\mplibscratchbox\MPwidth
3487 \ht\mplibscratchbox\MPheight
3488 \box\mplibscratchbox
3489 \egroup
3490 }

Text items have a special handler.
3491 \def\mplibtextext#1#2#3#4#5{%
3492 \begingroup
3493 \setbox\mplibscratchbox\hbox
3494 {\font\temp=#1 at #2bp%
3495 \temp
3496 #3}%
3497 \setbox\mplibscratchbox\hbox
3498 {\hskip#4 bp%
3499 \raise#5 bp%
3500 \box\mplibscratchbox}%
3501 \wd\mplibscratchbox0pt%

100

3502 \ht\mplibscratchbox0pt%
3503 \dp\mplibscratchbox0pt%
3504 \box\mplibscratchbox
3505 \endgroup
3506 }

Input luamplib.cfg when it exists.
3507 \openin0=luamplib.cfg
3508 \ifeof0 \else
3509 \closein0
3510 \input luamplib.cfg
3511 \fi

Code for tagpdf
3512 \def\luamplibtagtextboxset#1#2{#2}
3513 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3514 \let\luamplibtagasgroupset\relax
3515 \let\luamplibtagasgroupput\luamplibtagtextboxset
3516 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3517 \ifcsname ver@tagpdf.sty\endcsname \else
3518 \ExplSyntaxOn
3519 \keys_define:nn{luamplib/tagging}
3520 {
3521 ,alt .code:n = { }
3522 ,actualtext .code:n = { }
3523 ,artifact .code:n = { }
3524 ,text .code:n = { }
3525 ,off .code:n = { }
3526 ,tag .code:n = { }
3527 ,adjust-BBox .code:n = { }
3528 ,tagging-setup .code:n = { }
3529 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3530 ,instancename .meta:n = { instance = {#1} }
3531 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3532 }
3533 \RenewDocumentCommand\mplibcode{O{}}
3534 {
3535 \tl_gclear:N \currentmpinstancename
3536 \keys_set:ne{luamplib/tagging}{#1}
3537 \mplibtmptoks{}\ltxdomplibcode
3538 }
3539 \cs_set_eq:NN \mplibalttext \use_none:n
3540 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center} raises an Error! aswe issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by LATEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@@par, and \endgraf, we here attempt to address
the issue by adding the following line, which LATEX’s \everypar should have done.
3541 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse

101

3542 \ExplSyntaxOff
3543 \endinput\fi
3544 \ExplSyntaxOn
3545 \tl_new:N \l__luamplib_tag_envname_tl
3546 \tl_new:N \l__luamplib_tag_alt_tl
3547 \tl_new:N \l__luamplib_tag_alt_dflt_tl
3548 \tl_new:N \l__luamplib_tag_actual_tl
3549 \tl_new:N \l__luamplib_tag_struct_tl
3550 \tl_set:Nn\l__luamplib_tag_struct_tl {Figure}
3551 \bool_new:N \l__luamplib_tag_usetext_bool
3552 \bool_new:N \l__luamplib_tag_bboxcorr_bool
3553 \seq_new:N \l__luamplib_tag_bboxcorr_seq
3554 \tl_new:N \l__luamplib_tag_bbox_draw_tl
3555 \tl_new:N \l__luamplib_BBox_llx_tl
3556 \tl_new:N \l__luamplib_BBox_lly_tl
3557 \tl_new:N \l__luamplib_BBox_urx_tl
3558 \tl_new:N \l__luamplib_BBox_ury_tl
3559 \msg_new:nnn {luamplib}{figure-text-reuse}
3560 {
3561 tex-text~box~#1~probably~is~incorrectly~tagged.~
3562 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3563 Check~the~resulting~PDF.
3564 }
3565 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3566 {
3567 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3568 Using~mplibgroup~with~text~mode~is~not~recommended.~
3569 Check~the~resulting~PDF.
3570 }
3571 \msg_new:nnn{luamplib}{alt-text-missing}
3572 {
3573 Alternate~text~for~#1~is~missing.~
3574 Using~the~default~value~'#2'~instead.
3575 }

Sockets for tex-text boxes.
3576 \socket_new:nn{tagsupport/luamplib/textext/set}{2}
3577 \socket_new:nn{tagsupport/luamplib/textext/put}{2}
3578 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3579 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.
3580 \bool_if:NTF \l__luamplib_tag_usetext_bool
3581 {
3582 \tag_mc_end_push:
3583 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}
3584 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.

