Package mathfont v. 3.0a Implementation

Conrad Kosowsky
February 2026
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your preamble
and compile with XqTEX or LualdTEX:

\usepackage [(font name)]{mathfont}

As of version 2.0, using Lual&TEX is recommended. Minor
backwards incompatible changes in version 3.0.

Overview
The mathfont package adapts Unicode text fonts for math mode. The
package allows the user to specify a default font for different classes
of math symbols, and it enables Unicode input in math mode. The
package provides tools to change the font locally for math alphabet
characters. When typesetting with LuaTgX, mathfont adds resizable
delimiters, big operators, and a MathConstants table to text fonts.

This file documents the code for the mathfont package. It is not a user guide!
If you are looking for instructions on how to use mathfont in your document,
see mathfont-user-guide.pdf, which is included with the mathfont installa-
tion and is available on CTAN. See also the other pdf documentation files for
mathfont. Section 1 of this document begins with the implementation basics,
including package declaration and package options. Section 2 provides package
default settings, and section 3 deals with errors and messaging. Section 4 con-
tains the fontloader, and section 5 contains the optional-argument parser for
\mathfont. Section 6 documents the code for the \mathfont command itself.
Section 7 contains the code for local font changes. Section 8 contains miscella-
neous material. Sections 9-11 contain the Lua code to modify font objects at
loading, and section 12 lists the Unicode hex values used in symbol declaration.
Version history and code index appear at the end of the document.

Acknowledgements: Thanks to Lyric Bingham for her work checking my Unicode hex
values. Thanks to Matthew Braham, Sergio Callegari, Daniel Flipo, Nikos Platis, Shyam
Sundar, Adrian Vollmer, Herbert Voss, and Andreas Zidak for pointing out bugs in previ-
ous versions of mathfont. Thanks to Jean-Frangois Burnol for pointing out an error in the
documentation in reference to his mathastext package.

2 Implementation Setup

At high level, the package works as follows: the font-loader \M@newfont is
a wrapper around NFSS macros to declare fonts—namely \DeclareFontFamily
and \DeclareFontShape—or, if the user requested to use fontspec as a
backend, the macro \fontspec_set_family:Nnn. All font-setting macros
in the package will call \M@newfont. The primary font-setting command
\mathfont is a wrapper around \DeclareSymbolFont and calls various
\M@(keyword)@set commands. Each \M@(keyword)@set macro is a wrap-
per around a number of \Umathcode declarations that do the actual work
of setting default font(s). The local font-change commands are wrappers
around \DeclareMathAlphabet, and the Lua font adjustments alter the font
table through the luaotfload.patch_font callback when TEX loads the font.
Specifically, we change the top-level flag nomath to false, alter character-level
entries in the table to make the font more suitable for math typesetting, and
add a MathConstants table based on font dimensions.

1 Setup

First, the package should declare itself. The first 61 lines of mathfont.sty are
comments.

62 \NeedsTeXFormat{LaTeX2e}

63 \ProvidesPackage{mathfont}[2026/02/07 v. 3.0a]
Informational message.

64 \def\@mathfontinfo#1{\wlog{Package mathfont Info: #1}}
We specify conditionals and one count variable that we use later in handling
options and setup.

65 \newif\ifM@XeTeXLuaTeX % is engine one of xetex or luatex?

66 \newif\ifMONoluaotfload % cannot find luaotfload.sty?

67 \newif\ifM@adjust@font % should adjust fonts with lua script?
68 \newif\ifM@font@loaded % load mathfont with font specified?
69 \newif\ifE@sterEggDecl@red ¥, already did easter egg?

70 \newcount\M@loader % specifies which font-loader to use

We disable the twenty user-level commands. If mathfont runs normally, it will
overwrite these “bad” definitions later, but if it throws one of its two fatal
errors, it will \endinput while the user-level commands are error messages.
That way the commands don’t do anything in the user’s document, and the
user gets information on why not. The bad definitions gobble their original
arguments to avoid a “missing \begin{document}” error. To streamline the
process, we metacode most of the error messages, namely the macros that
\@gobble their argument and the macros that \@gobbletwo their argument.

\M@NoMathfontError

Setup Implementation 3

71 \long\def\@gobble@brackets [#1]{}

72 \def\M@NoMathfontError#1{\PackageError{mathfont}

73 {\MessageBreak Invalid command\MessageBreak

74 \string#l on line \the\inputlineno}

75 {Your command was ignored. I couldn't\MessageBreak

76 load mathfont, so I never defined this\MessageBreak

77 control sequence.}}
The macro \M@robust@def is an engine-dependent command to define robust
control sequences. We want this part of the package to work regardless of
the engine, so we need an approach that doesn’t depend on e-TEX support.
However, I don’t want to use \DeclareRobustCommand with XH{TEX or LuaTgX
because that will leave useless macros like \mathfont,, defined when we fill in
the proper definitions of the user-level commands later.

78 \ifx\protected\@Qundefined

79 \let\M@robust@def\DeclareRobustCommand

80 \else

81 \def\M@robust@def{\protected\def}

82 \fi
First the commands that normally accept a single argument—the “bad” ver-
sions \@gobble the argument. To keep the syntax straightforward, we ex-
pand the definition using \edef. (We can’t use \expanded because that’s
XATEX /LuaTgX only.) We need to do this because the macro name is stored in
\@i, and otherwise, we would end up with a mess of \expandafters to expand
all instances of \@i.

83 \@tfor\@i:=\setfont

84 \RuleThicknessFactor

85 \IntegralltalicFactor

86 \SurdVerticalFactor

87 \SurdHorizontalFactor

88 \charmline

89 \charmfile

90 \CharmLine

91 \CharmFile

92 \CharmInfo

93 \CharmType\do{%

94 \edef\@tempa{\noexpand\M@robust@def\expandafter\noexpand\Q@i{’

95 \noexpand\M@NoMathfontError\expandafter\noexpand\Q@i

96 \noexpand\@gobblel}}

97 \@tempa}
Now for the macros that \@gobbletwo their argument. The code is essentially
the same.

4 Implementation Setup

98 \@tfor\@i:=\newmathrm

99 \newmathit

100 \newmathbf

101 \newmathbfit

102 \newmathsc

103 \newmathscit

104 \newmathbfsc

105 \newmathbfscit\do{%

106 \edef\@tempa{\noexpand\MOrobust@def \expandafter\noexpand\@i{Y%

107 \noexpand\M@NoMathfontError\expandafter\noexpand\Qi
108 \noexpand\@gobbletwol}}
109 \@tempa}

The two commands with weird “arguments”: \charminfo and \charmtype
scan and remove the next integer, so we assign a count value instead of gob-
bling stuff.

110 \M@robust@def\charminfo{\M@NoMathfontError\charminfo
111 \begingroup

112 \afterassignment\endgroup

113 \count®@}

114 \M@robust@def\charmtype{\M@NoMathfontError\charmtype
115 \begingroup

116 \afterassignment\endgroup

117 \count@}

For the optional argument, we check if the following character is a [. If yes, we
gobble first the brackets and then the mandatory argument. If not, we gobble
the single mandatory argument.

118 \@tfor\@i:=\documentfont

119 \mathfont

120 \mainfont

121 \mathfontshapes

122 \mathconstantsfont\do{’

123 \edef\@tempa{\noexpand\Merobust@def\expandafter\noexpand\Qi{’

124 \noexpand\M@NoMathfontError\expandafter\noexpand\Qi
125 \noexpand\@ifnextchar [%

126 {\noexpand\expandafter\noexpand\@gobble

127 \noexpand\@gobble@brackets}

128 {\noexpand\@gobble}}}

129 \@tempal

We code \newmathfontcommand by hand because it is the only command with
four arguments.
130 \M@robust@def\newmathfontcommand{’

\M@XeTeXLuaTeXErro

Setup Implementation 5

131 \M@NoMathfontError\newmathfontcommand\@gobblefour}

Check that the engine is XHIEX or LuaTgX. If yes, set \ifM@XeTeXLuaTeX to
true. (Otherwise the conditional will be false by default.)

132 \ifx\directlua\@undefined

133 \else

134 \M@XeTeXLuaTeXtrue

135 \fi

136 \ifx\XeTeXrevision\@undefined

137 \else

138 \M@XeTeXLuaTeXtrue

139 \fi

The package can raise two fatal errors: one if the engine is not XHIEX or
LuaTEX (and cannot load OpenType fonts) and one if TEX cannot find the
luaotfload package. In both cases, the package will stop loading, so we want a
particularly conspicuous error message. For each message, we check the appro-
priate conditional to determine if we need to raise the error. If yes, we change
space to catcode 12 inside a group. We define a \GenericError inside a macro
and then call the macro for a cleaner error context line. The \@gobbletwo
eats the extra period and return that IXTEX adds to the error message. Notice
that we expand the error before the \endgroup—this is because we need to
switch \M@XeTeXLuaTeXError with its replacement text while it is still defined
before we leave the group. At the same time, we want \AtBeginDocument and
\endinput outside the group. The second \expandafter means that we ex-
pand the final \fi before \endinput, which balances the original conditional.
140 \ifM@XeTeXLuaTeX\else

141 \begingroup

142 \catcode™\ =12\relax

143 \def\M@XeTeXLuaTeXError{\GenericError{}/

144 {\MessageBreak\MessageBreak

145 Package mathfont error:’

146 \MessageBreak\MessageBreak
147 Hkkkkkkkkkkkkkkkkkkkkkkkk \MessageBreak

148 * *\MessageBreak
149 * UNABLE TO *\MessageBreak
150 * LOAD MATHFONT *\MessageBreak
151 * *\MessageBreak
152 * Missing XeTeX *\MessageBreak
153 * or LuaTeX *\MessageBreak
154 * *\MessageBreak

155 *kkskkkskokkkkokkxokkkkkkxkkkx\MessageBreak\Q@gobbletwoly,
156 {See the mathfont package documentation for explanation.l}V

\M@NoluaotfloadErr

6 Implementation Setup

157 {I need XeTeX or LuaTeX to use mathfont. It\MessageBreak

158 looks like the current engine is something\MessageBreak

159 else, so I'm going to stop reading in the\MessageBreak

160 package file now. (You won't be able to use\MessageBreak

161 commands from mathfont in your document.) To\MessageBreak
162 load mathfont correctly, please retypeset your\MessageBreak
163 document with one of those two engines.” ~J}1}V

164 \expandafter\endgroup

165 \M@XeTeXLuaTeXError

166 \AtEndOfPackage{’

167 \typeout{:: mathfont :: Failed to load\on®@line.}}

168 \expandafter\endinput % we \endinput with a balanced conditional
169 \fi

Now do the same thing in checking for luaotfload. If the engine is LuaTgX,
we tell mathfont to implement Lua-based font adjustments by default. The
conditional \ifM@Noluaotfload will keep track of whether TEX could find
luaotfload.sty. If the engine is Xq{IEX, issue a warning.

170 \ifdefined\directlua

171 \M@adjust@fonttrue % if engine is LuaTeX, adjust font by default
172 \IfFileExists{luaotfload.sty}

173 {\M@Noluaotfloadfalse\RequirePackage{luaotfload}}

174 {\M@Noluaotfloadtrue}

175 \else

176 \AtEndOfPackage{\PackageWarningNoLine{mathfont}{’
177 The current engine is XeTeX, but as\MessageBreak
178 of mathfont version 2.0, LuaTeX is\MessageBreak
179 recommended. Consider compiling with\MessageBreak
180 LualaTeX. Certain features will not\MessageBreak
181 work with XeTeX1}}

182 \fi

If the engine is LuaTEX, we must have luaotfload because LuaTEX needs this
package to load OpenType fonts. Before anything else, TEX should check
whether it can find luaotfload.sty and stop reading in mathfont if it cannot.
Same command structure as before. Newer KTEX versions load luaotfload as
part of the format, but it never hurts to double check.

183 \ifM@Noluaotfload % true if LuaTeX AND no luaotfload.sty

184 \begingroup

185 \catcode™\ =12\relax

186 \def\M@NoluaotfloadError{\GenericError{}/

187 {\MessageBreak\MessageBreak

188 Package mathfont error:’

Setup Implementation 7

189 \MessageBreak\MessageBreak
190 sokskokskskokskoksok ko ook ok kk ok \MessageBreak

191 * *\MessageBreak
192 * UNABLE TO *\MessageBreak
193 * LOAD MATHFONT *\MessageBreak
194 * *\MessageBreak
195 * Cannot find the *\MessageBreak
196 * file luaotfload.sty *\MessageBreak
197 * *\MessageBreak

198 * ks kokkkkokkxkkkkkkxk*kkx\MessageBreak\@gobbletwo},

199 {You are likely seeing this message because you haven't™"JJ

200 installed luaotfload. Check your TeX distribution for a~~J%

201 1ist of the packages on your system.”~J~"J}

202 See the mathfont documentation for further explanation.l}%

203 {You're in trouble here. It looks like the current\MessageBreak
204 engine is LuaTeX, so I need the luaotfload package\MessageBreak
205 to make mathfont work correctly. However, I can't\MessageBreak
206 find luaotfload, which likely means something is\MessageBreak
207 wrong with your TeX installation. I'm going to stop\MessageBreak
208 reading in the mathfont package file. (You won't be\MessageBreak
209 able to use commands from mathfont in your document.)\MessageBreak
210 To load mathfont properly, make sure you installed\MessageBreak
211 luaotfload.sty in a directory searchable by TeX or\MessageBreak
212 compile with XeLaTeX. ~J}}V

213 \expandafter\endgroup

214 \M@NoluaotfloadError

215 \AtEndOfPackage{’

216 \typeout{:: mathfont :: Failed to load\on@line.l}}

217 \expandafter\endinput % we \endinput with a balanced conditional
218 \fi

Easter egg!!

219 \DeclareOption{easter-egg}{/
220 \ifE@sterEggDecl@red\else

221 \E@sterEggDecl@redtrue

222 \newcount\Qeaster@egg@

223 \protected\def\EasterEggUpdate{’

224 \ProcessE@sterEgg\showtokens\expandafter{\E@sterEggUpdQte}}
225 \let\ProcessE@sterEgg\relax

Two status updates during package loading.

226 \edef\E@sterEggUpd@te{Easter Egg Status:~~J""J}
227 Okay, opening your Easter egg. " JV

228
229
230
231
232
233
234
235
236

Implementation Setup

Type \string\EasterEggUpdate\space in your~"J%

document to see the status.”"~J""J}
\EasterEggUpdate

\def\E@sterEggUpd@te{Easter Egg Status:~"J""J%

Uh oh. It looks like your Easter™"J%

egg flew out the window. I don't™"J%

I don't suppose you know the best~"J%

kind of bait to lure an egg?~~J""J}
\EasterEggUpdate

Possible updates if the user types \EasterEggUpdate. We define the
status update with \ProcessE@sterEgg, which stores the current mes-
sage in \E@sterEggUpd@te and changes the message as the user calls
\EasterEggUpdate. The count \Qeaster@egg® keeps track of how many times
the user has requested a status update.

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

\def\ProcessE@sterEgg{/
\edef\E@sterEggUpd@te{Easter Egg Status:~~J""J}
\ifodd\@easter@egg@

\ifcase\numexpr (\Q@easter@egg® - 1) / 2\relax
An Easter bunny must be related to a~~J%
platypus, no? Some sort of monotreme...%

\or
Don't count your chickens before they hatch™"JJ
out of Easter eggs! But we don't have any~"J%
chickens right now because there are no eggs,”"J/
and the supply chain is sad.%

\or
Sorry, I'm late to a meeting. Can't talk right now.%

\or
Sunday, Monday, Tuesday, Wednesday, also™"J%
known as hump day, as in camel humps, which™~J%
I must say look distinctly egg-like if you~"J%
squint.%

\or
I'm calling Eggs Anonymous!?

\or
Sorry, I'm on the phone. Can't talk right now.%

\or
Still haven't found your Easter egg. I know™~J%
it's floating around here somewhere. Like an~"J%
asteroid in space, hopefully without the™"J%
massive extinction event.}

\or

Setup Implementation

265 Did you know eggs are used to make certain”"J}
266 types of vaccines? PSA: get your flu shot™"J%
267 and your covid shot!¥%

268 \or

269 Three large eggs.” " J%

270 Three large eggs. " J%

271 See how they crack.~"J}

272 See how they crack.”"J%

273 Their broken shells are so pearly white.” "J)
274 In simmering water they catch the light.”"J}
275 Did you ever see such a sight in your life™"J}
276 As three poached eggs?y

277 \or

278 Do gnus eat eggs? Surely they must.’

279 \or

280 Okay, I have a fishing rod, some twine, and™"J%
281 a hook, but I still haven't caught your Easter~"J}
282 egg. Apparently it's harder to catch an egg™"J%
283 than a fish.%

284 \or

285 Sorry, I'm out fishing. Can't talk right now.%
286 \or

287 Is ghoti really an acceptable phonetic™"J%

288 spelling of fish? I am skeptical.’

289 \or

290 Perhaps an Easter bunny is actually a species™"J%
291 of fish. A rabbit fish.%

292 \else

293 Sorry, I'm all out of witty things to say. " J%
294 Check back later.%

295 \fi

296 \else

297 Still wrangling. Check back later.’

298 \£i~"J~"J}

299 \global\advance\@easter@egg@\@Gne}

One status update \AtBeginDocument.

