
The LuaXML library
Paul Chakravarti Michal Hoftich

Version v0.2c
2026-01-29

Contents
1 Introduction 3

2 The DOM_Object library 3
2.1 HTML parsing . 3
2.2 Void elements . 4
2.3 Node selection methods . 4

2.3.1 The DOM_Object:get_path method 5
2.3.2 The DOM_Object:query_selector method 5
2.3.3 Supported CSS selectors . 5

2.4 Element traversing . 6
2.4.1 The DOM_Object:traverse_elements method 6

2.5 DOM modifications . 7
2.5.1 Adding raw XML and HTML string 7

3 The CssQuery library 8
3.1 Example usage . 8

4 The luaxml-transform library 9
4.1 Basic example . 9
4.2 The Transform object . 10

4.2.1 Transforming using templates 10
4.2.2 Transforming using Lua functions 11
4.2.3 Character handling . 12

5 Character sets handling 12
5.1 Example . 12

6 The luaxml.sty Package 13
6.1 Package Options . 13
6.2 Example of Transformation Using LATEX Commands 13
6.3 Declaring Transformation Rules . 13
6.4 Content Transformation . 14

1

7 The API documentation 16
7.1 luaxml-domobject . 16

7.1.1 Class: Functions . 16
7.1.2 Class: Class DOM_Object 16

7.2 luaxml-cssquery . 21
7.2.1 Class: Functions . 21
7.2.2 Class: Class CssQuery . 21

7.3 luaxml-transform . 23
7.3.1 Class: Functions . 23
7.3.2 Class: Class Transformer 25

7.4 luaxml-mod-html . 25
7.4.1 Class: Class HtmlParser . 25

7.5 luaxml-encodings . 26
7.5.1 Class: Local functions . 26

7.6 luaxml-sty . 26
7.6.1 Class: Functions . 26

8 Low-level functions usage 28
8.1 The simpleTreeHandler . 28
8.2 The domHandler . 29

I Original LuaXML documentation by Paul Chakravarti 31

9 Overview 31

10 Features 31

11 Limitations 31

12 API 32

13 Options 32

14 Usage 33

15 Handlers 33
15.1 Overview . 33
15.2 Features . 33
15.3 API . 34

15.3.1 printHandler . 34
15.3.2 domHandler . 34
15.3.3 simpleTreeHandler . 34

15.4 Options . 34
15.5 Usage . 35

16 History 35

17 License 35

2

1 Introduction
LuaXML is pure lua library for processing and serializing of the xml files. The base
code code has been written by Paul Chakravarti, with minor changes which brings
Lua 5.3 or HTML 5 support. On top of that, new modules for accessing the xml
files using DOM like methods or CSS selectors1 have been added.

The documentation is divided to three parts – first part deals with the DOM
library, second part describes the low-level libraries and the third part is original
documentation by Paul Chakravarti.

2 The DOM_Object library
This library can process a xml sources using DOM like functions. To load it, you
need to require luaxml-domobject.lua file. The parse function provided by the
library creates DOM_Object object, which provides several methods for processing
the xml tree.

local dom = require "luaxml-domobject"
local document = [[
<html>
<head><title>sample</title></head>
<body>
<h1>test</h1>
<p>hello</p>
</body>
</html>
]]

-- dom.parse returns the DOM_Object
local obj = dom.parse(document)
-- it is possible to call methods on the object
local root_node = obj:root_node()
for _, x in ipairs(root_node:get_children()) do
print(x:get_element_name())

end

The details about available methods can be found in the API docs, section 7.1.
The above code will load a xml document, it will get the ROOT element and print
all it’s children element names. The DOM_Object:get_children function returns
Lua table, so it is possible to loop over it using standard table functions.

html

2.1 HTML parsing
You can parse HTML documents using the DOM_Object.html_parse function.
This parser is slower than the default XML parser, but it can load files that would
cause errors in the XML mode. It can handle wrongly nested HTML tags, inline

1Thanks to Leaf Corcoran for CSS selector parsing code.

3

JavaScript and CSS styles, and other HTML features that would cause XML
errors.

dom = require "luaxml-domobject"
local document = [[
<html>
<head><title>sample</title></head>
<body>
<h1>test</h1>
<p>hello
<p>another paragraph

first
second

</body>
</html>
]]

-- dom.html_parse returns the DOM_Object
obj = dom.html_parse(document)
-- print names of all elements contained in body
for _, x in ipairs(obj:query_selector("body *")) do
tex.print(x:get_element_name().. "\\par")

end

h1
p
p
ul
li
li

2.2 Void elements
The DOM_Object.parse function tries to support the HTML void elements, such
as or <hr>. They cannot have closing tags, a parse error occurs when the
closing tags are used.

It is possible to define a different set of void elements using the second param-
eter for DOM_Object.parse:

obj = dom.parse(document, {custom_void = true})

An empty table will disable all void elements. This setting is recommended for
common xml documents.

2.3 Node selection methods
There are some other methods for element retrieving.

4

2.3.1 The DOM_Object:get_path method

If you want to print text content of all child elements of the body element, you
can use DOM_Object:get_path:

local path = obj:get_path("html body")
for _, el in ipairs(path[1]:get_children()) do
print(el:get_text())

end

The DOM_Object:get_path function always return array with all elements
which match the requested path, even it there is only one such element. In
this case, it is possible to use standard Lua table indexing to get the first and
only one matched element and get it’s children using DOM_Object:get_children
method. It the children node is an element, it’s text content is printed using
DOM_Object:get_text.

test
hello�
another paragraph�
�first�second�

2.3.2 The DOM_Object:query_selector method

This method uses CSS selector syntax to select elements, similarly to JavaScript
jQuery library.

for _, el in ipairs(obj:query_selector("h1,p")) do
print(el:get_text())

end

test
hello�
another paragraph�

It supports also XML namespaces, using namespace|element syntax.