102

3585 \tag_mc_begin:n{tag=text}
3586 #2
3587 \tag_mc_end:
3588 \tag_struct_end:
3589 \tag_mc_begin_pop:n{}
3590 }
3591 {
3592 \tag_suspend:n{\luamplibtagtextboxset}
3593 #2
3594 \tag_resume:n{\luamplibtagtextboxset}
3595 }
3596 }
3597 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}
3598 {
3599 \bool_lazy_and:nnTF
3600 { \l__luamplib_tag_usetext_bool }
3601 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3602 {
3603 \tag_resume:n{\mplibputtextbox}
3604 \tag_mc_end:
3605 \cs_if_exist:cTF {luamplib.taggedbox.#1}
3606 {
3607 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3608 #2
3609 \cs_undefine:c {luamplib.taggedbox.#1}
3610 }
3611 {
3612 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3613 \tag_mc_begin:n{}
3614 \int_set:Nn \l_tmpa_int {#1}
3615 \tag_mc_reset_box:N \l_tmpa_int
3616 #2
3617 \tag_mc_end:
3618 }
3619 \tag_mc_begin:n{artifact}
3620 }
3621 {
3622 \int_set:Nn \l_tmpa_int {#1}
3623 \tag_mc_reset_box:N \l_tmpa_int
3624 #2
3625 }
3626 }
3627 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3628 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3629 \cs_set_nopar:Npn \luamplibtagtextboxset
3630 {
3631 \tag_socket_use:nnn{luamplib/textext/set}
3632 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in

103

the artifact MC-chunks.
3633 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2
3634 {
3635 \bool_set_eq:NN \l_tmpa_bool \l__luamplib_tag_usetext_bool
3636 \bool_set_false:N \l__luamplib_tag_usetext_bool
3637 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}
3638 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}
3639 \bool_set_eq:NN \l__luamplib_tag_usetext_bool \l_tmpa_bool
3640 }
3641 \cs_set_nopar:Npn \mplibputtextbox #1
3642 {
3643 \vbox to 0pt{\vss\hbox to 0pt{
3644 \socket_use:nnn{tagsupport/luamplib/textext/put}{#1}{\raise\dp#1\copy#1}
3645 \hss}}
3646 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.
3647 \cs_set_nopar:Npn \luamplibtagasgroupset
3648 {
3649 \bool_set_false:N \l__luamplib_tag_usetext_bool
3650 }
3651 \cs_set_nopar:Npn \luamplibtagasgroupput
3652 {
3653 \bool_if:NT \l__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3654 \tag_socket_use:nnn{luamplib/mplibgroup/put}
3655 }

A socket for mplibgroup. Again, we issue a warning upon text mode.
3656 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3657 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}
3658 {
3659 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3660 {
3661 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}
3662 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}
3663 }
3664 \tag_mc_end:
3665 \tag_mc_begin:n{tag=text}
3666 #2
3667 \tag_mc_end:
3668 \tag_mc_begin:n{artifact}
3669 }
3670 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute
3671 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1
3672 {
3673 \tl_set:Ne \l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3674 \tex_savepos:D

