The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun
Support: https://github.com/lualatex/luamplib

2026/01/29 v2.38.4

Abstract

Package to have METAPOST code typeset directly in a document with LuaTgX

Contents
1 Documentation
1.1 TEX e
1.1.1 \mplibforcehmodeo
1.1.2 \everymplib, \everyendmplib
1.1.3 \mplibsetformat
1.1.4 \mplibnumbersystem
1.1.5 \mplibshowlog e
1.1.6 \mpliblegacybehavior
1.1.7 \mplibtextextlabel
1.1.8 \mplibcodeinherit
1.1.9 \mplibglobaltextext
1.1.10 Separate METAPOST instances
1.1.11 \mplibverbatim.o
1.1.12 \mpdim . . oL e e e e e e e e e e e
1.1.13 \MPCOlor e e e e e e e e e
1.1.14 \mpfig, \endmpfig e
1.1.15 Aboutcachefiles
1.1.16 About figure box metric Lo oL
1.1.17 luamplibefg . . . 00 oL
1.1.18 TaggedPDF
1.2 METAPOST
1.2.1 mplibdimen, mplibcolor
1.2.2 mplibtexcolor, mplibrgbtexcolor.
1.2.3 withmplibcolors
1.2.4 withtransparency e e e e e e e

O O 00 00N NN NNV R R R W W W W N

-
= \O

- e
N = R R

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod 12

1.2.6 withfademethodo 13

1.2.7 mplibgraphictext 14

1.2.8 mplibglyph e 15

1.2.9 mplibdrawglyph, anditsfriends 15

1.2.10 mpliboutlinetexto 16

1.2.11 \mppattern, withmppattern. 16

1.2.12 0 @SEIOUD « v v v e v e 19

1.2.13 \mplibgroup e e e e e 20

1.2.14 mpliblength, mplibuclength. 21

1.2.15 mplibsubstring, mplibucsubstring 21

1.3 Lua . . e e 21
1.3.1 FUNSCript o o o e e e e e e e e e e e e 21

1.3.2 luamplib.instances e 22

1.3.3 luamplib.process_mplibcode. 22

1.3.4 luamplib.registerpattern o .. 22

1.3.5 luamplib.registergroup 23

2 Implementation 23
21 Luamodule. 23

2.2 TeXpackage 91

3 The GNU GPL License v2 112

1 Documentation

This package aims at providing a simple way to typeset directly METAPOST code in a document
with LuaTgX. LuaTiX is built with the Lua mplib library, that runs METAPOST code. This package
is basically a wrapper for the Lua mplib functions and some TgX functions to have the output
of the mplib functions in the PDF.

Using this package is easy: in Plain, type your METAPOST code between the macros
\mplibcode and \endmplibcode, and in KIEX in the mplibcode environment.

The resulting METAPOST figures are put in a TgX hbox with dimensions adjusted to the META-
POST code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib. tex files from
ConTgXt. They have been adapted to KIEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

« Possibility to use btex ... etex to typeset TgX code. textext (string) is a more versatile
macro equivalent to TEX (string) from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

« Possibility to use verbatimtex ... etex to run a TgX code. VerbatimTeX (string) is a more
versatile macro corresponding to verbatimtex command. Of course the behavior can-
not be the same as the stand-alone mpost, so that you cannot include \documentclass,
\usepackage etc. When these TgX commands are found in verbatimtex ... etex, the entire
code will be ignored.

The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

« In the past, the package required PDF mode in order to have some output. Starting with
v2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool currently
supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TgX, METAPOST, and Lua interfaces.

1.1 TEX
1.1.1 \mplibforcehmode

When this macro is declared, every METAPOST figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.!

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the Lua table entry containing METAPOST code which
will be automatically inserted at the beginning and ending of each METAPOST code chunk.

\everymplib{ beginfig(@); }

\everyendmplib{ endfig; }
\begin{mplibcode} Q
% beginfig/endfig not needed

draw fullcircle scaled 1cm;
\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for METAPOST: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{ (format name)}.

N.B. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided by metafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

'Actually these commands redefine \prependtomplibbox. So you can redefine this macro with anything suitable
before a box. But see § 1.1.18 on Tagged PDF.

transparency (texdoc metafun §8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=(numeric)" to the sentence. (0 < (numeric) < 1)

From v2.36, withtransparency is available with plain format as well. See below § 1.2.4.

shading (texdoc metafun §8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TgX side. For instance, when withshadecolors(”orange”, 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or [3color’s expression.

From v2.36, shading is available with plain format as well with extended functionality.

See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where (string) should be "” (empty), "isolated”, "knockout”, or "isolated,knockout”. Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable} is declared, log messages returned by the META-
POST process will be printed to the .1og file. This is the TEX side interface for luamplib. showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

Legacy behavior By default, \mpliblegacybehavior{enable} is already declared for backward
compatibility, in which case TgX code in verbatimtex ... etex that comes just before beginfig()
will be inserted before the following METAPOST figure box. In this way, each figure box can be
freely moved horizontally or vertically. Also, a box number can be assigned to a figure box,
allowing it to be reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(@); ... endfig;

*As for user’s setting, enable, true and yes are identical; all others are identical to disable.
SBut the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

verbatimtex \leavevmode etex; beginfig(1); ... endfig;

verbatimtex \leavevmode\lower Tex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;
\endmplibcode

N.B. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TgX code in verbatimtex ... etex between beginfig() and endfig will be
inserted after flushing out the METAPOST figure. An example:*

\mplibcode
D := sqrt(2)*x9;

beginfig(0); Q
draw fullcircle scaled D;

VerbatimTeX("\gdef\Dia{" & decimal D & "}"); diameter: 22.62764bp.
endfig;
\endmplibcode
diameter: \Dia bp.

New and recommended way By contrast, when \mpliblegacybehavior{disable} is declared,
any verbatimtex ... etex, along with btex ... etex, will be run sequentially one by one. So,
some TEX code in verbatimtex ... etex will have effect on btex ... etex codes thereafter.

\begin{mplibcode}
beginfig(0);
draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,9); % bold face
draw btex GHI etex shifted (2cm,9); % bold face
endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text”, origin) thereafter is exactly the same as label(textext
"my text"”, origin).

N.B. Inthebackground, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TgX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (), 95 (L), 123 ({), 125 (3), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TgX.

‘But the recommended way to access METAPOST variables from TgX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants,
and macros defined by previous METAPOST code chunks. On the other hand, \mplibcodeinherit
{disable} will make each code chunk being treated as an independent instance, never affected
by previous code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other METAPOST macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. The command
still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(®);} \everyendmplib{ endfig;}

\mplibcode <:::>
label(btex $\sqrt{2}$ etex, origin);

draw fullcircle scaled 20;

picture pic; pic := currentpicture;
\endmplibcode
\mplibcode

currentpicture := pic scaled 2;
\endmplibcode

1.1.10 Separate METAPOST instances

luamplib v2.22 has added the support for several named METAPOST instances in KTEX environ-
ment mplibcode or Plain TgX commands \mplibcode ... \endmplibcode. The syntax for KIEX is:

\begin{mplibcode}[instanceName]
% some mp code
\end{mplibcode}

The behavior is as follows.

o All the variables and functions are shared only among all the environments belonging
to the same instance.

+ \mplibcodeinherit only affects the environments with no instance name set (since if a
name is set, the code is intended to be reused at some point).

« btex ... etex boxes are also shared and do not require \mplibglobaltextext.
« When an instance names is set, respective \currentmpinstancenanme is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.

Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceNamel{. ..}
\everyendmplib[instanceNamel{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TgX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}

’

1.1.13 \mpcolor[...1{...}

With \mpcolor command, color names or expressions of color, xcolor and L3color module/pack-
ages can be used in the mplibcode environment (after withcolor command, in principle). See
the example above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color com-
mand. For spot colors, [3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and
xespotcolor (in DVI mode) packages are supported as well.

N.B. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a METAPOST image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a METAPOST color expression if
possible, users can issue the sentence as follows without worrying about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}

’

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7

’

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for KTEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TgX macros \mpfig ... \endmpfig and its starred version \mpfig= ...
\endmpfig to save typing toil. The former is roughly the same as follows:

\begin{mplibcode}[@mpfig]
beginfig(0)
token list declared by \everymplib[@mpfig]

token list declared by \everyendmplib[@mpfig]
endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:
\begin{mplibcode}[@mpfig]
\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, METAPOST codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor 1/3[red,white]); }

\mpfigx input boxes \endmpfig

\mpfig
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

« \mplibmakenocache{ (filename)[, (filename), ...1}
« \mplibcancelnocache{(filename)[, (filename), ...}

where (filename) is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,

$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{(directory path)}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MP11x, \MP11ly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the KIEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=(text) starts a Figure tag by default and sets an alternate text of the figure from the (text).
BBox info will be added automatically to the PDF. This key is needed for ordinary META-
posT figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within METAPOST code as well: VerbatimTeX
"\mplibalttext{(text)}";

actualtext=(text) startsa Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the (text). If in vertical mode, horizontal mode will be forced by \noindent command.>
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
METAPOST code as well: VerbatimTeX "\mplibactualtext{(text)}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TgX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be

STt is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

forced by \noindent command.® BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TgX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TgX-text boxes is strongly
discouraged.

Note that the text in a TgX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For
example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)
draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;
draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;
endfig;
\end{mplibcode}

RECLOS

off Given this key, nothing will be tagged by luamplib.

tag=(name) You can choose a tag name, default value being Figure.” For instance, you can set
‘tag=Formula, alt=(text)’ to get a Formula element with its alternate text.?

adjust-BBox=(dimens) You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=(key-val list) This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{(key-val list)}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
\end{mplibcode}
\mpfiglalt=drawing of a square box]

\endmpfig

5The key text also shares the limitation mentioned in the previous footnote.
"The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses BTEX’s regular math formula tagging, for which the text key is needed.

10

\usemplibgroup[alt=drawing of a trianglel{...}

\mppattern{...} % see below
\mpfigloff] % do not tag this figure
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=(name) or instancename=(name)
is also allowed in addition to the raw instance name as shown above.

1.2 METAPOST
1.2.1 mplibdimen ..., mplibcolor ...

These are METAPOST interfaces for the TgX commands \mpdim and \mpcolor (see above §1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
METAPOST operators can also be used in external .mp files, which cannot have TgX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a METAPOST operator that converts a TgX
color expression to a METAPOST color expression, that can be used anywhere color expression
is expected as well as after the withcolor command.” For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a METAPOST error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor (string) always returns rgb-model expressions.

N.B. Spot colors are forced to cmyk or rgb model, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using the macro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
({fill color expr), (stroke color expr)). When the argument is in string type, it is regarded as
the color expression of TgX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40

withpen pencircle scaled 2
withmplibcolors ("orange!60"”, 2/3red)

’

°Since v2.38.1, the operation of mplibtexcolor is the same as that of mplibcolor if the color specified is not a spot
color or a named color in DVI mode.

11

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency({number) | (string), (numeric)) is provided for plain format as well as meta-
fun. The first argument accepts a number or a name of alternative transparency methods (see
texdoc metafun § 8.2 Figure 8.1). The second argument accepts a numeric expression denoting
opacity.

\mpfig
fill unitsquare scaled 40
withcolor 1/3[blue,white]
withtransparency (1, 0.5) % or ("normal”, 0.5)

fill fullcircle scaled 40 .
withcolor red
withtransparency (1, 0.5)

’

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same as metafun’s new shading method (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro name which only works with metafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

o Textual pictures as well as paths can have shading effect. The term textual picture means
a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see below
§ 1.2.7), or infont operator, though technically only the last one is a true textual picture.
Note that the transparency group in which path or text objects are filled without color
(see below § 1.2.12 and § 1.2.13) can also be regarded as a textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear”

withshadingvector (9,3)
withshadingstep (
withshadingfraction 1/2 ‘(‘ ’

withshadingcolors (red,green) j_
) ;r)
withshadingstep (

withshadingfraction 1

withshadingcolors (green,blue)

)

’

12

« When shading a picture generated by ‘infont” operator, the effect of withshadingvector
and that of withshadingdirection will be the same, as luamplib considers only the bound-
ing box of the picture.

As shown, the syntax is (path) | (textual picture) withshadingmethod (string), where the latter
shall be either "linear” or "circular”. Other macros for optional values are:

withshadingvector (pair) Starting and ending points (as time value) on the path.

withshadingdirection (pair) Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin (pair) The center of starting and ending circles. Default value: center p,
where p is the operand of withshadingmethod.

withshadingradius (pair) Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor (numeric) Multiplier of the radii. This is no-op in linear mode. Default
value: 1.2

withshadingcenter (pair) Values for shifting starting center. For instance, (9,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform (string) where (string) shall be "yes"” (respect transform) or "no” (ignore
transform). Default value: "no” for pictures made by infont operator; "yes" for all other
cases.

withshadingdomain (pair) Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction (numeric) Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors ({color expr), (color expr)) Starting and ending colors, default value being
(white, black). String-type argument is regarded as the color expression of TgX side.

withshadingstroke (string) where (string) shall be "yes” or "no”. Only meaningful when the
shading object is a (path); if "yes”, we get the path stroked and then shaded. More
efficient than issueing two sentences.

1.2.6 ... withfademethod ...

This is a METAPOST operator which makes the color of an object gradiently transparent. The
syntax is (path) | (picture) withfademethod (string), the latter being either "linear” or "circular”.
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand

13

of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.
Related macros to control optional values are:

withfadeopacity ({numeric), (numeric)) sets the starting opacity and the ending opacity, de-
fault value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector ({(pair), (pair)) sets the starting and ending points. Default value in the linear
mode is (1lcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius ((numeric), (numeric)) sets the radii of starting and ending circles. This is
no-op in the linear mode. Default value is (08, abs(center p - urcorner p)), meaning
that fading starts from the center and ends at the four corners of the bounding box.

withfadebbox ({(pair), (pair)) sets the bounding box of the fading area, default value being
(11corner p, urcorner p). Though this option is not needed in most cases, there could
be cases when users want to explicitly control the bounding box. Particularly, see the
description below at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bpl{mill} etex;
draw mill
withfademethod "circular”
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, @)

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext (string) is a METAPOST operator, the effect of which is similar to that of Con-
TgXt’s graphictext or our own mpliboutlinetext (see below §1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3

fakebold 2.3 % fontspec option @i@@ j
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue

’

14

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white"” and
"black” respectively.’® When the color expression is given in string type, it is regarded as color,
xcolor or L3color’s expression. All from mplibgraphictext to the end of sentence will compose an
anonymous picture, which can be drawn or assigned to a variable. Incidentally, withfillcolor
and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be compatible with
graphictext.

N.B. In some cases, especially when processing complicated TgX code, mplibgraphictext
will produce better results than ConTgXt or even than our own mpliboutlinetext, not to mention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.’' Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

1.2.8 mplibglyph ... of ...

From v2.30, we provide a new METAPOST operator mplibglyph, which returns a METAPOST picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, METAPOST primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(@)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf” % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]” % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TgX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph is quite similar to the result of glyph
primitive, METAPOST’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph (picture) command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

N.B. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect” to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd” to the last path.

*Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
"'But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

15

N.B. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what you want: in such cases, you have to issue the command
draw (the last path) withpostscript "both” (or "eoboth” to apply even-odd rule).*?

As this could be somewhat annoying to users, luamplib v2.38.0 or later provides the fol-
lowing commands as well: mplibfillandstrokeglyph (picture), mplibstrokeglyph (picture), and
mplibfillglyph (picture), the last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)

’

1.2.10 mpliboutlinetext (...)

From v2.31, a new METAPOST operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see the metafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!33}) A\/z + @
(withpen pencircle scaled .2 withcolor 2/3red)
scaled 3

’

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

N.B. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{(name)} ... \endmppattern define a tiling pattern cell associated with
the (name). METAPOST command withmppattern, the syntax being (cyclic path) | (textual picture)
withmppattern (string), will fill the given path or text with the tiling pattern cell of the (name)
by replicating it horizontally and vertically.'> As said before at § 1.2.5, the textual picture here
means any text typeset by TgX, mostly the result of the btex command (and its derivatives) or
the infont operator.

> metafun provides macros nofill, eofill, fillup, eofillup etc. (see metafun manual § 2.11), which luamplib with
plain format does not provide currently.

Swithpattern is an operator virtually the same as withmppattern, but the former forces a METAPOST picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), (cyclic path) withmppattern (string) works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern

Key Value Type Explanation

xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells

yshift number vertical shifting of pattern cells

bbox table or string 11x, 1ly, urx, ury values™

matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

colored or coloured boolean false for uncolored pattern. default: true

*in string type, numbers are separated by spaces

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below
xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}
]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]

draw (left--right) scaled 5
withcolor 2/3[red,white]

\endmpfig
\endmppattern % or \end{mppattern}

\mpfig

draw fullcircle scaled 50
withpostscript "collect”

draw fullcircle scaled 120
withmppattern "mypatt”
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth”

\endmpfig

The available options, actually elements of a Lua table, are listed in Table 1. For the sake
of convenience, the width and height values of the tiling pattern cell will be written down into
the log file (depth is always zero). Users can refer to them for option setting.

As for matrix option, METAPOST code such as "rotated 30 slanted .2" is allowed as well as
the string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’

17

operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern cell, resources option is
needed: for instance, resources="/ExtGState 1 @ R". However, as luamplib automatically in-
cludes the resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern cell which shall
have no color at all (i.e. withoutcolor command is needed for the cells made from METAPOST
code). Uncolored pattern will be painted later by the color of a METAPOST object. An example:

\begin{mppattern}{pattnocolor?}
L
colored = false,
matrix = "slanted .3 rotated 30",
]
\tiny\TeX
\end{mppattern}

\begin{mplibcode}
beginfig(1)

picture tex;

tex = mpliboutlinetext.p ("\bfseries \TeX");

for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]

scaled 8
withmppattern "pattnocolor”
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern

’

endfor
endfig;
\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)
draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor”
withmplibcolors (
2/3[red,white], % paints the pattern
2/3 red
)
endfig;
\end{mplibcode}

18

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well as metafun format. The syntax
is exactly the same: (picture) | (path) asgroup ""|" isolated,knockout”,
which will return a METAPOST picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.
The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TgX code or in other METAPOST code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TgX and METAPOST macros as follows:

isolated"” | "knockout

nl n

withgroupname (string) associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

\usemplibgroup{(name)} is a TgX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the bounding box will be shifted to the origin.

usemplibgroup (string) is a METAPOST command which will add a transparency group of the
name to the currentpicture. Contrary to the TgX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox ({pair), (pair)) sets the bounding box of the transparency group, default value
being (11lcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot 1ft 11corner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TgX and METAPOST commands:

\mpfig
draw image(
fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;
)
asgroup
withgroupname "mygroup”
withtransparency (1, 1/2)

nn

draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

\noindent

\clap{\vrule width 10bp height .25bp depth .25bp}% _+'
\clap{\vrule width .5bp height 5bp depth 5bp}%

\usemplibgroup{mygroup}

19

\mpfig
usemplibgroup "mygroup”
withtransparency (1, 1/3)
draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

Also note that normally the transparency groups are not affected by outer color commands.
However, if you have made the original transparency group using withoutcolor command, col-
ors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TgX macros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros
from TgX side. The syntax is similar to the \mppattern command (see above § 1.2.11).

An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
L % options: see below
asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 20 rotated 45 ;
draw (left--right) scaled 20 rotated -45 ;
\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx"” scaled 1.5
withtransparency (1, 0.5)

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As shown, you can reuse the mplibgroup using the TgX command \usemplibgroup or the
METAPOST command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TgX code (not by METAPOST
code) respects original height and depth.

20

Table 2: options for \mplibgroup

Key Value Type Explanation

asgroup string "" "isolated"”, "knockout”, or "isolated, knockout”
bbox table or string 11x, 11y, urx, ury values™

matrix table or string xx, yx, xy, yy values™ or MP transform code
resources string PDF resources if needed

*1in string type, numbers are separated by spaces

1.2.14 mpliblength ..., mplibuclength ...

mpliblength (string) returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the METAPOST primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abgdéf"” returns 6, not 8.

On the other hand, mplibuclength (string) returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Apfel”, where A is encoded using two codepoints
(U+oo041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.15 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring (pair) of (string) is a unicode-aware version equivalent to the METAPOST’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abgdéf"” returns "¢dé”, and
mplibsubstring (5,2) of "abcdéf” returns "édg".

On the other hand, mplibucsubstring (pair) of (string) returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (8,1) of "Apfel”, where A is en-
coded using two codepoints (U+0041 and U+0308), returns "A”, not "A”. This operator requires
lua-uni-algos package.

1.3 Lua
1.3.1 runscript ...

A good many METAPOST macros described in this documentation have been implemented using
the primitive runscript. With runscript (string), you can run a Lua code chunk from METAPOST
side and get some METAPOST code returned by Lua if you want. As the functionality is provided
by the mplib library itself, luamplib does not have much to say about it.