300 \AtBeginDocument{\bgroup

301 \let\ProcessE@sterEgg\relax

302 \def\E@sterEggUpd@te{Easter Egg Status:~~J""J%

303 If we have zero eggs~"J/

304 and zero bunnies, how~"JY%

305 many gnats does it take~"JY

10 Implementation Setup

306 to change a lightbulb??~"J~"J}
307 \EasterEggUpdate
308 \egroup}

One update at the first instance of math mode, assuming another package
doesn’t overwrite the contents of \everymath first.

309 \def\math@E@sterEggUpd@te{\begingroup

310 \let\ProcessE@sterEgg\relax

311 \def\E@sterEggUpd@te{Easter Egg Status:”~~J""J%
312 Scrambled, poached, or sunny side up?”~"J""J}/
313 \EasterEggUpdate

314 \endgroup

315 \global\let\math@E@sterEggUpdQte\relax}

316 \everymath\expandafter{\the\everymath\math@EQsterEggUpdQte}

Two status updates \AtEndDocument, including the egg itself. First, we disable
\ProcessE@sterEgg since we don’t need it anymore. Then inside a group, we
make the control symbols *, \/, and \= expand to their own names and do
some extreme catcode sports. We convert + to active and make it expand to a
space. Because everything has already been tokenized inside \DeclareOption,
we have to retokenize the definition of + inside \scantokens, and we set
\everyeof to \noexpand to avoid an end-of-file error.

317 \AtEndDocument{\let\ProcessE@sterEgg\relax
318 \begingroup

319 \edef*{\@backslashchar*}

320 \edef\/{\@backslashchar/}

321 \edef\={\@backslashchar=}

322 \catcode \+=\active

323 \everyeof{\noexpand}

324 \scantokens{\def+{ }}

At this point we are ready to make the egg message Again, we have to retok-
enize everything with \scantokens because it was previously tokenized. How-
ever, if we write ~~J directly inside \scantokens, that primitive will convert
the newline to a blank space, so instead we store ~~J in \@tempb. After the
\edef expands \scantokens, it also expands each \@tempb, so \@tempa has
the line breaks we want.

325 \def\@tempb{~~J}

326 \edef\@tempa{\scantokens{Easter Egg Status:\Q@tempb\Q@tempb
327 The egg has been retrieved. What\@tempb

328 pinnacle of pulchritude!\@tempb\Q@tempb

329 +t+t e kokokkokok\ @t empb

330 FHHHHH ook \ @t empb

Setup

331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

Then

354
355
356
357
358
359
360
361
362
363
364
365

Implementation 11

bRk kR ok kok kR Rk kR ok x \ @t empb
e \Q@tempb

b kokkok kR kR ok kR k ok kR ok \ @t empb
++****/****/****/****/****\@tempb
+*****\/****\/****\/****\/*****\@tempb
FRok KKKk KKKk Rk ok kR KKKk Rk ok Rk ok k \ @t empb
ok ko kok KoKk Kok kKR Kok Rk ok kxR ok kokk \ @t empb
wokok [\ kokrok [\ kokokok [\ kxokok /\kkxk /\xk %\ @t empb
wokok\ /kxokok\ Skrok\ Sk SRk Sk xx\Qtempb
kR ok kR Kok kKR Rk kKRR kR ok kR ok ok ok \ @t empb
ok ok skok KoKk ok kok KoKk Kok ok ok kksk ok ok kokk \ @t empb
******/****/****/****/******\@tempb
SR EEEAVAL S AVE L EEAVE EELAVA L EE AR ifo) o]
ok kKRR ko Rk ok kKRR kKo Rk ok ok kok \ @t empb
e \@tempb
bRk kKR ko kR ok kkkokkkokk \ @t empb
kR kR ko k xRk Rk \ @t empb

+++++++++\============/\0tempb
+++++++++++\========/\Qtempb
++++ttt+tt++\======/\0tempb
+++++++++++++ | ====| \Qtempb
++++++++++++/======\0backslashchar\Q@tempb
s s o T Y G)\@tempbl}}

end the group and store the message in \E@sterEggUpdQte.

\expandafter\endgroup\expandafter
\def\expandafter\E@sterEggUpd@te\expandafter{\Q@tempa}
\EasterEggUpdate
\def\E@sterEggUpd@te{Easter Egg Status:~~J""J%
Happy, happy day! Happy,~~J%
happy day! Clap your hands, " J%
and be glad your hovercraft~"J}
isn't full of eels!”~"J""J}
\EasterEggUpdate
\let\E@sterEggUpd@te\relax
\let\EasterEggUpdate\relax}
\fi}), my easter egg :)

The five real package options. The default-loader and fontspec-loader
tell mathfont what to use as a backend for loading fonts.

366 \DeclareOption{default-loader}{\M@loader\z@}
367 \DeclareOption{fontspec-loader}{\M@loader\@ne}

12 Implementation Setup

The options adjust and no-adjust determine whether mathfont applies Lua-
based font adjustments to fonts loaded in the future.

368 \DeclareOption{adjust}{\M@adjust@fonttrue}
369 \DeclareOption{no-adjust}{\M@adjust@fontfalse}

Interpret an unknown option as a font name and save it for loading. In this
case, the package sets \ifM@font@loaded to true and stores the font name in
\M@font@load.

370 \DeclareOption*{\M@font@loadedtrue

371 \edef\M@font@load{\CurrentOption}}

372 \ProcessOptionsx

For the font-loader, we have a bit of processing to do. First print an infor-
mational message in the log file. The default loader is easy, but if the user
requests fontspec, we have to make sure to load everything properly.

373 \ifcase\M@loader
374 \@mathfontinfo{Default font-loader was

375 requested for font loading.}

376 \or

377 \@mathfontinfo{Package fontspec was
378 requested for font loading.}

If fontspec was already loaded, check whether \g__fontspec_math _bool is
true or not. If it is, change it to false.

379 \@ifpackageloaded{fontspec}

380 {\@mathfontinfo{Package fontspec detected.}

381 \csname bool_if:NTF\expandafter\endcsname

382 \csname g__fontspec_math_bool\endcsname

383 {\@mathfontinfo{Setting

384 \string\g__fontspec_math_bool to false.}

385 \csname bool_set_false:N\expandafter\endcsname
386 \csname g__fontspec_math_bool\endcsname}{\relax}}

If fontspec was not loaded, check that the package file exists.

387 {\@mathfontinfo{Package fontspec not detected.}

388 \IfFileExists{fontspec.sty}

389 {\@mathfontinfo{File fontspec.sty was found.}

390 \@mathfontinfo{Loading fontspec.}

391 \RequirePackage [no-math]{fontspec}}

392 {\PackageError{mathfont}

393 {Missing package fontspec;”~"J%

394 using default font-loader instead}

395 {You requested fontspec as the font-loader\MessageBreak

396 for mathfont. However, I can't find the\MessageBreak

\M@otf@features

\M@otf@features

Setup Implementation 13

397 package file for fontspec, so I'm going to\MessageBreak
398 use mathfont's built-in font-loader. (This\MessageBreak
399 likely means that something is wrong with\MessageBreak
400 your TeX installation.) Check your TeX\MessageBreak

401 distribution for a list of the packages\MessageBreak
402 installed on your system. To resolve this\MessageBreak
403 error, make sure fontspec is installed in\MessageBreak
404 a directory searchable by TeX or load\MessageBreak

405 mathfont with the default-loader option. " J}

406 \M@loader\z@}}

407 \fi

We print an informational message specifying the font-loader in use. We store
default OpenType features in \M@otf@features. The contents depend on the
font-loader because we use XH7IEX/luaotfload syntax versus fontspec syntax.
By default, mathfont loads fonts with Latin script, default language, TEX and
common ligatures, and lining numbers.

408 \ifcase\M@loader

409 \Cmathfontinfo{Using default font-loader.}

410 \AtEndOfPackage{’

411 \typeout{:: mathfont :: Using default font-loader.l}}

412 \def\M@otf@features{script=latn;language=dflt;+tlig;+liga;+1lnum}
413 \or

414 \@mathfontinfo{Using fontspec as font-loader.}
415 \AtEndOfPackage{%

416 \typeout{:: mathfont :: Using fontspec as font-loader.}}
417 \def\M@otf@features{Script=Latin,%

418 Language=Default,%

419 Ligatures={TeX,Common},%

420 Numbers=Lining}

421 \fi

We print an informational message depending on whether the user enabled
Lua-based font adjustments. If \directlua is defined, that means we are using
LuaTgX, so we print a message depending on \ifM@adjust@font.

422 \ifdefined\directlua

423 \ifM@adjust@font

424 \@mathfontinfo{Enabling Lua-based font adjustments.}
425 \AtEndOfPackage{%

426 \typeout{:: mathfont :: Lua-based font adjustments
427 enabled.}}

428 \else

429 \@mathfontinfo{Disabling Lua-based font adjustments.}

14 Implementation Default Settings

430 \AtEndOfPackage{’

431 \typeout{:: mathfont :: Lua-based font adjustments
432 disabled.}}

433 \fi

434 \else

If \directlua is undefined, we make sure Lua-based font adjustments are dis-
abled, and we issue an error if the user tried to manually enable them.

435 \ifM@adjust@font

436 \PackageError{mathfont}{Option~"J"adjust" ignored with XeTeX}
437 {Your package option "adjust" was ignored.\MessageBreak

438 This option works only with LuaTeX, and it\MessageBreak

439 looks like the current engine is XeTeX. To\MessageBreak

440 enable Lua-based font adjustments, typeset\MessageBreak

441 with LuaLaTeX. " J}

442 \M@ad just@fontfalse

443 \fi

444 \O@mathfontinfo{Disabling Lua-based font adjustments.}

445 \AtEndOfPackage{’

446 \typeout{:: mathfont :: Lua-based font adjustments disabled.l}}
447 \fi

2 Default Settings

We save four macros from the IXTEX kernel for safe-keeping, and then we
change their definitions. As of version 3.0 of mathfont, the new definitions for
\set@mathchar, etc. are not necessary for implementing mathfont, but we keep
them in the package to make \DeclareMathSymbol and friends compatible
with Unicode. For these three control sequences, we convert the hexadecimal
digits in \count0 and \count2 back to decimal and change the \math primi-
tive to \Umath.

448 \1let\@@set@mathchar\set@mathchar

449 \1let\@@set@mathsymbol\set@mathsymbol

450 \let\@@set@mathaccent\set@mathaccent

451 \let\@@DeclareSymbolFont\DeclareSymbolFont

452 \let\@@DeclareSymbolFont@m@dropped\DeclareSymbolFont@m@dropped
453 \@onlypreamble\@@set@mathchar

454 \@onlypreamble\@@set@mathsymbol

455 \@onlypreamble\@@set@mathaccent

456 \@Qonlypreamble\@@DeclareSymbolFont

457 \@onlypreamble\@@DeclareSymbolFont@m@dropped

Default Settings Implementation 15

458 \@mathfontinfo{Adapting \noexpand\set@mathchar for Unicode.}
459 \@mathfontinfo{Adapting \noexpand\set@mathsymbol for Unicode.}
460 \@mathfontinfo{Adapting \noexpand\set@mathaccent for Unicode.}
461 \@mathfontinfo{Increasing upper bound on

462 \noexpand\DeclareSymbolFont to 256.}

Kernel command to set math characters from keystrokes.

463 \def\set@mathchar#1#2#3#4{J,

464 \multiply\count\z@ by 16\relax

465 \advance\count\z@\count\tw@

466 \global\Umathcode #2=\mathchar@type#3+#1+\count\z@\relax}

Kernel command to set math characters from control sequences.

467 \def\set@mathsymbol#1#2#3#4{Y

468 \multiply\count\z@ by 16\relax

469 \advance\count\z@\count\tw@

470 \global\Umathchardef#2=\mathchar@type#3+#1+\count\z@\relax}
Kernel command to set accents.

471 \def\set@mathaccent#1#2#3#4{/,

472 \multiply\count\z@ by 16\relax

473 \advance\count\z@\count\tw@

474 \protected\xdef#2{J

475 \Umathaccent\mathchar@type#3+\number#1+\the\count\z@\relax}}
We increase the upper bound on the number of symbol fonts to be 256.
LuaTgX and XATEX allow up to 256 math families, but the IXTEX kernel
keeps the old upper bound of 16 symbol fonts under these two engines.
We patch \DeclareSymbolFont to change the \count18<15 to \count18
<\e@mathgroup@top, where \e@mathgroup@top is the number of math fam-
ilies, which is 256 in X{IEX and LuaTgX. We get a sanitized defini-
tion with \meaning and \strip@prefix, implement the patch by expand-
ing \M@p@tch@decl@re, and retokenize the whole thing. A simpler ap-
proach, such as calling \M@p@tch@decl@re directly on the expansion of
\DeclareSymbolFont, won’t work because of how TEX stores and expands
parameter symbols inside macros.

As of November 2022, the IXTEX team renamed \DeclareSymbolFont to
\DeclareSymbolFont@m@dropped, and now \DeclareSymbolFont is a wrap-
per around the old version of itself. This was done for error checking pur-
poses to remove extra m’s from certain NFSS family names. This means that if
\DeclareSymbolFont@m@dropped is defined, we should patch that macro, and
otherwise, we should patch \DeclareSymbolFont.

476 \ifx\DeclareSymbolFont@m@dropped\@undefined
477 \edef\@tempa{\expandafter

\M@p@tch@decl@re
\M@DecSymDef

16 Implementation Default Settings

478 \strip@prefix\meaning\DeclareSymbolFont}

479 \def\@tempb{\def\DeclareSymbolFont##1##2##3##4##5}

480 \else

481 \edef\@tempa{\expandafter

482 \strip@prefix\meaning\DeclareSymbolFont@m@dropped}

483 \def\@tempb{\def\DeclareSymbolFont@m@dropped##l##2##3##4##5}
484 \fi

485 \def\M@pOtch@decl@re#1<15#2\0nil{#1<\e@mathgroup@top#2}

486 \edef\M@DecSymDef{\expandafter\M@p@tch@decl@re\Q@tempa\Onil}

Now \M@DecSymDef contains the patched text of our new \DeclareSymbolFont,
all with catcode 12. In order to make it useable, we have to retokenize it. If this
package was LuaTEX only, we could use \scantextokens, which is nicely be-
haved and does what we expect. However, to make it compatible with XHIEX,
we use \scantokens. Unfortunately, while \scantextokens is straightforward,
\scantokens is a menace. The problem is that when it expands, the primi-
tive inserts an end-of-file token (because \scantokens mimics writing to a file
and \inputing what it just wrote) after the retokenized code, and as a result,
\scantokens can produce an end-of-file error. The trick (realized after much
trial and error) is that if we scan the entire definition statement including \def
and the macro definition, the end-of-file token doesn’t end up in the macro
definition, and we avoid the “file ended” error message.

487 \scantokens\expandafter{%
488 \expandafter\@tempb\expandafter{\M@DecSymDef}}

We need to keep track of the number of times we have loaded fonts, and
\M@count fulfills this role. The \toks will record a message that displays in
the log file when the user calls \mathfont. The \newread is for Lua-based
font adjustments.

489 \newbox\surdbox

490 \newcount\M@count

491 \newcount\M@num@localfonts
492 \newcount\rulethicknessfactor
493 \newcount\hsurdfactor

494 \newcount\vsurdfactor

495 \newmuskip\radicandoffset
496 \newread\M@Charm

497 \M@count\z®@

498 \rulethicknessfactor\@m

499 \hsurdfactor\@m

500 \vsurdfactor\@m

501 \radicandoffset=1mu\relax

Default Settings Implementation

Necessary booleans and default math font shapes.

502 \newif\ifMQupper

503 \newif\ifM@lower

504 \newif\ifM@diacritics
505 \newif\ifMOgreekupper
506 \newif\ifMOgreeklower
507 \newif\ifMOagreekupper
508 \newif\ifMQagreeklower
509 \newif\ifMOcyrillicupper
510 \newif\ifMOcyrilliclower
511 \newif\ifMG@hebrew

512 \newif\ifM@digits

513 \newif\ifM@operator

514 \newif\ifMOsymbols

515 \newif\ifM@extsymbols
516 \newif\ifM@delimiters
517 \newif\ifM@radical

518 \newif\ifM@arrows

519 \newif\ifM@bigops

520 \newif\ifM@extbigops

521 \newif \ifM@bb

522 \newif\ifM@cal

523 \newif\ifMefrak

524 \newif\ifM@bcal

525 \newif\ifM@bfrak

526 \newif\if@optionpresent
527 \newif\if@suboptionpresent
528 \newif\ifM@arg@good

529 \newif\ifMGmode®

Default shapes.