2.3.3 Supported CSS selectors

The query_selector method supports following CSS selectors:

Universal selector – * – select any element.

Type selector – elementname – Selects all elements that have the given node
name.

Class selector – .classname – Selects all elements that have the given class
attribute.

ID selector – #idname – Selects an element based on the value of its id attribute.

5

Attribute selector – [attrname='value'] – Selects all elements that have the
given attribute. It can have the following variants: [attrname] – elements
that contain given attribute, [attr|=value] – attribute text is exactly
the value, with optional hyphen at the end, [attr~=value] – attribute
name of attr whose value is a whitespace-separated list of words, one of
which is exactly value, [attr^=value] – attribute text starts with value,
[attr$=value] – attribute text ends with value.

Grouping selector – , – This is a grouping method, it selects all the matching
nodes.

It is also possible to combine selectors using combinators to make more specific
searches. Supported combinators:

Descendant combinator – A B – match all B elements that are inside A ele-
ments.

Child combinator – A > B – match B elements that are nested directly inside
a A element.

General sibling combinator – A ~ B – the second element follows the first
(though not necessarily immediately), and both share the same parent.

Adjacent sibling combinator – A + B – the second element directly follows
the first, and both share the same parent.

LuaXML also supports some CSS pseudo-classes. A pseudo-class is a keyword
added to a selector that specifies a special state of the selected element. The
following are supported:

:first-child – matches an element that is the first of its siblings.

:first-of-type – matches an element that is the first of its siblings, and also
matches a certain type selector.

:last-child – matches an element that is the last of its siblings.

:last-of-type – matches an element that is the last of its siblings, and also
matches a certain type selector.

:nth-child – matches elements based on their position in a group of siblings. It
can be used like this: li:nth-child(2).

2.4 Element traversing
2.4.1 The DOM_Object:traverse_elements method

It may be useful to traverse over all elements and apply a function on all of them.

obj:traverse_elements(function(node)
print(node:get_text())

end)

6

�sample��test�hello�another paragraph��first�second����
�sample��test�hello�another paragraph��first�second���
sample
sample
�test�hello�another paragraph��first�second��
test
hello�
another paragraph�
�first�second�
first�
second�

The get_text method gets text from all children elements, so the first line
shows all text contained in the <html> element, the second one in <head> element
and so on.

2.5 DOM modifications
It is possible to add new elements, text nodes, or to remove them.

local headers = obj:query_selector("h1")
for _, header in ipairs(headers) do
header:remove_node()

end
-- query selector returns array, we must retrieve the first element
-- to get the actual body element
local body = obj:query_selector("body")[1]
local paragraph = body:create_element("p", {})
body:add_child_node(paragraph)
paragraph:add_child_node(paragraph:create_text_node("This is a second paragraph"))

for _, el in ipairs(body:get_children()) do
if el:is_element() then

print(el:get_element_name().. ": ".. el:get_text())
end

end

In this example, <h1> element is being removed from the sample document,
and new paragraph is added. Two paragraphs should be shown in the output:

p: hello�
p: another paragraph�
ul: �first�second�
p: This is a second paragraph

2.5.1 Adding raw XML and HTML string

You can also set XML or HTML markup from a string to an element using the
DOM_Object:inner_html function. Pass true as the second argument to parse

7

string as XML, it is parsed as HTML otherwise.

local document = [[
<html><p>hello</p>
</html>
]]
local tree = dom.html_parse(document)
local p = tree:query_selector("p")[1]
-- insert inner_html as XML
p:inner_html("hello this should be the new content")
print(tree:serialize())

In this example, we replace contents of the first <p> element by new content.

<html><p>hello this should be the new
content</p>�</html>�

There are more variants of raw string methods that add the new content at
specific places in the element instead of replacing contents of the element:

DOM_Object:insert_before_begin – before element.

DOM_Object:insert_after_begin – just inside the element, before its first child.

DOM_Object:insert_before_end – just inside the element, after its last child.

DOM_Object:insert_after_end – after the element.

3 The CssQuery library
This library serves mainly as a support for the DOM_Object:query_selector func-
tion. It also supports adding information to the DOM tree.

3.1 Example usage
local cssobj = require "luaxml-cssquery"
local domobj = require "luaxml-domobject"

local xmltext = [[
<html>
<body>
<h1>Header</h1>
<p>Some text, <i>italics</i></p>
</body>
</html>
]]

local dom = domobj.parse(xmltext)
local css = cssobj()

css:add_selector("h1", function(obj)
print("header found: " .. obj:get_text())

8

end)

css:add_selector("p", function(obj)
print("paragraph found: " .. obj:get_text())

end)

css:add_selector("i", function(obj)
print("found italics: " .. obj:get_text())

end)

dom:traverse_elements(function(el)
-- find selectors that match the current element
local querylist = css:match_querylist(el)
-- add templates to the element
css:apply_querylist(el,querylist)

end)

header found: Header
paragraph found: Some text, italics
found italics: italics

More complete example may be found in the examples directory in the LuaXML
source code repository2.

4 The luaxml-transform library
This library is still a bit experimental. It enables XML transformation based on
CSS selector templates.

It isn’t nearly as powerful as XSLT, but it may suffice for simpler tasks.