One thing is worth mentioning, however: if you return a Lua table to the METAPOST process,
it is automatically converted to a relevant METAPOST data type such as pair, color, cmykcolor or
transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the METAPOST color expression
(1,0,0) automatically.

21

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib. instances, through which
METAPOST variables are also easily accessible from Lua side, as documented in LuaTgX manual
§11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b =1 > 2;
numeric n; n = 3;
string s; s = "MetaPost”;
path p; p = unitsquare;

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")

n.n

local t = myinstance:get_path "p
for k,v in pairs(t) do

print(k, type(v)=="table' and table.concat(v,' ') or v)
end

}

Of course, this sort of Lua code can also be run inside METAPOST code using runscript command.
Again, of course you can access a METAPOST variable using your own TgX macro. For example:

\def\mpnumeric#1#2{\directlua{
tex.sprint(tostring(luamplib.instances["#1"]:get_numeric"#2"))

1}

\mpnumeric{myinstance}{n}\relax 3.0

1.3.3 Lua function luamplib.process_mplibcode
Users can run a METAPOST code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string (") which means that
it has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can affect the process of
process_mplibcode.
1.3.4 Lua function luamplib.registerpattern

This is the Lua interface for \mppattern ... \endmppattern described above at § 1.2.11.

luamplib.registerpattern (<number> box register, <string> pattern name, <table> options)

22

Table 3: elements in luamplib table (partial)

Key Type Related TgX macro Cft.
codeinherit boolean \mplibcodeinherit §1.1.8
everyendmplib table \everyendmplib §1.1.2
everymplib table \everymplib §1.1.2
getcachedir function ({string)) \mplibcachedir §1.1.15
globaltextext boolean \mplibglobaltextext §1.1.9
legacyverbatimtex boolean \mpliblegacybehavior §1.1.6
noneedtoreplace table \mplibmakenocache §1.1.15
numbersystem string \mplibnumbersystem §1.14
setformat function ((string)) \mplibsetformat §1.1.3
showlog boolean \mplibshowlog §1.15
textextlabel boolean \mplibtextextlabel §1.1.7
verbatiminput boolean \mplibverbatim §1.1.11

The first argument is the register of a box containing a pattern cell, which should be pre-
pared in advance by the user. For instance, \setbox@=\hbox{\tiny\TeX}, or corresponding Lua
code using tex.setbox function; then the argument should be 0.

As for the third argument, see above Table 1. The argument cannot be absent, but can be
an empty table, i.e. { }.

1.3.5 Lua function luamplib.registergroup
This is the Lua interface for \mplibgroup ... \endmplibgroup described above at § 1.2.13.

luamplib.registergroup (<number> box register, <string> group name, <table> options)

The first argument is the register of a box prepared in advance by the user. When the
contents of the box have been generated from TgX (not METAPOST) code, please make sure that
both of the TgX macros ‘MP11x’ and ‘MP1ly’ are defined as ‘@’ before invoking the Lua function.

As for the third argument, see above Table 2. The argument cannot be absent, but can be
an empty table, ie. { }.

Reusing an mplibgroup, \usemplibgroup{(name)3}, is basically the same as running the TX
macro ‘luamplib.group.(name)’. If you need the boxresource index, inspect this macro using
token.get_macro function.

2 Implementation

2.1 Lua module

1

2 luatexbase.provides_module {
3 name = "luamplib”,
4 version = "2.38.4",

23

s date = "2026/01/29",

6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7%

8

Use the luamplib namespace, since mplib is for the METAPOST library itself. ConTgXt uses

metapost.
9 luamplib = luamplib or { }
10 local luamplib = luamplib

11
12 local format, abs = string.format, math.abs
13

Use our own function for warn/info/err.
14 local function termorlog (target, text, kind)
15 if text then

16 local mod, write, append = "luamplib”, texio.write_nl, texio.write
17 kind = kind

18 or target == "term” and "Warning (more info in the log)”

19 or target == "log"” and "Info"

20 or target == "term and log" and "Warning”

21 or "Error”

22 target = kind == "Error” and "term and log"” or target

23 local t = text:explode”\n+"
24 write(target, format(”"Module %s %s:", mod, kind))
25 if #t == 1 then

26 append(target, format(” %s"”, t[1]1))

27 else

28 for _,line in ipairs(t) do

29 write(target, line)

30 end

31 write(target, format("(%s) " mod))

32 end

33 append(target, format(” on input line %s", tex.inputlineno))
34 write(target, "")

35 if kind == "Error” then error() end

36 end

37 end

38 local function warn (...) -- beware '%' symbol

39 termorlog(”term and log”, select("#",...) > 1 and format(...) or ...)
40 end

41 local function info (...)

42 termorlog("log”, select("#",...) > 1 and format(...) or ...)
43 end

44 local function err (...)

45 termorlog("error”, select("#",...) > 1 and format(...) or ...)
46 end

47

48 luamplib.showlog = luamplib.showlog or false

49

24

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack

53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox

56 local texruntoks = tex.runtoks
571if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest”)

59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro

62 local mplib = require ('mplib’)
63 local kpse = require ('kpse’)

64 local 1fs = require ('1fs’)

65 local 1fsattributes = 1fs.attributes
66 local 1fsisdir = 1fs.isdir

67 local 1fsmkdir = 1fs.mkdir

68 local 1fstouch = 1fs.touch

69 local ioopen = io.open

70

Some helper functions, prepared for the case when 1-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if lfsisdir(name) then

77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")

79 if fh then

80 fh:close(); os.remove(name)

81 return true

82 end

83 end

84 end

85 local mk_full_path = 1fs.mkdirp or 1fs.mkdirs or function(path)
86 local full = ""

87 for sub in path:gmatch(”"(/*[*\\/]+)") do

88 full = full .. sub

89 1fsmkdir(full)

90 end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib
regarding make_text, we might have to make cache files modified from input files.
First of all, determine the directory to store cache files.

25

93 local outputdir, cachedir
94 if 1fstouch then
95 for i,v in ipairs{'TEXMFVAR', 'TEXMF_OUTPUT_DIRECTORY','.', 'TEXMFOUTPUT'} do

96 local var = i == 3 and v or kpse.var_value(v)

97 if var and var ~= "" then

98 for _,vv in next, var:explode(os.type == "unix” and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")
100 if not 1fsisdir(dir) then

101 mk_full_path(dir)

102 end

103 if is_writable(dir) then

104 outputdir = dir

105 break

106 end

107 end

108 if outputdir then break end

109 end

110 end

111 end

[}

112 outputdir = outputdir or
113 function luamplib.getcachedir(dir)

114 dir = dir:gsub("##","#")

115 dir = dir:gsub("*~",

116 os.type == "windows" and os.getenv("UserProfile") or os.getenv("HOME"))
117 if 1fstouch and dir then

118 if 1fsisdir(dir) then

119 if is_writable(dir) then

120 cachedir = dir

121 else

122 warn("Directory '%s’' is not writable!”, dir)
123 end

124 else

125 warn("Directory '%s’' does not exist!”, dir)
126 end

127 end

128 end

Some basic METAPOST files not necessary to make cache files.

129 local noneedtoreplace = {

130 ["boxes.mp”] = true, -- ["format.mp"] = true,

131 ["graph.mp"] = true, ["marith.mp"] = true, ["mfplain.mp”] = true,

132 ["mpost.mp”] = true, ["plain.mp”] = true, ["rboxes.mp”] = true,

133 ["sarith.mp"] = true, ["string.mp”] = true, -- ["TEX.mp"] = true,

134 ["metafun.mp”] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv”] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv”] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv”] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv”] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv”] = true, ["mp-core.mpiv"] = true,
138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv”] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv”] = true, ["mp-luas.mpiv"] = true,

26

141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv”] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv”] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv”] = true,

144 3

145 luamplib.noneedtoreplace = noneedtoreplace

146

Pattern formats to replace btex and verbatimtex ... etex in input files, if needed.
147 local name_b = "%f[%a_]"

148 local name_e = "%f[*%a_]1"

149 local btex_etex = name_b.."btex"..name_e.."%sx(.-)%s*"..name_b.."etex"..name_e

150 local verbatimtex_etex = name_b.."verbatimtex”..name_e.."%s*(.-)%s*"..name_b.."etex

151

I

..hame_e

Function luamplib.finder

152 local currenttime = os.time()

153 do

154 local luamplibtime = 1fsattributes(kpse.find_file"luamplib.lua”, "modification")

format.mp is much complicated, so specially treated.

155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")

157 if not fh then return file end

158 local data = fh:read("*all”); fh:close()

159 fh = ioopen(newfile,"w")

160 if not fh then return file end

161 fh:write(

162 "let normalinfont = infont;\n",

163 "primarydef str infont name = rawtextext(str) enddef;\n"”,

164 data,

165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$*{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"”

168); fh:close()

169 1fstouch(newfile,currenttime,ofmodify)

170 return newfile

171 end

172 local function replaceinputmpfile (name,file)
173 local ofmodify = 1fsattributes(file,"modification”)

174 if not ofmodify then return file end

175 local newfile = name:gsub("%W","_")

176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then

178 local nf = lfsattributes(newfile)

179 if nf and nf.mode == "file" and

180 ofmodify == nf.modification and luamplibtime < nf.access then

181 return nf.size == @ and file or newfile

182 end

183 end

184 if name == "format.mp” then return replaceformatmp(file,newfile,ofmodify) end

185 local fh = ioopen(file,”r")

27

186 if not fh then return file end
187 local data = fh:read("*all”); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTgX
manual, which is not the case of standalone METAPOST though.

188 local count,cnt = 0,0

189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space

190 count = count + cnt

191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt

193 if count == @ then

194 noneedtoreplace[name] = true

195 fh = ioopen(newfile,"w");

196 if fh then

197 fh:close()

198 1fstouch(newfile,currenttime,ofmodify)
199 end

200 return file

201 end

202 fh = ioopen(newfile,"w")

203 if not fh then return file end

204 fh:write(data); fh:close()

205 1fstouch(newfile,currenttime,ofmodify)

206 return newfile

207 end

As the finder function for mplib, use the kpse library and make it behave like as if METAPOST
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse

209 do

210 local exe = @

211 while arg[exe-1] do

212 exe = exe-1

213 end

214 mpkpse = kpse.new(arglexe], "mpost")
215 end

216 local special_ftype = {
217 pfb = "typel fonts”,

218 enc = "enc files",

219}

220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then

222 if name and name ~= "mpout.log” then

223 kpse.record_output_file(name) -- recorder
224 end

225 return name

226 else

227 ftype = special_ftype[ftype] or ftype

228 local file = mpkpse:find_file(name, ftype)
229 if file then

28

230 if 1fstouch and ftype == "mp" and not noneedtoreplace[name] then

231 file = replaceinputmpfile(name,file)
232 end

233 else

234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end

236 if file then

237 kpse.record_input_file(file) -- recorder
238 end

239 return file

240 end

241 end

242 end

243

For the main function: process
plain or metafun, though we cannot support metafun format fully.
244 local currentformat = "plain”
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false

249 local mplibinstances = {}

250 luamplib.instances = mplibinstances

251 local has_instancename = false

252
253 local process

254 do

255 local function reporterror (result, prevlog)

256 if not result then

257 err("no result object returned”)

258 else

259 local t, e, 1 = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)

260 local log =1 or t or "no-term”

261 log = log:gsub("%(Please type a command or say ‘end’'%)",""):gsub("\n+","\n")
262 if result.status > @ then

263 local first = log:match”(.-\n! .-)\n! "
264 if first then

265 termorlog("term”, first)

266 termorlog("log”, log, "Warning")

267 else

268 warn(log)

269 end

270 if result.status > 1 then

271 err(e or "see above messages’)

272 end

273 elseif prevlog then

29

274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.

Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match”\n>>? .+"

276 if show then

277 termorlog("term”, show, "Info (more info in the log)")
278 info(log)

279 elseif luamplib.showlog and log:find"%g" then

280 info(log)

281 end

282 end

283 return log

284 end

285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.

286 if not math.initialseed then math.randomseed(currenttime) end

287 local function luamplibload (name)

288 local mpx = mplib.new {

289 ini_version = true,

290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.

291 make_text = luamplib.maketext,

292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,

295 random_seed = math.random(4095),

296 utf8_mode = true,

297 extensions =1,

298 }

Append our own METAPOST preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{

300 format(luamplib.preambles.preamble, replacesuffix(name,"mp”)),
301 luamplib.preambles.mplibcode,

302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or ""
304 }

305 local result, log

306 if not mpx then

307 result = { status = 99, error = "out of memory"}

308 else

309 result = mpx:execute(preamble)

310 end

311 log = reporterror(result)

312 return mpx, result, log

313 end

30

https://github.com/lualatex/luamplib/issues/21

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)

315 local currfmt

316 if instancename and instancename ~= "" then
317 currfmt = instancename

318 has_instancename = true

319 else

320 currfmt = tableconcat{

321 currentformat,

322 luamplib.numbersystem or "scaled”,

323 tostring(luamplib. textextlabel),

324 tostring(luamplib.legacyverbatimtex),
325 3

326 has_instancename = false

327 end

328 local mpx = mplibinstances[currfmt]

329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then

331 mpx: finish()

332 end

333 local log = ""

334 if standalone or not mpx then

335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx

337 end

338 local converted, result = false, {3}

339 if mpx and data then

340 result = mpx:execute(data)

341 local log = reporterror(result, log)

342 if log then

343 if result.fig then

344 converted = luamplib.convert(result)
345 end

346 end

347 else

348 err”Mem file unloadable. Maybe generated with a different version of mplib?”
349 end

350 return converted, result

351 end

352 end

353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355

make_text and some run_script uses LuaTgX’s tex. runtoks.
356 local catlatex = luatexbase.registernumber(”catcodetable@latex")
357 local catat1l = luatexbase.registernumber("”catcodetable@atletter”)

tex. scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-

31

iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)

359 texruntoks(function() texsprint(cat or catlatex, str) end)

360 end

For conversion of sp to bp.
361 local factor = 65536x(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is
true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.

363 local texboxes = { globalid = 0, localid = 4096 }

364 local process_tex_text

365 do

366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z

368 withprescript "mplibtexboxid=%i:%f:%f")’

369 function process_tex_text (str, maketext)

370 if str then

371 if not maketext then str = str:gsub("\r.-$","") end

372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global” or ""

374 local tex_box_id

375 if global == "" then

376 tex_box_id = texboxes.localid + 1

377 texboxes.localid = tex_box_id

378 else

379 local boxid = texboxes.globalid + 1

380 texboxes.globalid = boxid

381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount'allocationnumber’

383 end

384 if str:find"*%[taggingoff%]"” then

385 str = str:gsub("*%[taggingoff%l%sx","")

386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))

388 else

389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))

391 end

392 local box = texgetbox(tex_box_id)

393 local wd = box.width / factor

394 local ht = box.height / factor

395 local dp = box.depth / factor

396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)

397 end

398 return ""

32

399

end

400 end

401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor

. These com-

mands should be used with graphical objects. Attempt to support I3color as well.
402 if is_defined’color_select:n’ then

403 run_tex_code{

404 "\\newcatcodetable\\luamplibcctabexplat”,
405 "\\begingroup”,

406 "\\catcode'@=11 ",

407 "\\catcode'_=11 ",

408 "\\catcode':=11 ",

409 "\\savecatcodetable\\1luamplibcctabexplat”,
410 "\\endgroup”,

411}

412 end

413 local ccexplat = luatexbase.registernumber"luamplibcctabexplat”

414

415 1local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)

417 local t, tt = { 3}, res:gsub("[%[%11","",2):explode()

418 local be = tt[1]:find"*%d" and 1 or 2

419 for i=be, #tt do

420 if not tonumber(tt[i]) then break end

421 t[#t+1] = tt[i]

422 end

423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata

424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro”mplibtmpb”:explode”,"

426 end

427 return t

428 end

429 do

430 local colfmt = ccexplat and "13color” or "xcolor”

431 local mplibcolorfmt = {

432 xcolor = tableconcat{

433 [[\begingroup\let\XCemcolor\relax]],

434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}1],
435 [[\color%s\endgroupl],

436 b

437 13color = tableconcat{

438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}11,
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}11,
440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}1],
441 [[\color_select:n%s\endgroupl],

442 3

443}

33

444 function process_color (str)

445 if str then

446 if not str:find("%b{}") then

447 str = format("{%s}",str)

448 end

449 local myfmt = mplibcolorfmt[colfmt]

450 if colfmt == "13color” and is_defined”color” then
451 if str:find("#b[]") then

452 myfmt = mplibcolorfmt.xcolor

453 else

454 for _,v in ipairs(str:match”"{(.+)}":explode”!") do
455 if not v:find("*%sx%d+%s*$") then

456 local pp = get_macro(format("1__color_named_%s_prop",v))
457 if not pp or pp == "" then

458 myfmt = mplibcolorfmt.xcolor

459 break

460 end

461 end

462 end

463 end

464 end

465 run_tex_code(myfmt: format(str), ccexplat or catati1)
466 local t = texgettoks"mplibtmptoks”

467 if not pdfmode then

468 if t:find"*hsb" or not t:find"%d" then

469 t = "color push " .. t

470 elseif not t:find"*pdf” then

471 t = t:gsub("%a+ (.+)","pdf:bc [%11")

472 end

473 end

474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end

476 return ""

477 end

478 function process_mplibcolor(str)

479 local res = process_color(str)

480 if res:find” cs " or res:find"@pdf.obj"” or res:find"color push” then return res end
481 res = colorsplit(res:match’'"mpliboverridecolor=(.+)"")
482 return format("(%s)", tableconcat(res, ","))

483 end

484 end

485

for \mpdim or mplibdimen

486 local function process_dimen (str)

487
488
489
490
491

if str then
str = str:gsub("{(.+)}","%1")
run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}1], str))
return format("begingroup %s endgroup”, texgettoks"mplibtmptoks")

end

34

nn

492 return
493 end
494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.

495 Llocal function process_verbatimtex_text (str)
496 if str then

497 run_tex_code(str)
498 end

499 return ""

500 end

501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TgX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 Luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str

508 end
509 return "
510 end

511 local function process_verbatimtex_infig (str)
512 if str then

513 return format('special "postmplibverbtex=%s";', str)
514 end

515 return "

516 end

517

For metafun format. see issue #79.
518mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.

523 catcodes = catcodes or {}

524 local catcodes = catcodes

525 catcodes.numbers = catcodes.numbers or {}

526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes. numbers. texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers. luacatcodes = catcodes.numbers.luacatcodes or catlatex
529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers. txtcatcodes = catcodes.numbers.txtcatcodes or catlatex

35

533

Now luamplib.runscript

534 do

535
536
537
538
539
540
541
542

local runscript_funcs = {
luamplibtext = process_tex_text,
luamplibcolor = process_mplibcolor,
luamplibdimen = process_dimen,
luamplibprefig = process_verbatimtex_prefig,
luamplibinfig = process_verbatimtex_infig,

luamplibverbtex = process_verbatimtex_text,

}

A function from ConTgXt general.