530 \def\upperdefault{italic} % latin upper

531 \def\lowerdefault{italic} % latin lower

532 \def\diacriticsdefault{upright} % diacritics

533 \def\greekupperdefault{upright} % greek upper

534 \def\greeklowerdefault{italic} % greek lower

535 \def\agreekupperdefault{upright} 7% ancient greek upper
536 \def \agreeklowerdefault{italic} % ancient greek lower

537 \def\cyrillicupperdefault{upright} % cyrillic upper
538 \def\cyrilliclowerdefault{italic} % cyrillic lower
539 \def\hebrewdefault{upright} % hebrew

540 \def\digitsdefault{upright} % numerals

541 \def\operatordefault{upright*} % operator font

\M@keys

\M@defaultkeys

\M@defaultkeys

\M@families

18 Implementation Default Settings

542 \def\delimitersdefault{upright} % delimiters

543 \def\radicaldefault{upright} % surd

544 \def\bigopsdefault{upright} % big operators
545 \def \extbigopsdefault{upright} % extended big operators
546 \def\symbolsdefault{upright} % basic symbols
547 \def\extsymbolsdefault{upright} % extended symbols
548 \def\arrowsdefault{upright} % arrows

549 \def\bbdefault{upright} % blackboard bold
550 \def\caldefault{upright} % caligraphic

551 \def\frakdefault{upright} % fraktur

552 \def\bcaldefault{upright} % bold caligraphic
553 \def\bfrakdefault{upright} % bold fraktur

The \M@keys list stores all the possible keyword options, and \M@defaultkeys
stores the character classes that \mathfont acts on by default.

554 \def\M@keys{upper,lower,diacritics,greekupper,%

555 greeklower,agreekupper,agreeklower,cyrillicupper,

556 cyrilliclower,hebrew,digits,operator,delimiters,%

557 radical,bigops,extbigops,symbols,extsymbols,arrows,%

558 bb,cal,frak,bcal,bfrak}

559 \def\M@defaultkeys{upper,lower,diacritics,greekupper,%

560 greeklower,digits,operator,symbols}

If the user enabled Lua-based font adjustments, the \M@defaultkeys list also
includes delimiters, surd, and big operator symbols.

561 \ifM@adjust@font

562 \edef\M@defaultkeys{\M@defaultkeys,delimiters,radical,bigops}
563 \fi

A few macros that we use for assembling lists of font information and printing
messages \AtBeginDocument.

564 \let\M@localfonts\@empty

565 \1let\MO@symbolfonts\Q@empty

566 \let\M@families\@empty

And now the macros to add to those three control sequences. First is a helper
macro that accepts two arguments and stores information about declaration of
local font changes. The macro successively adds comma-separated pairs of con-
trol sequence and font name information to \M@localfonts. It also keeps track
of the number of distinct font names in \M@localfonts with the count variable
\M@num@localfonts. The #1 argument is a control sequence (with all charac-
ters having catcode 12 from \string), and the #2 argument is a font name. We
have two different approaches depending on whether \M@localfonts is empty,
i.e. if it’s the first time calling \M@addto@localfonts. If \M@localfonts is

Default Settings Implementation 19

\@empty, that means we haven’t added any fonts to the list yet, so we increase
\M@num@localfonts. Otherwise we loop through \M@localfonts, and we in-
crease \MOnum@localfonts only if none of the entries in \M@localfonts use
the #2 font. After incrementing (or not) the count, we append #1 and #2 to
\M@localfonts.

567 \def\M@addto@localfonts#1#2#3#4{%
568 \begingroup

569 \@tempswatrue % increase by default

570 \def\Q@tempa## 1 ##2##3##A{##2}7,

571 \@for\@j:=\M@localfonts\do{%

572 \edef\@tempb{\expandafter\Q@tempa\@;j}%

573 \ifx\@tempbase\Q@tempb

574 \@tempswafalse % if \Q@tempbase is in list, don't add
575 \fi}%

576 \expandafter

577 \endgroup
578 \if@tempswa

579 \advance\M@num@localfonts\@ne

530 \fi

581 \ifx\M@localfonts\@empty

582 \else

583 \edef\M@localfonts{\M@localfonts,}%
584 \fi

585 \edef\M@localfonts{\M@localfonts{#1}{#2}{#3}{#4}}}
Same thing for symbol fonts.

586 \def\MQ@addto@symbolfonts#1#2#3#4{),
587 \ifx\M@symbolfonts\Qempty

588 \else
589 \edef\M@symbolfonts{\M@symbolfonts,}’
590 \fi

591 \edef\M@symbolfonts{\M@symbolfonts{#1}{#2}{#3}{#4}}}
And font families.

\M@addto@families 592 \def\M@addto@families#1{}
593 \ifx\M@families\@empty

594 \else
\M@families 595 \edef\M@families{\M@families, }%
596 \fi

\M@families 597 \xdef\M@families{\M@families#1}}

\M@FontChangeInfo
\M@FontFamilyInfo
\M@SymbolFontInfo

\M@NewFontCommandI

\M@NFSSShapesWarni

\M@NoBaseModeError

\M@FamilyTypeError

20 Implementation Messages and Errors

3 Messages and Errors

Some error and informational messages. Table 1 lists all macros defined in
this section along with a brief description of their use. We begin with general
informational messages.

598 \def\MO@FontChangeInfo#1#2{\OGmathfontinfo{Setting #1 chars to #2!}}
599 \def\MQ@FontFamilyInfo#1{\@mathfontinfo{Adding #1 to the nfss.}}
600 \def\M@SymbolFontInfo#1#2#3{/,

601 \Omathfontinfo{New symbol font uses TU/#1/#2/#3.}}

602 \def\M@NewFontCommandInfo#1#2#3#4{%

603 \@mathfontinfo{New \string#1l uses TU/#2/#3/#4.}}

Warnings and errors related to font declaration.

604 \def\M@ONFSSShapesWarning#1#2{%

605 \PackageWarningNoLine{mathfont}

606 {The nfss family "#1"\MessageBreak

607 from line \thelinputlineno\space is missing shapes.\MessageBreak
608 You may see some substitutions\MessageBreak

609 or errors. See the log file for\MessageBreak

610 details}

611 \@Gmathfontinfo{Shapes missing: #2.}}

612 \def\M@NoBaseModeError#1{/,

613 \PackageError{mathfont}

614 {Missing base-mode”"J%

615 version of font family "#1"}

616 {With LuaTeX, when you tell mathfont to\MessageBreak

617 use a font family from the nfss, I try to\MessageBreak
618 find aversion of that font in the nfss\MessageBreak

619 that uses base mode. I couldn't do that\MessageBreak

620 here, so you may see some problems with\MessageBreak

621 your math. To resolve this error, either\MessageBreak
622 use XeTeX, or make sure the nfss contains\MessageBreak
623 a version of your font in base mode, and\MessageBreak
624 define \string\-base to be the nfss\MessageBreak
625 name for your base-mode family.” ~J}}

626 \def\MQ@FamilyTypeError#1{/

627 \PackageError{mathfont}

628 {Invalid family type/~"J%

620 optional argument "#1" for \string\mainfont}

630 {The optional argument of

631 \string\mainfont\space should\MessageBreak

632 be one of rm, sf, or tt. You used something\MessageBreak
633 else, so I'm changing it to rm. " J}}

\M@InvalidOptionEr

\M@InvalidSuboptio

Messages and Errors

Implementation

21

Table 1: Package Messages and Errors and Their Uses

Command Use

\@mathfontinfo General informational macro
\M@FontChangeInfo When using a new symbol font
\M@FontFamilyInfo Declaring new font shape in the NFss
\M@NewFontCommandInfo New local font-change command
\M@SymbolFontInfo Declare new symbol font
\M@FamilyTypeError Error if bad argument for \mainfont
\M@NFSSShapesWarning Warning if font is missing shapes
\M@NoBaseModeError Error if no base-mode version of a font

\M@InvalidOptionError
\M@InvalidSupoptionError
\M@MissingOptionError
\M@MissingSuboptionError

Bad keyword for font-change command
Bad suboption for font-change command
Missing keyword for font-change command
Missing suboption for font-change command

\M@FontShapesError Tried to add font shapes after preamble
\M@LuaTeX0OnlyWarning User called LuaTgX-only macro in X{IEX
\M@HModeError Font-change command used outside math
\M@MissingCSError No macro for font-change command
\M@BadIntegerError Non-integer value for font adjustment
\M@NoCharmFileError Bad file name for \charmfile
\M@NoFontAd justError Macro used without Lua font adjustments

Error and warning messages for keywords and shape identifiers.

{Invalid~"Jkeyword "#1" on line \the\inputlineno}

{You used a character keyword that I'm\MessageBreak
not familiar with. Check that you spelled\MessageBreak
everything correctly. To resolve this\MessageBreak

634 \def\M@InvalidOptionError#1{%
635 \PackageError{mathfont}

636

637

638

639

640

641

error, make sure you use keywords that\MessageBreak
are listed in the documentation.”~J\@gobblel}}

642 \def\MO@InvalidSuboptionError#1{J

643
644
645
646
647

\PackageError{mathfont}

{Invalid~~Jshape identifer "#1" on line \the\inputlineno}
{You used a suboption/shape identifier\MessageBreak

that I'm not familiar with. Check that\MessageBreak

you spelled everything correctly. To\MessageBreak

22 Implementation Messages and Errors
648 resolve this error, make sure you use\MessageBreak

649 shape identifiers that are listed in\MessageBreak

650 the documentation. " J}}

\M@MissingOptionEr 651 \def\M@MissingOptionError{/
652 \PackageError{mathfont}
653 {Missing keyword on line \the\inputlineno}
654 {I didn't see a character keyword\MessageBreak
655 where I was expecting to. This can\MessageBreak
656 happen if you type ,, or ,= by\MessageBreak
657 mistake. To resolve this error,\MessageBreak
658 make sure you provided a comma-\MessageBreak
659 separated list of keywords. ~J}}
\M@MissingSuboptio 660 \def\M@MissingSuboptionError{%
661 \PackageError{mathfont}
662 {Missing suboption/~~Jshape identifier on line \the\inputlineno}
663 {I didn't see a suboption/shape identifier\MessageBreak
664 where I was expecting to. This can happen\MessageBreak

665 if you type ,, or =, or == by mistake. To\MessageBreak
666 resolve this error, make sure that every\MessageBreak
667 = sign comes before a suboption or that you\MessageBreak

668 provided a comma-separated list of shape\MessageBreak
669 identifiers, depending on the context.”~J}}

Error messages regarding arguments previously fed to \mathfont and friends.

\M@FontShapesError 670 \def\M@FontShapesError{/
671 \PackageError{mathfont}
672 {""JCan't declare new font shapes after
673 \string\begin{document}}
674 {This error means that you (1) requested\MessageBreak
675 to use a family/series/shape combination\MessageBreak
676 for a font-change command in this package\MessageBreak
677 (2) after your document preamble (3) that\MessageBreak
678 does not match any font you used for this\MessageBreak
679 package in the preamble. To resolve this\MessageBreak
680 error, try declaring more font shapes in\MessageBreak
681 your preamble with \string\mathfontshapes. ~J}}
\M@LuaTeXOnlyWarni 682 \def\M@LuaTeXOnlyWarning#1{%
683 \PackageWarningNoLine{mathfont}
684 {Your \string#1l\space on line
685 \the\inputlineno\MessageBreak
686 is mainly for use in LuaTeX with font\MessageBreak
687 adjustments enabled. In the current\MessageBreak
688 situation, it is probably not doing\MessageBreak

\MOMissingCSError

\M@HModeError

\MONoFontAdjustErr

\M@BadIntegerError

\M@NoCharmFileErro

Messages and Errors Implementation

689 anything}}
Error messages for the \newmathrm, etc. commands.

690 \def\M@MissingCSError#1#2{/

691 \PackageError{mathfont}

692 {Missing control sequence”"J}

693 for\string#1\space on line \the\inputlineno}

694 {Your command was ignored. Instead of\MessageBreak
695 "#2,"\MessageBreak

696 I was expecting a single control\MessageBreak

697 sequence. To resolve this error,\MessageBreak

698 please use one control sequence instead. " J}}

699 \def\M@HModeError#1{/,

700 \PackageError{mathfont}

701 {Missing \string$ inserted”"J%

702 on line \the\inputlineno}

703 {I raised an error because you used\MessageBreak
704 \string#1l\space outside of math mode,\MessageBreak
705 which isn't allowed. I inserted a \string$\MessageBreak
706 before your control sequence, so we\MessageBreak
707 should be all good now. ~J}}

We need error messages related to Lua-based font adjustments.

708 \def\M@NoFontAdjustError#1{J,

709 \PackageError{mathfont}

710 {\string#1~"J%

711 is invalid without Lua-based font adjustments}

712 {Your control sequence won't do anything\MessageBreak
713 without Lua-based font adjustments, but\MessageBreak
714 you didn't enable them. To resolve this\MessageBreak
715 error, load mathfont with LuaTeX and the\MessageBreak
716 package option "adjust" or remove your\MessageBreak
717 control sequence. " J}}

718 \def\MOBadIntegerError#1#2{}

719 \PackageError{mathfont}

720 {Bad argument”"J%

721 "#2" for \string#l on line \the\inputlineno}

722 {Your command was ignored. Please make sure\MessageBreak
723 that your argument for \string#1\MessageBreak

724 is a nonnegative integer.”"J}}

725 \def\MONoCharmFileError#1{%

726 \PackageError{mathfont}{Missing Charm File}

727 {You requested to read the file\MessageBreak

23

24 Implementation Font Declaration

728 "#1"\MessageBreak

729 with \string\charmfile. I can't find that file,\MessageBreak
730 so I'm ignoring your command. To resolve\MessageBreak

731 this error, make sure the filename is\MessageBreak

732 correct, and double check that the file\MessageBreak

733 is in a directory searchable by TeX. ~J}}

4 Font Declaration

We come to the fontloader. The main font declaration macro is \M@newfont,
and it accepts one argument that is a combination of font name and op-
tional OpenType feature information separated by a colon. The macro accom-
plishes four tasks: (1) it separates the font name and features and stores them
in \@tempbase and \@tempfeatures; (2) it checks whether tbe argument is
present as a font name in the NFsS; (3) if not, it declares the font in the NFSs,
either with the built-in font loader or using fontspec; and (4) it stores the NFSs
family name(s) in \M@f@ntn@me and \MOf@ntn@meb@se. If \M@newfont reaches
step 3 after \begin{document}, it raises a “can’t declare new font shapes”
error.

Checking the NFSS happens in two steps. First, \M@newfont removes the
spaces from its argument and checks whether the result matches a previous call
to \M@newfont, and if yes, \M@newfont uses the family name from the previous
call. If no, the macro checks whether the argument with spaces removed ap-
pears in the NFss. (Properly declared NFss font families shouldn’t have spaces
in their names because IWTEX ignores spaces when scanning a font family dec-
laration.) If \M@newfont finds an NFSs family, it looks at the font shapes asso-
ciated with that family using the helper macro \M@check@nfss@shapes. This
command prints a warning if the NFSs is missing any standard series/shape
combinations (m/n, m/it, b/n, and b/it) for the font family. The package does
not add any font shapes to the NFss at this point in the font-loading process.

If both checks of the NFss fail, mathfont assumes the NFSS does not contain
the user’s desired font and proceeds to declare it in the NFSS. For the built-
in font loader, font declaration uses the helper macros \M@fi11@nfss@shapes
and \M@declare@shape. The first of these two macros loops through se-
ries/shape pairs and feeds them to the second macro, which acts as a wrap-
per around \DeclareFontShape. If the user requested to use fontspec for
the font loader, \M@newfont feeds the font name and requested features to
\fontspec_set_family:Nnn, which modifies the NFSs accordingly. Advanced
users should keep in mind the difference between font declaration and font load-

Font Declaration Implementation 25

ing in IXTEX. Font declaration, the subject of this section, means adding font in-
formation to the NFSS through \DeclareFontFamily and \DeclareFontShape,
and font loading is when TEX reads a font file into memory via the \font prim-
itive. WITEX handles font loading automatically at a \selectfont command
or upon entering math mode, so a call to \M@newfont will not actually load
any fonts into memory, just prepare IXTEX to do so at a later time.

In LuaTgX, users can load fonts in one of three modes, namely node (the
default), base, or harf. Node mode works well for text, but it has more lim-
ited capabilities for math. Harf mode uses the HarfBuzz renderer and is appro-
priate for more complicated scripts. Accordingly, when the engine is LuaTgX,
mathfont loads fonts once in base mode for math and once in unspecified (so
likely node) mode for text. If the user specifies a font family already in the
NFSS, \M@newfont tries to find a base-mode version of the font family and
raises an error if it cannot. When \M@newfont declares the font, it does so
twice, once in unspecified mode and once in base mode. This is why we have
two control sequences for font family names: \M@f@ntn@me is the font family,
and \M@f@nt@n@me@base contains the NFSS family name of the base-mode ver-
sion of the font. In XHTEX, these control sequences will be identical because
mathfont does not load a font multiple times in that case.

During font declaration, mathfont links several pieces of information as
follows:

« Given an (argument) with spaces removed, \M@newfont stores the corre-
sponding NFss family name in \M@fontfamily@({arqument)

o The NFss family name for the base-mode version of the font goes in
\M@fontfamily@base@(argument)

» Given a (family name), \M@newfont stores the corresponding base-mode
font family name in the control sequence \(family name)-base. Users
who want to declare their own fonts in the NFSS prior to using them with
mathfont should manually define this control sequence so that mathfont
knows where your base-mode font lives.

o Each NFss font family is assigned a unique value of \M@count that is
stored in \M@fontid@(family).