4.1 Basic example
local transform = require "luaxml-transform"

local transformer = transform.new()
local xml_text = [[<section>hello world</section>]]

-- transformatio rules
transformer:add_action("section", "\\section{@<.>}")
transformer:add_action("b", "\\textbf{@<.>}")

-- transform and print the result to the document
local result = transformer:parse_xml(xml_text)
transform.print_tex("\\verb|" .. result .. "|")

\section{hello \textbf{world}}

2https://github.com/michal-h21/LuaXML/blob/master/examples/xmltotex.lua

9

https://github.com/michal-h21/LuaXML/blob/master/examples/xmltotex.lua

4.2 The Transform object
The luaxml-transform library provides several functions. Most important of
them is new(). It returns a Transform object, that can be used for the transfor-
mations. It is possible to transform XML using text templates, or Lua functions.
In both cases, actions for elements are selected using CSS selectors. If there is no
action for an element, it’s text content and text from transformed child elements,
is placed to the output string.

There are two methods for action specification, add_action for text templates,
and add_custom_action for Lua functions.

4.2.1 Transforming using templates

Template actions can be added using the add_action method:

transformer:add_action("CSS selector", "template", {parameters table})

For details about CSS selectors, see the CssQuery library (see page 8). Tem-
plates can contain arbitrary text, with special instructions that can insert trans-
formed text contents of the element, contents of specific element, or element’s
attributes.
Instruction syntax:

@{attribute name} insert value of an attribute

@<.> insert transformed content of the element

%s insert transformed content of the element. Shortcut for @<.>.

@<number> insert transformed content of the child element selected by it’s number
in the list of children

@<element name> insert transformed content of the named child element

Parameters
The parameters table can hold following values:

verbatim – used for source code listings and similar texts, that should keep their
original formatting. Special characters are not escaped, so you will want to
transform the elements into verbatim or listings environment.

separator – when you select element by names (@<element name>), you can use
this parameter set the separator between possible multiple instances of the
child element.

Examples:
Process children

local transformer = transform.new()
transformer:add_action("a", "@<.>")
-- ignore element
transformer:add_action("b", "")
local result = transformer:parse_xml("<x><a>hello, world</x>")
transform.print_tex(result)

10

hello

Select elements by their position

local transformer = transform.new()
-- swap child elements
transformer:add_action("x", "@<2>, @<1>")
local result = transformer:parse_xml("<x><a>world, hello</x>")
transform.print_tex(result)

hello, world

Select elements by name

local transformer = transform.new()
transformer:add_action("x", "@<a>")
local result = transformer:parse_xml("<x><a>hello, world</x>")
transform.print_tex(result)

hello

Select attributes

local transformer = transform.new()
transformer:add_action("b", "\\textbf{@<.>}")
-- this will select only elements with "style" attribute
transformer:add_action("b[style]", "\\textcolor{@{style}}{\\textbf{@<.>}}")
local text = '<x>hello <b style="red">world</x>'
local result = transformer:parse_xml(text)
transform.print_tex(result)

\textbf{hello} \textcolor{red}{\textbf{world}}

4.2.2 Transforming using Lua functions

You can use Lua functions for more complex transformations where simple tem-
plates don’t suffice.

transformer:add_custom_action("CSS selector", function)

Example

local transformer = transform.new()
local xml_text = "<x><a>worldhello, </x>"
-- load helper functions
local get_child_element = transform.get_child_element
local process_children = transform.process_children
-- define custom action
transformer:add_custom_action("x", function(el)

11

-- it basically just swaps child elements,
-- like in the template @<2>@<1>
local first = process_children(get_child_element(el, 1))
local second = process_children(get_child_element(el, 2))
return second .. first

end)
local result = transformer:parse_xml(xml_text)
transform.print_tex(result)

hello, world

4.2.3 Character handling

You may want to escape certain characters, or replace them with LATEX commands.
You can use the unicodes table contained in the Transform object:

local transformer = transform.new()
-- you must use the Unicode character code
transformer.unicodes[124] = "\\textbar"
local text = '<x>|</x>'
local result = transformer:parse_xml(text)
transform.print_tex(result)

\textbar

5 Character sets handling
The luaxml-encodings library provides functions to convert texts in legacy 8-bit
encodings such as WINDOWS-1250 or ISO-8859-2 to UTF-8. This can be useful
in fixing document encoding before HTML parsing using the luaxml-mod-html
library.

5.1 Example
kpse.set_program_name "luatex"
local encodings = require "luaxml-encodings"

--read HTML page from the standard input
local text = io.read("*all")
-- find the character encoding in HTML metadata
local enc = encodings.find_html_encoding(text)
if enc then
-- local conversion table for the found encoding
local mapping = encodings.load_mapping(enc)
if mapping then

-- if the mapping exists, recode the HTML input and print it
local converted = encodings.recode(text, mapping)
print(converted)

end
end

12

6 The luaxml.sty Package
The luaxml.sty package is designed to provide an interface for defining transfor-
mation rules for XML and HTML documents using Lua and LATEX commands. It
allows users to declare transformation objects, apply transformation rules based
on CSS selectors, and process XML or HTML from files or code snippets within
LATEX documents.

XML and HTML documents can be inserted from files or directly via com-
mands and environments. All commands and environments intended for code
input have two variants: with an asterisk for inputting HTML documents and
without an asterisk for inputting XML documents.

6.1 Package Options
default – load HTML templates. They will be available as html option in

luaxml.sty commands and environments.

\usepackage[default]{luaxml}
...

\begin{LXMLCode*}{html}
<p>Hello world and some text in <i>italics</i>.</p>

\end{LXMLCode*}

Hello world and some text in italics.