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574
575
576
577
578

local function mpprint(buffer,...)
for i=1,select("#",...) do
local value = select(i,...)
if value ~= nil then
local t = type(value)
if t == "number” then
buffer[#buffer+1] = format("%.16f",value)
elseif t == "string” then
buffer[#buffer+1] = value
elseif t == "table" then

buffer[#buffer+1] = "(" .. tableconcat(value,”,") ..

else -- boolean or whatever
buffer[#buffer+1] = tostring(value)
end
end
end
end
function luamplib.runscript (code)
local id, str = code:match("(.-){(.*)}")
if id and str then
local f = runscript_funcs[id]
if f then
local t = f(str)
if t then return t end
end
end
local f = loadstring(code)
if type(f) == "function” then
local buffer = {3}
function mp.print(...)
mpprint(buffer,...)
end
local res = {f()}
buffer = tableconcat(buffer)
if buffer and buffer ~= "" then
return buffer

36

579 end

580 buffer = {3}

581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)

583 end

584 return ""

585 end

586 end

587

luamplib.maketext
588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\@PerCent\0")

592 :gsub("%%.-\n", "")

593 :gsub("%%.-$", "")

504 :gsub("%zPerCent%z", "\\%%")

595 :gsub("\r.-$", "")

596 :gsub("%s+", " M)

597 end

508 function luamplib.maketext (str, what)

599 if str and str ~= "" then

600 str = protecttexcontents(str)

601 if what == 1 then

602 if not str:find("\\documentclass”..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then

607 if luamplib.in_the_fig then

608 return process_verbatimtex_infig(str)
609 else

610 return process_verbatimtex_prefig(str)
611 end

612 else

613 return process_verbatimtex_text(str)

614 end

615 end

616 else

617 return process_tex_text(str, true) -- bool is for 'chari3’
618 end

619 end

620 return "

621 end

622 end

623

luamplib’s METAPOST color operators

37

624 luamplib.gettexcolor = function (str, rgb)

625 local res = process_color(str):match’"mpliboverridecolor=(.+)"'
626 if res:find” cs " or res:find”"@pdf.obj" then

627 if not rgb then

628 warn("%s is a spot color. Forced to CMYK"”, str)
629 end

630 run_tex_code({

631 "\\color_export:nnN{",

632 str,

633 "X,

634 rgb and "space-sep-rgb" or "space-sep-cmyk”,
635 "N\mplib_@tempa”,

636 },ccexplat)

637 return get_macro”mplib_@tempa”:explode()

638 end

639 local t = colorsplit(res)

640 if #t == 3 or not rgb then return t end

641 if #t == 4 then

642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end

644 return { t[11, t01], t[1] 3

645 end

646

647 Luamplib.shadecolor = function (str)

648 local res = process_color(str):match’"mpliboverridecolor=(.+)"'

649 if res:find” cs " or res:find"@pdf.obj" then -- spot color shade: 13 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}

\ExplSyntax0On
\color_model_new:nnn { pantone3005 }
{ Separation }
{
name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}
3
\color_set:nnn{spotA}{pantone30053}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}
\color_model_new:nnn { pantonel215 }
{ Separation }
{
name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}
}
\color_set:nnn{spotC}{pantone12153}{1}
\color_model_new:nnn { pantone2040 }

38

{ Separation }
{
name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}
}
\color_set:nnn{spotD}{pantone20403}{1}
\ExplSyntax0ff
\begin{document}
\begin{mplibcode}
beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm
withshadingmethod "linear”
withshadingvector (0,1)
withshadingstep (
withshadingfraction .5
withshadingcolors ("spotB","spotC")
)
withshadingstep (
withshadingfraction 1
withshadingcolors ("spotC”,"spotD")
)
endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone1215 }
{ Separation }
{
name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}

\color_model_new:nnn { pantonetblack }

{ DeviceN }

{ names = {pantonel215,black} }
\color_set:nnn{purepantone}{pantonet+black}{1,0}
\color_set:nnn{pureblack} {pantonet+black}{@,1}
\ExplSyntax0ff
\begin{document?}

\mpfig

fill unitsquare xscaled \mpdim{\textwidth} yscaled 30

withshadingmethod "linear”

39

non

withshadingcolors ("purepantone”,”pureblack”)
\endmpfig
\end{document}

650 run_tex_code({

651 [[\color_export:nnN{1], str, [[}{backend}\mplib_@tempall,

652 3}, ccexplat)

653 local name, value = get_macro’'mplib_@tempa’:match’'{(.-)H(.-)}'
654 local t, obj = res:explode()

655 if pdfmode then

656 obj = format("%s @ R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else

658 obj = t[2]

659 end

660 return format('(1) withprescript”mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end

662 return colorsplit(res)

663 end

664

luamplib. fillandstrokecolor

665 do

666 local function graphictextcolor (col, filldraw)

667 if col:find"~[%d%.:]+$" then

668 col = col:explode”:"

669 for i=1,#col do

670 col[i] = format("#%.3f", collil)

671 end

672 if pdfmode then

673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill"” and op or op:upper()

675 return tableconcat(col,” ")

676 end

677 return format("[%s]", tableconcat(col,” "))

678 end

679 col = process_color(col):match’"mpliboverridecolor=(.+)""'

680 if pdfmode then

681 local t = col:explode()

682 local b = filldraw == "fill" and 1 or #t/2+1

683 local e = b == 1 and #t/2 or #t

684 return tableconcat(t,” ", b, e)

685 end

686 return format("[%s]", tableconcat(colorsplit(col),” "))

687 end

688 function luamplib.fillandstrokecolor (fill, stroke)

689 fill = graphictextcolor(fill, "fill")

690 stroke = graphictextcolor(stroke, "stroke")

691 local bc = pdfmode and "" or "pdf:bc "

692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)

40

693 end
694 end
695

Remove trailing zeros for smaller PDF

696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub("%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext

699 local function getrulemetric (box, curr, bp)

700 local running = -1073741824

701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd

703 ht = ht == running and box.height or ht

704 dp = dp == running and box.depth or dp

705 if bp then

706 return wd/factor, ht/factor, dp/factor

707 end

708 return wd, ht, dp
709 end

710

luamplib’s mplibgraphictext operator

711 do

712 local emboldenfonts = { }

713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width

715 if not width then

716 local f

717 local function getglyph(n)

718 while n do

719 if n.head then

720 getglyph(n.head)

721 elseif n.font and n.font > @ then
722 f = n.font; break

723 end

724 n = node.getnext(n)

725 end

726 end

727 getglyph(curr)

728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width

730 end

731 return width

732 end

733 local function getrulewhatsit (line, wd, ht, dp)

734 line, wd, ht, dp = 1ine/1000, wd/factor, ht/factor, dp/factor
735 local pl

736 local fmt = "%f w %f %f %f %f re %s"

41

737 if pdfmode then

738 pl = node.new("whatsit”,"pdf_literal”)
739 pl.mode = 0

740 else

741 fmt = "pdf:content "..fmt

742 pl = node.new("whatsit”,"special”)

743 end

744 pl.data = fmt:format(line, @, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue”

746 node.setglue(ss, @, 65536, 65536, 2, 2)

747 pl.next = ss

748 return pl

749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined”ver@tagpdf.sty” then

752 tag_update_attrs = function (n, curr)

753 while n do

754 n.attr = curr.attr

755 if n.head then

756 tag_update_attrs(n.head, curr)

757 end

758 n = node.getnext(n)

759 end

760 end

761 else

762 tag_update_attrs = function() end

763 end

764 local function embolden (box, curr, fakebold)

765 local head = curr

766 while curr do

767 if curr.head then

768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then

770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then

772 if curr.leader.head then

773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule"” then

775 local glue = node.effective_glue(curr, box)
776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist"” then

779 wd = glue

780 else

781 ht, dp = 0, glue

782 end

783 local pl = getrulewhatsit(line, wd, ht, dp)

42

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

811

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

local pack = box.id == node.id"hlist” and node.hpack or node.vpack

local list = pack(pl, glue, "exactly")
tag_update_attrs(list,curr)
head = node.insert_after(head, curr, list)
head, curr = node.remove(head, curr)
end
elseif curr.id == node.id"rule” and curr.subtype == 0 then
local line = getemboldenwidth(curr, fakebold)
local wd,ht,dp = getrulemetric(box, curr)
if box.id == node.id"vlist"” then
ht, dp = 0, ht+dp
end
local pl = getrulewhatsit(line, wd, ht, dp)
local list
if box.id == node.id"hlist"” then
list = node.hpack(pl, wd, "exactly")
else
list = node.vpack(pl, ht+dp, "exactly")
end
tag_update_attrs(list,curr)
head = node.insert_after(head, curr, list)
head, curr = node.remove(head, curr)
elseif curr.id == node.id"glyph” and curr.font > @ then
local f = curr.font
local key = format("%s:%s",f,fakebold)
local i = emboldenfonts[key]
if not i then
local ft = font.getfont(f) or font.getcopy(f)
if pdfmode then
width = ft.size * fakebold / factor * 10
emboldenfonts.width = width
ft.mode, ft.width = 2, width
i = font.define(ft)
else

if ft.format ~= "opentype” and ft.format ~= "truetype” then

goto skip_typel
end
local name = ft.name:gsub('"',’'"):gsub(’;$',"'")
name = format('%s;embolden=%s; ', name,fakebold)
_, 1 = fonts.constructors.readanddefine(name, ft.size)
end
emboldenfonts[key] = i
end
curr.font = i
end
::skip_typel::
curr = node.getnext(curr)
end
return head

43

833 end

834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)

836 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil

838 local box = texgetbox(id)

839 box.head = embolden(box, box.head, fakebold)

840 local colors = luamplib.fillandstrokecolor(fc, dc)

841 return format('%s %s)', fmt, colors)
842 end

843 end

844

luamplib’s mplibglyph operator

845 do

846 local function mperr (str)

847 return format("hide(errmessage %q)", str)
848 end

849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then

852 r=r - 360

853 elseif r < -180 then
854 r=r + 360

855 end

856 return r

857 end

858 local function turning (t)
859 local r, n =0, #t
860 for i=1,2 do

861 tableinsert(t, t[il)

862 end

863 for i=1,n do

864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end

866 return r/360

867 end

868 local function glyphimage(t, fmt)
869 local a,p,r = {{},{3}

870 for i,v in ipairs(t) do

871 local cmd = v[#v]

872 if cmd == "m" then

873 p = {format(’'(%s,%s)',v[1]1,v[21)}

874 r = {{x=v[1],y=v[2]}}

875 else

876 local nt = t[i+1]

877 local last = not nt or nt[#nt] == "m"
878 if ecmd == "1" then

879 local pt = t[i-1]

44

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

local seco = pt[#pt] == "m"
if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
else
tableinsert(p, format('--(%s,%s)',v[1],v[2]))
tableinsert(r, {x=v[1],y=v[21})
end
if last then
tableinsert(p, '--cycle')
end
elseif cmd == "c" then
tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1]1,v[2]1,v[31,v[4]))
if last and r[1].x == v[5] and r[1].y == v[6] then
tableinsert(p, '..cycle')
else
tableinsert(p, format('..(%s,%s)',v[5],v[6]))
if last then
tableinsert(p, '--cycle')

end
tableinsert(r, {x=v[5],y=v[61})
end
else
return mperr"unknown operator”

end
if last then
tableinsert(ql turning(r) > @ and 1 or 2], tableconcat(p))
end
end
end
r={13
if fmt == "opentype” then
for _,v in ipairs(q[1]) do
tableinsert(r, format('addto currentpicture contour %s;',v))
end
for _,v in ipairs(q[2]) do
tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
end
else
for _,v in ipairs(q[2]) do
tableinsert(r, format('addto currentpicture contour %s;',v))
end
for _,v in ipairs(q[1]) do
tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
end
end
return format('image(%s)', tableconcat(r))
end
if not table.tofile then require”lualibs-lpeg"”; require"lualibs-table”; end
function luamplib.glyph (f, c)
local filename, subfont, instance, kind, shapedata

45

929 local fid = tonumber(f) or font.id(f)
930 if fid > 0 then

931 local fontdata = font.getfont(fid) or font.getcopy(fid)

932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance
934 filename = filename and filename:gsub("”*harfloaded:","")

935 else

936 local name

937 f = f:match”*%sx(.+)%sx$"

938 name, subfont, instance = f:match”(.+)%((%d+)%)%[(.-)%]1$"

939 if not name then

940 name, instance = f:match”(.+)%[(.-)%1$" -- SourceHanSansK-VF.otf[Heavy]
941 end

942 if not name then

943 name, subfont = f:match”(.+)%((%d+)%)$" -- Times.ttc(2)

944 end

945 name = name or f

946 subfont = (subfont or 0)+1

947 instance = instance and instance:lower()

948 for _,ftype in ipairs{"opentype"”, "truetype"} do

949 filename = kpse.find_file(name, ftype.."” fonts")

950 if filename then

951 kind = ftype; break

952 end

953 end

954 end

955 if kind ~= "opentype” and kind ~= "truetype” then

956 f = fid and fid > @ and tex.fontname(fid) or f

957 if kpse.find_file(f, "tfm") then

958 return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
959 else

960 return mperr”font not found”

961 end

962 end

963 local time = 1lfsattributes(filename, "modification”)

nn

964 local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
965 local h = format(string.rep('%02x’', 256/8), string.byte(sha2.digest256(k), 1, -1))

966 local newname = format("%s/%s.lua", cachedir or outputdir, h)

967 local newtime = lfsattributes(newname, "modification”) or @

968 if time == newtime then

969 shapedata = require(newname)

970 end

971 if not shapedata then

972 shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename, subfont,instance)
973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?” end
974 table.tofile(newname, shapedata, "return”)

975 1fstouch(newname, time, time)

976 end

977 local gid = tonumber(c)

46

978 if not gid then

979 local uni = utf8.codepoint(c)

980 for i,v in pairs(shapedata.glyphs) do

981 if ¢ == v.name or uni == v.unicode then
982 gid = i; break

983 end

984 end

985 end

986 if not gid then return mperr”cannot get GID (glyph id)"” end
987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments

989 if not t then return "image()" end

990 for i,v in ipairs(t) do

991 if type(v) == "table"” then

992 for ii,vv in ipairs(v) do

993 if type(vv) == "number” then

994 t[i]1[ii] = format("%.0f", vv * fac)
995 end

996 end

997 end

998 end

999 kind = shapedata.format or kind
1000 return glyphimage(t, kind)

1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do

1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z

1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert

1008 function outline_vert (res, box, curr, xshift, yshift)

1009 local b2u = box.dir == "LTL"

1010 local dy = (b2u and -box.depth or box.height)/factor

1011 local ody = dy

1012 while curr do

1013 if curr.id == node.id"rule"” then

1014 local wd, ht, dp = getrulemetric(box, curr, true)
1015 local hd = ht + dp

1016 if hd ~= 0 then

1017 dy = dy + (b2u and dp or -ht)

1018 if wd ~= @ and curr.subtype == @ then

1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)
1020 end

1021 dy = dy + (b2u and ht or -dp)

1022 end

1023 elseif curr.id == node.id"glue"” then

1024 local vwidth = node.effective_glue(curr,box)/factor

47

1025 if curr.leader then

1026 local curr, kind = curr.leader, curr.subtype

1027 if curr.id == node.id"rule"” then

1028 local wd = getrulemetric(box, curr, true)

1029 if wd ~= 0 then

1030 local hd = vwidth

1031 local dy = dy + (b2u and @ or -hd)

1032 if hd ~= @ and curr.subtype == @ then

1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)
1034 end

1035 end

1036 elseif curr.head then

1037 local hd = (curr.height + curr.depth)/factor

1038 if hd <= vwidth then

1039 local dy, n, iy = dy, 9, ©

1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)

1042 local ndy = math.ceil(ady / hd) * hd

1043 local diff = ndy - ady

1044 n = math.floor((vwidth-diff) / hd)

1045 dy = dy + (b2u and diff or -diff)

1046 else

1047 n = math.floor(vwidth / hd)

1048 if kind == 101 then

1049 local side = vwidth % hd / 2

1050 dy = dy + (b2u and side or -side)

1051 elseif kind == 102 then

1052 iy = vwidth % hd / (n+1)

1053 dy = dy + (b2u and iy or -iy)

1054 end

1055 end

1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd

1058 iy = b2u and iy or -iy

1059 local func = curr.id == node.id"hlist” and outline_horz or outline_vert
1060 for i=1,n do

1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy =dy + hd + iy

1063 end

1064 end

1065 end

1066 end

1067 dy = dy + (b2u and vwidth or -vwidth)

1068 elseif curr.id == node.id"kern" then

1069 dy = dy + curr.kern/factor x (b2u and 1 or -1)

1070 elseif curr.id == node.id"vlist” then

1071 dy = dy + (b2u and curr.depth or -curr.height)/factor

1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor

48

1074 elseif curr.id == node.id”hlist” then

1075 dy = dy + (b2u and curr.depth or -curr.height)/factor

1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor

1078 end

1079 curr = node.getnext(curr)

1080 end

1081 return res

1082 end

1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l1 = box.dir == "TRT"

1085 local dx = r2l and (discwd or box.width/factor) or 9

1086 local dirs = { { dir = r2l, dx = dx } }

1087 while curr do

1088 if curr.id == node.id"dir"” then

1089 local sign, dir = curr.dir:match”(.)(...)"

1090 local level, newdir = curr.level, r2l

1091 if sign == "+" then

1092 newdir = dir == "TRT"

1093 if r2l ~= newdir then

1094 local n = node.getnext(curr)

1095 while n do

1096 if n.id == node.id"dir” and n.level+1 == level then break end
1097 n = node.getnext(n)

1098 end

1099 n = n or node.tail(curr)

1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end

1102 dirs[level] = { dir = r21, dx = dx }

1103 else

1104 local level = level + 1

1105 newdir = dirs[level].dir

1106 if r2l ~= newdir then

1107 dx = dirs[level].dx

1108 end

1109 end

1110 r2l = newdir

1111 elseif curr.char and curr.font and curr.font > @ then

1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char

1114 local scale = ft.size / factor / 1000

1115 local slant = (ft.slant or 0)/1000

1116 local extend = (ft.extend or 1000)/1000

1117 local squeeze = (ft.squeeze or 1000)/1000

1118 local expand =1 + (curr.expansion_factor or 0)/1000000

1119 local xscale, yscale = scale x extend * expand, scale * squeeze
1120 dx = dx - (r2l and curr.width/factor*expand or 9)

1121 local xoff, yoff = (curr.xoffset or @)/factor, (curr.yoffset or 0)/factor
1122 local xpos, ypos = dx + xshift + xoff, yshift + yoff

49

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1171

nn

local vertical =
if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
if ft.shared.features.vertical then -- luatexko
vertical = "rotated 90"
local data = ft.characters[curr.char] or { }
if ft.hb then
local hoff, voff = (data.luatexko_hoff or @)/factor, (data.luatexko_voff or @)/factor
local charraise = (ft.luatexko_charraise or 0)/factor
Xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise
else
local cmds = data.commands or { {0,0}, {0,0} }
local voff, hoff = -emds[1]1[2]/factor, cmds[2][2]/factor
Xpos, ypos = xpos + hoff, ypos + voff
end
elseif curr ~= box.head then -- luatexja
vertical = "rotated 90"
local en = ft.parameters.quad/factor/2
Xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
end
end
local image
if ft.format == "opentype” or ft.format == "truetype" then
image = luamplib.glyph(curr.font, gid)
else
local name, scale = ft.name, 1
local vf = font.read_vf(name, ft.size)
if vf and vf.characters[gid] then
local cmds = vf.characters[gid].commands or {}
for _,v in ipairs(cmds) do
if v[1] == "char" then
gid = v[2]
elseif v[1] == "font” and vf.fonts[v[2]] then
name = vf.fonts[v[2]].name
scale = vf.fonts[v[2]].size / ft.size
end
end
end
image = format("glyph %s of %q scaled %f", gid, name, scale)
end
res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
#res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
dx = dx + (r2l and @ or curr.width/factorxexpand)
elseif curr.replace then
local width = node.dimensions(curr.replace)/factor
dx = dx - (r2l and width or 9)
res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
dx = dx + (r2l and @ or width)
elseif curr.id == node.id"rule"” then
local wd, ht, dp = getrulemetric(box, curr, true)

50

1172 if wd ~= @ then

1173 local hd = ht + dp

1174 dx = dx - (r2l and wd or 9)

1175 if hd ~= @ and curr.subtype == @ then

1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end

1178 dx = dx + (r2l and @ or wd)

1179 end

1180 elseif curr.id == node.id"glue"” then

1181 local width = node.effective_glue(curr, box)/factor

1182 dx = dx - (r2l and width or 9)

1183 if curr.leader then

1184 local curr, kind = curr.leader, curr.subtype

1185 if curr.id == node.id"rule"” then

1186 local wd, ht, dp = getrulemetric(box, curr, true)

1187 local hd = ht + dp

1188 if hd ~= @ then

1189 wd = width

1190 if wd ~= @ and curr.subtype == @ then

1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end

1193 end

1194 elseif curr.head then

1195 local wd = curr.width/factor

1196 if wd <= width then

1197 local dx = r21 and dx+width or dx

1198 local n, ix = 0, ©

1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)

1201 local ndx = math.ceil(adx / wd) * wd

1202 local diff = ndx - adx

1203 n = math.floor((width-diff) / wd)

1204 dx = dx + (r2l and -diff-wd or diff)

1205 else

1206 n = math.floor(width / wd)

1207 if kind == 101 then

1208 local side = width % wd /2

1209 dx = dx + (r2l and -side-wd or side)

1210 elseif kind == 102 then

1211 ix = width % wd / (n+1)

1212 dx = dx + (r2l and -ix-wd or ix)

1213 end

1214 end

1215 wd = r2l and -wd or wd

1216 ix = r2l and -ix or ix

1217 local func = curr.id == node.id"hlist” and outline_horz or outline_vert
1218 for i=1,n do

1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix

51

1221

end

1222 end
1223 end
1224 end
1225 dx = dx + (r2l and @ or width)
1226 elseif curr.id == node.id"kern” then
1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)
1228 elseif curr.id == node.id"math” then
1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)
1230 elseif curr.id == node.id"vlist"” then
1231 dx = dx - (r2l and curr.width/factor or 0)
1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and @ or curr.width/factor)
1234 elseif curr.id == node.id"hlist” then
1235 dx = dx - (r2l and curr.width/factor or @)
1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and @ or curr.width/factor)
1238 end
1239 curr = node.getnext(curr)
1240 end
1241 return res
1242 end
1243 function luamplib.outlinetext (text)
1244 local fmt = process_tex_text(text)
1245 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)
1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252
lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)

1254 local t = { }

1255 local graphemes = require'lua-uni-graphemes'’
1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)

1258 end

1259 return t

1260 end

1261 function luamplib.unicodesubstring (s,b,e,grph)