These macro assignments are global. The difference relative to \M@f@ntn®@me
and \M@f@ntn@mebOse is that \M@f@ntnOme and \M@f@ntnCmeb@se are tempo-
rary and always hold the font family from the most recent call to \M@newfont.

The \M@check@nfss@shapes macro checks if a font family has shapes de-
clared in upright, italic, bold, and bold italic. If any of those shapes are miss-
ing, we issue a warning. We store the missing series/shape pairs in \@tempb
to print them as part of the warning message.

26 Implementation Font Declaration

\M@check@nfss@shap 734 \def\M@check@nfss@shapes#1{’

\M@declare@shape

735 \let\@tempb\Qempty

736 \let\@tempwarning\Qgobble

737 \@for\@i:=\mddefault/\shapedefault,
738 \mddefault/\itdefault,Y

739 \bfdefault/\shapedefault,?

740 \bfdefault/\itdefault\do{%

741 \expandafter\ifx\csname TU/#1/\@i\endcsname\relax
742 \def\@tempwarning{\MONFSSShapesWarning{#1}}J
743 \edef\Q@tempb{\Q@tempb, \Qil}J%

744 \fil}%

We use a small hack to get everything to print correctly. If all shapes are
present, then \@tempwarning is \@gobble, and the argument disappears. Oth-
erwise, the argument becomes part of the warning message. The \@gobble
eats the (unnecessary) first comma inside \@tempb.

745 \@tempwarning{\expandafter\@gobble\@tempb}}

Next we have commands to add series and shape information to the NFss for a
given font family. The \M@declare@shape macro takes several arguments. It
checks whether the series/shape pair exists in the NFSs, and if not, it adds it
using \DeclareFontShape. The argument structure is

o #1—NFss font family name
« #2—optional /B or /I (or /BI) suffix on the font name
o #3—a list of (default) OpenType feature tags
o #4—a list of (the user’s) OpenType feature tags
o #5—NFSS series identifier
o #6—NFsSs shape identifier
We assume that the font file reference has already been stored in \@tempbase.

746 \def\MQ@declare@shape#1#2#3#4#5#6{,

747 \ifcsname TU/#1/#5/#6\endcsname

748 \else

749 \DeclareFontShape{TU}#1}{#5}{#6}{<->"\C@tempbase#2: #3;#4"}{}
750 \fi}

The \M@fill@nfss@shapes command does the work of populating the NFSS
with the correct shape information. The argument structure is:

o #1—NFss font family name
o #2—a list of (default) OpenType feature tags
o #3—a list of (the user’s) OpenType feature tags

\M@fill@nfss@shape

\M@split@colon

\M@strip@colon

\M@newfont

Font Declaration Implementation 27

We call \M@declare@shape for each combination of medium/bold series and
upright /italic shape, and the result is an entry in the NFss for each combina-
tion. We have separate declarations for regular and small caps because they
have different shape identifiers in the NFSS. We manually set smcp to be true
or false accordingly.

751 \def\MO@fillOnfss@shapes#1#2#3{),

752 \Q@for\@i:={#1}{}{#2;-smcp}{#3}{\mddefault}{\shapedefault},’%

753 {#1H{/IH{#2; -smcpH{#3}{\mddefault}{\itdefault},%

754 {#1}{/B}{#2;-smcp}{#3}{\bfdefault}{\shapedefault},?

755 {#1}3{/BIH{#2; -smcpH{#3}{\bfdefault}{\itdefault},’

And do small caps. If a small caps font face is separate from the main font
file, TEX won’t be able to find it automatically. In that case, you will have to
write your own fd file or \DeclareFontShape commands.

756 {#13{3{#2; +smcpH#3}{\mddefault}{\scdefault},’

757 {#13{/IH{#2; +smcp{#3}{\nddefault}{\scdefault\itdefault},%

758 {#13{/BH{#2; +smcpH{#3}{\bfdefault}{\scdefaultl},’

759 {#1}{/BI}{#2; +smcp}{#3}{\bfdefault}{\scdefault\itdefault}y,

760 \do{\expandafter\M@declare@shape\@i}}

We use \M@split@colon and \M@strip@colon for parsing the argument of
\mathfont. If the user calls \mathfont{(name): (features)}, we store the
name in \@tempbase and the features in \@tempfeatures. If the user speci-
fies a name only, then \@tempfeatures will be empty. Syntactically, we use
\M@strip@colon to remove a final : the same way we remove a final = when
we parse the optional argument in the next section.

761 \def\M@split@colon#1l:#2\Cnil{}

762 \def\Q@tempbase{#1}/

763 \def\Q@tempfeatures{#2}}

764 \def\M@strip@colon#1: {#1}

The main font-loading macro. It takes a single argument, which should look
like either (NFSS family) or (font name):{optional featuresy. The first thing
\M@newfont does is split the font name and OpenType features and store each
portion in \@tempbase and \@tempfeatures. If \@tempfeatures is not empty,
it has an extra colon at the end, so we remove it.

765 \def \M@newfont#1{J,

766 \expandafter\M@split@colon\expanded{#1}:\@nil

767 \ifx\Q@tempfeatures\Qempty\else

768 \edef\@tempfeatures{\expandafter\MOstrip@colon\Qtempfeatures}y
769 \fi

Then we find the font family name. We remove spaces from the argument,
store it in \@tempa, and check whether the result matches a previous call to

28 Implementation Font Declaration

\M@newfont. If yes, we retrieve the font family and base-mode family names
and store them in the appropriate control sequences.
770 \edef@nospace\Q@tempa{#11}%

771 \ifcsname M@fontfamily@\@tempa\endcsname
772 \edef\MOf@ntneme

773 {\csname M@fontfamily@\@tempa\endcsnamely,

774 \edef\M@f@ntnGmebGse

775 {\csname M@fontfamily@base@\Q@tempa\endcsnamel},
776 \else

Next check whether \@tempa appears as a font family in the NFss.

77 \ifcsname TU+\@tempalendcsnamey, is #1 font family in the nfss?
778 \let\M@fOntnOme\Qtempa

Check that the NFSS contains some font shapes. If any are missing, we issue a
warning but do not fill them.

779 \M@check@nfss@shapes\MOfOntnOme

With LuaTgX, we want a proper base-mode version of the font. In this situ-
ation, mathfont expects to find a second font family whose NFss identifier is

stored in \(font family)-base, and we assume this second font was loaded with
mode=base. If that information exists, we use it for the base-mode version.

780 \ifdefined\directlua % if LuaTeX?

781 \if csname\M@f@ntn@me-base\endcsname % if base-mode version
782 \edef\M@f@ntn@meblse

783 {\csname\M@f@ntn@me-base\endcsnamel},

If the package found a base-mode font, again check that it contains some font
shapes, and issue a warning if not.

784 \M@check@nfss@shapes\MOf@ntn@mebAse
785 \else

Raise an error if we can’t find a base-mode font family, and use the regular
font instead.

786 \M@NoBaseModeError\Mef@ntn@me

787 \expandafter\xdef

788 \csname\M@f@ntnGme-base\endcsname{\M@f@ntnGme}
789 \let\MOfOntnGmebOse\MCfC@ntnlme

790 \fi

Base mode is a LuaTEX-only feature version of a font, so we link the base-mode
identifier to the same font.

791 \else % if XeTeX?

792 \expandafter\xdef

793 \csname\M@f@ntn@me-base\endcsname{\M@f@ntnGme},

Font Declaration Implementation 29

794 \let\M@fOntnOmeb@se\MCfOntnlme

795 \fi

Now save the font families for reference later.

796 \expandafter\xdef

797 \csname M@fontfamily@\@tempa\endcsname

798 {\Mefentn@mel}

799 \expandafter\xdef

800 \csname M@fontfamily@base@\@tempa\endcsname

801 {\MefOntn@CmebOse}%

802 \else % if #1 is not in nfss

If the argument does not match a known font family, we have to load it our-
selves. First, we check that we are still in the document preamble, and if not,
we issue an error.

803 \ifx\@onlypreamble\@notprerr % if after \begin{document}
804 \M@FontShapesError
805 \else % if in preamble

If we are in the document preamble, we can still add information to the NFSs.
We store the font family name in \M@f@ntn@me and print messages in the log
file. Then we declare the font family and call \M@fi11@nfss@shapes to declare
all the shapes.

806 \ifcase\M@loader % are we using default font-loader?
807 \let\M@fOntnOme\Q@tempa

808 \M@FontFamilyInfo\M@fOntneme

809 \DeclareFontFamily{TU}{\M@f@ntn@me}{1}’

810 \M@fill@nfss@shapes{\M@fCntnOme}{\MCotf@features}
811 {\@tempfeaturesl}

If the engine is LuaTEX, we load a separate version of the font with mode=base
and script=math. We need to set the script because luaotfload processes
math information only for fonts with the script set to math, and we definitely
want that information loaded if present. Then we link the base-mode and
regular versions.

812 \ifdefined\directlua

813 \edef\MOfOntnOmeb@se{\MOfOntnCme-basel}’

814 \M@FontFamilyInfo\M@fOntn@meblse

815 \DeclareFontFamily{TU}{\M@f@ntnOmeb@se}{}%

816 \M@fill@nfss@shapes{\MOf@ntn@meb@se}{\M@otf@features}
817 {\@tempfeatures;-nomathparam;mode=basel}’

818 \else

819 \let\M@fOntn@meb@se\MOfCntnOme

820 \fi

821 \or % are we using fontspec as font-loader?

30 Implementation Font Declaration

If the user requested fontspec as the font-loader, we pass the font name and
features to \fontspec_set_family:Nnn for loading and store the NFss family
name in \M@f@ntn@me. In LuaTEX, we request a separate base-mode version
by specifying Renderer=Base and Script=Math.

822 \@mathfontinfo{Passing \@tempbase\space

823 to fontspec for handling!}¥%

824 \csname fontspec_set_family:Nnn\endcsname\M@f@ntnOme
825 {\M@otf@features, \@tempfeatures}{\@tempbasel}’
826 \ifdefined\directlua

827 \@mathfontinfo{Passing \@tempbase\space

828 with Renderer=Base to fontspec for handling!}/
829 \csname fontspec_set_family:Nnn\endcsname

830 \M@f@ntnGmeb@se

831 {\M@otf@features, \Qtempfeatures,%

832 RawFeature=-nomathparam,Renderer=Base}

833 {\@tempbasel}’

834 \else

835 \edef \MOf@ntnOmeb@se{\MOf@ntnCmel}y

836 \fi

837 \fi

Now link the base-mode family name and store the family names for future
reference.

838 \expandafter\xdef\csname\MOfOntn@me-base\endcsname

839 {\Mef@ntn@mebGsel}’,

840 \expandafter\xdef\csname MOfontfamily@\@tempa\endcsname
841 {\M@f@ntn@mel}y

842 \expandafter\xdef

843 \csname M@fontfamily@base@\@tempa\endcsname

844 {\Mef@ntn@meb@se}’

845 \fi

846 \fi

ga7 \fi

Finally, assign \M@count values to the font family(ies) if needed and save their
names in \M@families.

848 \ifcsname MOfontid@\M@fOntnOme\endcsname % need new \MQcount?
849 \else

850 \expandafter\xdef
851 \csname M@fontid@\M@f@ntnOme\endcsname{\the\M@count}y,
852 \global\advance\M@count\@ne

853 \M@addto@families{\M@fO@ntnGmel}’
854 \fi

Parse Input Implementation 31

Same thing with the base-mode version of the font.

855 \ifcsname M@fontid@\M@f@ntnOmeb@se\endcsname

856 \else

857 \expandafter\xdef

858 \csname M@fontid@\M@f@ntn@meb@se\endcsname{\the\M@count}}
859 \global\advance\M@count\@ne

860 \M@addto@families{\M@f@ntn@meb@sel}’,

861 \fi}

The font-loading commands should appear only in the preamble.

862 \@onlypreamble\M@declare@shape
863 \@Qonlypreamble\MOfill@nfss@shapes

5 Parse Input

This section provides the macros to parse the optional argument of \mathfont.
We have two parts to this section: error checking and parsing. For parsing,
we extract option and suboption information, and for error checking, we make
sure that both are valid. The command \M@check@opt accepts a macro con-
taining (what is hopefully) the text of a keyword-option. The macro defines
\@temperror to be an invalid option error and loops through all possible op-
tions. If the argument matches one of the correct possibilities, mathfont changes
\@temperror to \relax. The macro ends by calling \@temperror and issuing
an error if and only if the argument is invalid. If \M@check@opt finds a valid
keyword-option, it changes \if@optionpresent to true.

\M@check@opt 864 \def\M@check@opt#1{/

865 \Q@optionpresentfalse % set switch to false by default
866 \ifx#1\Qempty

867 \M@MissingOptionError

868 \else

869 \let\@temperror\M@InvalidOptionError % error by default
870 \@for\@j:=\Mekeys\do{¥%

871 \ifx\@j#1%

872 \let\@temperror\@gobble % eliminate error

873 \@optionpresenttrue % set switch to true

874 \fi}

875 \@temperror{#1}/,

876 \fi}

Now we have to parse the optional argument of \mathfont. The macro
\M@parse@option carries out the following tasks:

\M@strip@equals
\M@parse@option

32 Implementation Parse Input

1. Store the keyword in \@temp®@opt and the suboption (if present) in
\@temp@sub. Set the boolean corresponding to the presence of a subop-
tion.

2. Check that \@temp@opt is actually a keyword and set the corresponding
boolean.

3. Convert \@temp@sub into NFSS series and shape keywords.

We want to allow the user to specify options using an xkeyval-type syntax.
However, we do not need the full package; a slim few lines of code will suffice.
When \mathfont reads one segment of text from its optional argument, it
calls \M@parse@option(texrt)=\@nil. The \M@parse@option macro splits the
option and suboption by looking for the first =.

877 \def\MOstrip@equals#i={#1}

878 \def \M@parseQ@option#l=#2\0nil{},

879 \def\@tempQopt{#1}7 % store option

880 \def\@tempQ@sub{#2}Y % store suboption

After storing the option and suboption, check for errors. If the user specified a
suboption, \@temp@sub contains (suboption)=, and we use \M@strip@equals
to get rid of the extra =. If the user does not specify a suboption, \@temp@sub
will be empty. After \M@parse@sub, the NFSs series and shape codes for the
suboption (if provided) will be stored in \@tempseries and \@tempshape.
881 \M@check@opt\@tempQopt

At this point, we have three possibilities for \@temp@sub:

1. \@temp@sub is =, which means the user wrote something like , (keyword)=,
and indicates a missing suboption.

2. \@temp@sub is empty, which indicates the user didn’t provide a subop-
tion, and we should use the default setting.

3. Otherwise, we try to extract series and shape information from
\@temp@sub.
We process \@temp@sub in that order. In case 3, we expect \@temp@sub to
look like (shape identifier)=, so we have to strip the final = before processing.
882 \begingroup
883 \def\@tempa{=}%

884 \expandafter

885 \endgroup

886 \@suboptionpresentfalse % set switch to false by default
887 \ifx\@temp@sub\@tempa % if missing suboption

888 \M@MissingSuboptionError

889 \else

\M@parse@sub

Parse Input Implementation 33

890 \ifx\@temp@sub\Qempty % if no suboption provided

891 \else % if suboption provided, parse it
892 \@suboptionpresenttrue % set switch to true

893 \edef\@temp@sub{\expandafter\MOstrip@equals\Q@temp@subl}’
894 \M@parse@sub\@temp@sub

895 \fi

896 \fi}

Now a macro to convert a shape identifier into NFSS series and shape codes.
Here the #1 argument is a control sequence such as \@temp@sub. The first
thing we do is check whether #1 ends in an asterisk and set \M@base@ accord-
ingly. This boolean is true if we use base mode (if no asterisk) and false oth-
erwise (if asterisk). Note that \M@parse@sub should always be called when
\@suboptionpresent is set to true. If we encounter a bad shape identifier in
#1, we change \@suboptionpresent to false. (So it may be more accurate to
name the conditional something like \@suboptioncheck, but I'm keeping the
name as is to match \@optionpresent.)

897 \def\MOparse@sub#1{%

898 \expanded{\noexpand\in@*{#1}}%

If #1 contains an asterisk, we check that it is the final character in #1 and strip
it.

899 \ifin@

900 \begingroup

901 \expandafter\M@split@star#1\@nil

902 \ifx\@tempb\Qempty

903 \expanded{\endgroup % first branch \endgroup
904 \def\noexpand#1{\@tempal}}’

905 \M@mode@true

If the asterisk is not the final character, that probably means something went
wrong. (But we’ll catch the problem later.)

906 \else

907 \endgroup % second branch \endgroup
908 \M@mode@false

909 \fi

910 \else

911 \M@mode@false

912 \fi

If the shape identifier contains a /, we interpret it as NFss identifiers and do not
check further, and otherwise, we check that the argument is one of upright,
italic, bold, or bolditalic. We also accept roman for backwards compati-
bility. We store NFSs information in \@tempseries and \@tempshape.

34 Implementation Parse Input

913 \expanded{\noexpand\in®/{#1}}%

914 \ifin@

915 \expandafter\M@split@slash#1\@nil
916 \else

If the user wrote out a shape identifier, we have a bit more checking to do:
we have to check whether #1 is one of roman, upright, italic, bold, or
bolditalic. We let \@tempa be equal to different strings inside a group,
and for each possibility, if #1 is that string, we set \Q@tempseries and
\@tempshape to the correct definitions. We have multiple \endgroups for
the same \begingroup because they occur on different branches of the com-
pound conditional.