6.2 Example of Transformation Using LATEX Commands
\LXMLRule[sample]{h1}|\par\noindent{\large\bfseries %s\par}|
\LXMLRule[sample]{p}|%s\par|
\LXMLRule[sample]{a[href]}|\href{@{href}}{%s}|
%% process HTML code

\begin{LXMLCode*}{sample}
<html>
<h1>Hello</h1>
<p>Here is a link to TeX.sx
</p>
</html>
\end{LXMLCode*}

Hello
Here is a link to TeX.sx

6.3 Declaring Transformation Rules
\LXMLRule[<options>]\{<CSS selector>\}|<transformation rule>|

Defines a transformation rule for the current transformer. The transformation is
applied to elements matching the given CSS selector. You can define multiple

13

https://tex.stackexchange.com/

transformers, for example if you want to support multiple XML syntaxes and
HTML at the same time.

The <options> parameter can include:

• verbatim: Whether to process the rule in verbatim mode.

• transformer: Specifies a transformer.

Any unknown key acts as a name of the transformer. In the following code,
both examples add a rule to a transformer named sample.

\LXMLRule[transformer=sample]{b}|\textbf{%s}|
\LXMLRule[sample]{i}|\textit{%s}|

If you want to support only one syntax though, you don’t need to specify the
transformer name at all, a default object will be used.

By default, spaces are collapsed. If you want to support elements where white
spaces should be preserved, such as HTML <pre> element, use the verbatim
option:

\LXMLRule[verbatim]{pre}|\begin{verbatim}
%s

\end{verbatim}|

The transformation rule must be delimited by a pair of characters that are
not used in the text of the rule. We use | in our examples, but you can use other
characters if you like. This is similar to how the \verb command works. You can
use the syntax shown in the section 4.2.1 (page 10).

The following code defines rule that transforms the <h1> element to a \section
command, and <a> element which has a href attribute to \href. URL of the link
is used thanks to the @{href} rule.

\LXMLRule{h1}|{\section{%s}|
\LXMLRule{a[href]}|\href{@{href}}{%s}|

6.4 Content Transformation
\LXMLSnippet[<transformer name>]{<XML code>}
\LXMLSnippet*[<transformer name>]{<HTML code>}

The \LXMLSnippet command processes a code snippet as XML or HTML. Use the
starred variant for HTML input. The <transformer name> argument specifies the
transformer object to apply (default is used if empty). The code to be transformed
is passed in the second argument.

XML snippet transformation:

\LXMLRule[xmlsnippet]{title}|title: %s|
\LXMLSnippet{<root><title>Hello</title></root>}

14

title: Hello

HTML snippet transformation:

\LXMLRule[htmlsnippet]{h1}|title: %s|
\LXMLSnippet*[htmlsnippet]{<div><h1>Header</h1></div>}

title: Header

\LXMLInputFile[<transformer>]{<XML file path>}
\LXMLInputFile*[<transformer>]{<HTML file path>}

Processes a file as XML or HTML. Use the starred variant for HTML input. The
<transformer> specifies the transformer object to apply (default is used if empty).
The file path is passed in the second argument.
Environments

\begin{LXMLCode}{<transformer>} ... \end{LXMLCode}
Processes XML code inside the environment. The <transformer> specifies the
transformer object to apply (default is used if empty).

\LXMLRule[xmlenv]{element}|hello: %s|
\begin{LXMLCode}{xmlenv}
<root>
<element>Some content</element>

</root>
\end{LXMLCode}

hello: Some content

\begin{LXMLCode*}{<transformer>} ... \end{LXMLCode*}
Processes HTML code inside the environment. The <transformer> specifies the
transformer object to apply (default is used if empty).

\LXMLRule[htmlenv]{p}|paragraph: %s|
\begin{LXMLCode*}{htmlenv}
<div>
<p>Some HTML content</p>

</div>
\end{LXMLCode*}

paragraph: Some HTML content

15

7 The API documentation
7.1 luaxml-domobject
DOM module for LuaXML

7.1.1 Class: Functions

serialize_dom(parser, current, level, output)
It serializes the DOM object back to the XML.
Parameters:
parser: DOM object
current: Element which should be serialized
level:
output:
Return:
table Table with XML strings. It can be concenated using table.concat() function
to get XML string corresponding to the DOM_Object.

parse(xmltext, voidElements)
XML parsing function Parse the XML text and create the DOM object.
Parameters:
xmltext:
voidElements: hash table with void elements
Return:
DOM_Object

7.1.2 Class: Class DOM_Object

DOM_Object:root_node()
Returns root element of the DOM_Object
Parameters:
Return:
DOM_Object

DOM_Object:get_node_type(el)
Get current node type
Parameters:
el: [optional] node to get the type of

DOM_Object:is_element(el)
Test if the current node is an element.
Parameters:
el: [optional] element to test
Return:
boolean

DOM_Object:is_text(el)
Test if current node is text

16

Parameters:
el: [optional] element to test
Return:
boolean

DOM_Object:get_element_name(el)
Return name of the current element
Parameters:
el: [optional] element to test
Return:
string

DOM_Object:get_attribute(name)
Get value of an attribute
Parameters:
name: Attribute name
Return:
string

DOM_Object:set_attribute(name, value)
Set value of an attribute
Parameters:
name:
value: Value to be set
Return:
boolean

DOM_Object:serialize(current)
Serialize the current node back to XML
Parameters:
current: [optional] element to be serialized
Return:
string

DOM_Object:get_text(current)
Get text content from the node and all of it’s children
Parameters:
current: [optional] element which should be converted to text
Return:
string

DOM_Object:get_path(path, current)
Retrieve elements from the given path.
Parameters:
path:
current: [optional] element which should be traversed. Default element is the
root element of the DOM_Object
Return:
table of elements which match the path

17

DOM_Object:query_selector(selector)
Select elements chidlren using CSS selector syntax
Parameters:
selector: String using the CSS selector syntax
Return:
table with elements matching the selector.