1262
1263
1264
1265
1266
1267

local tt, t, step = { }
if grph then

t = luamplib.getunicodegraphemes(s)
else

t={12

for _, ¢ in utf8.codes(s) do

52

1268 table.insert(t, utf8.char(c))
1269 end

1270 end

1271 if b <= e then

1272 b, step = b+1, 1

1273 else
1274 e, step = e+1, -1
1275 end

1276 for i = b, e, step do
1277 table.insert(tt, t[i])

1278 end

1279 s = table.concat(tt):gsub('"’, '"&ditto&"")
1280 return string.format('"%s"', s)

1281 end

1282

METAPOST preambles

1283 luamplib.preambles = {

1284 preamble = [[

1285 boolean mplib ; mplib := true ;

1286 let dump = endinput ;

1287 let normalfontsize = fontsize;

1288 input %s ;

1289 17,

1290 mplibcode = [[

1291 texscriptmode := 2;

1292 def rawtextext primary t = runscript(”luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript(”luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript(”luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript(”luamplibverbtex{"&t&"}") enddef’;
1296 if known context_mlib:

1297 defaultfont := "cmtt10";

1298 let infont = normalinfont;

1299 let fontsize = normalfontsize;

1300 vardef thelabel@#(expr p,z) =

1301 if string p :

1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :

1304 p shifted (z + labeloffset*mfun_laboffe# -

1305 (mfun_labxf@#*1rcorner p + mfun_labyf@#xulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*11lcorner p))

1307 fi

1308 enddef’;

1309 else:

1310 vardef textext@# primary t = rawtextext (t) enddef;

1311 def message expr t =

1312 if string t: runscript(”mp.report[=["&t&"]1=]") else: errmessage "Not a string” fi
1313 enddef’;

1314 def withtransparency (expr a, t) =

53

1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t

1317 enddef;

1318 vardef ddecimal primary p =

1319 decimal xpart p & " " & decimal ypart p

1320 enddef;

1321 vardef boundingbox primary p =

1322 if (path p) or (picture p) :

1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p
1324 else :
1325 origin

1326 fi -- cycle

1327 enddef;

1328 fi

1329 def resolvedcolor(expr s) =

1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef’;

1332 def colordecimals primary c =

1333 if cmykcolor c:

1334 decimal cyanpart ¢ & ":" & decimal magentapart c & ":" &

1335 decimal yellowpart c & ":" & decimal blackpart c

1336 elseif rgbcolor c:

1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:

1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi

1340 else:

1341 decimal c

1342 fi

1343 enddef’;

1344 def externalfigure primary filename =

1345 draw rawtextext("\includegraphics{"& filename &"}")

1346 enddef’;

1347 def TEX = textext enddef’;

1348 def mplibtexcolor primary c =

1349 runscript(”return luamplib.gettexcolor('"& c &"')")

1350 enddef’;

1351 def mplibrgbtexcolor primary c =

1352 runscript("return luamplib.gettexcolor('"& c &"','rgb’')")
1353 enddef’;

1354 def mplibgraphictext primary t =

1355 begingroup;

1356 mplibgraphictext_ (t)

1357 enddef’;

1358 def mplibgraphictext_ (expr t) text rest =

1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;

1361 picture graphictextpic; graphictextpic := nullpicture;
1362 numeric fb; string fc, dc; fb:=2; fc:="white"”; dc:="black";
1363 let scale = scaled;

54

1364 def fakebold primary c = hide(fb:=c;) enddef;

1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;

1366 def drawcolor primary ¢ = hide(dc:=colordecimals c;) enddef;

1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;

1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;

1371 let fillcolor = fakebold; let drawcolor = fakebold;

1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1373 image(draw runscript(”return luamplib.graphictext([===["8t&"]===1,"

1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)

1375 endgroup;

1376 enddef;

1377 def mplibglyph expr c of f =

1378 runscript (

1379 "return luamplib.glyph('"
1380 & if numeric f: decimal fi f
1381 & "',

1382 & if numeric c: decimal fi c
1383 & """

1384)

1385 enddef’;

1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;

1387 def mplibdrawglyph expr g =

1388 luamplib_tmp_num_ := @;

1389 for item within g:

1390 fill pathpart item

1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
1392 endfor

1393 enddef;

1394 let mplibfillglyph = mplibdrawglyph;

1395 def mplibstrokeglyph expr g =

1396 luamplib_tmp_num_ := 0;

1397 for item within g:

1398 draw pathpart item

1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
1400 endfor

1401 enddef’;

1402 def mplibfillandstrokeglyph expr g =

1403 luamplib_tmp_num_ := @;

1404 for item within g:

1405 draw pathpart item withpostscript

1406 if incr luamplib_tmp_num_ < length g: "collect”; else: "both” fi
1407 endfor

1408 enddef;

1409 def withmplibcolors (expr f, s) =

1410 runscript(”return luamplib.fillandstrokecolor('"” &

1411 if not string f: colordecimals fi f & "','" &

1412 if not string s: colordecimals fi s & "')")

55

1413 enddef’;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =

1415
1416
1417

def mplib_do_outline_options_f = f enddef;
def mplib_do_outline_options_d = d enddef;
def mplib_do_outline_options_r = r enddef;

1418 enddef’;

1419 def mplib_do_outline_text_set_f (text f) text r

1420

1421

def mplib_do_outline_options_f = f enddef;
def mplib_do_outline_options_r = r enddef;

1422 enddef’;

1423 def mplib_do_outline_text_set_u (text f) text r =

1424

def mplib_do_outline_options_f = f enddef;

1425enddef;

1426 def mplib_do_outline_text_set_d (text d) text r

1427
1428

def mplib_do_outline_options_d = d enddef;
def mplib_do_outline_options_r = r enddef;

1429 enddef’;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =

1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef’;

1435 def mplib_do_outline_text_set_n text r =

1436

def mplib_do_outline_options_r = r enddef;

1437enddef;
1438 def mplib_do_outline_text_set_p = enddef’;
1439 def mplib_fill_outline_text =

1440
1441
1442
1443
1444
1445
1446
1447

for n=1 upto mpliboutlinenum:
i:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect”; fi
endfor
endfor

1448 enddef’;
1449 def mplib_draw_outline_text =

1450
1451
1452
1453
1454

for n=1 upto mpliboutlinenum:
for item within mpliboutlinepic[n]:
draw pathpart item mplib_do_outline_options_d;
endfor
endfor

1455 enddef’;
1456 def mplib_filldraw_outline_text =

1457
1458
1459
1460
1461

for n=1 upto mpliboutlinenum:
i:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[nl):

56

1462 fill pathpart item mplib_do_outline_options_f withpostscript "collect”;
1463 else:

1464 draw pathpart item mplib_do_outline_options_f withpostscript "both";
1465 fi

1466 endfor

1467 endfor

1468 enddef';

1469 vardef mpliboutlinetext@# (expr t) text rest =

1470 save kind; string kind; kind := str @#;

1471 save 1; numeric i;

1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;

1473 def mplib_do_outline_options_d = enddef;

1474 def mplib_do_outline_options_f = enddef;

1475 def mplib_do_outline_options_r = enddef;

1476 runscript(”"return luamplib.outlinetext[===["&t&"]===1");

1477 image (addto currentpicture also image (

1478 if kind = "f":

1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;

1481 elseif kind = "d":

1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;

1484 elseif kind = "b":

1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;

1487 mplib_draw_outline_text;

1488 elseif kind = "u":

1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;

1491 elseif kind = "r":

1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;

1494 mplib_fill_outline_text;

1495 elseif kind = "p":

1496 mplib_do_outline_text_set_p;

1497 mplib_draw_outline_text;

1498 else:

1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;

1501 fi;

1502) mplib_do_outline_options_r;)

1503 enddef ;

1504 def withmppattern primary p =

1505 Wwithprescript "mplibpattern=" & if numeric p: decimal fi p
1506 enddef;

1507 primarydef t withpattern p =

1508 image(

1509 if cycle t:

1510 fill

57

1511 else:

1512 draw

1513 fi

1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)
1515 enddef’;

1516 vardef mplibtransformmatrix (text e) =

1517 save t; transform t;

1518 t = identity e;

1519 runscript(”luamplib.transformmatrix = {"

non

1520 & decimal xxpart t & ",

non

1521 & decimal yxpart t & ",

non

1522 & decimal xypart t & ",

non

1523 & decimal yypart t & ",

non

1524 & decimal xpart t & ",
1525 & decimal ypart t & ",”

1526 & "}");

1527 enddef’;

1528 primarydef p withfademethod s =
1529 if picture p:

1530 image(

1531 draw p;

1532 draw center p withprescript "mplibfadestate=stop”;
1533)

1534 else:

1535 p withprescript "mplibfadestate=stop”

1536 fi

1537 withprescript "mplibfadetype=" & s
1538 withprescript "mplibfadebbox=" &

1539 decimal (xpart llcorner p -1/4) & ":" &
1540 decimal (ypart llcorner p -1/4) & ":" &
1541 decimal (xpart urcorner p +1/4) & ":" &
1542 decimal (ypart urcorner p +1/4)

1543 enddef’;

1544 def withfadeopacity (expr a,b) =

1545 Withprescript "mplibfadeopacity=" &
1546 decimal a & ":" &

1547 decimal b

1548 enddef’;

1549 def withfadevector (expr a,b) =

1550 Withprescript "mplibfadevector=" &

1551 decimal xpart a & ":" &
1552 decimal ypart a & ":" &
1553 decimal xpart b & ":" &

1554 decimal ypart b

1555 enddef';

1556 let withfadecenter = withfadevector;
1557 def withfaderadius (expr a,b) =

1558 withprescript "mplibfaderadius=" &
1559 decimal a & ":" &

58

1560 decimal b

1561 enddef’;

1562 def withfadebbox (expr a,b) =

1563 withprescript "mplibfadebbox=" &

1564 decimal xpart a & ":" &
1565 decimal ypart a & ":" &
1566 decimal xpart b & ":" &

1567 decimal ypart b

1568 enddef’;

1569 primarydef p asgroup s =
1570 image(

1571 draw center p

1572 withprescript "mplibgroupbbox=" &

1573 decimal (xpart llcorner p -1/4) & ":" &
1574 decimal (ypart llcorner p -1/4) & ":" &
1575 decimal (xpart urcorner p +1/4) & ":" &
1576 decimal (ypart urcorner p +1/4)

1577 withprescript "gr_state=start”

1578 withprescript "gr_type=" & s;

1579 draw p;

1580 draw center p withprescript "gr_state=stop”;
1581)

1582 enddef’;
1583 def withgroupbbox (expr a,b) =
1584 withprescript "mplibgroupbbox=" &

1585 decimal xpart a & ":" &
1586 decimal ypart a & ":" &
1587 decimal xpart b & ":" &

1588 decimal ypart b

1589 enddef’;

1590 def withgroupname expr s =

1591 Withprescript "mplibgroupname=" & s

1592 enddef’;

1593 def usemplibgroup primary s =

1594 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group.”& s &"\endcsname}")
1595 shifted runscript(”return luamplib.trgroupshifts['" & s & "']")
1596 enddef’;

1597 path mplib_shade_path ;

1598 numeric mplib_shade_step ; mplib_shade_step := 0 ;

1599 numeric mplib_shade_fx, mplib_shade_fy ;

1600 numeric mplib_shade_1x, mplib_shade_ly ;

1601 numeric mplib_shade_nx, mplib_shade_ny ;

1602 numeric mplib_shade_dx, mplib_shade_dy ;

1603 numeric mplib_shade_tx, mplib_shade_ty ;

1604 primarydef p withshadingmethod m =

1605 P
1606 if picture p :
1607 withprescript "sh_operand_type=picture”

1608 if textual p or (length p > 1):

59

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

withprescript "sh_transform=no”
mplib_with_shade_method (boundingbox p, m)

else:

withprescript "sh_transform=yes”
mplib_with_shade_method (pathpart p, m)

fi
else :

withprescript "sh_transform=yes”
mplib_with_shade_method (p, m)

fi

1619 enddef’;
1620 def mplib_with_shade_method (expr p, m) =
hide(mplib_with_shade_method_analyze(p))

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript

"sh_domain=0 1"
"sh_color=into”

if m = "linear”
"sh_type=linear”

withprescript
withprescript
withprescript
withprescript
else :
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
fi

1642 enddef';
1643 def mplib_with_shade_method_analyze(expr p) =

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657

mplib_shade_path :
mplib_shade_step :

mplib_shade_fx
mplib_shade_fy
mplib_shade_1x
mplib_shade_ly
mplib_shade_nx
mplib_shade_ny
mplib_shade_dx
mplib_shade_dy

"sh_factor=1"

"sh_color_a=" & colordecimals white
"sh_color_b=" & colordecimals black
"sh_first=" & ddecimal point @ of p
"sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_1x)
"sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)

"sh_center_a=" & ddecimal llcorner p
"sh_center_b=" & ddecimal urcorner p

"sh_type=circul
"sh_factor=1.2"
"sh_center_a="
"sh_center_b="
"sh_radius_a="
"sh_radius_b="

p
15
:= xpart point
:= ypart point

aru

& ddecimal center p
& ddecimal center p

& decimal
& decimal

0 of p ;
0 of p ;

:= mplib_shade_fx ;
:= mplib_shade_fy ;

=0 ;
=0 ;
:= abs(mplib_s
:= abs(mplib_s

for i=1 upto length(p) :

mplib_shade_tx

:= abs(mplib_s

hade_fx -
hade_fy -

hade_fx -

mplib_shade_ty := abs(mplib_shade_fy -
if mplib_shade_tx > mplib_shade_dx :

0
mplib_max_radius(p)

mplib_shade_1x) ;
mplib_shade_ly) ;

xpart point i of p) ;
ypart point i of p) ;

60

1658 mplib_shade_nx := i + 1 ;

1659 mplib_shade_lx := xpart point i of p ;
1660 mplib_shade_dx := mplib_shade_tx ;
1661 fi;

1662 if mplib_shade_ty > mplib_shade_dy :
1663 mplib_shade_ny :=i + 1 ;

1664 mplib_shade_ly := ypart point i of p ;
1665 mplib_shade_dy := mplib_shade_ty ;
1666 fi ;

1667 endfor ;

1668 enddef’;

1669 vardef mplib_max_radius(expr p) =

1670 max (

1671 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1672 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1673 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1674 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1675)

1676 enddef’;

1677 def withshadingstep (text t) =

1678 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1679 withprescript "sh_step=" & decimal mplib_shade_step
1680 t

1681 enddef’;

1682 def withshadingradius expr a =
1683 withprescript "sh_radius_a="
1684 withprescript "sh_radius_b="
1685 enddef';

1686 def withshadingorigin expr a =
1687 withprescript "sh_center_a="
1688 withprescript "sh_center_b="
1689 enddef’;

1690 def withshadingvector expr a =
withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)

1693 enddef’;

1694 def withshadingdirection expr a =

1695 withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1696 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1697 enddef’;

1698 def withshadingtransform expr a =

1699 Withprescript "sh_transform=" & a

1700 enddef’;

1701 def withshadingcenter expr a =

& decimal (xpart a)
& decimal (ypart a)

& ddecimal a
& ddecimal a

1691
1692

1702 withprescript "sh_center_a=" & ddecimal (

1703 center mplib_shade_path shifted (

1704 xpart a * xpart (lrcorner mplib_shade_path - 1llcorner mplib_shade_path)/2,
1705 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1706)

61

1707)

1708 enddef';

1709 def withshadingdomain expr d =

1710 withprescript "sh_domain=" & ddecimal d
1711 enddef’;

1712 def withshadingfactor expr f =
1713 withprescript "sh_factor=" & decimal f

1714 enddef;

1715 def withshadingfraction expr a =

1716 if mplib_shade_step > 0 :

1717 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1718 fi

1719 enddef;

1720 def withshadingcolors (expr a, b) =

1721 if mplib_shade_step > 0 :

1722 withprescript "sh_color=into”

1723 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1724 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1725 else :

1726 withprescript "sh_color=into"”

1727 withprescript "sh_color_a=" & colordecimals a

1728 withprescript "sh_color_b=" & colordecimals b

1729 fi

1730 enddef’;

1731 def withshadingstroke expr a =

1732 Withprescript "sh_stroking=" & a

1733 enddef’;

1734 def mpliblength primary t =

1735 runscript("return utf8.len[===[" & t & "]===]1")

1736 enddef’;

1737 def mplibsubstring expr p of t =

1738 runscript(”return luamplib.unicodesubstring([===[" & t & "]1===],"

1739 & decimal xpart p & ",”

1740 & decimal ypart p & ")")

1741 enddef;

1742 def mplibuclength primary t =

1743 runscript(”"return #luamplib.getunicodegraphemes[===[" & t & "J===]1")

1744 enddef’;

1745 def mplibucsubstring expr p of t =

1746 runscript(”return luamplib.unicodesubstring([===[" & t & "]===],"

1747 & decimal xpart p & ","

1748 & decimal ypart p & ",true)"”)

1749 enddef’;

1750 11,

1751 legacyverbatimtex = [[

1752 def specialVerbatimTeX (text t) = runscript(”luamplibprefig{”&t&"}") enddef;
1753 def normalVerbatimTeX (text t) = runscript(”luamplibinfig{"&t&"3}") enddef;
1754 let VerbatimTeX = specialVerbatimTeX;

1755 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&

62

1756 "runscript(” &ditto& "luamplib.in_the_fig=true” &ditto& ");";

1757 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1758 "runscript(” &ditto&

1759 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&
1760 "luamplib.in_the_fig=false" &ditto& ");";

1761 11,

1762 textextlabel = [[

1763 let luampliboriginalinfont = infont;

1764 primarydef s infont f =

1765 if (s < char 32)

1766 or (s =char 35) % #
1767 or (s =char 36) % $
1768 or (s =char 37) % %
1769 or (s = char 38) % &
1770 or (s = char 92) % \

1771 or (s =char 94) %
1772 or (s =char 95) % _

1773 or (s = char 123) % {

1774 or (s = char 125) % }

1775 or (s = char 126) % ~

1776 or (s = char 127) :

1777 s luampliboriginalinfont f

1778 else :
1779 rawtextext(s)
1780 fi

1781 enddef’;
1782 def fontsize expr f =
1783 begingroup
1784 Save size; numeric size;
1785 size := mplibdimen("1em");
1786 if size = 0: 10pt else: size fi
1787 endgroup
1788 enddef;
1789 11,
1790 }
1791
process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.
1792 luamplib.verbatiminput = false
1793 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1794 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })

1795 function luamplib.process_mplibcode (data, instancename)
1796 texboxes.localid = 4096

This is needed for legacy behavior

1797 if luamplib.legacyverbatimtex then

1798 luamplib.figid, tex_code_pre_mplib = 1, {3}

1799 end

1800 local everymplib = luamplib.everymplib[instancename]

63

1801 local everyendmplib = luamplib.everyendmplib[instancename]
1802 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1803 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.

1804 if luamplib.verbatiminput then

1805 data = data:gsub("\\mpcolor%s+(.-%b{})", " "mplibcolor(\"%1\")")
1806 cgsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")

1807 cgsub("\\mpdim%s+(\\%a+)", "mplibdimen(\"%1\")")

1808 :gsub(btex_etex, "btex %1 etex ")
1809 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1810 else

If not mplibverbatim, expand mplibcode data, so that users can use TgX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.

1811 local t = { } -- to store btex, verbatimtex, string

1812 data = data:gsub(btex_etex, function(str)

1813 t[#t+1] = str

1814 return format("btex \\unexpanded{!1!u!a!%s!m!p!1!} etex ", #t) -- space
1815 end)

1816 :gsub(verbatimtex_etex, function(str)

1817 t[#t+1] = str

1818 return format("verbatimtex \\unexpanded{!1!u!a!%s!m!p!1!} etex;"”, #t) -- semicolon
1819 end)

1820 :gsub('"(.-)"", function(str)

1821 t[#t+1] = str

1822 return format('"\\unexpanded{!1!u!a!%s!m!p!1!}"" #t)

1823 end)

1824 :gsub("\\%%", "\@PerCent\0")

1825 cgsub("%%.-\n","\n")

1826 :gsub("%zPerCent%z"”, "\\%%")

1827 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1828 data = texgettoks"mplibtmptoks”

Next line to address issue #55

1829 gsub("##", "#")

1830 cgsub("!1tulal (5d+) Im!p!1!", function(str) return t[tonumber(str)] or str end)
1831 end

1832 process(data, instancename)

1833 end

1834

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.

1835 local figcontents = { post = { } }

1836 local function put2output(a,...)

1837 figcontents[#figcontents+1] = type(a) == "string” and format(a,...) or a
1838 end

1839 local function pdf_startfigure(n,llx,lly,urx,ury)

64

1840 putoutput("\\mplibstarttoPDF{%fH{HFHBFH{%F}",11x,11y,urx,ury)
1841 end

1842 local function pdf_stopfigure()

1843 put2output("\\mplibstoptoPDF")

1844 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.

1845 local function pdf_literalcode (...)