917 \begingroup

918 \def\@tempa{roman}y

919 \ifx#1\Otempa

920 \endgroup % first branch \endgroup

If \@temp@sub is roman, we change it to upright.

921 \def#1{upright}’

922 \let\@tempseries\mddefault

923 \let\@tempshape\shapedefault

924 \else

925 \def\@tempa{uprightl}y

926 \ifx#1\@tempa

927 \endgroup % second branch \endgroup
928 \let\@tempseries\mddefault

929 \let\@tempshape\shapedefault

930 \else

931 \def\@tempa{italic}},

932 \ifx#1\@tempa

933 \endgroup % third branch \endgroup
934 \let\@tempseries\mddefault

935 \let\@tempshape\itdefault

936 \else

937 \def\@tempa{bold}%

938 \ifx#1\Qtempa

939 \endgroup % fourth branch \endgroup
940 \let\@tempseries\bfdefault

941 \let\@tempshape\shapedefault

942 \else

943 \def\@tempa{bolditalic}%

944 \ifx#1\@tempa

945 \endgroup % fifth branch \endgroup

\M@split@slash

\M@split@star

\M@strip@star

Default Font Changes Implementation 35

946 \let\@tempseries\bfdefault
947 \let\@tempshape\itdefault
948 \else

Otherwise, the user specified a bad suboption.

949 \endgroup % sixth branch \endgroup
950 \@suboptionpresentfalse

951 \M@InvalidSuboptionError{#13}%

952 \fi

953 \fi

954 \fi

955 \fi

956 \fi

957 % no \fi at this level of indentation

958 \fi}

Helper macro to parse the shape identifier if it contains a / character.

959 \def\M@split@slash#1/#2\Cnil{}

960 \def\Q@tempseries{#1})

961 \def\@tempshape{#2}}

Helper macros for processing asterisks in the shape identifier. The first macro
here should be called inside a group since it uses \@tempa and \@tempb and
therefore will mess with temporary assignments otherwise.

962 \def\M@split@star#1*#2\0nil{}

963 \def\Q@tempa{#1}/,

964 \def\@tempb{#2}}

965 \def\MOstrip@star#ix{#1}

We code a general-purpose definition macro that defines its first argument to
be the second argument fully expanded and with spaces removed.

966 \long\def\edef@nospace#1#2{%

967 \edef#1{\expandafter\zap@space\expanded{#2} \Q@emptyl}}

Perhaps something that sets spaces to \catcode9 and then retokenizes #2
would be better, but I don’t think it matters very much.

6 Default Font Changes

This section documents default font changes. We have three main user-level
commands in this section: \mathfont, which makes changes for math mode;
\mainfont, which makes changes for horizontal mode; and \documentfont,
which calls both \mathfont and \mainfont. The \mainfont command is
straightforward: set \rmdefault to be the font family corresponding to the

36 Implementation Default Font Changes

user’s argument and, when necessary, call \selectfont to change the font fam-
ily in use. (So unlike \mathfont, \mainfont can result in font loading rather
than just font declaration.)

The \mathfont command serves as the primary font-changing command
for this package and is more complicated than \mainfont. This command is a
wrapper around \@mathfont, the internal command that does the actual font
changing, and when a user calls \mathfont, the \@mathfont macro carries out
the following tasks:

1. Call \M@newfont on the mandatory argument of \mathfont, and store
\M@count values.

2. Loop through the optional argument of \mathfont and determine NFSS
series and shape codes from any suboptions using macros from the pre-
vious section.

3. On each iteration, check whether mathfont added a symbol font to the
NFSS that uses the series and shape corresponding to the current subop-
tion (or the default series and shape if there is no suboption). If not, call
\DeclareSymbolFont to add the symbol font or raise a “Can’t declare
new font shapes after \begin{document}” error.

4. Call \M@(keyword)@set to actually change the font.

Each \M@(keyword)@set macro is a wrapper around \Umathcode declarations
and is defined in the last section of this document.

For a given (keyword), \M@fontinfo@(keyword) stores the human-readable
name of the new default font for (keyword) as well as the NFSs series and shape
identifiers. (This is the name in \@tempbase, not \M@f@ntn@me.) We use this
information for writing messages to the user. Additionally, \M@(keyword)shape
holds the series and shape pair for (keyword). If the user specified a subop-
tion, the contents of this macro come from the suboption via \M@parse@sub,
and if the user did not specify a suboption, the information comes from
\(keyword)default.

For a combination of (font family), (series), and (shape) identifiers, mathfont
calls the associated symbol font M(count)-(series)/(shape), where (count)
is the \M@count value associated to the (font family), i.e. the contents of
\M@fontid@(font family). The (series) and (shape) values should be entries in
the NFss. For example, calls to \mathfont will often result symbol font names
like MO-m/n. Including a count value in the symbol font name serves two pur-
poses. First, it enables consistent formatting of symbol font names regardless
of underlying NFss family names. In particular, using the built-in fontloader
vs. fontspec will result in different family names for the same font face with the
same OpenType features, but the symbol font names will still match. Second,

Default Font Changes Implementation 37

it simplifies the symbol font names and makes them human readable regardless
of the underlying N¥ss family names, which may be complicated.

The last two user-level commands in this section are \mathconstantsfont
and \mathfontshapes. The first of these two commands only works in LuaTgX
and makes TEX use the math parameters from a given font when formatting
equations. Traditional TEX expects to see extra parameters in the font(s) in
\(math style)font2 and \(math style)font3, and it uses those parameters to
format equations. LuaTEX can pull these extra parameters from the fonts in
any math family, and \mathconstantsfont tells LuaTEX to do so for a given
font family. The command \mathfontshapes declares extra font shapes for
the NFss as well as extra symbol fonts. The purpose of this command is to
allow the user to declare symbol fonts in the document preamble for use after
\begin{document}.

We begin by coding \mainfont. This command is a wrapper around
\@mainfont.

\mainfont 968 \protected\def\mainfont{\@testopt{\@mainfont}{rm}}

Now the internal \@mainfont command. This command doesn’t do anything
in math mode, so we include \@nomath. We check whether #1 is one of
rm, sf, tt, or empty. If not, we issue an error and change \@tempa to rm.
We use \@tempswa to check whether we are storing the font family name in
\(type)default macros.
\@mainfont 969 \def\@mainfont [#1]#2{%
970 \@nomath\mainfont
971 \M@newfont{#2}%
972 \edef@nospace\Q@tempa{#1}/
973 \@tempswatrue
974 \def\@tempb{rm}%
975 \ifx\@tempa\@tempb
976 \else
977 \def\@tempb{sfl}y
978 \ifx\@tempa\@tempb

979 \else

980 \def\@tempb{tt}%

981 \ifx\@tempa\@tempb

982 \else

983 \ifx\@tempa\Qempty

984 \@tempswafalse

985 \else

986 \M@FamilyTypeError\Q@tempa
987 \def\@tempa{rm}/,

988 \fi

\familydefault

38 Implementation Default Font Changes

989 \fi
990 \fi
991 \fi

Now close the group and save the font family in \(#1)default and change the
default family to #1.

992 \if@tempswa

993 \expandafter\let\csname\@tempa default\endcsname\M@f@ntnlme
994 \edef\familydefault{\expandafter\noexpand

995 \csname\@tempa default\endcsnamel,

996 \fi

If the current font is not \nullfont or \M@f@ntnGme, select \M@f@ntneme as
the font family.
997 \expandafter\ifx\the\font\nullfont

998 \else
999 \ifx\f@family\MOf@ntneme
1000 \else
1001 \fontfamily\M@f@ntn@me\selectfont
1002 \fi
1003 \fi}

Now we come to \mathfont. This macro is a wrapper around \@mathfont
that we use to check for an optional argument. The default argument is
\M@defaultkeys.

1004 \protected\def\mathfont{\@testopt{\@mathfont}{\Medefaultkeys}}

The internal font-changing command. We call \M@newfont on the mandatory
argument of \mathfont, which stores the NFss family name(s) in \M@f@ntn®me
and \M@f@ntn@meb@se. We check whether each family name corresponds to
a value of \M@newcount, and if not, we define it. Throughout the definition
of \mathfont, \@tempa stores the value of \M@count that corresponds to the
#1 font, and \@tempb stores the value of \M@count that corresponds to the #1
font in base mode.

1005 \def\@mathfont [#1]#2{%

1006 \wlog{}/

1007 \M@newfont{#2}%

Temporarily store values of \M@count.

1008 \edef\@tempa{\csname MOfontid@\MOf@ntn@me\endcsnamel

1009 \edef\@tempb{\csname M@fontid@\M@f@ntnGmeb@se\endcsname},
Expand, zap spaces from, and store the optional argument in \@tempc, and then
perform the loop. (At that point, we do not need \@tempc anymore.) We store
the current keyword-suboption pair in \@i and feed it to \M@parse@option.

Default Font Changes Implementation 39

1010 \edef@nospace\Q@tempc{#11}7

1011 \@for\@i:=\Qtempc\do{%

1012 \expandafter\M@parse@option\@i=\@nil

1013 \if@optionpresent

If the user did not specify a suboption, parse the default option, and use that
instead. We set \@suboptionpresent to true before calling \M@parse®@sub
so that we can check whether the default shape identifier is valid. If
\@suboptionpresent is false after \M@parse@sub, we use m/n as the se-
ries/shape pair.

1014 \if@suboptionpresent

1015 \else

1016 \@suboptionpresenttrue

1017 \expandafter\MOparse@sub

1018 \csname\@tempQ@opt default\endcsname
1019 \if@suboptionpresent

1020 \else

1021 \let\@tempseries\mddefault
1022 \let\@tempshape\shapedefault
1023 \fi

1024 \fi

Now store the series and shape in \M@(option)shape.

1025 \expandafter\edef\csname MO\Q@tempQopt shape\endcsname{’

1026 \@tempseries/\Q@tempshapel’,

At this point we have the information we need to declare the symbol
font, namely the NFss family (\M@f@ntn@me or \M@f@ntn@mebBse), series
(\@tempseries), and shape (\@tempshape). We check if the symbol font
we want to use is defined, and if not, we define it. We have two cases to con-
sider: if \M@base@ is true, we use the base-mode version of the font (corre-
sponding to information in \@tempb and \M@f@ntnOmeb@se), and if \M@base@
is false, we use the default-mode version of the font (corresponding to informa-
tion in \@tempa and \M@f@ntn@me). We let \@tempc be the count value in use
for the current iteration of the loop.

1027 \ifM@mode® 7% if default/node mode
1028 \let\@tempc\@tempa
1029 \ifcsname symM\@tempa-\Q@tempseries/\@tempshape\endcsname

If the symbol font has not been declared, check that we are still in the pream-
ble. If no, issue an error message.
1030 \else

1031 \ifx\@onlypreamble\@notprerr
1032 \M@FontShapesError

40 Implementation Default Font Changes

Otherwise, we declare the symbol font.

1033 \else

1034 \M@SymbolFontInfo{\M@f@ntnGme}

1035 {\@tempseries}{\Q@tempshapel}’

1036 \M@addto@symbolfonts

1037 {M\@tempa-\Qtempseries/\@tempshape}

1038 {\@tempbase}{\@tempseries}{\@tempshape}’%
1039 \DeclareSymbolFont

1040 {M\@tempa-\Qtempseries/\@tempshape}{TU}
1041 {\Mef@ntn@me}{\Otempseries}{\@tempshapel}’
1042 \fi

1043 \fi

Now do the same thing for default (node) mode.

1044 \else % if default/node mode

1045 \let\@tempc\@tempb

1046 \ifcsname

1047 symM\@tempb-\Q@tempseries/\Q@tempshape\endcsname
1048 \else

1049 \ifx\Q@onlypreamble\@notprerr

1050 \M@FontShapesError

The only difference is we use different font family and symbol font names.

1051 \else

1052 \M@SymbolFontInfo{\M@f@ntnOmebOse}

1053 {\@tempseries}{\@tempshapel}’

1054 \M@addto@symbolfonts

1055 {M\@tempb-\@tempseries/\@tempshape}

1056 {\@tempbase (base) }{\Q@tempseries}

1057 {\@tempshapel’

1058 \DeclareSymbolFont

1059 {M\@tempb-\Qtempseries/\@tempshape}{TU}
1060 {\Mof@Ontn@meb@se}{\C@tempseries}{\@tempshapel’
1061 \fi

1062 \fi

1063 \fi

We store the new font information so we can write it to the log file
\AtBeginDocument and send an informational message to the user.

1064 \expandafter\edef
1065 \csname M@fontinfo@\Q@temp@opt\endcsname{’
1066 {\@tempbase}{\Q@tempseries}{\@tempshapel}}’

1067 \M@FontChangeInfo{\@tempQopt}{\Q@tempbasel’,

\documentfont

\@documentfont

Default Font Changes Implementation 41

We have extra information to keep track of when \@temp@opt is bb, cal, frak,
bcal, or bfrak because then mathfont effectively creates a new local font-change
command. We make sure that information gets added to \M@localfonts (a
macro that tracks the font names used for local font changes).

1068 \@tfor\@j:={bb}{cal}{frak}{bcal}{bfrak}\do{%

1069 \ifx\@tempQ@opt\@j

1070 \M@addto@localfonts{\expandafter\string

1071 \csname math\@temp@opt\endcsname}

1072 {\@tempbase}{\@tempseries}{\@tempshapel}y,

1073 \@break@tfor

1074 \£i}%

And now the magic happens!

1075 \csname M@\Qtemp@opt @set\endcsname % set default font
1076 \csname M@\@tempQopt true\endcsname 7, set switch to true

1077 \fi}Y
Display concluding messages for the user.
1078 \ifx\@tempa\C@empty

1079 \wlog{The \string\mathfont\space command on line
1080 \the\inputlineno\space did not change the font
1081 for any characters!}y

1082 \else

1083 \typeout{:: mathfont :: Using font \@tempbase\space
1084 on line \the\inputlineno.}}

1085 \fi

1086 \wlog{}}

Using \documentfont calls \mainfont, \mathfont, and \mathconstantsfont.
It also calls \mathfontcommands if the user is still in the preamble. The op-
tional argument gets fed directly to \@mainfont.

1087 \protected\def\documentfont{\Q@testopt{\@documentfont}{rm}}
The internal command.

1088 \def\@documentfont [#1]#2{%

1089 \Cmainfont [#1]{#2}

1090 \mathfont{#2}/

1091 \ifdefined\directlua

1092 \mathconstantsfont{#2}
10903 \fi

1094 \ifx\Q@onlypreamble\@notprerr
1095 \else

1096 \mathfontcommands{#23}%

1097 \fi}

\setfont

\M@SetMathConstant
\mathconstantsfont

\@mathconstantsfon

\m@th@const@nts@f@
\m@th@const@nts@se
\m@th@const@nts@sh

42 Implementation Default Font Changes

For backwards compatibility, we make \setfont expand to \documentfont
(plus a warning message).

1098 \protected\def\setfont{}

1099 \PackageWarningNoLine{mathfont}

1100 {Using \string\setfont\space is deprecated; I\MessageBreak

1101 replaced it with \string\documentfontl}y

1102 \documentfont}

The macro \mathconstantsfont chooses a font for setting math parameters.
It is intended for LuaTEX when mathfont can adjust text fonts and add a Math-
Constants table. It issues a warning if called without font adjustments enabled.
First, we check for an optional argument, which should be a shape identifier.
1103 \let\M@SetMathConstants\relax

1104 \protected\def\mathconstantsfont{/

1105 \@testopt{\@mathconstantsfont}{upright}?}

The internal command that does the processing. We begin by feeding the #2
argument to \M@newfont and parsing the #1 argument.

1106 \def\@mathconstantsfont [#1]#2{%

1107 \M@newfont{#2}%

1108 \edef@nospace\Q@tempa{#11}%

1109 \M@parse@sub\@tempa

Store the family, series, and shape information. Because it doesn’t make sense
to use a font that is loaded with node mode, we force use of the base-mode
version of the font regardless of the value of \ifM@mode@.

1110 \let\m@th@constOnts@f@mily\M@fOntnlmebAse

1111 \let\m@th@const@nts@series\@tempseries

1112 \let\m@th@const@nts@sh@pe\Q@tempshape

Temporarily store the value of \M@count.

1113 \edef\@tempa{\csname MOfontid@\mO@th@const@nts@f@mily\endcsnamely

Now check whether the desired symbol font has been declared. If no, we de-
clare it or issue an error.

1114 \ifcsname symM\@tempa-\@tempseries/\@tempshape\endcsname
1115 \else

1116 \ifx\Q@onlypreamble\@notprerr
1117 \M@FontShapesError
1118 \else

Declare the symbol font.