104

3675 \property_record:ee{\l_tmpa_tl}{xpos,ypos}
3676 \tl_set:Ne \l__luamplib_BBox_llx_tl
3677 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{xpos}{0}sp } }
3678 \tl_set:Ne \l__luamplib_BBox_lly_tl
3679 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{ypos}{0}sp - \dp#1 } }
3680 \tl_set:Ne \l__luamplib_BBox_urx_tl
3681 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_llx_tl bp + \wd#1 } }
3682 \tl_set:Ne \l__luamplib_BBox_ury_tl
3683 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_lly_tl bp + \ht#1 + \dp#1 } }
3684 \bool_if:NT \l__luamplib_tag_bboxcorr_bool
3685 {
3686 \int_zero:N \l_tmpa_int
3687 \tl_map_inline:nn
3688 {
3689 \l__luamplib_BBox_llx_tl
3690 \l__luamplib_BBox_lly_tl
3691 \l__luamplib_BBox_urx_tl
3692 \l__luamplib_BBox_ury_tl
3693 }
3694 {
3695 \int_incr:N \l_tmpa_int
3696 \tl_set:Ne ##1
3697 {
3698 \fp_eval:n
3699 {
3700 ##1
3701 +
3702 \dim_to_decimal_in_bp:n { \seq_item:NV \l__luamplib_tag_bboxcorr_seq \l_tmpa_int }
3703 }
3704 }
3705 }
3706 }
3707 \tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
3708 {
3709 /O /Layout /BBox [
3710 \l__luamplib_BBox_llx_tl\c_space_tl
3711 \l__luamplib_BBox_lly_tl\c_space_tl
3712 \l__luamplib_BBox_urx_tl\c_space_tl
3713 \l__luamplib_BBox_ury_tl
3714]
3715 }
3716 \bool_if:NT \l__tag_graphic_debug_bool
3717 {
3718 \iow_log:e
3719 {
3720 luamplib/tagging~debug:~BBox~of~structure~\tag_get:n{struct_num}~is~
3721 \l__luamplib_BBox_llx_tl\c_space_tl
3722 \l__luamplib_BBox_lly_tl\c_space_tl
3723 \l__luamplib_BBox_urx_tl\c_space_tl

105

3724 \l__luamplib_BBox_ury_tl
3725 }
3726 \sys_if_output_pdf:TF
3727 {
3728 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3729 {
3730 \pdfextension save\relax
3731 \opacity_select:n{0.5} \color_select:n{red}
3732 \pdfextension literal~text
3733 {
3734 \l__luamplib_BBox_llx_tl\c_space_tl
3735 \l__luamplib_BBox_lly_tl\c_space_tl
3736 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3737 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3738 re~f
3739 }
3740 \pdfextension restore\relax
3741 }
3742 }
3743 {
3744 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3745 {
3746 \special{pdf:bcontent}
3747 \opacity_select:n{0.5} \color_select:n{red}
3748 \special{pdf:code~
3749 1~0~0~1~
3750 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{xpos}{0}sp + \wd#1 }~
3751 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{ypos}{0}sp }~
3752 cm
3753 }
3754 \special{pdf:code~
3755 \l__luamplib_BBox_llx_tl\c_space_tl
3756 \l__luamplib_BBox_lly_tl\c_space_tl
3757 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3758 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3759 re~f
3760 }
3761 \special{pdf:econtent}
3762 }
3763 }
3764 }
3765 }

Sockets for main process

3766 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}
3767 \socket_new:nn{tagsupport/luamplib/figure/end}{2}
3768 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3769 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}
3770 {