1846 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1847 end

1848 local start_pdf_code = pdfmode

1849 and function() pdf_literalcode”q" end

1850 or function() put2output”\\special{pdf:bcontent}" end
1851 local stop_pdf_code = pdfmode

1852 and function() pdf_literalcode”Q" end

1853 or function() put2output”\\special{pdf:econtent}" end
1854

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.

1855 local function put_tex_boxes (object,prescript)
1856 local box = prescript.mplibtexboxid:explode”:"

1857 local n,tw,th = box[1], tonumber(box[2]), tonumber(box[3]1)
1858 if n and tw and th then

1859 local op = object.path

1860 local first, second, fourth = op[1], op[2], op[4]

1861 local tx, ty = first.x_coord, first.y_coord
1862 local sx, rx, ry, sy =1, 0, 0, 1
1863 if tw ~= 0 then

1864 sx = (second.x_coord - tx)/tw
1865 rx = (second.y_coord - ty)/tw
1866 if sx == @ then sx = 0.00001 end
1867 end

1868 if th ~= @ then

1869 sy = (fourth.y_coord - ty)/th
1870 ry = (fourth.x_coord - tx)/th
1871 if sy == @ then sy = 0.00001 end
1872 end

1873 start_pdf_code()

1874 pdf_literalcode("%f %f %f %f %f %f cm”,sx,rx,ry,sy,tx,ty)
1875 put2output("\\mplibputtextbox{%i}",n)

1876 stop_pdf_code()

1877 end

1878 end

1879

Colors

1880 local do_preobj_CR

1881 do

1882 local prev_override_color

1883 function do_preobj_CR(object,prescript)

65

1884 if object.postscript == "collect” then return end

1885 local override = prescript and prescript.mpliboverridecolor
1886 if override then

1887 if pdfmode then

1888 pdf_literalcode(override)

1889 override = nil

1890 else

1891 put2output(”\\special{%s}",override)
1892 prev_override_color = override

1893 end

1894 else

1895 local cs = object.color

1896 if cs and #cs > @ then

1897 pdf_literalcode(luamplib.colorconverter(cs))
1898 prev_override_color = nil

1899 elseif not pdfmode then

1900 override = prev_override_color

1901 if override then

1902 put2output(”\\special{%s}",override)
1903 end

1904 end

1905 end

1906 return override

1907 end

1908 end

1909

For transparency, shading, fading, and pattern

1910 local pdfmanagement = is_defined’'pdfmanagement_add:nnn’

1911 local pdfobjs, pdfetcs = {3}, {3}

1912 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain”

1913 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain”

1914 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain”
1915 local function update_pdfobjs (os, stream)

1916 local key = os

1917 if stream then key = key..stream end

1918 local on = key and pdfobjs[key]

1919 if on then

1920 return on, false

1921 end

1922 if pdfmode then

1923 if stream then

1924 on = pdf.immediateobj("stream”,stream,os)
1925 elseif os then

1926 on = pdf.immediateobj(os)
1927 else

1928 on = pdf.reserveobj()
1929 end

1930 else

66

1931 on = pdfetcs.cnt or 1

1932 if stream then

1933 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1934 elseif os then

1935 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,0s))

1936 else

1937 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}" on))

1938 end

1939 pdfetcs.cnt = on + 1

1940 end

1941 if key then

1942 pdfobjslkey] = on

1943 end

1944 return on,true

1945 end

1946 pdfetcs.resfmt = pdfmode and "%s @ R" or "@mplibpdfobj%s”

1947 if pdfmode then

1948 pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
19499 local getpageres = pdfetcs.getpageres

1950 local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
1951 local initialize_resources = function (name)

1952 local tabname = format("%s_res",name)

1953 pdfetcs[tabname] = { }

1954 if luatexbase.callbacktypes.finish_pdffile then -- 1tluatex

1955 local obj = pdf.reserveobj()

1956 setpageres(format("%s/%s %i @ R", getpageres() or "", name, obj))
1957 luatexbase.add_to_callback("finish_pdffile”, function()
1958 pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabnamel)))
1959 end,

1960 format("luamplib.%s.finish_pdffile"”, name))

1961 end

1962 end

1963 pdfetcs.fallback_update_resources = function (name, res)
1964 local tabname = format("%s_res",name)

1965 if not pdfetcs[tabname] then

1966 initialize_resources(name)

1967 end

1968 if luatexbase.callbacktypes.finish_pdffile then

1969 local t = pdfetcs[tabname]

1970 t[#t+1] = res

1971 else

1972 local tpr, n = getpageres() or "", @

1973 tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)

1974 if n == 0 then

1975 tpr = format("%s/%s<<%s>>", tpr, name, res)

1976 end

1977 setpageres(tpr)

1978 end

1979 end

67

1980 else

1981 texsprint {

1982 "\\luamplibatfirstshipout{"”,

1983 "\\special{pdf:obj @MPlibTr<<>>}",

1984 "\\special{pdf:obj @MPlibSh<<>>}",

1985 "\\special{pdf:obj @MP1libCS<<>>}",

1986 "\\special{pdf:obj @MPlibPt<<>>}}",

1987 }

1988 pdfetcs.resadded = { }

1989 pdfetcs.fallback_update_resources = function (name,res,obj)
1990 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
1991 if not pdfetcs.resadded[name] then

1992 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
1993 pdfetcs.resadded[name] = obj
1994 end
1995 end
1996 end
1997
Transparency

1998 local function add_extgs_resources (on, new)
1999 local key = format("MPlibTr%s"”, on)
2000 if new then

2001 local val = format(pdfetcs.resfmt, on)

2002 if pdfmanagement then

2003 texsprint {

2004 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "}", val, "}"
2005 }

2006 else

2007 local tr = format("/%s %s", key, val)

2008 if is_defined(pdfetcs.pgfextgs) then

2009 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2010 elseif is_defined"TRP@list" then

2011 texsprint(catat11,{

2012 [[\ifefilesw\immediate\write\@auxout{]],

2013 [[\string\g@addto@macro\string\TRP@list{]],

2014 tr,

2015 CO3N\fi1d,

2016 19)

2017 if not get_macro”TRP@list”:find(tr) then

2018 texsprint(catat11, [[\global\TRP@reruntrue]])

2019 end

2020 else

2021 pdfetcs. fallback_update_resources("ExtGState”, tr,"@MPlibTr")
2022 end

2023 end

2024 end

2025 return key

2026 end

68

2027
2028 local do_preobj_TR

2029 do

2030 local transparancy_modes = {
2031 [0] = "Normal”,

2032 "Normal”, "Multiply”, "Screen”, "Overlay”,

2033 "SoftLight”, "HardLight", "ColorDodge”, "ColorBurn”,

2034 "Darken”, "Lighten", "Difference”, "Exclusion”,

2035 "Hue", "Saturation”, "Color”, "Luminosity”,

2036 "Compatible”,

2037 normal = "Normal”, multiply = "Multiply”, screen = "Screen"”,
2038 overlay = "Overlay”, softlight = "SoftlLight”, hardlight = "HardLight",
2039 colordodge = "ColorDodge", colorburn = "ColorBurn”, darken = "Darken”,
2040 lighten = "Lighten", difference = "Difference”, exclusion = "Exclusion”,
2041 hue = "Hue", saturation = "Saturation”, color = "Color”,
2042 luminosity = "Luminosity"”, compatible = "Compatible”,

2043}

2044 function do_preobj_TR(object,prescript)

2045 if object.postscript == "collect” then return end

2046 local opaq = prescript and prescript.tr_transparency

2047 if opag then

2048 local key, on, 0s, new

2049 local mode = prescript.tr_alternative or 1

2050 mode = transparancy_modes[tonumber(mode) or mode:lower()]

2051 if not mode then

2052 mode = prescript.tr_alternative

2053 warn("unsupported blend mode: '%s'", mode)

2054 end

2055 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)

2056 for i,v in ipairs{ {mode,opaq},{"Normal”,1} } do

2057 os = format("<</BM/%s/ca %s/CA %s/AIS false>>" v[1],v[2],v[2])

2058 on, new = update_pdfobjs(os)

2059 key = add_extgs_resources(on,new)

2060 if i == 1 then

2061 pdf_literalcode("/%s gs", key)

2062 else

2063 return format("/%s gs", key)

2064 end

2065 end

2066 end

2067 end

2068 end

2069

Shading with metafun format.

2070 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates, steps, fractions)
2071 for _,v in ipairs{ca,cb} do

2072 for i,vv in ipairs(v) do

2073 for ii,vvv in ipairs(vv) do

69

2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121

2122

v[iJ[ii] = tonumber(vvv) and format("%.3f",vvv) or vvv
end
end
end
local fun2fmt,os = "<</FunctionType 2/Domain[%s]/CO[%s]1/C1[%s]1/N 1>>"
if steps > 1 then
local list,bounds,encode = { },{ },{ }
for i=1,steps do
if i < steps then
bounds[i] = format("%.3f", fractions[i] or 1)
end
encode[2*i-1] = @
encode[2*i] 1
os = fun2fmt:format(domain,tableconcat(calil,' '),tableconcat(cb[il,’' "))
:gsub(decimals, rmzeros)
list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
end
os = tableconcat {
"<</FunctionType 3",

format("/Bounds[%s]", tableconcat(bounds, ' ")),
format("/Encode[%s]", tableconcat(encode,’ ')),
format("/Functions[%s]", tableconcat(list, ' ')),
format("”/Domain[%s1>>", domain),

} :gsub(decimals,rmzeros)
else
os = fun2fmt:format(domain,tableconcat(cal1],' '),tableconcat(cb[1],’ "))
:gsub(decimals, rmzeros)
end
local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
os = tableconcat {
format("<</ShadingType %i", shtype),

format("”/ColorSpace %s", colorspace),
format("/Function %s", objref),
format("/Coords[%s]", coordinates),

"/Extend[true truel/AntiAlias true>>",
} :gsub(decimals,rmzeros)
local on, new = update_pdfobjs(os)
if new then
local key, val = format("MPlibSh%s”, on), format(pdfetcs.resfmt, on)
if pdfmanagement then
texsprint {
"\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}", val,
}
else
local res = format("/%s %s", key, val)
pdfetcs. fallback_update_resources(”Shading”,res,"@PlibSh")
end
end
return on

70

n}n

2123 end

2124
2125 local do_preobj_SH

2126 do

2127 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2128 run_tex_code({

2129 [[\color_model_new:nnnl],

2130 format("{mplibcolorspace_%s}", names:gsub(",","_")),

2131 format("{DeviceN}{names={%s}}", names),

2132 [[\edef\mplib_@tempa{\pdf_object_ref_last:}1],

2133 3}, ccexplat)

2134 local colorspace = get_macro’'mplib_@tempa’

2135 t[names] = colorspace

2136 return colorspace

2137 end })

2138 local function color_normalize(ca,cb)
2139 if #cb == 1 then

2140 if #ca == 4 then

2141 cb[1], cb[2], cb[3]1, cb[4] =0, @, @, 1-cb[1]
2142 else -- #ca =3

2143 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2144 end

2145 elseif #cb == 3 then -- #ca ==

2146 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], @
2147 end

2148 end

2149 function do_preobj_SH(object, prescript)

2150 local shade_no

2151 local sh_type = prescript and prescript.sh_type
2152 if not sh_type then

2153 return

2154 else

2155 local domain = prescript.sh_domain or "0 1"

2156 local centera = (prescript.sh_center_a or "0 0"):explode()
2157 local centerb = (prescript.sh_center_b or "0 0"):explode()
2158 local transform = prescript.sh_transform == "yes"

2159 local sx,sy,sr,dx,dy = 1,1,1,0,0

2160 if transform then

2161 local first = (prescript.sh_first or "0 0"):explode()
2162 local setx = (prescript.sh_set_x or "0 0"):explode()
2163 local sety = (prescript.sh_set_y or "0 0"):explode()
2164 local x,y = tonumber(setx[1]) or @, tonumber(sety[1]) or @
2165 if x ~=0 and y ~= @ then

2166 local path = object.path

2167 local pathix = path[1].x_coord

2168 local pathly = path[1].y_coord

2169 local path2x = path[x].x_coord

2170 local path2y = path[y].y_coord

2171 local dxa = path2x - pathix

71

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219

2220

local dya = path2y - pathly

local dxb = setx[2] - first[1]

local dyb = sety[2] - first[2]

if dxa ~= @ and dya ~= @ and dxb ~= @ and dyb ~= @ then
sx = dxa / dxb ; if sx < @ then sx = - sx end
sy = dya / dyb ; if sy < @ then sy = - sy end

sr = math.sqrt(sx"2 + sy*2)
dx = path1x - sxxfirst[1]
dy = pathly - sy*first[2]
end
end
end

local ca, cb, colorspace, steps, fractions

ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode
cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode

steps = tonumber(prescript.sh_step) or 1

if steps > 1 then
fractions = { prescript.sh_fraction_1 or 0 }
for i=2,steps do

fractions[i] = prescript[format(”sh_fraction_%i",i)] or (i/steps)

cali] = (prescript[format("”sh_color_a_%i",i)] or "0"):explode”:"

cb[i] = (prescript[format(”sh_color_b_%i",i)] or "1"):explode

end

end

if prescript.mplib_spotcolor then
ca, cb={13 {3

nn

local names, pos, objref = { }, -1,
local script = object.prescript:explode”\13+"
for i=#script,1,-1 do
if script[i]:find"mplib_spotcolor” then
local t, name, value = script[i]:explode”="[2]:explode
value, objref, name = t[1], t[2], t[3]
if not names[name] then
pos = pos+1
names[name] = pos
names[#names+1] = name
end
t={3
for j=1,names[name] do t[#t+1] = @ end
t[#t+1] = value
tableinsert(#ca == #cb and ca or cb, t)
end
end
for _,t in ipairs{ca,cb} do
for _,tt in ipairs(t) do
for i=1,#names-#tt do tt[#tt+1] = 0 end
end
end
if #names == 1 then

72

n.n

n,n

n,.n

n,.n

}
3

2221 colorspace = objref

2222 else

2223 colorspace = pdfetcs.clrspcs[tableconcat(names,”,") 1]
2224 end

2225 else

2226 local model = @

2227 for _,t in ipairs{ca,cb} do

2228 for _,tt in ipairs(t) do

2229 model = model > #tt and model or #tt

2230 end

2231 end

2232 for _,t in ipairs{ca,cb} do

2233 for _,tt in ipairs(t) do

2234 if #tt < model then

2235 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2236 end

2237 end

2238 end

2239 colorspace = model == 4 and "/DeviceCMYK"

2240 or model == 3 and "/DeviceRGB"

2241 or model == 1 and "/DeviceGray"”

2242 or err”unknown color model”

2243 end

2244 if sh_type == "linear” then

2245 local coordinates = format("%f %f %f %f",

2246 dx + sx*centera[1], dy + syxcentera[2],

2247 dx + sx*centerb[1], dy + syxcenterb[2])

2248 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates, steps, fractions)
2249 elseif sh_type == "circular” then

2250 local factor = prescript.sh_factor or 1

2251 local radiusa = factor * prescript.sh_radius_a

2252 local radiusb = factor * prescript.sh_radius_b

2253 local coordinates = format("%f %f %f %f %f %f",

2254 dx + sx*centera[1], dy + syxcentera[2], srxradiusa,
2255 dx + sx*centerb[1], dy + syxcenterb[2], srxradiusb)
2256 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates, steps, fractions)
2257 else

2258 err”unknown shading type"

2259 end

2260 end

2261 return shade_no, prescript.sh_stroking == "yes"

2262 end

2263 end

2264

Shading Patterns: we can apply shading to textual pictures as well as paths.

2265 if not pdfmode then
2266 pdfetcs.patternresources = {}
2267 end

73

2268 local function add_pattern_resources (key, val)
2269 if pdfmanagement then

2270 texsprint {

2271 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "H", val, "}"
2272 }

2273 else

2274 local res = format("/%s %s", key, val)
2275 if is_defined(pdfetcs.pgfpattern) then

2276 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2277 else

2278 pdfetcs. fallback_update_resources("”Pattern”,res,"@PlibPt")

2279 if not pdfmode then

2280 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2281 end

2282 end

2283 end

2284 end

2285 function luamplib.dolatelua (on, os)

2286 local h, v = pdf.getpos()

2287 h = format("%f", h/factor) :gsub(decimals,rmzeros)

2288 v = format("%f", v/factor) :gsub(decimals,rmzeros)

2289 if pdfmode then

2290 pdf.obj(on, format("<<%s/Matrix[1 @ @ 1 %s %s1>>", os, h, v))

2291 pdf.refobj(on)

2292 else

2293 local shift = os:explode()

2294 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then

2205 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shadingll, h, v)
2296 end

2297 end

2298 end

2299 local function do_preobj_shading (object, prescript)

2300 1if not prescript or not prescript.sh_operand_type then return end

2301 local on = do_preobj_SH(object, prescript)

2302 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))

2303 on = update_pdfobjs()

2304 if pdfmode then

2305 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,”,[[",0s,"]11) }" })
2306 else

Why @xpos @ypos do not work properly???
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth, \the\paperheight}

2307 if is_defined"RecordProperties” then
2308 put2output(tableconcat{
2309 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z

74

2310 \\special{pdf:put @mplibpdfobj"”,on,” <<" os,"/Matrix[1 @ @ 1 \z

2311 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"H{xpos}sp} \z
2312 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on," }{ypos}sp}I\z
2313 >3

2314 »

2315 else

2316 local shift = prescript.sh_matrixshift or "0 0"

2317 texsprint{ "\\special{pdf:put @mplibpdfobj",on,"” <<", os,”/Matrix[1 @ @ 1 ", shift,"]>>}" }

2318 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,”,[[",shift,”]1) }" })

2319 end

2320 end

2321 local key, val = format("MP1ibPt%s"”, on), format(pdfetcs.resfmt, on)
2322 add_pattern_resources(key,val)
2323 pdf_literalcode(”/Pattern cs/%s scn”, key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2324 prescript.sh_type = nil

2325 end

2326

Tiling Patterns

2327 pdfetcs.patterns = { }

2328 local function gather_resources (optres)

2329 local t, do_pattern = { }, not optres

2330 local names = {"ExtGState”,"ColorSpace”,"Shading"}
2331 if do_pattern then

2332 names[#names+1] = "Pattern”

2333 end

2334 1if pdfmode then

2335 if pdfmanagement then

2336 for _,v in ipairs(names) do

2337 if 1tx.__pdf.Page.Resources[v] then

2338 t[#t+1] = format("/%s %s @ R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2339 end

2340 end

2341 else

2342 local res = pdfetcs.getpageres() or ""

2343 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2344 res = res .. texgettoks'mplibtmptoks'

2345 if do_pattern then return res end

2346 res = res:explode”/+"

2347 for _,v in ipairs(res) do

2348 v = vimatch"*%sx(.-)%sx$"

2349 if not v:find"Pattern” and not optres:find(v) then
2350 tl#t+1] = "/" .. v

2351 end

2352 end

2353 end

2354 else

2355 if pdfmanagement then

75

2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404

for _,v in ipairs(names) do
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
"{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
3}, ccexplat)
t[#t+1] = texgettoks'mplibtmptoks’
end
elseif is_defined(pdfetcs.pgfextgs) then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
"\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or
"3
3}, catatl1)
t[#t+1] = texgettoks'mplibtmptoks'’
if pdfetcs.resadded.Shading then
t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
end

nn

else
for _,v in ipairs(names) do
local vv = pdfetcs.resadded[v]
if vv then
t[#t+1] = format("/%s %s", v, vv)
end
end
end
end
if do_pattern then return tableconcat(t) end
-- get pattern resources
local mytoks
if pdfmanagement then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}”,
"{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "3}}",
3}, ccexplat)
mytoks = texgettoks"mplibtmptoks”
if not pdfmode then
mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
end
elseif is_defined(pdfetcs.pgfextgs) then
if pdfmode then
mytoks = get_macro”pgf@sys@pgf@resource@list@patterns”
else
local tt, abc = {3}, get_macro”pgfutil@abc” or
for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
ttl#tt+1] = v

nn

76

2405 end

2406 mytoks = tableconcat(tt)

2407 end

2408 else

2409 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2410 mytoks = tt and tableconcat(tt)

2411 end

2412 if mytoks and mytoks ~= "" then
2413 t[#t+1] = format("/Pattern<<%s>>" mytoks)

2414 end
2415 return tableconcat(t)
2416 end

2417 function luamplib.registerpattern (boxid, name, opts)

2418 local box = texgetbox(boxid)

2419 local wd = format("%.3f",box.width/factor)

2420 local hd = format("%.3f", (box.height+box.depth)/factor)

2421 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2422 if opts.xstep == 0 then opts.xstep = nil end

2423 1if opts.ystep == @ then opts.ystep = nil end

2424 1if opts.colored == nil then

2425 opts.colored = opts.coloured

2426 if opts.colored == nil then

2427 opts.colored = true

2428 end

2429 end

2430 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix,” ") end

2431 if type(opts.bbox) == "table"” then opts.bbox = tableconcat(opts.bbox,” ") end
2432 if opts.matrix and opts.matrix:find"%a" then