1119 \M@SymbolFontInfo{\m@thO@const@nts@f@mily}
1120 {\@tempseries}{\Q@tempshape}
1121 \M@addto@symbolfonts

\M@SetMathConstant

Default Font Changes Implementation 43

1122 {M\@tempb-\@tempseries/\@tempshape}

1123 {\@tempbase (base) }{\@tempseries}{\@tempshape}’,

1124 \DeclareSymbolFont

1125 {M\@tempa-\Qtempseries/\@tempshape}{TU}

1126 {\m@th@const@nts@fOmily}{\@tempseries}{\Q@tempshape}’
1127 \fi

1128 \fi

We come to the tricky problem of making sure to use the correct MathCon-
stants table. LuaTEX automatically initializes all math parameters based on
the most recent \textfont, etc. assignment, so we want to tell BTEX to reas-
sign whatever font we're using to the correct math family right after we finish
assigning other math fonts. This is possible, but the implementation is super
hacky. When IXTEX enters math mode, it checks whether it needs to redo any
math family assignments, typically because of a change in font size, and if so,
it calls \getanddefine@fonts repeatedly to append \textfont, etc. assign-
ments onto the macro \math@fonts. Usually \math@fonts is empty because
this process always happens inside a group, so we can hook into the code by
defining \math@font to be \aftergroup(extra code). In this case, the extra
code will be another call to \getanddefine@fonts.

We initialize \M@SetMathConstants to be \relax, and we define it the
first time the user calls \mathconstantsfont. When that happens, mathfont
begins by calling \getanddefine@fonts inside a group and uses as arguments
the upright face of the font corresponding to #1. That puts the \textfont,
\scriptfont, and \scriptscriptfont assignments corresponding to #1 in-
side \math@fonts. Then we call \math@fonts, and to avoid an infinite loop,
we gobble the \aftergroup\M@SetMathConstants macros that mathfont has
inserted at the start of \math@fonts. Setting \globaldefs to 1 makes the
\textfont, etc. assignments from \getanddefine@fonts global when we call
\math@fonts.

1120 \ifx\M@SetMathConstants\relax

1130 \protected\def\M@SetMathConstants{’

1131 \begingroup

1132 \escapechar\m@ne

1133 \expandafter\getanddefine@fonts

1134 \csname symM},

1135 \csname M@fontid@\m@th@constOnts@f@mily\endcsname
1136 -\m@th@const@nts@series/\mO@th@const@nts@sh@pe

1137 \expandafter

1138 \endcsname % expands to e.g. \symMO-m/n

1139 \csname TU/\m@th@const@nts@fOmily

1140 /\m@th@const@nts@series

\math@fonts

\mathfontshapes

\@mathfontshapes

44 Implementation Default Font Changes

1141 /\m@th@const@nts@sh@pe

1142 \endcsname % expands to \TU/<family>/<series>/<shape>
1143 \globaldefs\@ne

1144 \expandafter\@gobbletwo\math@fonts % avoid infinite loop
1145 \endgroup}’,

1146 \fi

1147 \ifM@adjust@font

1148 \else

1149 \M@LuaTeXOnlyWarning\mathconstantsfont

1150 \fi}

1151 \def\math@fonts{\aftergroup\M@SetMathConstants}

Now \mathfontshapes. This macro adds extra font shapes to the NFss and
defines symbol fonts. Its purpose is to allow the user to easily declare symbol
fonts in the preamble without using them right away. The user-level command
is a wrapper around \@mathfontshapes.

1152 \protected\def\mathfontshapes{\Q@testopt{\@mathfontshapes}

1153 {upright,upright*,italic,bold}}

For the internal command, we feed the font name to \M@newfont and then
loop through the optional argument. For each shape identifier in the optional
argument, we parse it and then use it to declare a symbol font. This macro is
very similar to parts of \@mathfont.

1154 \protected\def\@mathfontshapes [#1]#2{/,

1155 \wlog{}%

1156 \M@newfont{#2}%

As in \@mathfont, we temporarily store values of \M@count.

1157 \edef\@tempa{\csname M@fontid@\MOf@ntnOme\endcsnamel}/,

1158 \edef\@tempb{\csname MOfontid@\MO@f@ntn@meb@se\endcsname}y,
Expand, zap spaces, and loop through the optional argument.

1159 \edef@nospace\Q@tempc{#11}7

1160 \@for\@i:=\Qtempc\do{%

1161 \@suboptionpresenttrue

1162 \M@parse@sub\@i

Then check whether the symbol font exists and if not, declare it. We start with
default /node mode. We print a message in the log file, add the information to
\M@symbolfonts, and call \DeclareSymbolFont.

1163 \if@suboptionpresent

1164 \ifM@mode®@ % if default/node mode

1165 \ifcsname symM\@tempa-\Q@tempseries/\@tempshape\endcsname
1166 \else

1167 \M@SymbolFontInfo{\M@fCntnOme}

Local Font Changes Implementation 45

1168 {\Otempseries}{\@tempshapel}’

1169 \M@addto@symbolfonts

1170 {M\@tempa-\Qtempseries/\@tempshape}

1171 {\@tempbase}{\0tempseries}{\@tempshape}’
1172 \DeclareSymbolFont

1173 {M\@tempa-\Q@tempseries/\@tempshape}{TU}
1174 {\Mefentn@me}{\Q@tempseries}{\@tempshapel’,
1175 \fi

And do the same thing for base mode.

1176 \else % if base mode

1177 \ifcsname symM\@tempb-\@tempseries/\Q@tempshape\endcsname
1178 \else

1179 \M@SymbolFontInfo{\M@f@ntnOGmebOse}

1180 {\@tempseries}{\Q@tempshape}’

1181 \M@addto@symbolfonts

1182 {M\@tempb-\@tempseries/\Q@tempshape}

1183 {\@tempbase (base) }{\@tempseries}{\@tempshapel}/,
1184 \DeclareSymbolFont

1185 {M\@tempb-\Qtempseries/\Ctempshape}{TU}

1186 {\MefentnOGmeb@se}{\Q@tempseries}{\Q@tempshapel}’,
1187 \fi

1188 \fi

1189 \fi}}
1190 \@onlypreamble\mathfontshapes
1191 \Qonlypreamble\@mathfontshapes

7 Local Font Changes

This section deals with local font changes. The main user-level macro in
this section is \newmathfontcommand, which creates macros that change
the font for math alphabet characters and is basically a wrapper around
\DeclareMathAlphabet. Other user-level commands are a special case of this
one.

We begin with two helper macros. First is \M@check@csarg, which accepts
two arguments and handles some error checking. The #1 argument is a user-
level command that we use in error messaging, and #2 should be a single control
sequence. The way \M@check@csarg scans the following tokens is a bit tricky:
(1) check the length of the argument (number of tokens) by seeing if \@gobble
eats it completely; and (2) check that the argument is a control sequence. If
the user specifies an argument of the form {. .}, i.e. extra text inside braces,

\M@check@csarg

\M@checkspecials

46 Implementation Local Font Changes

the \ifcat will catch it and issue an error. If \M@check@csarg likes the input,
it sets \1fM@arg@good to true, and otherwise, it sets \ifM@arg@good to false.

1192 \def\M@check@csarg#1#2{/
1193 \expandafter\ifx\expandafter\@nnil\@gobble#2\@nnil % good

1194 \ifcat\relax\noexpand#2 % good

1195 \M@arg@goodtrue

1196 \else 7 if #2 not a control sequence
1197 \M@MissingCSError#1{\detokenize{#2}}
1198 \M@arg@goodfalse

1199 \fi

1200 \else % if #2 is multiple tokens

1201 \M@MissingCSError#1{\detokenize{#2}}
1202 \M@arg@goodfalse

1203 \fi}

The macro \M@checkspecials accepts a control sequence as its #1 argument
and a font name as its #2 argument, and it checks whether #1 is \mathbb or
a related command. If yes, we assume that the user is using some variant of
\newmathrm instead of, for example, \mathfont [bb], so we do some processing
analogous to what happens inside \@mathfont.

1204 \def\M@checkspecials#1#2{%

1205 \in@#1{\mathbb\mathcal\mathfrak\mathbcal\mathbfrak}

1206 \ifin®@

We set \escapechar to —1 and use \@gobblefour to remove the \math from
the start of #1. The string of \expandafters hits the \string inside \@tempa,
and then the \edef expands the \@gobblefour. We are left with just the
keyword inside \@tempa.

1207 \begingroup

1208 \escapechar\m@ne

1209 \expandafter

1210 \endgroup

1211 \expandafter\edef\expandafter\@tempa\expandafter{’

1212 \expandafter\Q@gobblefour\string#1}%

Then write a message to the log file and set the corresponding boolean to true.
1213 \@mathfontinfo{Interpreting your new macro \string#l\space
1214 as \@tempalspace chars.}/

1215 \@mathfontinfo{Setting \expandafter\string

1216 \csname ifM@\Q@tempa\endcsname\space to true.})

1217 \csname M@\Q@tempa true\endcsname

And store the information to write to the log file \AtBeginDocument.
1218 \expandafter\edef\csname MOfontinfo@\@tempa\endcsname{’

\newmathfontcomman

\M@define@newmath@
\M@check@csarg

\M@default@newmath

Local Font Changes Implementation 47

1219 {\@tempbase}{\@tempseries}{\Q@tempshape}}%

1220 \expandafter\edef\csname MO\@tempa shape\endcsname
1221 {\@tempseries/\@tempshapel},

1222 \fi}

Now declare the math alphabet. This macro first checks that its #1 argument
is a control sequence using \M@check@csarg. If yes, load the #2 argument with
\M@newfont, call \DeclareMathAlphabet, and check whether #1 is \mathbb
or a related command. Finally, add #1 and #2 to the list of local font-change
commands.
1223 \protected\def \newmathfontcommand#1#2#3#4{/,
1224 \M@check@csarg\newmathfontcommand{#1}
1225 \ifM@arg@good
1226 \M@newfont{#2}
1227 \M@NewFontCommandInfo{#1}{\M@fOntnGmebO@se}{#3}{#4}
1228 \DeclareMathAlphabet{#1}{TU}{\M@fOntnOmeb@se}{#3}{#4}
1229 \M@checkspecials{#1}{\@tempbase}
1230 \M@addto@localfonts{\string#1}{\Ctempbase}{#3}{#4}
1231 \fi}
1232 \Qonlypreamble\newmathfontcommand
Then define macros that create local font-changing commands with default se-
ries and shape information. Because they’re all similar, we metacode them.
We define the commands themselves with \define@newmath@cmd. The argu-
ment structure is:

o #1—\newmath(key) macro name

o #2—font series

o #3—font shape

o ##1—the user’s control sequence

o ##2—the user’s font information (family name)
We feed ##1, ##2, #2, and #3 to \newmathfontcommand, and we load ##2 with
\M@newfont. Each \newmath(key) macro will check its first argument using
\M@check@csarg and then call \newmathfontcommand on both of its two argu-
ments. We store the list of \newmath(key) commands that we want to define
with their series and shape information in \M@default@newmath@cmds, and we
loop through it with \@for.
1233 \def\M@def ine@newmath@cmd#1#2#3{/,
1234 \protected\def#1##1##2{}
1235 \M@check@csarg{#1}{##1}

1236 \newmathfontcommand{##1}{##23{#2}{#3}}}
1237 \def\M@default@newmath@cmds{Y

\M@default@newmath

\mathfontcommands

48 Implementation Miscellaneous

1238 \newmathrm{\mddefault}{\shapedefault},’

1239 \newmathit{\mddefault}{\itdefaultl},%

1240 \newmathbf{\bfdefault}{\shapedefault},%

1241 \newmathbfit{\bfdefault}{\itdefaultl},Y

1242 \newmathsc{\mddefault}{\scdefault},Y%

1243 \newmathscit{\mddefault}{\scdefault\itdefault},Y%
1244 \newmathbfsc{\bfdefault}{\scdefault},¥%

1245 \newmathbfscit{\bfdefault}{\scdefault\itdefault}}
1246 \@for\@i:=\M@default@newmath@cmds\do{/

1247 \expandafter\M@define@newmath@cmd\@i}

1248 \@onlypreamble\newmathrm

1249 \Qonlypreamble\newmathit

1250 \@onlypreamble\newmathbf

1251 \@onlypreamble\newmathbfit

1252 \@onlypreamble\newmathsc

1253 \@onlypreamble\newmathscit

1254 \@onlypreamble\newmathbfsc

1255 \@Qonlypreamble\newmathbfscit

1256 \@onlypreamble\M@define@newmath@cmd

1257 \let\M@default@newmath@cmds\Qundefined

The command \mathfontcommands sets all the default local font-change com-
mands at once.

1258 \protected\def\mathfontcommands#1{/
1259 \newmathrm\mathrm{#1}

1260 \newmathit\mathit{#1}

1261 \newmathbf\mathbf{#1}

1262 \newmathbfit\mathbfit{#1}

1263 \newmathsc\mathsc{#1}

1264 \newmathscit\mathscit{#1}

1265 \newmathbfsc\mathbfsc{#1}

1266 \newmathbfscit\mathbfscit{#1}}
1267 \Qonlypreamble\mathfontcommands

8 Miscellaneous

We begin this section with the user-level macros that provide information for
Lua-based font adjustments. We define a macro \M@check@int to determine
if #1 is a nonnegative integer and set the switch \M@arg@good accordingly.
Checking happens in three stages inside a group. Immediately after the group,
we will check whether \@tempb is \@empty, so to force the switch to be false,

\M@check@int

Miscellaneous Implementation 49

we sometimes set \@tempb to \@nnil inside the group. The first stage is a
check whether #1 is empty.

1268 \ifM@adjust@font

1269 \def\M@check@int#1{’
1270 \begingroup

1271 \def\Q@tempa{#1}%
1272 \ifx\@tempa\@empty
1273 \let\@tempb\@nnil

If #1 is not empty, we check whether it is a nonnegative integer. If #1 is a
nonnegative integer, the entirety of 0#1 becomes the value of \count@, and
\@tempb will end up empty. Otherwise, \@tempb will be nonempty. The use
of \afterassignment here is inspired by \@defaultunits from the kernel.

1274 \else

1275 \def\@tempa##1\relax\Onil{\def\Otempb{##1}}%
1276 \afterassignment\@tempa

1277 \count@=0#1\relax\@nil

If \@tempb is nonempty, we handle the case where #1 is an octal or hexadeci-
mal integer. We use \if to check whether the first character of #1 is ' or ",
and if yes, we replace it with '0 or "0 and repeat the same check with \@tempb.
The \relax prevents \if from scanning past #1 if #1 expands to something
empty. The \remove@to@nnil gobbles everything in #1 (except the ' or ",
which is eaten by \if) when the test is successful, and it gobbles the \@nnil
after the \else when the test is unsuccessful.

1278 \ifx\@tempb\Qempty

1279 \else

1280 \expandafter\remove@to@nnil\if'#1\relax
1281 \@nnil

1282 \afterassignment\@tempa

1283 \count@'O\expandafter\Qgobble

1284 \expanded{#1}\relax\@nil

1285 \else

1286 \@nnil

1287 \expandafter\remove@to@nnil\if"#1\relax
1288 \@nnil

1289 \afterassignment\@tempa

1290 \count@"0O\expandafter\Q@gobble

1291 \expanded{#1}\relax\@nil

If #1 is neither octal nor hexadecimal, we check whether it starts with \numexpr.
This case is good, so we set \@tempb to \Qempty.

1292 \else

50 Implementation Miscellaneous

1293 \@nnil
1294 \expandafter\remove@to@unil\ifx\numexpr#1\@nnil
1295 \let\@tempb\@empty

The last possibility is if #1 has the form ~(character). To allow for the possi-
bility of, for example, ~\%, we check whether #1 begins with ~ and contains
two tokens. This is not foolproof, and sufficiently bad input, such as “\relax,
will break this macro. (So don’t do that.) Checking the catcode of the second
token in #1 doesn’t seem worth the effort. If #1 is a single ~ character, then
\@gobbletwo will eat #1 and \@nnil, so the \ifx will compare \@nnil and
\relax.

1296 \else

1297 \@nnil

1298 \expandafter\remove@to@nnil\if "#1\relax
1299 \@nnil

1300 \expandafter\ifx\expandafter\@nnil
1301 \@gobbletwo#1\@nnil\relax
1302 \let\@tempb\Q@empty

1303 \else

1304 \let\@tempb\@nnil

1305 \fi

1306 \else

1307 \@nnil

1308 \let\@tempb\@nnil

1309 \fi

1310 \fi

1311 \fi

1312 \fi

1313 \fi

1314 \fi

1315 \expandafter

1316 \endgroup

1317 \ifx\@tempb\Qempty

1318 \M@arg@goodtrue

1319 \else

1320 \M@arg@goodfalse

1321 \fi}

Making the \rulethicknessfactor, etc. counts accessible to the user means
that we don’t need \RuleThicknessFactor and friends anymore, but we keep
them for backwards compatibility and convenience. Each of these commands
uses \M@check@int to check its argument, then calls the appropriate other
commands.