DOM_Object:get_children(el)
Get table with children of the current element
Parameters:
el: [optional] element to be selected
Return:
table with children of the selected element

DOM_Object:get_parent(el)
Get the parent element
Parameters:
el: [optional] element to be selected
Return:
DOM_Object parent element

DOM_Object:traverse(fn, current)
Execute function on the current element and all it’s children nodes.
Parameters:
fn: function which will be executed on the current element and all it’s children
current: [optional] element to be selected

DOM_Object:traverse_elements(fn, current)
Execute function on the current element and all it’s children elements.
Parameters:
fn: function which will be executed on the current element and all it’s children
current: [optional] element to be selected
Return:
nothing

DOM_Object:strings(current)
Get table with the inner text of an element, every text node is a separate table
item.
Parameters:
current: [optional] element to be selected
Return:
table

DOM_Object:stripped_strings(current)
Get table with the inner text of an element - leading and trailing spaces are re-
moved and elements that contain only white space are ignored.
Parameters:
current: [optional] element to be selected
Return:
table

18

DOM_Object:traverse_node_list(nodelist, fn)
Execute function on list of elements returned by DOM_Object:get_path()
Parameters:
nodelist:
fn: function to be executed

DOM_Object:replace_node(new)
Replace the current node with new one
Parameters:
new: element which should replace the current element
Return:
boolean, message

DOM_Object:add_child_node(child, position)
Add child node to the current node
Parameters:
child: element to be inserted as a current node child
position: [optional] position at which should the node be inserted

DOM_Object:copy_node(element)
Create copy of the current node
Parameters:
element: [optional] element to be copied
Return:
DOM_Object element

DOM_Object:create_element(name, attributes, parent)
Create a new element
Parameters:
name: New tag name
attributes: Table with attributes
parent: [optional] element which should be saved as the element’s parent
Return:
DOM_Object element

DOM_Object:create_text_node(text, parent)
Create new text node
Parameters:
text: string
parent: [optional] element which should be saved as the element’s parent
Return:
DOM_Object text object

DOM_Object:remove_node(element)
Delete current node
Parameters:
element: [optional] element to be removed

DOM_Object:find_element_pos(el)

19

Find the element position in the current node list
Parameters:
el: [optional] element which should be looked up
Return:
integer position of the current element in the element table

DOM_Object:get_siblings(el)
Get node list which current node is part of
Parameters:
el: [optional] element for which the sibling element list should be retrieved
Return:
table with elements

DOM_Object:get_sibling_node(change)
Get sibling node of the current node
Parameters:
change: Distance from the current node
Return:
DOM_Object node

DOM_Object:get_next_node(el)
Get next node
Parameters:
el: [optional] node to be used
Return:
DOM_Object node

DOM_Object:get_prev_node(el)
Get previous node
Parameters:
el: [optional] node to be used
Return:
DOM_Object node

DOM_Object:create_template(str, is_xml)
parse string as HTML or XML and return created elements
Parameters:
str:
is_xml: <> is a dummy element, we just need to wrap everything in some ele-
ment
Return:
table elements

DOM_Object:inner_html(str, is_xml)
parse string as HTML or XML and insert it as a child of the current node
Parameters:
str: HTML or XML to be inserted
is_xml: [optional] Pass true to parse as XML, otherwise parse as HTML

DOM_Object:insert_before_begin(str, is_xml)

20

parse string as HTML or XML and insert it before current the element
Parameters:
str: HTML or XML to be inserted
is_xml: [optional] Pass true to parse as XML, otherwise parse as HTML

DOM_Object:insert_after_begin(str, is_xml)
parse string as HTML or XML and insert it at the beginning of the current the
element
Parameters:
str: HTML or XML to be inserted
is_xml: [optional] Pass true to parse as XML, otherwise parse as HTML

DOM_Object:insert_before_end(str, is_xml)
parse string as HTML or XML and insert it at the end of the current the element
Parameters:
str: HTML or XML to be inserted
is_xml: [optional] Pass true to parse as XML, otherwise parse as HTML

DOM_Object:insert_after_end(str, is_xml)
parse string as HTML or XML and insert it after current the element
Parameters:
str: HTML or XML to be inserted
is_xml: [optional] Pass true to parse as XML, otherwise parse as HTML

DOM_Object.html_parse(html_str)
Parse HTML text as a DOM object.
Parameters:
html_str: string with the HTML code to be parsed
Return:
DOM_Object

7.2 luaxml-cssquery
CSS query module for LuaXML

7.2.1 Class: Functions

cssquery()
CssQuery constructor
Parameters:
Return:
CssQuery object

7.2.2 Class: Class CssQuery

CssQuery:calculate_specificity(query)
Calculate CSS specificity of the query

21

Parameters:
query: table created by CssQuery:prepare_selector() function
Return:
integer specificity value

CssQuery:match_querylist(domobj, querylist)
Test prepared querylist
Parameters:
domobj: DOM element to test
querylist: [optional] List of queries to test
Return:
table with CSS queries, which match the selected DOM element

CssQuery:get_selector_path(domobj, selectorlist)
Get elements that match the selector
Parameters:
domobj: DOM_Object
selectorlist: prepare_selector
Return:
table with DOM_Object elements

CssQuery:prepare_selector(selector)
Parse CSS selector to a query table.
Parameters:
selector: string CSS selector query
Return:
table querylist