106

3771 \tag_mc_end_push:
3772 \tl_if_empty:NT\l__luamplib_tag_alt_tl
3773 {
3774 \tl_if_empty:eTF{#1}
3775 { \tl_set:Nn \l__luamplib_tag_alt_tl {metapost~figure} }
3776 { \tl_set:Ne \l__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#1}} }
3777 \msg_warning:nnVV{luamplib}{alt-text-missing}
3778 \l__luamplib_tag_envname_tl \l__luamplib_tag_alt_tl
3779 }
3780 \tag_struct_begin:n
3781 {
3782 tag=\l__luamplib_tag_struct_tl,
3783 alt=\l__luamplib_tag_alt_tl,
3784 }
3785 \tag_mc_begin:n{}
3786 }
3787 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}
3788 {
3789 __luamplib_tag_bbox_attribute:n {#1}
3790 #2
3791 \tl_use:N \l__luamplib_tag_bbox_draw_tl
3792 \tag_mc_end:
3793 \tag_struct_end:
3794 \tag_mc_begin_pop:n{}
3795 }
3796 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3797 {
3798 \tag_mc_end_push:
3799 \tag_struct_begin:n
3800 {
3801 tag=Span,
3802 actualtext=\l__luamplib_tag_actual_tl,
3803 }
3804 \tag_mc_begin:n{}
3805 }
3806 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3807 {
3808 #2
3809 \tag_mc_end:
3810 \tag_struct_end:
3811 \tag_mc_begin_pop:n{}
3812 }
3813 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3814 {
3815 \tag_mc_end_push:
3816 \tag_mc_begin:n{artifact}
3817 }
3818 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3819 {

107

3820 #2
3821 \tag_mc_end:
3822 \tag_mc_begin_pop:n{}
3823 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/tagging]{...} anywhere in
the document.
3824 \socket_new:nn{tagsupport/luamplib/figure/init}{0}
3825 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}
3826 {
3827 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}
3828 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}
3829 }
3830 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3831 {
3832 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3833 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.
3834 \prependtomplibbox \mplibnoforcehmode
3835 \mode_if_vertical:T { \noindent \aftergroup\par }
3836 }
3837 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}
3838 {
3839 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3840 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3841 }
3842 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}
3843 {
3844 \bool_set_true:N \l__luamplib_tag_usetext_bool
3845 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3846 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3847 \prependtomplibbox \mplibnoforcehmode
3848 \mode_if_vertical:T { \noindent \aftergroup\par }
3849 }
3850 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}
3851 {
3852 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3853 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3854 }
3855 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options
3856 \keys_define:nn{luamplib/tagging}
3857 {
3858 ,alt .code:n =
3859 {
3860 \tl_set:Ne\l__luamplib_tag_alt_tl{\text_purify:n{#1}}
3861 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3862 }

108

3863 ,actualtext .code:n =
3864 {
3865 \tl_set:Ne\l__luamplib_tag_actual_tl{\text_purify:n{#1}}
3866 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}
3867 }
3868 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3869 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }
3870 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3871 ,tag .code:n =
3872 {
3873 \str_case:nnF {#1}
3874 {
3875 {false} { \keys_set:nn {luamplib/tagging} {off} }
3876 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3877 }
3878 {
3879 \tl_set:Nn\l__luamplib_tag_struct_tl{#1}
3880 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3881 }
3882 }
3883 ,adjust-BBox .code:n =
3884 {
3885 \bool_set_true:N \l__luamplib_tag_bboxcorr_bool
3886 \seq_set_split:Nnn \l__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3887 }
3888 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3889 }
3890 \keys_define:nn {luamplib/instance}
3891 {
3892 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3893 ,instancename .meta:n = { instance = {#1} }
3894 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3895 }

Redefine our macros

3896 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3897 {
3898 \prependtomplibbox
3899 \hbox dir~TLT\bgroup
3900 \tag_socket_use:nn{luamplib/figure/begin}\l__luamplib_tag_alt_dflt_tl
3901 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3902 \xdef\MPurx{#3}\xdef\MPury{#4}%
3903 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3904 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3905 \parskip0pt
3906 \leftskip0pt
3907 \parindent0pt
3908 \everypar{}%
3909 \setbox\mplibscratchbox\vbox\bgroup