Miscellaneous Implementation 51

\RuleThicknessFact 1322 \protected\def\RuleThicknessFactor#1{/
1323 \M@check@int{#1}%
1324 \ifM@arg@good

1325 \rulethicknessfactor=#1\relax

1326 \else

1327 \MOBadIntegerError\RuleThicknessFactor{\detokenize{#1}}/
1328 \fi}

\SurdHorizontalFac 1329 \protected\def\SurdHorizontalFactor#1{%
1330 \M@check@int{#1}%

1331 \ifM@arg@good

1332 \hsurdfactor=#1\relax

1333 \else

1334 \M@BadIntegerError\SurdHorizontalFactor{\detokenize{#1}}/
1335 \fi}

\SurdVerticalFacto 1336 \protected\def\SurdVerticalFactor#1{J
1337 \M@check@int{#1}/,
1338 \ifM@arg@good

1339 \vsurdfactor=#1\relax

1340 \else

1341 \M@BadIntegerError\SurdVerticalFactor{\detokenize{#1}1}/
1342 \fi}

For the integral italic factor, we input the information to \charmline

\IntegralltalicFac 1343 \protected\def\IntegralItalicFactor#1{/
1344 \M@check@int{#1}},
1345 \ifM@arg@good

1346 \charmline{0x222B * * * * % * % % * x

1347 EEEEEEEEE

1348 X ok K ok ok ok K K ok %

1349 * ok #1179

1350 \else

1351 \M@BadIntegerError\IntegralItalicFactor{\detokenize{#1}}%
1352 \fi}

If automatic font adjustments are disabled, we should also disable the related
user-level commands. In this case, each of the font-adjustment macros expands
to raise an \M@NoFontAdjustError and gobble its argument.

1353 \else

1354 \@tfor\@i:=\RuleThicknessFactor\IntegralltalicFactor
1355 \SurdHorizontalFactor\SurdVerticalFactor\charmline
1356 \charmfile\CharmLine\CharmFile\CharmInfo\CharmType
1357 \do{%

1358 \protected\expandafter\edef\@i{}

\charminfo

\charmtype

\stack@flatrel

\st@ck@fl@trel

52 Implementation Miscellaneous

1359 \noexpand\M@NoFontAdjustError\expandafter\noexpand\@i
1360 \noexpand\Q@gobble}}

1361 \protected\def\charminfo{\M@NoFontAdjustError\charminfo

1362 \begingroup

1363 \afterassignment\endgroup

1364 \count@}

1365 \protected\def\charmtype{\MONoFontAdjustError\charmtype
1366 \begingroup

1367 \afterassignment\endgroup

1368 \count@}

1369 \fi

These commands should appear in the preamble only.

1370 \@onlypreamble\charmline

1371 \@onlypreamble\charmfile

1372 \Qonlypreamble\CharmLine

1373 \@onlypreamble\CharmFile

1374 \Qonlypreamble\RuleThicknessFactor
1375 \@onlypreamble\IntegralItalicFactor
1376 \@onlypreamble\SurdHorizontalFactor
1377 \Qonlypreamble\SurdVerticalFactor

We use the next three macros in defining \simeq and \cong. The construc-
tion is clunky and needs the intermediate macro \st@ck@fl@trel because
\mathchoice is a bit of an odd macro. It feels like it should be expandable,
but it isn’t. Instead, it fully typesets each of its four arguments and then takes
the one corresponding to the correct style. This is due to fundamental aspects
of how TEX processes math-mode material.

1378 \protected\gdef\clap#1{\hb@xt@\z@{\hss#1\hss}}

1379 \protected\def\stack@flatrel#1#2{\expandafter

1380 \st@ck@fl@trel\expandafter#i\@firstofone#2}

1381 \protected\def\stQ@ckQ@f1@trel#1#2#3{/

1382 {\setboxO\hbox{$#1#2\mO0th$}’), contains \mathrel symbol
1383 \setbox1\hbox{$#1#3\mOth$}) gets raised over \boxO
1384 \if\wd0>\wdi\relax

1385 \hb@xt@\wd0{%

1386 \hfil
1387 \clap{\raise0.7\ht0\box1}/,
1388 \clap{\box0}\hfil}},

1389 \else

1390 \hbext@\wd1{%

1391 \hfil

1392 \clap{\raise0.7\htO\box1}/

Miscellaneous Implementation 53

1393 \clap{\box0}\hfill}}

13904 \fi}}

Some fonts do not contain characters that mathfont can declare as math sym-
bols. We want to make sure that if this happens, TEX prints a message in the
log file and terminal.

1395 \ifnum\tracinglostchars<\tw@

1396 \tracinglostchars\tw@

1397 \fi

We \typeout a message about local font-change commands.

1398 \AtBeginDocument{’
1399 \ifcase\M@num@localfonts

1400 \or

1401 \def\Q@tempa#1#2#3\0Gnil{#2}

1402 \wlog{}

1403 \typeout{:: mathfont :: Using

1404 \expandafter\@tempa\M@localfonts\@nil\space
1405 for local font changes.}

1406 \else
1407 \wlog{}

1408 \typeout{:: mathfont :: Using \the\M@num@localfonts\space
1409 fonts for local font changes.}
1410 \fi}

A helper macro for printing messages \AtBeginDocument. This macro adds
characters from #1 into \@tempa until the length of \@tempa, as measured
by \count@ becomes #2 — 2. If \@tempa has too many characters to fit,
\M@addtab@count@tempa instead ends \@tempa with an ellipsis. Then the
macro appends spaces to the end of \@tempa until it is #2 characters long,
again measured using \count@.

1411 \def\M@addtab@count@tempa#1#2{/,

1412 \let\@tempb\@empty

1413 \@tempcntb\z@

1414 \@tfor\@i:=#1\do{%

1415 \ifnum\count@=\numexpr#2 - 5\relax
1416 \edef\@tempb{\@tempb\@i}

1417 \advance\@tempcntb\@ne

1418 \else

1419 \edef\@tempa{\Q@tempa\@i}

1420 \advance\count@\@ne

1421 \fi}

1422 \ifnum\@tempcntb<4\relax
1423 \edef\@tempa{\@tempa\Q@tempb}

\M@fontinfolbegin

\M@fontinfo@begin@

54 Implementation Miscellaneous

1424 \advance\count@\@tempcntb
1425 \else

1426 \edef\@tempa{\Q@tempa. ..}
1427 \advance\count@\three

1428 \fi

1429 \@whilenum\count@<#2\do{%

1430 \edef\@tempa{\Q@tempa\space}
1431 \advance\count@\@ne}}

Write to the log file \AtBeginDocument all font changes carried out by
mathfont. The command \M@fontinfo@begin accepts accepts a keyword as
its #1 argument and prints a message on the log file showing whether mathfont
set a default font for that keyword and, if yes, the name, series, and shape for
that font.

1432 \def\M@fontinfo@begin#1{},
1433 \expandafter\ifx % next lines are two cs to be compared

1434 \csname ifM@#1\expandafter\endcsname
1435 \csname iftrue\endcsname

1436 \expanded{\noexpand\M@fontinfo@begin@{#1}
1437 \csname M@fontinfo@#1\endcsname}

1438 \else
1439 \bgroup

1440 \let\@tempa\Qempty

1441 \count@\z@

1442 \M@addtab@count@tempa{#1}{35}

1443 \M@addtab@count@tempa{No\space change}{78}
1444 \wlog{\@tempa}

1445 \egroup

1446 \fi}

Helper macro that handles printing the message. The four arguments appear
sequentially on the same line in the log file: #1 is the keyword, #2 is the font
name, #3 is the series, and #4 is the shape. We allocate 18, 30, 15, and 15
characters respectively, for a total of 78 characters. The default width of the
log file is 80 characters, so we should fit everything on one line that way.

1447 \def\M@fontinfo@begin@#1#2#3#4{/,

1448 \bgroup

1449 \let\@tempa\Q@empty

1450 \count@\z@

1451 \M@addtab@count@tempa{#1}{18}

1452 \M@addtab@count@tempa{font:\space#2}{48}
1453 \M@addtab@count@tempa{series:\space#3}{63}
1454 \M@addtab@count@tempa{shape: \space#4}{78%}

\M@localfonts@begi

\M@symbolfonts@beg

\M@families@begin

Miscellaneous Implementation 55

And print the message.

1455 \wlog{\@tempal}

1456 \egroupl}

The macro \M@localfonts@begin does the same thing except for the local
font-change commands.

1457 \1et\M@localfonts@begin\M@fontinfo@begin@

And for symbol fonts declared.

1458 \1let\M@symbolfonts@begin\MOfontinfol@begin®@

The command for font families is different because we only have two pieces of
information to display.

1459 \def\M@families@begin#1{},
1460 \bgroup

1461 \let\@tempa\Q@empty

1462 \count@\z@

1463 \expanded{’,

1464 \noexpand\M@addtab@count@tempa

1465 {\csname M@fontid@#1\endcsname}{5}
1466 \noexpand\M@addtab@count@tempa{#1}{78}}

1467 \wlog{\@tempa}

1468 \egroup}

Now print the messages. We start with the font families that mathfont uses.
We don’t need to store a list of font families in \M@families because we can
simply increment the fontid count until we reach a value that is large enough
to not have a corresponding font.

1469 \AtBeginDocument{’

1470 \wlog{"~J----—-—---------———- Changes made by mathfont

1471 in the preamble -------—--————-——- }

1472 \wlog{}
1473 \Wwlog{#*skskskskkskkkokkkkkkxk ™~ JY,

1474 * Font families used *~"JY

1475 KKK KK KKK KKK KK KKK KKK KKK T

1476 \ifx\M@families\Q@empty

1477 \wlog{No font families declared by mathfont.}

1478 \else

1479 \@for\@i:=\M@families\do{’

1480 \expandafter\M@families@begin\expandafter{\Q@il}}
1481 \fi

1482 \wlog{}

Same thing for symbol fonts.

1483 \Wlog{kskkkskkkskkkokskkokkxkkkx ™" JY

56 Implementation Miscellaneous

1484 * Symbol fonts declared *~~J}

1485 KKK KKK KKK KK KR KKK KKk K

1486 \ifx\M@symbolfonts\Qempty

1487 \wlog{No symbol fonts declared by mathfont.}

1488 \else

1489 \@for\@i:=\M@symbolfonts\do{Y%

1490 \expandafter\M@symbolfonts@begin\@i}
1491 \fi

1492 \wlog{}

Character keywords.

1493 \wlog{kxkxkkxkrkkx""J%
1494 * Keywords *~"J%
1495 ok ok sk ok ok Kok ok k ok >k F

1496 \@for\@i:=\M@keys\do{%

1497 \expandafter\M@fontinfo@begin\expandafter{\@i}}

1498 \wlog{}

And information in the log file about local font-change commands.

1499 \wlog{skksskskskskokkkskskkskokkkkokkkokkkkkkkkk ™" JY

1500 * Local font-change commands *~~JY

1501 ok ok ok Kok ok ok Kok ok ok o sk Kok ok ok ok Kok ok T

1502 \ifnum\M@num@localfonts=\z@

1503 \wlog{No local font change commands declared.}

1504 \else
1505 \@for\@j:=\M@localfonts\do{/

1506 \expandafter\M@localfonts@begin\@j}

1507 \fi

1508 \wlog{}

1509 \wlog{------------————-—-mmmmm End of changes
L3 }

1511 \wlog{}}
Warn the user about possible problems with a multi-word optional package

argument in XqIEX.

1512 \ifdefined\XeTeXrevision
1513 \ifM@font@loaded
1514 \AtEnd0fPackage{%

1515 \PackageWarningNoLine{mathfont}

1516 {It looks like you specified a font\MessageBreak
1517 when you loaded mathfont. If you run\MessageBreak
1518 into problems with a font whose name\MessageBreak
1519 is multiple words, try using LuaLaTeX\MessageBreak

1520 or call \string\documentfont\space or

Adjust Fonts: Setup Implementation 57

1521 \string\mathfont\MessageBreak
1522 manuallyl}}

1523 \fi

1524 \fi

If the user passed a font name to mathfont, we set it as the default
\AtEndOfPackage.
1525 \1fM@font@loaded

1526 \AtEndOfPackage{\documentfont\M@font@load}
1527 \f1i

9 Adjust Fonts: Setup

The next three sections implement Lua-based font adjustments and apply only
if the user has enabled font adjustment. Most of the implementation happens
through Lua code, but we need some TEX code in case the user wants to adjust
character metric information. Here is a rough outline of what happens in the
next three sections:

1. Initialize a Lua table that contains new metrics for certain characters
specific to math mode, such as letters with wider bounding boxes and
large operator symbols.

2. Provide an interface for the user to change this metric information.

3. Write functions that accept a fontdata object and (a) change top-level
math specs to indicate that we have a math function; (b) alter characters
according to our Lua table of new metric information; and (c¢) populate
a MathConstants table for the font.

4. Create callbacks that call these functions. Put a wrapper around them,
and insert the wrapper-function into luaotfload.patch_font.

Step 2 happens on the TEX side of things and is documented next, and every-
thing else happens inside \directlua. On the Lua side of things, we store all
the functions and character metric information in the table mathfont. With
the exception of a handful of integers used to track encoding slots, every entry
in mathfont is either a function or a subtable indexed by an (integer). The
integer is a Unicode encoding number and indicates which Unicode character
the subtable corresponds to. See tables 2 and 3 for a list of the functions in
mathfont and the fields in character subtables. See section 10 for discussion
of the callbacks for editing fontdata objects.

Changing the top-level nomath flag in a font object is easy. Creating a
MathConstants table is complicated but largely self-contained. We take a

58 Implementation Adjust Fonts: Setup

Table 2: Fields of Character Subtables in mathfont

Field Type Ina Ine Used For

type string Yes Yes Typeisaore

data_rm table Yes Yes Information for upright font shapes
data_it table Yes Yes Information for italic font shapes
num_variants integer No Yes Number of large variants

smash integer No Yes Encoding slot for smashed character
next table No Yes Encoding slots for large variants

few parameters that the user has set, define traditional TEX math parameters
based on the essential parameters of the font, and assign their values to the
corresponding entries in a MathConstants table. However, editing character
metrics during font loading is convoluted with many moving parts. For ev-
ery glyph that we want modify, we store character metric information for that
glyph as a subtable in mathfont. The entries of the subtable describe how to
scale the bounding box, scale the glyph itself, or determine math accent place-
ment. For characters of type a (“alphabet”), we specify information to stretch
the bounding box (not the glyph) horizontally, so we equivalently add extra
space around the character. For type e (“extensible”), we stretch the bound-
ing box and glyph, so we create an ensemble of scaled versions, which we use
as a family of large variants.

Here’s how to think about the dynamics of our approach. We use character
metric information at three different times: pre-processing, interim processing,
and post-processing. In pre-processing, which we implement in this section,
we assemble initial character metric information into entries in mathfont. In
other words, pre-processing means creating the initial mathfont subtables and
happens during package loading. Interim processing means the user altering
entries in mathfont and happens through \charmline and \charmfile. This
can occur at any point in the pramble. In post-processing, which we implement
in the next section, mathfont extracts information from the current state of the
mathfont table and uses it to alter a fontdata object. Post-processing happens
through the luaotfload.patch_font callback and occurs once at the point
when TEX loads the font file. As a rule, KTEX does not like to load fonts before
it uses them, so post-processing typically happens \AtBeginDocument in the
case of the main text font or whenever the user calls a \text(font keyword)
command or enters math mode. This is also why you cannot adjust fonts that
TEX loaded before mathfont.

We set mathnolimitsmode to 4 to make integral signs look nice. Or at
least nicer than they would otherwise.

Adjust Fonts: Setup

Implementation

29

Table 3: Functions in mathfont

Function

Argument(s)

Used For

strint

number

Format number as a string

new_type_a
new_type_e

index, data
index, data

Add type a entry to mathfont
Add type e entry to mathfont

add_to_charm
parse_charm

string of charm info
string of charm info

Add charm info to mathfont
Split string, validate inputs
Parse numeric value

parse_num numeric string
empty none Does nothing
glyph_info character subtable Get height, width, depth, italic

make_a_commands
make a table

make_e_commands
make e table

smash_glyph

index, offset
index, charm data,
fontdata

index, scale factors
index, charm data,
fontdata

index, fontdata

Return virtual font commands
Make new subtable for type a
character

Return virtual font commands
Make new subtable for type e
character

Make table for smashed char

utf_16BE integer Return UTF-16BE format

adjust_font fontdata Call callbacks

apply_charm_info fontdata Change character metrics in font

math_constants fontdata Create MathConstants table

set nomath false fontdata Set nomath (top-level flag in the
font) to false

get_font_name fontdata Return font name

info string Write message in the log file

1528 \ifM@ad just@font

1529 \mathnolimitsmode=4\relax

We need some error messages. We change the catcode of \ to 12 in order to
use it freely as a Lua escape character. We change ~ to catcode 0 to define the

macros.