2433 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2434 process(data, "@mplibtransformmatrix”)
2435 local t = luamplib.transformmatrix

2436 opts.matrix = format("%f %f %f %f", t[11, t[2], t[3]1, t[4])
2437 opts.xshift = opts.xshift or format("%f",t[5])
2438 opts.yshift = opts.yshift or format("%f",t[6]1)

2439 end

2440 local attr = {

2441 "/Type/Pattern”,
2442 "/PatternType 1",

2443 format("/PaintType %i", opts.colored and 1 or 2),

2444 "/TilingType 2",

2445 format("/XStep %s", opts.xstep or wd),

2446 format("/YStep %s", opts.ystep or hd),

2447 format("/Matrix[%s %s %s]", opts.matrix or "1 @ @ 1", opts.xshift or @, opts.yshift or 9),
2448 3}

2449 local optres = opts.resources or
2450 optres = optres .. gather_resources(optres)
2451 local patterns = pdfetcs.patterns

2452 if pdfmode then

2453 if opts.bbox then

nn

77

2454 attr[#attr+1] = format("/BBox[%s]", opts.bbox)

2455 end

2456 attr = tableconcat(attr) :gsub(decimals,rmzeros)

2457 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2458 patterns[name] = { id = index, colored = opts.colored }

2459 else

2460 local cnt = #patterns + 1

2461 local objname = "@mplibpattern” .. cnt

2462 local metric = format("bbox %s"”, opts.bbox or format(”e @ %s %s",wd,hd))
2463 texsprint {

2464 "\\expandafter\\newbox\\csname luamplib.patternbox.”, cnt, "\\endcsname”,
2465 "\\global\\setbox\\csname luamplib.patternbox.”, cnt, "\\endcsname”,
2466 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",

2467 "\\special{pdf:bcontent}"”,

2468 "\\special{pdf:bxobj ", objname, " ", metric, "}",

2469 "\\raise\\dp\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2470 "\\box\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2471 "\\special{pdf:put @resources <<", optres, ">>}",

2472 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2473 "\\special{pdf:econtent}}",

2474 3

2475 patterns[cnt] = objname

2476 patterns[name] = { id = cnt, colored = opts.colored }

2477 end

2478 end

2479

2480 local do_preobj_PAT

2481 do

2482 local function pattern_colorspace (cs)
2483 local on, new = update_pdfobjs(format("”[/Pattern %s]"”, cs))

2484 if new then

2485 local key, val = format("MPlibCS%i",on), format(pdfetcs.resfmt,on)

2486 if pdfmanagement then

2487 texsprint {

2488 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}", val,
2489 3

2490 else

2491 local res = format("/%s %s", key, val)

2492 if is_defined(pdfetcs.pgfcolorspace) then

2493 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2494 else

2495 pdfetcs. fallback_update_resources("ColorSpace”,res, "@MP1ibCS")

2496 end

2497 end

2498 end

2499 return on

2500 end

2501 function do_preobj_PAT(object, prescript)

2502 local name = prescript and prescript.mplibpattern

78

n}u

2503 if not name then return end

2504 local patterns = pdfetcs.patterns
2505 local patt = patterns[name]
2506 local index = patt and patt.id or err(”cannot get pattern object '%s’'”, name)
2507 local key = format("MPlibPt%s",index)
2508 if patt.colored then
2509 pdf_literalcode("/Pattern cs /%s scn”, key)
2510 else
2511 local color = prescript.mpliboverridecolor
2512 if not color then
2513 local t = object.color
2514 color = t and #t>0 and luamplib.colorconverter(t)
2515 end
2516 if not color then return end
2517 local cs
2518 if color:find” cs " or color:find"@pdf.obj" then
2519 local t = color:explode()
2520 if pdfmode then
2521 cs = format("%s @ R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2522 color = t[3]
2523 else
2524 cs = t[2]
2525 color = t[3]:match"%[(.+)%]1"
2526 end
2527 else
2528 local t = colorsplit(color)
2529 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray”
2530 color = tableconcat(t,” ")
2531 end
2532 pdf_literalcode("”/MP1ibCS%i cs %s /%s scn”, pattern_colorspace(cs), color, key)
2533 end
2534 if not patt.done then
2535 local val = pdfmode and format("%s @ R",index) or patterns[index]
2536 add_pattern_resources(key,val)
2537 end
2538 patt.done = true
2539 end
2540 end
2541
Fading

2542 pdfetcs. fading = { }

2543 local function do_preobj_FADE (object, prescript)

2544 local fd_type = prescript and prescript.mplibfadetype
2545 local fd_stop = prescript and prescript.mplibfadestate
2546 if not fd_type then

2547 return fd_stop -- returns "stop” (if picture) or nil
2548 end

2549 local bbox = prescript.mplibfadebbox:explode”:"

79

2550 local dx, dy = -bbox[1], -bbox[2]

2551 local vec = prescript.mplibfadevector; vec = vec and vec:explode”:"
2552 if not vec then

2553 if fd_type == "linear"” then

2554 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right

2555 else

2556 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4]1)/2
2557 vec = {centerx, centery, centerx, centery} -- center for both circles
2558 end

2559 end

2560 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }

2561 if fd_type == "linear"” then

2562 coords = format("%f %f %f %f", tableunpack(coords))

2563 elseif fd_type == "circular” then

2564 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]

2565 local radius = (prescript.mplibfaderadius or "@:"..math.sqrt(width*2+height*2)/2):explode”:"
2566 tableinsert(coords, 3, radius[1])

2567 tableinsert(coords, radius[2])

2568 coords = format("%f %f %f %f %f %f", tableunpack(coords))

2569 else
2570 err("unknown fading method '%s'", fd_type)
2571 end

2572 fd_type = fd_type == "linear” and 2 or 3

2573 local opaq = (prescript.mplibfadeopacity or "1:0"):explode”:"
2574 local on, os, new

2575 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray”, {{opaql11}}, {{opaq[2]}}, coords, 1)
2576 0s = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
2577 on = update_pdfobjs(os)

2578 bbox = format("@ @ %f %f", bbox[3]+dx, bbox[4]+dy)

2579 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
2580 :gsub(decimals, rmzeros)

2581 0s = format("<</Pattern<</MPlibFd%s %s>>>>"] on, format(pdfetcs.resfmt, on))
2582 on = update_pdfobjs(os)

2583 local resources = format(pdfetcs.resfmt, on)

2584 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"

2585 local attr = tableconcat{

2586 "/Subtype/Form”,

2587 "/BBox[", bbox, "J1",

2588 "/Matrix[1 @ @ 1 ", format("%f %f", -dx,-dy), "1",

2589 "/Resources ", resources,

2590 "/Group ", format(pdfetcs.resfmt, on),

2591} :gsub(decimals,rmzeros)

2592 on = update_pdfobjs(attr, streamtext)

2593 0S = "<</SMask<</S/Luminosity/G " .. format(pdfetcs.resfmt, on) .. ">>>>"
2594 0N, new = update_pdfobjs(os)

2595 local key = add_extgs_resources(on,new)

2596 start_pdf_code()

2597 pdf_literalcode("/%s gs", key)

2598 if fd_stop then return "standalone” end

80

2599 return "start”
2600 end

2601

Transparency Group

2602 pdfetcs.tr_group = { shifts = { } }

2603 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2604 local function do_preobj_GRP (object, prescript)
2605 local grstate = prescript and prescript.gr_state
2606 if not grstate then return end

2607 local trgroup = pdfetcs.tr_group

2608 if grstate == "start” then

2609 trgroup.name = prescript.mplibgroupname or "lastmplibgroup”
2610 trgroup.isolated, trgroup.knockout = false, false

2611 for _,v in ipairs(prescript.gr_type:explode”,+") do

2612 trgroup[v] = true

2613 end

n.on

2614 trgroup.bbox = prescript.mplibgroupbbox:explode”:
2615 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2616 elseif grstate == "stop” then

2617 local 11x,1ly,urx,ury = tableunpack(trgroup.bbox)

2618 put2output(tableconcat{

2619 "\\egroup”,

2620 format("\\wd\\mplibscratchbox %fbp”, urx-11x),

2621 format("\\ht\\mplibscratchbox %fbp"”, ury-1ly),

2622 "\\dp\\mplibscratchbox opt”,

2623 »

2624 local grattr = format("/Group<</S/Transparency/I %s/K %s>>" trgroup.isolated,trgroup.knockout)
2625 local res = gather_resources()

2626 local bbox = format("%f %f %f %f", 11x,lly,urx,ury) :gsub(decimals,rmzeros)
2627 if pdfmode then

2628 put2output(tableconcat{

2629 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",

2630 "/BBox[", bbox, "1", grattr, "} resources{", res, "}\\mplibscratchbox",

2631 "\\luamplibtagasgroupput{",trgroup.name,"}{",

2632 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}]],
2633 [[\wd\mplibscratchbox @pt\ht\mplibscratchbox @pt\dp\mplibscratchbox @ptl],
2634 [[\box\mplibscratchbox]],

2635 "F\endgroup”,

2636 "\\expandafter\\xdef\\csname luamplib.group.”, trgroup.name, "\\endcsname{",
2637 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2638 "\\useboxresource \\the\\lastsavedboxresourceindex”,

2639 "I\ \wd\\mplibscratchbox",urx-11x, "bp\\ht\\mplibscratchbox"”,ury-1ly, "bp",
2640 "\\box\\mplibscratchbox}",

2641 »

2642 else

2643 trgroup.cnt = (trgroup.cnt or @) + 1

2644 local objname = format("@mplibtrgr%s”, trgroup.cnt)

2645 put2output(tableconcat{

81

2646 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",

2647 "\\unhbox\\mplibscratchbox",

2648 "\\special{pdf:put @resources <<", res, ">>}",

2649 "\\special{pdf:exobj <<", grattr, ">>}",

2650 "\\luamplibtagasgroupput{",trgroup.name,”}{",

2651 "\\special{pdf:uxobj ", objname, "}",

2652 "IN\ \endgroup”,

2653 »

2654 token.set_macro("luamplib.group.”..trgroup.name, tableconcat{

2655 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2656 "\\special{pdf:uxobj ", objname, "}",

2657 "I\ \wd\\mplibscratchbox",urx-11x, "bp\\ht\\mplibscratchbox"”,ury-1ly, "bp",
2658 "\\box\\mplibscratchbox",

2659 }, "global™)

2660 end

2661 trgroup.shifts[trgroup.name] = { 11x, 1lly }

2662 end

2663 return grstate

2664 end

2665 function luamplib.registergroup (boxid, name, opts)

2666 local box = texgetbox(boxid)

2667 local wd, ht, dp = node.getwhd(box)

2668 local res = (opts.resources or "") .. gather_resources()

2669 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }

2670 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix,” ") end
2671 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox,” ") end
2672 if opts.matrix and opts.matrix:find”%a" then

2673 local data = format("mplibtransformmatrix(%s);",opts.matrix)

2674 process(data, "@mplibtransformmatrix”)

2675 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2676 end

2677 local grtype = 3

2678 if opts.bbox then

2679 attr[#attr+1] = format("/BBox[%s]", opts.bbox)

2680 grtype = 2

2681 end

2682 if opts.matrix then

2683 attr[#attr+1] = format("/Matrix[%s]"”, opts.matrix)

2684 grtype = opts.bbox and 4 or 1

2685 end

2686 if opts.asgroup then

2687 local t = { isolated = false, knockout = false }

2688 for _,v in ipairs(opts.asgroup:explode”,+") do t[v] = true end

2689 attr[#attr+1] = format("/Group<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout)
2690 end

2691 local trgroup = pdfetcs.tr_group

2692 trgroup.shifts[name] = { get_macro'MPllx’, get_macro’'MP1lly’ }

2693 local whd

2694 if pdfmode then

82

2695 attr = tableconcat(attr) :gsub(decimals,rmzeros)

2696 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2697 token.set_macro(”luamplib.group.”..name, tableconcat{
2698 "\\useboxresource ", index,

2699 }, "global™)

2700 whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2701 else

2702 trgroup.cnt = (trgroup.cnt or @) + 1

2703 local objname = format("@mplibtrgr%s”, trgroup.cnt)

2704 texsprint {

2705 "\\expandafter\\newbox\\csname luamplib.groupbox.”, trgroup.cnt, "\\endcsname",
2706 "\\global\\setbox\\csname luamplib.groupbox."”, trgroup.cnt, "\\endcsname”,

2707 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",

2708 "\\special{pdf:bcontent}"”,

2709 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",
2710 "\\unhbox\\csname luamplib.groupbox."”, trgroup.cnt, "\\endcsname”,

2711 "\\special{pdf:put @resources <<", res, ">>}",

2712 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2713 "\\special{pdf:econtent}}",

2714 3

2715 token.set_macro(”luamplib.group.”..name, tableconcat{

2716 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "3}}",

2717 "\\wd\\mplibscratchbox ", wd, "sp”,

2718 "\\ht\\mplibscratchbox ", ht, "sp”,

2719 "\\dp\\mplibscratchbox ", dp, "sp”,

2720 "\\box\\mplibscratchbox",

2721 }, "global”)

2722 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2723 end

2724 info("w/h/d of group '%s': %s", name, whd)

2725 end

2726

luamplib.convert: flushing figures

2727 do
2728 local function stop_special_effects(fade,opaq,over)
2729 if fade then -- fading

2730 stop_pdf_code()

2731 end

2732 if opagq then -- opacity

2733 pdf_literalcode(opaq)

2734 end

2735 if over then -- color

2736 if over:find"pdf:bc” then

2737 put2output”\\special{pdf:ec}”
2738 else

2739 put2output”\\special{color pop}"
2740 end

2741 end

33

2742
2743

end

For parsing prescript materials.

2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754

local function script2table(s)
local t = {}
for _,i in ipairs(s:explode(”\13+")) do
local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.

if k and v and k ~= "" and not t[k] then
tk] = v
end
end
return t
end

Codes below to insert PDF lieterals are mostly from ConTgXt general, with small changes when
needed.

2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

local function pdf_textfigure(font,size,text,width,height,depth)
text = text:gsub("."”,function(c)
return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
end)
put2output("\\mplibtextext{%s}{%f H{%sH%s}H%s}",font,size,text,0,0)
end

local bend_tolerance = 131/65536
local rx, sx, sy, ry, tx, ty, divider =1, 0, 0, 1, 0, 9, 1

local function pen_characteristics(object)

local t = mplib.pen_info(object)

rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty

divider = sx*sy - rx*ry

return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
end

local function concat(px, py) -- no tx, ty here
return (sy*px-ryxpy)/divider, (sx*py-rxxpx)/divider
end

local function curved(ith,pth)
local d = pth.left_x - ith.right_x
if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and
abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
d = pth.left_y - ith.right_y
if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
return false
end
end

34

2787 return true

2788 end

2789

2790 local function flushnormalpath(path,open)
2791 local pth, ith

2792 for i=1,#path do

2793 pth = path[i]

2794 if not ith then

2795 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2796 elseif curved(ith,pth) then

2797 pdf_literalcode("#f %f %f %f %f %f c",

2798 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2799 else

2800 pdf_literalcode("%f %f 1",pth.x_coord,pth.y_coord)
2801 end

2802 ith = pth

2803 end

2804 if not open then

2805 local one = path[1]

2806 if curved(pth,one) then

2807 pdf_literalcode("%f %f %f %f %f %f c",

2808 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2809 else

2810 pdf_literalcode("%f %f 1",one.x_coord,one.y_coord)
2811 end

2812 elseif #path == 1 then -- special case .. draw point
2813 local one = path[1]

2814 pdf_literalcode("%f %f 1",one.x_coord,one.y_coord)
2815 end

2816 end

2817

2818 local function flushconcatpath(path,open)

2819 pdf_literalcode("%f %f %f %f %f %f cm”, sx, rx, ry, sy, tx ,ty)
2820 local pth, ith

2821 for i=1,#path do

2822 pth = path[i]

2823 if not ith then

2824 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2825 elseif curved(ith,pth) then

2826 local a, b = concat(ith.right_x,ith.right_y)

2827 local c, d = concat(pth.left_x,pth.left_y)

2828 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2829 else

2830 pdf_literalcode("%f %f 1", concat(pth.x_coord, pth.y_coord))
2831 end

2832 ith = pth

2833 end

2834 if not open then

2835 local one = path[1]

35

2836 if curved(pth,one) then

2837 local a, b = concat(pth.right_x,pth.right_y)

2838 local c, d = concat(one.left_x,one.left_y)

2839 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2840 else

2841 pdf_literalcode("%f %f 1", concat(one.x_coord,one.y_coord))
2842 end

2843 elseif #path == 1 then -- special case .. draw point

2844 local one = path[1]

2845 pdf_literalcode("%f %f 1", concat(one.x_coord,one.y_coord))
2846 end

2847 end

2848

Finally, flush figures by inserting PDF literals.

2849 local function flush (result,flusher)
2850 if result then

2851 local figures = result.fig

2852 if figures then

2853 for f=1, #figures do

2854 info("flushing figure %s",f)

2855 local figure = figures[f]

2856 local objects = figure:objects()

2857 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or @)
2858 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

2859 local bbox = figure:boundingbox()

2860 local 11x, 1ly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2861 if urx < 11x then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.

(issue #70) Original code of ConTiXt general was:

-- invalid
pdf_startfigure(fignum,9,0,0,0)
pdf_stopfigure()

2862 else

For legacy behavior, insert ‘pre-fig’ TgX code here.

2863 if tex_code_pre_mplib[f] then

2864 put2output(tex_code_pre_mplib[f])
2865 end

2866 pdf_startfigure(fignum,1llx,1ly,urx,ury)
2867 start_pdf_code()

2868 if objects then

2869 local savedpath = nil

2870 local savedhtap = nil

2871 for o=1,#objects do

2872 local object = objects[o]
2873 local objecttype = object. type

86

The following 10 lines are part of btex. . .etex patch. Again, colors are processed at this stage.

2874 local prescript = object.prescript

2875 prescript = prescript and script2table(prescript) -- prescript is now a table
2876 local cr_over = do_preobj_CR(object,prescript) -- color

2877 local tr_opaq = do_preobj_TR(object,prescript) -- opacity

2878 local fading_ = do_preobj_FADE(object,prescript) -- fading

2879 local trgroup = do_preobj_GRP(object,prescript) -- transparency group

2880 local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern

2881 local shading_ = do_preobj_shading(object,prescript) -- shading pattern

2882 if prescript and prescript.mplibtexboxid then

2883 put_tex_boxes(object,prescript)

2884 elseif objecttype == "start_bounds” or objecttype == "stop_bounds” then --skip
2885 elseif objecttype == "start_clip” then

2886 local evenodd = not object.istext and object.postscript == "evenodd"

2887 start_pdf_code()

2888 flushnormalpath(object.path, false)

2889 pdf_literalcode(evenodd and "Wx n” or "W n")

2890 elseif objecttype == "stop_clip” then

2891 stop_pdf_code()

2892 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

2893 elseif objecttype == "special” then

Collect TgX codes that will be executed after flushing. Legacy behavior.

2894 if prescript and prescript.postmplibverbtex then

2895 figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
2896 end

2897 elseif objecttype == "text" then

2898 local ot = object.transform -- 3,4,5,6,1,2

2899 start_pdf_code()

2900 pdf_literalcode("%f %f %f %f %f %f cm”,ot[3],0t[4],0t[5],0t[6],0t[1],0t[2])
2901 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
2902 stop_pdf_code()

2903 elseif not trgroup and fading_ ~= "stop"” then

2904 local evenodd, collect, both = false, false, false

2905 local postscript = object.postscript

2906 if not object.istext then

2907 if postscript == "evenodd” then

2908 evenodd = true

2909 elseif postscript == "collect” then

2910 collect = true

2911 elseif postscript == "both" then

2912 both = true

2913 elseif postscript == "eoboth” then

2914 evenodd = true

2915 both = true

2916 end

2917 end

2918 if collect then

2919 if not savedpath then

37

2920 savedpath = { object.path or false }

2921 savedhtap = { object.htap or false }

2922 else

2923 savedpath[#savedpath+1] = object.path or false
2924 savedhtap[#savedhtap+1] = object.htap or false
2925 end

2926 else

Removed from ConTgXt general: color stuff.