CssQuery:add_selector(selector, func, params)
Add selector to CSS object list of selectors, func is called when the selector matches
a DOM object params is table which will be passed to the func
Parameters:
selector: CSS selector string
func: function which will be executed on matched elements
params: table with parameters for the function
Return:
integer number of elements in the prepared selector

CssQuery:sort_querylist(querylist)
Sort selectors according to their specificity It is called automatically when the
selector is added
Parameters:
querylist: [optional] querylist table
Return:
querylist table

CssQuery:remove_selector(selector)
Remove selector from the CSS list object.
Parameters:
selector: CSS selector to be removed

22

CssQuery:apply_querylist(domobj, querylist)
It tests list of queries against a DOM element and executes the corresponding
function that is saved for the matched query.
Parameters:
domobj: DOM element
querylist: querylist table
Return:
nothing

7.3 luaxml-transform
XML transformation module for LuaXML

7.3.1 Class: Functions

process_children(element, parameters)
Transform DOM element and it’s children
Parameters:
element: DOM element
parameters: Table with settings
Return:
Transformed string

get_child_element(element, count)
return nth child element
Parameters:
element: DOM element to be processed
count: Number of child element that should be returned
Return:
DOM object, or nil if it cannot be found

simple_content(s, parameters)
Default transforming function.
Parameters:
s: Template string
parameters: Table with settings
Return:
transforming function

add_custom_action(selector, fn, csspar)
Use function to transform selected element
Parameters:
selector: CSS selector for the matching element
fn: Function that transforms the selected DOM element.
csspar: cssquery object. Default is set by the library, so it is not necessary to use.

23

add_action(selector, template, parameters, csspar)
Use template to transform selected template
Parameters:
selector: CSS selector for the matching element
template: String template
parameters: Table with extra parameters. Use ”verbatim=true” to keep spacing
in the processed text.
csspar: cssquery object. Default is set by the library, so it is not necessary to use.

reset_actions(selector, csspar)
Remove actions for a given selector
Parameters:
selector: CSS selector for the matching element
csspar: cssquery object. Default is set by the library, so it is not necessary to use.

parse_xml(content)
Transform XML string
Parameters:
content: String with XML content
Return:
transformed string

load_file(filename)
Transform XML file
Parameters:
filename: XML file name
Return:
transformed string

process_dom(dom)
Transform XML DOM object
Parameters:
dom: DOM object
Return:
transformed string

print_tex(content)
print transformed file to PDF using LuaTeX functions
Parameters:
content: String to be printed

new()
Make new Transformer object
Parameters:
Return:
Transformer object

24

7.3.2 Class: Class Transformer

Transformer:add_action(selector, template, parameters)
add a new template
Parameters:
selector: CSS selector that should be matched
template: use %s for element’s text, and @ {name} to access attribute ”name”
parameters: table with extra parameters

Transformer:add_custom_action(selector, fn)
Use function for transformation
Parameters:
selector: CSS selector that should be matched
fn: DOM transforming function

Transformer:reset_actions(selector)
Remove all actions that match the given selector
Parameters:
selector: string

Transformer:parse_xml(content)
Parse XML string
Parameters:
content: String with XML content
Return:
transformed string

Transformer:load_file(filename)
Transform XML file
Parameters:
filename: XML file name
Return:
transformed string

Transformer:process_dom(dom)
Transform XML DOM object
Parameters:
dom: DOM object
Return:
transformed string

7.4 luaxml-mod-html
HTML parsing module for LuaXML

7.4.1 Class: Class HtmlParser

HtmlParser:init(body)
Initialize the HTML Object

25

Parameters:
body: string HTML to be parsed
Return:
table initialized object

HtmlParser:parse()
Execute the HTML parser
Parameters:
Return:
table Root node of the HTML DOM

7.5 luaxml-encodings
Convert 8-bit encodings to UTF-8

7.5.1 Class: Local functions

find_html_encoding(str, len)
Try to find an encoding in HTML string
Parameters:
str: string HTML document
len: number count of characters from the start of the string where it should
search for the encoding metadata
Return:
string encoding identifier, or nil and message if no encoding was found

recode(text, mapping)
Convert string to utf-8
Parameters:
text: string for converting
mapping: table
Return:
string converted string

7.6 luaxml-sty
Helper functions for the luaxml.sty package

7.6.1 Class: Functions

luaxml_sty.declare_transformer(name)
Declare new transformer
Parameters:
name: string transformer name
Return:
table transformer object

26

luaxml_sty.add_rule(current, selector, rule)
Add luaxml-transform rule
Parameters:
current: string transformer name, empty for the default object
selector: string CSS selector to be used
rule: string luaxml-transform rule

luaxml_sty.set_xml()
Use XML parser for parsing of next snippets
Parameters:

luaxml_sty.set_html()
Use HTML parser for parsing of next snippets
Parameters:

luaxml_sty.parse_snippet(current, xml_string)
transform XML string and print it to the output
Parameters:
current: string transformer name, empty for the default object
xml_string: string to be transformed

luaxml_sty.parse_file(current, filename)
Transform file
Parameters:
current: string transformer name, empty for the default object
filename: string file to be transformed

luaxml_sty.store_lines(env_name, callback_name)
parse environment contents using Lua
Parameters:
env_name: string environment name
callback_name: string name which will be used in the callback registration
Return:
function idea from https://tex.stackexchange.com/a/574323/2891

luaxml_sty.register_verbatim(env_name)
require line grabbing for an environment
Parameters:
env_name: string environment name

luaxml_sty.print_verbatim(transformer)
parse content of the previous environment registered using luaxml_sty.regis-
ter_verbatim() and print the transformed content
Parameters:
transformer: string transformer name, empty for the default object

27

8 Low-level functions usage
The original LuaXML library provides some low-level functions for XML handling.
First of all, we need to load the libraries:

xml = require('luaxml-mod-xml')
handler = require('luaxml-mod-handler')

The luaxml-mod-xml file contains the xml parser and also the serializer. In
luaxml-mod-handler, various handlers for dealing with xml data are defined.
Handlers transforms the xml file to data structures which can be handled from
the Lua code. More information about handlers can be found in the original
documentation, section 15.