109

3910 \tag_suspend:n{\mplibstarttoPDF}
3911 \noindent
3912 }
3913 \cs_set_nopar:Npn \mplibstoptoPDF
3914 {
3915 \par
3916 \egroup
3917 \setbox\mplibscratchbox\hbox
3918 {\hskip-\MPllx bp
3919 \raise-\MPlly bp
3920 \box\mplibscratchbox}%
3921 \setbox\mplibscratchbox\vbox to \MPheight
3922 {\vfill
3923 \hsize\MPwidth
3924 \wd\mplibscratchbox0pt
3925 \ht\mplibscratchbox0pt
3926 \dp\mplibscratchbox0pt
3927 \box\mplibscratchbox}%
3928 \wd\mplibscratchbox\MPwidth
3929 \ht\mplibscratchbox\MPheight
3930 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3931 \egroup
3932 }
3933 \RenewDocumentCommand\mplibcode{O{}}
3934 {
3935 \tl_set:Nn \l__luamplib_tag_envname_tl {mplibcode}
3936 \tl_gclear:N \currentmpinstancename
3937 \keys_set_known:neN {luamplib/tagging} {#1} \l_tmpa_tl
3938 \keys_set:nV {luamplib/instance} \l_tmpa_tl
3939 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \currentmpinstancename
3940 \tag_socket_use:n{luamplib/figure/init}
3941 \mplibtmptoks{}\ltxdomplibcode
3942 }
3943 \RenewDocumentCommand\mpfig{s O{}}
3944 {
3945 \begingroup
3946 \tl_set:Nn \l__luamplib_tag_envname_tl {mpfig}
3947 \keys_set_known:ne {luamplib/tagging} {#2}
3948 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \mpfiginstancename
3949 \tag_socket_use:n{luamplib/figure/init}
3950 \IfBooleanTF{#1} { \mplibprempfig * }
3951 { \mplibmainmpfig }
3952 }
3953 \RenewDocumentCommand\usemplibgroup{O{} m}
3954 {
3955 \begingroup
3956 \tl_set:Nn \l__luamplib_tag_envname_tl {usemplibgroup}
3957 \keys_set_known:ne {luamplib/tagging} {#1}
3958 \tag_socket_use:n{luamplib/figure/init}

110

3959 \prependtomplibbox\hbox dir~TLT\bgroup
3960 \tag_socket_use:nn{luamplib/figure/begin}{#2}
3961 \setbox\mplibscratchbox\hbox\bgroup
3962 \bool_if:NF \l__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }
3963 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
3964 \egroup
3965 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
3966 \egroup
3967 \endgroup
3968 }

Allow setting alt/actual text within metapost code. Of course we can use them in TEX code as
well.
3969 \cs_new_nopar:Npn \mplibalttext #1
3970 {
3971 \tl_set:Ne \l__luamplib_tag_alt_tl {\text_purify:n{#1}}
3972 }
3973 \cs_new_nopar:Npn \mplibactualtext #1
3974 {
3975 \tl_set:Ne \l__luamplib_tag_actual_tl {\text_purify:n{#1}}
3976 }
3977 \ExplSyntaxOff

That’s all folks!

111

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if
you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses formost software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foun-
dation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Pub-
lic Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) Youmust cause anywork that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete correspondingmachine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission tomodify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty

12. Because the program is licensed free of charge, there is no warranty for
the program, to the extent permitted by applicable law. Except when oth-
erwise stated in writing the copyright holders and/or other parties pro-
vide the program “as is” without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to
the qality and performance of the program is with you. Should the pro-
gram prove defective, you assume the cost of all necessary servicing, repair
or correction.

13. In no event unless reqired by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redis-
tribute the program as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or conseqential damages arising
out of the use or inability to use the program (including but not limited to
loss of data or data being rendered inaccurate or losses sustained by you
or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the pos-
sibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNUGeneral Public License alongwith
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

112

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 mpliblength, mplibuclength
	1.2.15 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode
	1.3.4 luamplib.registerpattern
	1.3.5 luamplib.registergroup

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