2927 local ml = object.miterlimit

2928 if ml and ml ~= miterlimit then

2929 miterlimit = ml

2930 pdf_literalcode("%f M",ml)

2931 end

2932 local 1j = object.linejoin

2933 if 1j and 1j ~= linejoin then

2934 linejoin = 1j

2935 pdf_literalcode("%i j",1j)

2936 end

2937 local 1lc = object.linecap

2938 if 1c and 1lc ~= linecap then

2939 linecap = 1c

2940 pdf_literalcode("%i J",1c)

2941 end

2042 local dl = object.dash

2043 if dl then

2944 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2945 if d ~= dashed then

2946 dashed = d

2947 pdf_literalcode(dashed)

2048 end

2949 elseif dashed then

2950 pdf_literalcode("[] @ d")

2951 dashed = false

2952 end

2953 local path = object.path

2054 local transformed, penwidth = false, 1
2955 local open = path and path[1].left_type and path[#path].right_type
2956 local pen = object.pen

2957 if pen then

2958 if pen.type == 'elliptical’ then
2959 transformed, penwidth = pen_characteristics(object) -- boolean, value
2960 pdf_literalcode("%f w",penwidth)
2961 if objecttype == 'fill’' then

2962 objecttype = 'both’

2963 end

2064 else -- calculated by mplib itself
2965 objecttype = 'fill’

2966 end

88

2967
Added : shading

2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008

end

local shade_no, shade_stroking = do_preobj_SH(object,prescript) -- shading
if shade_no then
pdf_literalcode"q /Pattern cs”
objecttype = false
end
if transformed then
start_pdf_code()
end
if path then
if savedpath then
for i=1,#savedpath do
local path = savedpath[i]
if transformed then
flushconcatpath(path,open)

else
flushnormalpath(path,open)
end
end
savedpath = nil

end
if transformed then
flushconcatpath(path,open)
else
flushnormalpath(path,open)
end
if objecttype == "fill" then
pdf_literalcode(evenodd and "h f*" or "h f")
elseif objecttype == "outline” then
if both then
pdf_literalcode(evenodd and "h B*" or "h B")
else
pdf_literalcode(open and "S” or "h S")
end
elseif objecttype == "both" then
pdf_literalcode(evenodd and "h B*" or "h B")
end
end
if transformed then
stop_pdf_code()
end
local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.

3009
3010
3011

3012

if path then
if transformed then
start_pdf_code()
end

39

3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040

if savedhtap then
for i=1,#savedhtap do
local path = savedhtap[i]
if transformed then
flushconcatpath(path,open)

else
flushnormalpath(path,open)
end
end
savedhtap = nil
evenodd = true

end
if transformed then
flushconcatpath(path,open)
else
flushnormalpath(path, open)
end
if objecttype == "fill" then
pdf_literalcode(evenodd and "h f*" or "h ")
elseif objecttype == "outline" then
pdf_literalcode(open and "S" or "h S")
elseif objecttype == "both" then
pdf_literalcode(evenodd and "h B*" or "h B")
end
if transformed then
stop_pdf_code()
end
end

Added to ConTgXt general: post-object colors and shading stuff. Beware g ... Q scope.

3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059

if shade_no then -- shading
pdf_literalcode("W%s %s /MPlibSh%s sh Q",

evenodd and "x" or "", shade_stroking and "s" or "n", shade_no)
end

end
end
if fading_ == "start” then

pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
elseif trgroup == "start"” then

pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
elseif fading_ == "stop” then

local se = pdfetcs.fading.specialeffects

if se then stop_special_effects(se[1], se[2], se[3]) end
elseif trgroup == "stop” then

local se = pdfetcs.tr_group.specialeffects

if se then stop_special_effects(se[1], se[2], se[3]) end
else

stop_special_effects(fading_, tr_opaq, cr_over)
end

90

3060
3061
3062
3063
3064
3065
3066

if fading_ or trgroup then -- extgs resetted
miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
end
end
end
stop_pdf_code()
pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.

3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085

for _,v in ipairs(figcontents) do
if type(v) == "table"” then
texsprint”\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint”}"
else
texsprint(v)
end
end
if #figcontents.post > @ then texsprint(figcontents.post) end
figcontents = { post = { } }
end
end
end
end
end

function luamplib.convert (result, flusher)
flush(result, flusher)
return true -- done

end

3086 end

3087

3088 function luamplib.colorconverter (cr)

3089 local n = #cr

3090 1if n == 4 then

3091 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]

3092 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g 0 G"
3093 elseif n == 3 then

3094 local r, g, b = cr[1], crl2], cr[3]

3095 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3096 else

3097 local s = cr[1]

3098 return format("%.3f g %.3f G",s,s), "0 g 0 G"

3099 end

3100 end

2.2 TgX package

First we need to load some packages.

3101 \ifcsname ProvidesPackage\endcsname

91

We need BIEX 2024-06-01 as we use 1tx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.

3102 \NeedsTeXFormat{LaTeX2e}

3103 \ProvidesPackage{luamplib}

3104 [2026/01/29 v2.38.4 mplib package for LuaTeX]
3105 \fi

3106 \ifdefined\newluafunction\else

3107 \input ltluatex

3108 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by KIgX kernel.
In Plain, atbegshi.sty is loaded.

3109 \ifnum\outputmode=0

3110 \ifdefined\AddToHookNext

3111 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}

3112 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}

3113 \def\luamplibateveryshipout{\AddToHook{shipout/background}}

3114 \else

3115 \input atbegshi.sty

3116 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3117 \let\luamplibatfirstshipout\AtBeginShipoutFirst

3118 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3119 \fi

3120 \fi

Loading of lua code.
3121 \directlua{require("luamplib”)}
legacy commands. Seems we don’t need it, but no harm.
3122 \ifx\pdfoutput\undefined
3123 \let\pdfoutput\outputmode
3124 \fi
3125 \ifx\pdfliteral\undefined

3126 \protected\def\pdfliteral{\pdfextension literal}
3127 \fi

Set the format for METAPOST.
3128 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.

3129 \ifnum\pdfoutput>0

3130 \let\mplibtoPDF\pdfliteral

3131 \else

3132 \def\mplibtoPDF#1{\special{pdf:literal direct #13}}

3133 \ifcsname PackageInfo\endcsname

3134 \PackageInfo{luamplib}{only dvipdfmx is supported currently}

3135 \else

3136 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}

92

3137 \fi
3138 \fi

To make mplibcode typeset always in horizontal mode.

3139 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3140 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3141 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.

3142 \def\mplibsetupcatcodes{%
3143 %catcode'\{=12 %catcode'\}=12
3144 \catcode'\#=12 \catcode'*=12 \catcode'\~=12 \catcode‘_=12
3145 \catcode'\&=12 \catcode'\$=12 \catcode'\%=12 \catcode'*"M=12
3146 }
Make btex. . .etex box zero-metric.
3147 \def\mplibputtextbox#1{\vbox to @pt{\vss\hbox to @pt{\raise\dp#1\copy#1\hss}}}

use Transparency Group

3148 \protected\def\usemplibgroup#1#{\usemplibgroupmain}

3149 \def\usemplibgroupmain#1{%

3150 \prependtomplibbox\hbox dir TLT\bgroup

3151 \csname luamplib.group.#1\endcsname

3152 \egroup

3153 3

3154 \protected\def\mplibgroup#1{%

3155 \begingroup

3156 \def\MP11x{0}\def\MP11ly{0}%

3157 \def\mplibgroupname{#13}%

3158 \mplibgroupgetnexttok

3159 }

3160 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3161 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3162 \def\mplibgroupbranch{%

3163 \ifx [\nexttok

3164 \expandafter\mplibgroupopts

3165 \else

3166 \ifx\mplibsptoken\nexttok

3167 \expandafter\expandafter\expandafter\mplibgroupskipspace
3168 \else

3169 \let\mplibgroupoptions\empty

3170 \expandafter\expandafter\expandafter\mplibgroupmain

3171 \fi

3172 \fi

3173 }

3174 \def\mplibgroupopts[#1]1{\def\mplibgroupoptions{#1}\mplibgroupmain}
3175 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3176 \protected\def\endmplibgroup{\egroup

3177 \directlua{ luamplib.registergroup(

3178 \the\mplibscratchbox, '\mplibgroupname’, {\mplibgroupoptions}
3179)%

93

3180 \endgroup
3181 }

Patterns

3182 {\def\:{\global\let\mplibsptoken= } \: }

3183 \protected\def\mppattern#1{%

3184 \begingroup

3185 \def\mplibpatternname{#13}%

3186 \mplibpatterngetnexttok

3187 }

3188 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3189 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3190 \def\mplibpatternbranch{%

3191 \ifx [\nexttok

3192 \expandafter\mplibpatternopts

3193 \else

3194 \ifx\mplibsptoken\nexttok

3195 \expandafter\expandafter\expandafter\mplibpatternskipspace
3196 \else

3197 \let\mplibpatternoptions\empty

3198 \expandafter\expandafter\expandafter\mplibpatternmain

3199 \fi

3200 \fi

3201 }

3202 \def\mplibpatternopts[#11{%

3203 \def\mplibpatternoptions{#1}%

3204 \mplibpatternmain

3205 }

3206 \def\mplibpatternmain{%

3207 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3208 }

3209 \protected\def\endmppattern{%

3210 \egroup

3211 \directlua{ luamplib.registerpattern(

3212 \the\mplibscratchbox, '\mplibpatternname’, {\mplibpatternoptions}

3213)}%
3214 \endgroup
3215 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3216 \def\mpfiginstancename{@mpfig}

3217 \protected\def\mpfig{%

3218 \begingroup

3219 \futurelet\nexttok\mplibmpfigbranch
3220 }

3221 \def\mplibmpfigbranch{%

3222 \ifx *\nexttok

3223 \expandafter\mplibprempfig

3224 \else

3225 \ifx [\nexttok

94

3226 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig

3227 \else

3228 \expandafter\expandafter\expandafter\mplibmainmpfig
3229 \fi

3230 \fi

3231}

3232 \def\mplibgobbleoptsmpfig[#11{\mplibmainmpfig}
3233 \def\mplibmainmpfig{%

3234 \begingroup

3235 \mplibsetupcatcodes

3236 \mplibdomainmpfig

3237 }

3238 \long\def\mplibdomainmpfig#1\endmpfig{%

3239 \endgroup

3240 \directlua{

3241 local legacy = luamplib.legacyverbatimtex

3242 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""

3243 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3244 luamplib.legacyverbatimtex = false

3245 luamplib.everymplib["\mpfiginstancename"] = ""

3246 luamplib.everyendmplib["\mpfiginstancename"] = ""

3247 luamplib.process_mplibcode(

3248 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===]1.." "..everyendmpfig.."” endfig;",
3249 "\mpfiginstancename")

3250 luamplib.legacyverbatimtex = legacy

3251 luamplib.everymplib["\mpfiginstancename"] = everympfig

3252 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig

3253 3%

3254 \endgroup

3255 }

3256 \def\mplibprempfig#1{%

3257 \begingroup

3258 \mplibsetupcatcodes

3259 \mplibdoprempfig

3260 }

3261 \long\def\mplibdoprempfig#1\endmpfig{%

3262 \endgroup

3263 \directlua{

3264 local legacy = luamplib.legacyverbatimtex

3265 local everympfig = luamplib.everymplib["\mpfiginstancename"]

3266 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]

3267 luamplib.legacyverbatimtex = false

3268 luamplib.everymplib["\mpfiginstancename”] = ""

3269 luamplib.everyendmplib["\mpfiginstancename"] = ""

3270 luamplib.process_mplibcode([===[\unexpanded{#1}]===1, "\mpfiginstancename")
3271 luamplib.legacyverbatimtex = legacy

3272 luamplib.everymplib["\mpfiginstancename"] = everympfig

3273 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig

3274 3%

95

3275 \endgroup
3276 }
3277 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.

3278 \unless\ifcsname ver@luamplib.sty\endcsname

3279 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3280 \protected\def\mplibcode{%

3281 \begingroup

3282 \futurelet\nexttok\mplibcodebranch

3283}

3284 \def\mplibcodebranch{%

3285 \ifx [\nexttok

3286 \expandafter\mplibcodegetinstancename
3287 \else

3288 \global\let\currentmpinstancename\empty
3289 \expandafter\mplibcodeindeed

3290 \fi

3291}

3292 \def\mplibcodeindeed{%
3293 \begingroup

3294 \mplibsetupcatcodes
3295 \mplibdocode
3296 }

3297 \long\def\mplibdocode#1\endmplibcode{%
3298 \endgroup

3299 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===], "\currentmpinstancename")}%
3300 \endgroup

3301}

3302 \protected\def\endmplibcode{endmplibcode}

3303 \else

The KIEX-specific part: a new environment.

3304 \newenvironment{mplibcode}[11[1{%

3305 \xdef\currentmpinstancename{#13}%
3306 \mplibtmptoks{}\1txdomplibcode
3307 M2

3308 \def\ltxdomplibcode{%
3309 \begingroup

3310 \mplibsetupcatcodes
3311 \1txdomplibcodeindeed
3312

3313 \def\mplib@mplibcode{mplibcode}

3314 \long\def\ltxdomplibcodeindeed#1\end#2{%

3315 \endgroup

3316 \mplibtmptoks\expandafter{\the\mplibtmptoks#13}%

3317 \def\mplibtemp@a{#2}%

3318 \ifx\mplib@mplibcode\mplibtemp@a

3319 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3320 \end{mplibcode}%

96

3321 \else

3322 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3323 \expandafter\1ltxdomplibcode

3324 \fi

3325 }

3326 \fi

User settings.

3327 \def\mplibshowlog#1{\directlua{
3328 local s = string.lower("#1")

3329 if s == "enable” or s == "true” or s == "yes" then
3330 luamplib.showlog = true

3331 else

3332 luamplib.showlog = false

3333 end

3334 1}

3335 \def\mpliblegacybehavior#1{\directlua{
3336 local s = string.lower("#1")

3337 if s == "enable” or s == "true” or s == "yes" then
3338 luamplib.legacyverbatimtex = true

3339 else

3340 luamplib.legacyverbatimtex = false

3341 end

3342 3}

3343 \def\mplibverbatim#1{\directlua{
3344 local s = string.lower("#1")

3345 if s == "enable” or s == "true” or s == "yes" then
3346 luamplib.verbatiminput = true

3347 else

3348 luamplib.verbatiminput = false

3349 end

3350 }}

3351 \newtoks\mplibtmptoks
\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables

3352 \ifcsname ver@luamplib.sty\endcsname
3353 \protected\def\everymplib{%

3354 \begingroup

3355 \mplibsetupcatcodes

3356 \mplibdoeverymplib

3357

3358 \protected\def\everyendmplib{%

3359 \begingroup

3360 \mplibsetupcatcodes

3361 \mplibdoeveryendmplib

3362}

3363 \newcommand\mplibdoeverymplib[2]1[J{%
3364 \endgroup

3365 \directlua{

3366 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===

97

3367 %

3368 }

3369 \newcommand\mplibdoeveryendmplib[2]1[1{%
3370 \endgroup

3371 \directlua{

3372 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3373 %

3374

3375 \else

3376 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#13}}

3377 \protected\def\everymplib#1#{%

3378 \ifx\empty#1\empty \mplibgetinstancename[J\else \mplibgetinstancename#1\fi
3379 \begingroup

3380 \mplibsetupcatcodes

3381 \mplibdoeverymplib

3382}

3383 \long\def\mplibdoeverymplib#1{%

3384 \endgroup

3385 \directlua{

3386 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===
3387 %

3388}

3389 \protected\def\everyendmplib#1#{%

3390 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3391 \begingroup

3392 \mplibsetupcatcodes

3393 \mplibdoeveryendmplib

3394 }

3395 \long\def\mplibdoeveryendmplib#1{%

3396 \endgroup

3397 \directlua{

3398 luamplib.everyendmplib["\currentmpinstancename”] = [===[\unexpanded{#1}]===
3399 %

3400 }

3401 \fi

TEX macros for dimen/color

3402 \def\mpdim#1{ runscript(”luamplibdimen{#13}") }
3403 \def\mpcolor#1#{\domplibcolor{#1}}
3404 \def\domplibcolor#1#2{ runscript(”luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.

3405 \def\mplibnumbersystem#1{\directlua{
3406 local t = "#1"

3407 if t == "binary” then t = "decimal” end
3408 luamplib.numbersystem = t
3409 }}

Settings for .mp cache files.
3410 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,3}

98

3411 \def\mplibdomakenocache#1,{%
3412 \ifx\empty#1\empty

3413 \expandafter\mplibdomakenocache

3414 \else

3415 \ifx*x#1\else

3416 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3417 \expandafter\expandafter\expandafter\mplibdomakenocache
3418 \fi

3419 \fi

3420 }

3421 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,
3422 \def\mplibdocancelnocache#1,{%
3423 \ifx\empty#1\empty

3424 \expandafter\mplibdocancelnocache

3425 \else

3426 \ifx*x#1\else

3427 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%

3428 \expandafter\expandafter\expandafter\mplibdocancelnocache
3429 \fi

3430 \fi

3431 }

3432 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.

3433 \def\mplibtextextlabel#1{\directlua{
3434 local s = string.lower("#1")

3435 if s == "enable” or s == "true” or s == "yes" then
3436 luamplib. textextlabel = true

3437 else

3438 luamplib.textextlabel = false

3439 end

3440 }}

3441 \def\mplibcodeinherit#1{\directlua{

3442 local s = string.lower("#1")

3443 if s == "enable” or s == "true” or s == "yes" then
3444 luamplib.codeinherit = true

3445 else

3446 luamplib.codeinherit = false

3447 end

3448 1}

3449 \def\mplibglobaltextext#1{\directlua{
3450 local s = string.lower("#1")

3451 if s == "enable” or s == "true” or s == "yes" then
3452 luamplib.globaltextext = true

3453 else

3454 luamplib.globaltextext = false

3455 end

3456 1}

The followings are from ConTEXt general, mostly.

99

We use a dedicated scratchbox.
3457 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.

3458 \def\mplibstarttoPDF#1#2#3#4{%

3459 \prependtomplibbox

3460 \hbox dir TLT\bgroup

3461 \xdef\MPL1x{#1}\xdef\MP11ly{#2}%
3462 \xdef\MPurx{#3}\xdef\MPury{#43}%
3463 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3464 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3465 \parskip@pt%

3466 \leftskip@pt%

3467 \parindent@pt%

3468 \everypar{}%

3469 \setbox\mplibscratchbox\vbox\bgroup
3470 \noindent

3471 }

3472 \def\mplibstoptoPDF{%

3473 \par

3474 \egroup %

3475 \setbox\mplibscratchbox\hbox %

3476 {\hskip-\MP11x bp%

3477 \raise-\MP1ly bp%

3478 \box\mplibscratchbox}%

3479 \setbox\mplibscratchbox\vbox to \MPheight
3480 {\vfill

3481 \hsize\MPwidth

3482 \wd\mplibscratchbox@pt%

3483 \ht\mplibscratchbox@pt%

3484 \dp\mplibscratchbox@pt%

3485 \box\mplibscratchbox}%

3486 \wd\mplibscratchbox\MPwidth

3487 \ht\mplibscratchbox\MPheight

3488 \box\mplibscratchbox

3489 \egroup

3490 }

Text items have a special handler.

3491 \def\mplibtextext#1#2#3#4#5{%
3492 \begingroup

3493 \setbox\mplibscratchbox\hbox
3494 {\font\temp=#1 at #2bp%
3495 \temp

3496 #33%

3497 \setbox\mplibscratchbox\hbox
3498 {\hskip#4 bp%

3499 \raise#5 bp%

3500 \box\mplibscratchbox}%
3501 \wd\mplibscratchbox@pt%

100

3502 \ht\mplibscratchbox@pt%
3503 \dp\mplibscratchbox@pt%
3504 \box\mplibscratchbox
3505 \endgroup
3506 }
Input luamplib.cfg when it exists.
3507 \openin@=luamplib.cfg
3508 \ifeof@ \else
3509 \closein@

3510 \input luamplib.cfg
3511 \fi

Code for tagpdf

3512 \def\luamplibtagtextboxset#1#2{#2}

3513 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3514 \let\luamplibtagasgroupset\relax

3515 \let\luamplibtagasgroupput\luamplibtagtextboxset
3516 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3517 \ifcsname ver@tagpdf.sty\endcsname \else

3518 \ExplSyntaxOn

3519 \keys_define:nn{luamplib/tagging}

3520 {

3521 ,alt .code:n = { }

3522 ,actualtext .code:n = { }

3523 ,artifact .code:n ={ }

3524 ,text .code:n ={ }

3525 ,off .code:n = { }

3526 ,tag .code:n = { }

3527 ,adjust-BBox .code:n = { }

3528 ,tagging-setup .code:n = { }

3529 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3530 ,instancename .meta:n = { instance = {#1} }

3531 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
3532 3

3533 \RenewDocumentCommand\mplibcode{0{3}}

3534 {

3535 \tl_gclear:N \currentmpinstancename

3536 \keys_set:ne{luamplib/tagging}{#1}

3537 \mplibtmptoks{}\1txdomplibcode

3538 3

3539 \cs_set_eq:NN \mplibalttext \use_none:n

3540 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center}raises an Error! as we issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by KIEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@epar, and \endgraf, we here attempt to address
the issue by adding the following line, which IKIEX’s \everypar should have done.