8.1 The simpleTreeHandler
sample = [[
<a>
<d>hello</d>
world.
<b at="Hi">another

]]
treehandler = handler.simpleTreeHandler()
x = xml.xmlParser(treehandler)
x:parse(sample)

You have to create handler object, using handler.simpleTreeHandler() and
xml parser object using xml.xmlParser(handler object). simpleTreehandler
creates simple table hierarchy, with top root node in treehandler.root

-- pretty printing function
function printable(tb, level)
level = level or 1
local spaces = string.rep(' ', level*2)
for k,v in pairs(tb) do

if type(v) ~= "table" then
print(spaces .. k..'='..v)

else
print(spaces .. k)
level = level + 1
printable(v, level)

end
end

end

-- print table
printable(treehandler.root)
-- print xml serialization of table
print(xml.serialize(treehandler.root))
-- direct access to the element
print(treehandler.root["a"]["b"][1])

This code produces the following output:

output:

28

a
d=hello
b
1=world.
2
1=another
_attr
at=Hi

<?xml version="1.0" encoding="UTF-8"?>
<a>
<d>hello</d>

world.
<b at="Hi">
another

world.

First part is pretty-printed dump of Lua table structure contained in the han-
dler, the second part is xml serialized from that table and the last part demon-
strates direct access to particular elements.

Note that simpleTreeHandler creates tables that can be easily accessed using
standard lua functions, but if the xml document is of mixed-content type3:

<a>hello
world

then it produces wrong results. It is useful mostly for data xml files, not for text
formats like xhtml.

8.2 The domHandler
For complex xml documents, it is best to use the domHandler, which creates object
which contains all information from the xml document.

-- file dom-sample.lua
-- next line enables scripts called with texlua to use luatex libraries
--kpse.set_program_name("luatex")
function traverseDom(current,level)
local level = level or 0
local spaces = string.rep(" ",level)
local root= current or current.root
local name = root._name or "unnamed"
local xtype = root._type or "untyped"
local attributes = root._attr or {}
if xtype == "TEXT" then

print(spaces .."TEXT : " .. root._text)
else

print(spaces .. xtype .. " : " .. name)
end
3This means that element may contain both children elements and text.

29

for k, v in pairs(attributes) do
print(spaces .. " ".. k.."="..v)

end
local children = root._children or {}
for _, child in ipairs(children) do

traverseDom(child, level + 1)
end

end

local xml = require('luaxml-mod-xml')
local handler = require('luaxml-mod-handler')
local x = '<p>hello world, how are you?</p>'
local domHandler = handler.domHandler()
local parser = xml.xmlParser(domHandler)
parser:parse(x)
traverseDom(domHandler.root)

The ROOT element is stored in domHandler.root table, it’s child nodes are
stored in _children tables. Node type is saved in _type field, if the node type is
ELEMENT, then _name field contains element name, _attr table contains element
attributes. TEXT node contains text content in _text field.

The previous code produces following output in the terminal:

ROOT : unnamed
ELEMENT : p
TEXT : hello
ELEMENT : a

href=http://world.com/
TEXT : world
TEXT : , how are you?

30

Part I

Original LuaXML documentation by
Paul Chakravarti
This document was created automatically from the original source code comments
using Pandoc4

9 Overview
This module provides a non-validating XML stream parser in Lua.

10 Features
• Tokenises well-formed XML (relatively robustly)

• Flexible handler based event api (see below)

• Parses all XML Infoset elements - ie.

– Tags
– Text
– Comments
– CDATA
– XML Decl
– Processing Instructions
– DOCTYPE declarations

• Provides limited well-formedness checking (checks for basic syntax & bal-
anced tags only)

• Flexible whitespace handling (selectable)

• Entity Handling (selectable)

11 Limitations
• Non-validating

• No charset handling

• No namespace support

• Shallow well-formedness checking only (fails to detect most semantic errors)
4https://pandoc.org

31

https://pandoc.org

12 API
The parser provides a partially object-oriented API with functionality split into
tokeniser and handler components.

The handler instance is passed to the tokeniser and receives callbacks for each
XML element processed (if a suitable handler function is defined). The API is
conceptually similar to the SAX API but implemented differently.

The following events are generated by the tokeniser

handler:starttag - Start Tag
handler:endtag - End Tag
handler:text - Text
handler:decl - XML Declaration
handler:pi - Processing Instruction
handler:comment - Comment
handler:dtd - DOCTYPE definition
handler:cdata - CDATA

The function prototype for all the callback functions is

callback(val,attrs,start,end)

where attrs is a table and val/attrs are overloaded for specific callbacks - ie.
Callback val attrs (table)
starttag name { attributes (name=val).. }
endtag name nil
text <text> nil
cdata <text> nil
decl ”xml” { attributes (name=val).. }
pi pi name

{ attributes (if present)..
_text = <PI Text>

}
comment <text> nil
dtd root element

{ _root = <Root Element>,
_type = SYSTEM|PUBLIC,
_name = <name>,
_uri = <uri>,
_internal = <internal dtd>

}
(starttag & endtag provide the character positions of the start/end of the

element)
XML data is passed to the parser instance through the ‘parse’ method (Note:

must be passed as single string currently)

13 Options
Parser options are controlled through the ‘self.options’ table. Available options
are -

32

• stripWS
Strip non-significant whitespace (leading/trailing) and do not generate
events for empty text elements

• expandEntities
Expand entities (standard entities + single char numeric entities only cur-
rently - could be extended at runtime if suitable DTD parser added elements
to table (see obj._ENTITIES). May also be possible to expand multibyre
entities for UTF–8 only

• errorHandler
Custom error handler function

NOTE: Boolean options must be set to ‘nil’ not ‘0’

14 Usage
Create a handler instance -

h = { starttag = function(t,a,s,e) end,
endtag = function(t,a,s,e) end,
text = function(t,a,s,e) end,
cdata = text }

(or use predefined handler - see luaxml-mod-handler.lua)
Create parser instance -

p = xmlParser(h)

Set options -

p.options.xxxx = nil

Parse XML data -

xmlParser:parse("<?xml... ")

15 Handlers
15.1 Overview
Standard XML event handler(s) for XML parser module (luaxml-mod-xml.lua)

15.2 Features
printHandler - Generate XML event trace
domHandler - Generate DOM-like node tree
simpleTreeHandler - Generate 'simple' node tree
simpleTeXhandler - SAX like handler with support for CSS selectros

33

15.3 API
Must be called as handler function from xmlParser and implement XML event
callbacks (see xmlParser.lua for callback API definition)

15.3.1 printHandler

printHandler prints event trace for debugging

15.3.2 domHandler

domHandler generates a DOM-like node tree structure with a single ROOT node
parent - each node is a table comprising fields below.
node = { _name = <Element Name>,

_type = ROOT|ELEMENT|TEXT|COMMENT|PI|DECL|DTD,
_attr = { Node attributes - see callback API },
_parent = <Parent Node>
_children = { List of child nodes - ROOT/NODE only }

}

15.3.3 simpleTreeHandler

simpleTreeHandler is a simplified handler which attempts to generate a more ‘nat-
ural’ table based structure which supports many common XML formats.

The XML tree structure is mapped directly into a recursive table structure
with node names as keys and child elements as either a table of values or directly
as a string value for text. Where there is only a single child element this is inserted
as a named key - if there are multiple elements these are inserted as a vector (in
some cases it may be preferable to always insert elements as a vector which can
be specified on a per element basis in the options). Attributes are inserted as a
child element with a key of ‘_attr’.

Only Tag/Text & CDATA elements are processed - all others are ignored.
This format has some limitations - primarily

• Mixed-Content behaves unpredictably - the relationship between text ele-
ments and embedded tags is lost and multiple levels of mixed content does
not work

• If a leaf element has both a text element and attributes then the text must
be accessed through a vector (to provide a container for the attribute)

In general however this format is relatively useful.

15.4 Options
simpleTreeHandler.options.noReduce = { <tag> = bool,.. }

- Nodes not to reduce children vector even if only
one child

domHandler.options.(comment|pi|dtd|decl)Node = bool

- Include/exclude given node types

34

15.5 Usage
Passed as delegate in xmlParser constructor and called as callback by xml-
Parser:parse(xml) method.

16 History
This library is fork of LuaXML library originally created by Paul Chakravarti.
Some files not needed for use with luatex were dropped from the distribution.
Documentation was converted from original comments in the source code.

17 License
This code is freely distributable under the terms of the Lua license (http://www.
lua.org/copyright.html)

35

http://www.lua.org/copyright.html
http://www.lua.org/copyright.html

	Contents
	1 Introduction
	2 The DOM_Object library
	2.1 HTML parsing
	2.2 Void elements
	2.3 Node selection methods
	2.3.1 The DOM_Object:get_path method
	2.3.2 The DOM_Object:query_selector method
	2.3.3 Supported CSS selectors

	2.4 Element traversing
	2.4.1 The DOM_Object:traverse_elements method

	2.5 DOM modifications
	2.5.1 Adding raw XML and HTML string

	3 The CssQuery library
	3.1 Example usage

	4 The luaxml-transform library
	4.1 Basic example
	4.2 The Transform object
	4.2.1 Transforming using templates
	4.2.2 Transforming using Lua functions
	4.2.3 Character handling

	5 Character sets handling
	5.1 Example

	6 The luaxml.sty Package
	6.1 Package Options
	6.2 Example of Transformation Using LaTeX Commands
	6.3 Declaring Transformation Rules
	6.4 Content Transformation

	7 The API documentation
	7.1 luaxml-domobject
	7.1.1 Class: Functions
	7.1.2 Class: Class DOM_Object

	7.2 luaxml-cssquery
	7.2.1 Class: Functions
	7.2.2 Class: Class CssQuery

	7.3 luaxml-transform
	7.3.1 Class: Functions
	7.3.2 Class: Class Transformer

	7.4 luaxml-mod-html
	7.4.1 Class: Class HtmlParser

	7.5 luaxml-encodings
	7.5.1 Class: Local functions

	7.6 luaxml-sty
	7.6.1 Class: Functions

	8 Low-level functions usage
	8.1 The simpleTreeHandler
	8.2 The domHandler

	I Original LuaXML documentation by Paul Chakravarti
	9 Overview
	10 Features
	11 Limitations
	12 API
	13 Options
	14 Usage
	15 Handlers
	15.1 Overview
	15.2 Features
	15.3 API
	15.3.1 printHandler
	15.3.2 domHandler
	15.3.3 simpleTreeHandler

	15.4 Options
	15.5 Usage

	16 History
	17 License