3541 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse

101

3542 \ExplSyntaxOff

3543 \endinput\fi

3544 \ExplSyntaxOn

3545 \t1_new:N \1__luamplib_tag_envname_t1

3546 \t1_new:N \1__luamplib_tag_alt_tl

3547 \t1_new:N \1__luamplib_tag_alt_dflt_tl

3548 \t1_new:N \1__luamplib_tag_actual_tl

3549 \t1_new:N \1__luamplib_tag_struct_tl

3550 \t1_set:Nn\1__luamplib_tag_struct_tl {Figure}

3551 \bool_new:N \1__luamplib_tag_usetext_bool

3552 \bool_new:N \1__luamplib_tag_bboxcorr_bool

3553 \seq_new:N \1__luamplib_tag_bboxcorr_seq

3554 \t1_new:N \1__luamplib_tag_bbox_draw_t1

3555 \t1_new:N \1__luamplib_BBox_11x_t1

3556 \t1_new:N \1__luamplib_BBox_lly_t1

3557 \t1l_new:N \1__luamplib_BBox_urx_tl

3558 \t1_new:N \1__luamplib_BBox_ury_tl

3559 \msg_new:nnn {luamplib}{figure-text-reuse}

3560 {

3561 tex-text~box~#1~probably~is~incorrectly~tagged.~
3562 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3563 Check~the~resulting~PDF.

3564 }

3565 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3566 {

3567 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3568 Using~mplibgroup~with~text~mode~is~not~recommended.~
3569 Check~the~resulting~PDF.

3570 }

3571 \msg_new:nnn{luamplib}{alt-text-missing}

3572 {

3573 Alternate~text~for~#1~is~missing.~

3574 Using~the~default~value~'#2'~instead.

3575 }

Sockets for tex-text boxes.

3576 \socket_new:nn{tagsupport/luamplib/textext/set}{2}

3577 \socket_new:nn{tagsupport/luamplib/textext/put}{2}

3578 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3579 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.

3580 \bool_if:NTF \1__luamplib_tag_usetext_bool

3581 {

3582 \tag_mc_end_push:

3583 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}

3584 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.

102

3585 \tag_mc_begin:n{tag=text}

3586 #2

3587 \tag_mc_end:

3588 \tag_struct_end:

3589 \tag_mc_begin_pop:n{}

3500 }

3501 {

3592 \tag_suspend:n{\luamplibtagtextboxset}
3593 #2

3594 \tag_resume:n{\luamplibtagtextboxset}
3595)

3596 }

3597 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}
3598 {

3599 \bool_lazy_and:nnTF

3600 { \l__luamplib_tag_usetext_bool }

3601 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3602 {

3603 \tag_resume:n{\mplibputtextbox}

3604 \tag_mc_end:

3605 \cs_if_exist:cTF {luamplib.taggedbox.#1}

3606 {

3607 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3608 #2

3609 \cs_undefine:c {luamplib.taggedbox.#1}

3610 }

3611 {

3612 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3613 \tag_mc_begin:n{}

3614 \int_set:Nn \1_tmpa_int {#1}

3615 \tag_mc_reset_box:N \1_tmpa_int

3616 #2

3617 \tag_mc_end:

3618 }

3619 \tag_mc_begin:n{artifact}

3620 }

3621 {

3622 \int_set:Nn \1_tmpa_int {#1}

3623 \tag_mc_reset_box:N \1_tmpa_int

3624 #2

3625 }

3626 }

3627 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3628 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3629 \cs_set_nopar:Npn \luamplibtagtextboxset

3630 {

3631 \tag_socket_use:nnn{luamplib/textext/set}

3632 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in

103

the artifact MC-chunks.

3633 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2

3634 {

3635 \bool_set_eq:NN \1_tmpa_bool \1__luamplib_tag_usetext_bool
3636 \bool_set_false:N \1__luamplib_tag_usetext_bool

3637 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}

3638 \cs_gset_nopar:cpn {luamplib.notaggedbox. #13}{#1}

3639 \bool_set_eq:NN \1__luamplib_tag_usetext_bool \1_tmpa_bool
3640 }

3641 \cs_set_nopar:Npn \mplibputtextbox #1

3642 {

3643 \vbox to @pt{\vss\hbox to @pt{

3644 \socket_use:nnn{tagsupport/luamplib/textext/put}{#13}{\raise\dp#1\copy#1}
3645 \hss}}

3646 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.

3647 \cs_set_nopar:Npn \luamplibtagasgroupset

3648 {

3649 \bool_set_false:N \1__luamplib_tag_usetext_bool

3650 }

3651 \cs_set_nopar:Npn \luamplibtagasgroupput

3652 {

3653 \bool_if:NT \1__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3654 \tag_socket_use:nnn{luamplib/mplibgroup/put}

3655 }

A socket for mplibgroup. Again, we issue a warning upon text mode.

3656 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3657 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}

3658 {
3659 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3660 {

3661 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}

3662 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}

3663 }

3664 \tag_mc_end:

3665 \tag_mc_begin:n{tag=text}

3666 #2

3667 \tag_mc_end:

3668 \tag_mc_begin:n{artifact}

3669 }

3670 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute

3671 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1

3672 {

3673 \tl_set:Ne \1l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3674 \tex_savepos:D

104

3675 \property_record:ee{\1_tmpa_t1}{xpos,ypos}

3676 \tl_set:Ne \1__luamplib_BBox_l1x_t1

3677 { \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{xpos}@}sp } }
3678 \tl_set:Ne \1__luamplib_BBox_lly_t1

3679 { \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{ypos}{@}sp - \dp#1 } }
3680 \tl_set:Ne \1__luamplib_BBox_urx_tl

3681 { \dim_to_decimal_in_bp:n { \1__luamplib_BBox_l1lx_tl bp + \wd#1 } }

3682 \tl_set:Ne \1__luamplib_BBox_ury_tl

3683 { \dim_to_decimal_in_bp:n { \1__luamplib_BBox_lly_t1 bp + \ht#1 + \dp#1 } }
3684 \bool_if:NT \1__luamplib_tag_bboxcorr_bool

3685 {

3686 \int_zero:N \1_tmpa_int

3687 \tl_map_inline:nn

3688 {

3689 \1__luamplib_BBox_11x_t1

3690 \1__luamplib_BBox_1ly_t1

3691 \1__luamplib_BBox_urx_tl

3692 \1__luamplib_BBox_ury_t1

3693 }

3694 {

3695 \int_incr:N \1_tmpa_int

3696 \tl_set:Ne ##1

3697 {

3698 \fp_eval:n

3699 {

3700 ##1

3701 +

3702 \dim_to_decimal_in_bp:n { \seq_item:NV \1__luamplib_tag_bboxcorr_seq \l_tmpa_int }
3703 3

3704 3

3705 3

3706}

3707 \tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
3708 {

3709 /0 /Layout /BBox [

3710 \1__luamplib_BBox_11x_t1\c_space_t1l
3711 \1__luamplib_BBox_1ly_t1\c_space_tl
3712 \1__luamplib_BBox_urx_t1\c_space_t1
3713 \1__luamplib_BBox_ury_tl

3714]

3715}

3716 \bool_if:NT \1__tag_graphic_debug_bool
377 {

3718 \iow_log:e

3719 {

3720 luamplib/tagging~debug: ~BBox~of~structure~\tag_get:n{struct_num}~is~
3721 \1__luamplib_BBox_11x_t1\c_space_t1
3722 \1__luamplib_BBox_1ly_t1\c_space_tl
3723 \1__luamplib_BBox_urx_t1\c_space_t1

105

3724 \1__luamplib_BBox_ury_tl

3725 }

3726 \sys_if_output_pdf:TF

3727 {

3728 \tl_set:Ne \1__luamplib_tag_bbox_draw_t1

3729 {

3730 \pdfextension save\relax

3731 \opacity_select:n{0.5} \color_select:n{red}

3732 \pdfextension literal~text

3733 {

3734 \1__luamplib_BBox_11x_t1\c_space_tl

3735 \1__luamplib_BBox_1ly_t1\c_space_tl

3736 \fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_11x_t1 }~
3737 \fp_eval:n { \1__luamplib_BBox_ury_tl - \1__luamplib_BBox_lly_t1 }~
3738 re~f

3739 3

3740 \pdfextension restore\relax

3741 }

3742 }

3743 {

3744 \tl_set:Ne \1__luamplib_tag_bbox_draw_t1

3745 {

3746 \special{pdf:bcontent}

3747 \opacity_select:n{0.5} \color_select:n{red}

3748 \special{pdf:code~

3749 1~0~0~1~

3750 -\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{xpos}{@}sp + \wd#1 }~
3751 -\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{ypos}{0}sp }~
3752 cm

3753 3

3754 \special{pdf:code~

3755 \1__luamplib_BBox_l1x_t1\c_space_tl

3756 \1__luamplib_BBox_1ly_t1\c_space_t1l

3757 \fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_1l1x_t1 }~
3758 \fp_eval:n { \1__luamplib_BBox_ury_tl - \1__luamplib_BBox_lly_t1 }~
3759 re~f

3760 3

3761 \special{pdf:econtent}

3762 3

3763 b

3764 3}

3765 }

Sockets for main process

3766 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}

3767 \socket_new:nn{tagsupport/luamplib/figure/end}{2}

3768 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3769 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}

3770 {

106

3771 \tag_mc_end_push:
3772 \tl_if_empty:NT\1__luamplib_tag_alt_tl

3773 {

3774 \tl_if_empty:eTF{#1}

3775 { \tl_set:Nn \1__luamplib_tag_alt_tl {metapost~figure} }

3776 { \tl_set:Ne \1__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#13}} }
3777 \msg_warning:nnVV{luamplib}{alt-text-missing}

3778 \1__luamplib_tag_envname_t1 \1__luamplib_tag_alt_t1l
3779 3

3780 \tag_struct_begin:n

3781 {

3782 tag=\1__luamplib_tag_struct_tl,

3783 alt=\1__luamplib_tag_alt_t1,

3784 3

3785 \tag_mc_begin:n{}

3786 }

3787 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}

3788 {

3789 __luamplib_tag_bbox_attribute:n {#1}

3790 #2

3791 \tl_use:N \1__luamplib_tag_bbox_draw_t1

3792 \tag_mc_end:

3793 \tag_struct_end:

3794 \tag_mc_begin_pop:n{}

3795 }

3796 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3797 {

3798 \tag_mc_end_push:

3799 \tag_struct_begin:n

3800 {

3801 tag=Span,

3802 actualtext=\1__luamplib_tag_actual_t1,
3803 b

3804 \tag_mc_begin:n{}

3805 }

3806 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3807 {

3808 #2

3809 \tag_mc_end:

3810 \tag_struct_end:

3811 \tag_mc_begin_pop:n{}

3812 }

3813 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3814 {

3815 \tag_mc_end_push:

3816 \tag_mc_begin:n{artifact}

3817 }

3818 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3819 {

107

3820 #2

3821 \tag_mc_end:

3822 \tag_mc_begin_pop:n{}
3823 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/taggingl{
the document.

3824 \socket_new:nn{tagsupport/luamplib/figure/init}{0}

3825 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}

3826 {

3827 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}

3828 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}

3829 }

3830 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}

3831 {

3832 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3833 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

...} anywhere in

In vmode, hmode will be forced by \noindent upon actualtext and text modes.

3834 \prependtomplibbox \mplibnoforcehmode

3835 \mode_if_vertical:T { \noindent \aftergroup\par }

3836 3

3837 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}

3838 {

3839 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3840 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3841 }

3842 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}

3843 {

3844 \bool_set_true:N \1__luamplib_tag_usetext_bool

3845 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3846 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3847 \prependtomplibbox \mplibnoforcehmode

3848 \mode_if_vertical:T { \noindent \aftergroup\par }

3849 }

3850 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}

3851 {

3852 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3853 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3854 }

3855 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options

3856 \keys_define:nn{luamplib/tagging}

3857 {

3858 ,alt .code:n =

3859 {

3860 \tl_set:Ne\l__luamplib_tag_alt_t1{\text_purify:n{#1}}

3861 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3862 }

108

3863 ,actualtext .code:n =

3864 {

3865 \tl_set:Ne\l__luamplib_tag_actual_t1{\text_purify:n{#1}}

3866 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}

3867 }

3868 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3869 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }

3870 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3871 ,tag .code:n =

3872 {

3873 \str_case:nnF {#1}

3874 {

3875 {false} { \keys_set:nn {luamplib/tagging} {off} }

3876 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3877 3

3878 {

3879 \tl_set:Nn\1__luamplib_tag_struct_t1{#1}

3880 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3881 }

3882 }

3883 ,adjust-BBox .code:n =

3884 {

3885 \bool_set_true:N \1__luamplib_tag_bboxcorr_bool

3886 \seq_set_split:Nnn \1__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3887

3888 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3889 }

3890 \keys_define:nn {luamplib/instance}

3891 {

3892 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }

3893 ,instancename .meta:n = { instance = {#1} }

3894 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
3895 }

Redefine our macros

3896 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3897 {

3898 \prependtomplibbox

3899 \hbox dir~TLT\bgroup

3900 \tag_socket_use:nn{luamplib/figure/begin}\1__luamplib_tag_alt_dflt_tl
3901 \xdef\MPLIx{#1}\xdef\MP11y{#2}%

3902 \xdef\MPurx{#3}\xdef\MPury{#43}%

3903 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3904 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3905 \parskipopt

3906 \leftskipopt

3907 \parindent@pt

3908 \everypar{}%

3909 \setbox\mplibscratchbox\vbox\bgroup

109

3910 \tag_suspend:n{\mplibstarttoPDF}

3911 \noindent

3912 }

3913 \cs_set_nopar:Npn \mplibstoptoPDF
3914 {

3915 \par

3916 \egroup
3917 \setbox\mplibscratchbox\hbox

3918 {\hskip-\MP11x bp

3919 \raise-\MP1ly bp

3920 \box\mplibscratchbox}%

3921 \setbox\mplibscratchbox\vbox to \MPheight
3922 {\vfill

3923 \hsize\MPwidth

3924 \wd\mplibscratchbox@pt

3925 \ht\mplibscratchbox@pt

3926 \dp\mplibscratchbox@pt

3927 \box\mplibscratchbox}%

3928 \wd\mplibscratchbox\MPwidth

3929 \ht\mplibscratchbox\MPheight

3930 \tag_socket_use:nnn{1luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3931 \egroup

3932 }

3933 \RenewDocumentCommand\mplibcode{0{}}

3934 {

3935 \tl_set:Nn \1__luamplib_tag_envname_t1l {mplibcode}

3936 \tl_gclear:N \currentmpinstancename

3937 \keys_set_known:neN {luamplib/tagging} {#1} \1_tmpa_tl

3938 \keys_set:nV {luamplib/instance} \1_tmpa_tl

3939 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \currentmpinstancename
3940 \tag_socket_use:n{luamplib/figure/init}

3941 \mplibtmptoks{}\1txdomplibcode

3942 }

3943 \RenewDocumentCommand\mpfig{s 0{3}}

3944 {

3945 \begingroup

3946 \tl_set:Nn \1__luamplib_tag_envname_t1 {mpfig}

3947 \keys_set_known:ne {luamplib/tagging} {#2}

3948 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \mpfiginstancename
3949 \tag_socket_use:n{luamplib/figure/init}

3950 \IfBooleanTF{#1} { \mplibprempfig * }

3951 { \mplibmainmpfig }
3952 }

3953 \RenewDocumentCommand\usemplibgroup{0{} m}
3954 {

3955 \begingroup

3956 \tl_set:Nn \1__luamplib_tag_envname_t1 {usemplibgroup}
3957 \keys_set_known:ne {luamplib/tagging} {#1}

3958 \tag_socket_use:n{luamplib/figure/init}

3959 \prependtomplibbox\hbox dir~TLT\bgroup

3960 \tag_socket_use:nn{luamplib/figure/begin}{#2}

3961 \setbox\mplibscratchbox\hbox\bgroup

3962 \bool_if:NF \1__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }

3963 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
3964 \egroup

3965 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
3966 \egroup

3967 \endgroup

3968 }

Allow setting alt/actual text within METAPOST code. Of course we can use them in TEX code as
well.

3969 \cs_new_nopar:Npn \mplibalttext #1

3970 {

3971 \tl_set:Ne \1__luamplib_tag_alt_tl {\text_purify:n{#1}}
3972 3

3973 \cs_new_nopar:Npn \mplibactualtext #1

3974 {

3975 \tl_set:Ne \1__luamplib_tag_actual_tl {\text_purify:n{#1}}
3976 3

3977 \ExplSyntax0ff

That’s all folks!

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if

you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 021101301, USA

Everyone s permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

totake aw
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applis to most of the Free Software Foundation’s software and to
any other program whaose authors commit to using it. (Some other Free Software Foun-

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to cach and
every part regardless of who wrote it

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;

(a) Accompany it with
which must be distributed under the terms of Sections 1 and 2 above on a

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
aversion number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally

No WARRANTY

a el v fe 12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
dation software is covered by the GNU Library General Public License instead.) You can ‘medium customarily used for software interchange; or. A
apply it to your programs, too. (b) Accompany it with a written offer, valid for at least three years, to give any e A ree I ComE TorEIe ANDon OTHiEn PANAIRS -
When we speak of free software, we are referring to freedom, not price. Our General Pub- third party, for a charge no more than your cost of physically performing oy "
i y Y VIDE THE PROGRAM "AS 1s” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
lic Licenses are designed to make sure that you have the freedom to distribute copies of source distribution, a complete machine-readable copy of the corresponding s A Y
free software (and charge for this service if you wish), that you receive source code or source code, to be distributed under the terms of Sections 1 and 2 above on a - N .
N ’ . CCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
can get it if you want it, that you can change the software or use picces of it in new frec ‘medium customarily used for software interchange; or, A R
programs; and that you know you can do Ihe?e things. (€) Accompany it with the information you received as to the offer to distribute GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
To proteet your rights, we necd to make restrictions that forbid anyone to deny you these corresponding source code. (This alternative is allowed only for noncommer- o Commeron:
rights or to ask you to surrender the rights. These restrictions translate to certain respon- cial distribution and only if you received the program in object code or exe-
sibilities for you if you distribute copies of the software, or if you modify it cutable form with such an offer,in accord with Subsection b above.) 13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
For example, if you distribute copics of such a program, whether gratis or for a fec, you ANY COPYRIGIT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
must give the recipients all the rights that you have. You must make sure that they, too, “The source code for a work means the preferred form of the work for making mod- CRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
receive or can get the source code. And you must show them these terms so they know ifications to it. For an executable work, complete source code means all the source CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
their rights. code for all modules it contains, plus any associated interface definition files, plus OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
We protect your rights with two steps: (1) copyright the software, and (2) offer you this the scripts used to control compilation and installation of the executable. However, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
license which gives you legal permission to copy, distribute and/or modify the software. as a special exception, the source code distributed need not include anything that is OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
Also, for each author's protection and ours, we want to make certain that everyone un- normally distributed (in cither source or binary form) with the major components PROGRANS), EVEN IF SUCH HOLDER O OTHER PARTY HAS BEEN ADVISED OF THE POS-
derstands that there is no warranty for this free software. If the software is modified by (compiler, kernel, and so on) of the operating system on which the executable runs, SIBILITY OF SUCH DAMAGES.
someone else and passed on, we want its recipients to know that what they have is not the unless that component itself accompanies the executable.
°"g‘!“a‘¥' 5o that any problems introduced by others will not reflect on the original authors' If distribution of executable or object code is made by offering access to copy from END OF TERMS AND CONDITIONS
reputations. a designated place, then offering equivalent access to copy the source code from the
Finally, any free program is threatencd constantly by software patents. We wish to avoid
same place counts as distribution of the source code, even though third parties are
the danger that redistributors of a free program will individually obtain patent licenses,
: i I not compelled to copy the source along with the object code.
in effect making the program proprietary. To prevent this, we have made it clear that any Append How to Apply These Terms to Your New Programs
patent must be licensed for everyone's free use or not licensed at al 5. You may not copy, modify, sublicense, or distribute the Program except as expressly
‘The precise terms and conditions for copying, distribution and modification follow. provided under this License. Any attempt otherwise to copy, modify, sublicense or If you d new program, and you f e tothe pub-

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MoDIFICATION

“This License applies to any program o other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program’, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that i to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term “modification”)
Each licensee is addressed as “you'.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program s not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

‘You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty: keep
intact all the notices that refer to this License and to the absence of any warranty:
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. Youmay modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

z

You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself s interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

‘These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

You are not required to accept this License, since you have not signed it. However,

grants you permission to Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all ts terms and
conditions for copying, distributing or modifying the Program or works based on it

Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

Itis not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

‘This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among.
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

‘The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

lic, the best way to achieve this s to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of cach source file to most effectively convey the exclusion of warranty; and cach file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does,
Copyright (C) yyyy name of author

“This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version

Tl-m program is distributed in the hope that it will be useful, but WITHOUT

/ARRANTY; without even the implied warranty of MERCHANTABIL-
n 'Y or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details

You should have received a copy of the GNU General Public License along with
this program if not. write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program s interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
“show W'

“This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show ¢’ for details

‘The hypothetical commands shon w and shon ¢ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever s
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 mpliblength, mplibuclength
	1.2.15 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode
	1.3.4 luamplib.registerpattern
	1.3.5 luamplib.registergroup

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