1530 \bgroup

1531 \catcode \~=0
1532 ~catcode ~\=12
1533 ~@firstofone{’
1534 ~egroup

60 Implementation Adjust Fonts: Setup

1535 ~let~Q@tempa~%

1536 ~let~%~0percentchar

1537 ~def ~M@empty@ssert{"\n\n’

1538 Package mathfont error: Empty charm information.\n\nj
1539 Your argument for \\charmline is empty, or a\n%

1540 line in your \\charmfile is blank. Make sure\n

1541 your calls to \\charmline and all lines in\n%

1542 your \\charmfile contain integers, floats,\n%

1543 and asterisks separated by commas or spaces.\n"}

1544 ~def~MOmissing@ssert{"\n\n%

1545 Package mathfont error: Missing charm entries.\n\nJ
1546 I'm having trouble with a character metric.\nj

1547 Your \\charmline or \\charmfile contains\n}

1548 \"".. temp_string .. ",\"\n’%

1549 which looks to me like you provided an index\n%

1550 without any commas or spaces to specify the\n

1551 numbers for charm values. Make sure that you\ny

1552 use commas or spaces to separate each entry\nj

1553 in your charm information.\n"}

1554 ~def ~M@number@ssert{"\n\n’%

1555 Package mathfont error: Nonnumeric charm value.\n\nj
1556 I'm having trouble with a character metric.\n%

1557 Your \\charmline or \\charmfile contains \""

1558 .. s .. ",\"\n%

1559 which is not a number. Make sure that your\n%

1560 charm information is all integers, floats,\n/

1561 and asterisks separated by commas or spaces.\n"}

1562 ~def ~M@index@ssert{"\n\n’

1563 Package mathfont error: Invalid Unicode index.\n\nJ%
1564 The Unicode index \""

1565 .. temp_string .. "\" is invalid. Make sure\nj

1566 that the first entry in your \\charmline and in each\nj,
1567 line of your \\charmfile is an integer between 0 and\n
1568 1,114,111 (0x10FFFF), possibly with an exclamation\nj
1569 point or question mark.\n"}

1570 ~def ~M@bound@ssert{"\n\n’

1571 Package mathfont error: Exceeded Unicode table.\n\n
1572 You asked me to do something with an encoding slot\nj
1573 number that exceeds the number of slots in the\nj

1574 Unicode table. You are probably seeing this error\nj
1575 because you declared too many type e characters.\n"}

We previously defined \% to contain a single % with catcode 12, so when we

Adjust Fonts: Setup Implementation 61

put \% in an \edef, it becomes easy to get %’s inside the definition of our
next two macros. This is important because it lets us use string.format to
create informative error and warning messages using straightforward syntax.
To insert the Unicode character in the messages, we use utf8.char function,
which is the Lua code for producing arbitrary Unicode characters.

1576 ~edef ~M@entries@ssert{string.format ("\n\nJ

1577 Package mathfont error: Charm values too short.\n\n’
1578 Your charm information for U+~%X ~%s (index ~%d)\nJ
1579 needs more entries. Right now you have ~%d\n’

1580 entries (besides the index), but you need at\n/

1581 least ~%d. If you aren't sure what to do, try\n%
1582 adding asterisks to your \\charmline or line in\nj
1583 your \\charmfile. See the user guide for more\n}
1584 information.\n",

1585 index, utf8.char(index), index,

1586 number_of_entries, entries_needed)}

1587 ~edef ~M@entries@warning{string.format ("\n\n%

1588 Package mathfont warning: Charm values too long.\n\nj
1589 Your charm information for U+~%X ~%s (index -~%d)\n%
1590 has more entries than it needs. Right now you\n}
1591 have ~%d entries (besides the index), but you\ny
1592 only need ~%d. This isn't a problem per se\nj

1593 because I can easily ignore the extra numbers,\nj
1594 but it may indicate confusion about Unicode\n

1595 characters and charm values. See the user\nj

1596 guide for more information.\n\n",

1597 index, utf8.char(index), index,

1598 number_of entries, entries_needed)}

Error message if the user tries to adjust the left side of the bounding box on a
virtual character.

1599 ~edef~M@virtual@ssert{string.format ("\n\nJ%

1600 Package mathfont error: Can't adjust left side\n’

1601 of the bounding box on a virtual character.\n\n}

1602 Your charm information for U+~%X ~Y%s (index ~%d)\n%
1603 instructs me to change the left side of the bounding\nj
1604 box around this character. However, in the font\n’%
1605 ~hs,\nl

1606 that character is a virtual character, and I'm not\n%
1607 programmed to change the left side of the bounding\nj
1608 box on a virtual character. To resolve this error,\n%
1609 try including\n’

62 Implementation Adjust Fonts: Setup

1610 \\charmline{~%d O * * *}\n,

1611 at the end of your document preamble.\n\n",
1612 index, utf8.char(index), index,

1613 mathfont.get_font_name(fontdata), index)}}
1614 \1let\%\Q@tempa

The user inputs charm information at the TEX level. We define the
macros \charmline that interfaces with mathfont:add to_charm directly
and \charmfile that reads lines from a file and individually feeds them to
\charmline. The macros \charminfo and \charmtype print information from
mathfont about the charm information currently in memory for certain char-
acters.

1615 \newluafunction\addtocharm@

1616 \newluafunction\charminfo@

1617 \newluafunction\charmtypeQ@

1618 \directlua{%

1619 local t = lua.get_functions_table()

1620 t[\number\addtocharm@] = function()

1621 mathfont:add_to_charm(token.scan_string())

1622 end

We also define the Lua function \charminfo® for use in \charminfo. This
function scans the following integer and prints the charm information for the
Unicode character whose index is that integer.

1623 t[\number\charminfo@] = function()

1624 local temp = token.scan_int()

1625 temp = mathfont [temp]

If mathfont contains an entry for index temp, gather the charm information
from that entry. We will print to TEX a string in the same format as the
argument of \charmline. We loop through data_rm, and on each iteration,
we add that entry to a temporary string and then add italic charm information
if it is different.

1626 if temp then

1627 local temp_str = ""
1628 local temp_rm = {}
1629 local temp_it = {}

We have to possibilities depending on the type of the input. For type a charac-
ters, all entries in data_rm and data_it are integers, and we can loop the list
without issue. For type e characters, data_rm and data_it contain 15 two-
entry subtables and three integers, so we have to flatten the list before we use
it.

1630 for k,v in pairs(temp.data_rm) do

Adjust Fonts: Setup Implementation 63

1631 if type(v) == "number" then

1632 temp_rm[k] = v * 1000

1633 temp_it[k] = temp.data_it[k] * 1000

1634 elseif type(v) == "table" then

1635 temp_rm[2xk-1] = v[1] * 1000

1636 temp_rm[2xk] = v[2] * 1000

1637 temp_it[2xk-1] = temp.data_it[k][1] * 1000
1638 temp_it[2*k] = temp.data_it[k][2] * 1000
1639 end

1640 end

Now we loop through temp_rm and add the contents to temp_str.

1641 for k,v in pairs(temp_rm) do

1642 if temp_str \noexpand~= "" then

1643 temp_str = temp_str .. " "

1644 end

1645 temp_str = temp_str .. mathfont.strint(v)

Now check the corresponding charm entry for italic fonts and add that if dif-
ferent from v.

1646 if temp_it[k] \noexpand~= v then
1647 temp_str = temp_str .. "/" ..
1648 mathfont.strint (temp_it[k])
1649 end

1650 end

Now print the result.

1651 tex.print (temp_str)
1652 else

1653 tex.print("none")
1654 end

1655 end

Same thing for \charmtypeQ.
1656 t[\number\charmtype@] = function()

1657 local temp = token.scan_int()
1658 temp = mathfont [temp]

1659 if temp then

1660 tex.print (temp.type)

1661 else

1662 tex.print("none")

1663 end

1664 end}

\charmline 1665 \protected\def\charmline{\luafunction\addtocharm@}

\charmfile

\CharmLine
\CharmFile

\charminfo
\charmtype

64 Implementation Adjust Fonts: Setup

The argument of \charmfile should be a valid filename, and we open it in
\M@Charm. The macro processes each line of the file as a piece of charm infor-
madtion.

1666 \protected\def\charmfile#1{}

1667 \IfFileExists{#1}{%

1668 \begingroup

1669 \endlinechar\m@ne

1670 \immediate\openin\M@Charm{#1}

The macro \next reads a line into #1, feeds it to \charmline, and calls itself
if the file has more lines. TEX adds an extra line to the end of files it reads
(why??), so we check whether the current line is empty before feeding it to
\charmline. (The last line of the file is empty because we set \endlinechar
to —1. Otherwise, the file would have a spurious \par at the end.)

1671 \def\next{%

1672 \read\M@Charm to \@tempa

1673 \ifx\@tempa\@empty

1674 \else

1675 \charmline\@tempa

1676 \fi

1677 \ifeof\M@Charm\else % if file has more lines?
1678 \expandafter\next

1679 \fi}

Call \next, close the file, and end the group.
1680 \next

1681 \immediate\closein\M@Charm

1682 \endgroup}

If the file does not exist, raise an error.

1683 {\M@NoCharmFileError{\detokenize{#1}}}}

Alternative names.

1684 \1let\CharmLine\charmline

1685 \1let\CharmFile\charmfile

Now the macros \charminfo and \charmtype. The structure is a bit different
because we want them to be fully expandable. The macros don’t have an
argument. Instead, they call the appropriate \luafunction, which scans the
next integer and processes it.

1686 \def\charminfo{\luafunction\charminfo@}

1687 \def\charmtype{\luafunction\charmtype@}

The wrapped versions are more user-friendly. For \CharmInfo, we first check
whether mathfont contains an entry with index #1.

\CharmInfo

\CharmType

Adjust Fonts: Setup Implementation 65

1688 \protected\def\CharmInfo#1{/
1689 \MOcheck@int{#1}Y
1690 \ifM@arg@good

1691 \begingroup % \begingroup

1692 \edef\@tempa{\charminfo#1}J,

1693 \def\@tempb{nonel}y

1694 \edef\@tempc{\number#11}/

Now the actual check. If there is no entry, we print a message saying so.
1695 \ifx\@tempa\@tempb

1696 \expandafter\endgroup 7% first branch \endgroup
1697 \expanded{\showtokens{no charm info assigned to
1698 index \@tempcl}}’

If yes, we print the charm information to the terminal.

1699 \else

1700 \expandafter\endgroup 7’ second branch \endgroup
1701 \expanded{\showtokens{index \@tempc\space

1702 has charm info: \@tempal}l}’

1703 \fi

1704 \else
1705 \M@BadIntegerError\CharmInfo{\detokenize{#1}}%
1706 \fi}

Now for \CharmType.

1707 \protected\def\CharmType#1{’
1708 \M@check@int{#13}/,
1709 \ifM@arg@good

1710 \begingroup

1711 \edef\@tempa{\number#1}J

1712 \expandafter\endgroup

1713 \expanded{\showtokens{index \@tempa\space has type
1714 \charmtype\numexpr\@tempa\relax}}/,

1715 \else
1716 \M@BadIntegerError\CharmType{\detokenize{#1}}%
1m17 - \fi}

This concludes the TEX-based portion of font adjustments. The rest of this sec-
tion and the next two sections are the Lua code that adapts a text font for math
mode. First, we create the mathfont table. We use mathfont.encoding slot
in new_type_e to keep track of the encoding slots where we will artificially
add large versions of type e characters during loading.

1718 \directlua{

1719 mathfont = {}

66 Implementation Adjust Fonts: Setup

1720 mathfont.extra_chars 0xFA000
1721 mathfont.encoding_slot = O0xFA010
1722 mathfont.fakel = mathfont.extra_chars + 4
1723 mathfont.faker = mathfont.extra_chars + 5
1724 mathfont.fakell
1725 mathfont.fakerr

mathfont.extra_chars + 6
mathfont.extra_chars + 7

Helper function for use in \charminfo@.

1726 function mathfont.strint (i)
1727 if 1 == (1 // 1) then

1728 return string.format("\@percentchar d", i)
1729 else

1730 return tostring(i)

1731 end

1732 end

Each character whose metrics we want to change will have one of two types:
a for alphabet or e for extensible. We begin with type a. The index is the
base-10 Unicode encoding value of the character that we will later modify. The
data arguments are tables with 4 entries that store sizing information and
information regarding accent placement. We divide the information by 1000
as is standard in TEX.

1733 function mathfont:new_type_a(index, data_rm, data_it)

1734 self[index] = {}

1735 self[index].type = "a"

1736 self[index].data_rm = {}

1737 self[index] .data_it = {}

1738 for i =1, 4, 1 do

1739 self [index] .data_rm[i] = data_rm[i] / 1000
1740 self [index] .data_it[i] = data_it[i] / 1000
1741 end

1742 end

Initializing type e characters is more complicated. The index and data argu-
ments are the same as in the type a case, and we process them similarly. The
entries in mathfont for type e characters contain additional information. The
smash value is a Unicode slot where we store a smashed version of the glyph
with no height, depth, or width, which we need to scale the glyph correctly.
The num_variants attribute is the number of slots in next, which we shorten
to v for notational convenience.

1743 function mathfont:new_type_e(index, data_rm, data_it)

1744 self[index] = {}

1745 self [index].type = "e"

Adjust Fonts: Setup Implementation 67

1746 self [index] .smash = self.encoding_slot
1747 local v = (\string# data_rm - 3) / 2
1748 self[index] .num_variants = v

Check that the user hasn’t exhausted the Unicode table. (Unlikely, but you
never know.)

1749 if self.encoding_slot + v + 1 > Ox10FFFF then

1750 error (\M@bound@ssert)

1751 end

Now make lists that store encoding slots and scale factors. We have the fol-
lowing lists:
e mnext: list of encoding slots
e data_rm: scale factors for upright font shapes
o data_it: scale factors for italic font shapes
Start with making blank lists in the subtable in mathfont.
1752 self [index] .next = {}
1753 self [index] .data_rm = {}
1754 self[index] .data_it = {}

We assemble these lists in a single loop, and they all have v elements. For
next, we append consecutive integers to the list. For the scale factors, we
expect data_rm and data_it to have 2v+ 3 entries, which we consider in pairs.
The ith pair (i.e. entries 2 — 1 and 2i of data_rm or data_it) encodes the
horizontal and vertical scale factors for the ith large variant, and we add those
scale factors as two-element sublists to the new lists on the ith iteration.

1755 for i =1, v, 1 do

1756 self [index] .next[i] = self.encoding_slot + i
1757 self [index] .data_rm[i] = {data_rm[2*i-1] / 1000,
1758 data_rm[2x*i] / 1000}
1759 self [index] .data_it[i] = {data_it[2*i-1] / 1000,
1760 data_it[2*i] / 1000}
1761 end

The final entries of data_rm and data_it contain information about accent
placement and italic correction. We add those values to the subtable as well.

1762 for i = 1, 3, 1 do

1763 self [index] .data_rm[2*v+i] = data_rm[2xv+i] / 1000
1764 self [index] .data_it [2*v+i] = data_it[2*v+i] / 1000
1765 end

Finally, update the encoding_slot.

1766 self.encoding_slot = self.encoding_slot + v + 1
1767 end

68 Implementation Adjust Fonts: Setup

Interim processing. We let the user edit resizing and accent information for the
characters in mathfont. The main editing function is mathfont:add_to_charm,
which incorporates the user’s information into the tables already in mathfont.
It expects a single string of integers, floats, or asterisks separated by spaces or
commas, and it immediately passes the argument to parse_charm, which pro-
cesses it into tables that we incorporate into subtables of mathfont. We begin
with a helper function to parse a (numeric) string. If this function returns a
number, the number is properly scaled (divided by 1000).

1768 function mathfont.parse_num(s)

1769 if s == "x" then

1770 return s

1771 else

1772 local temp = tonumber(s)
1773 if temp then

1774 return temp / 1000
1775 else

1776 error (\M@number@ssert)
1777 end

1778 end

1779 end

Now parse_charm. We begin by setting up tables to store the parsed string
contents. We store the Unicode index value in index.

1780 function mathfont.parse_charm(charm_input)
1781 local index = O

1782 local charm_string = charm_input

1783 local temp_string = ""

Some preprocessing before we parse the string. Specifically, we
1. Get rid of any duplicate spaces
2. Remove any leading or trailing space, if present
3. Remove any spaces around slashes or commas
4. Replace any remaining spaces with commas

After completion of the replacements, we should have a new string with same
numeric/override information as the original charm_input except without any
spaces and all (pairs of) entries separated by commas. Step 1: duplicate spaces.
1784 while string.find(charm_string, "\space\space") do

1785 charm_string = string.gsub(charm_string, "\space\space", " ")
1786 end

Step 2: leading/trailing spaces.

1787 if string.sub(charm_string, 1, 1) == " " then

Adjust Fonts: Setup Implementation 69

1788 charm_string = string.sub(charm_string, 2)
1789 end

1790 if string.sub(charm_string, -1) == " " then

1791 charm_string = string.sub(charm_string, 1, -2)
1792 end

Step 3: space around punctuation. We don’t replace !, or ?_, because the
space in those cases could be separating two charm entries.

1793 charm_string = string.gsub(charm_string, ", ", ",")
1794 charm_string = string.gsub(charm_string, " ,", ",")
1795 charm_string = string.gsub(charm_string, "/ ", "/")

1796 charm_string = string.gsub(charm_string, " /", "/")
Step 4: add commas.
1797 charm_string = string.gsub(charm_string, " ", ",")

Check that charm_string is not empty.

1798 if charm_string == "" then
1799 error (\M@empty@ssert)
1800 end

Check that charm_string contains at least one comma. If it does not, we raise
an error.

1801 if not string.find(charm_string, ",") then

1802 temp_string = charm_input
1803 error (\M@missing@ssert)
1804 end

We're ready to parse the entries. We remove the first entry manually since it
is the index and has different formatting possibilities from the other entries.
1805 local sep = string.find(charm_string, ",")

1806 temp_string = string.sub(charm_string, 1, sep-1)

Now check that the index is a (valid) number. Handle the case of possible
asterisk at the end of temp_string.

1807 local exc

1808 if string.sub(temp_string, -1, -1) == "I" then
1809 index = tonumber(string.sub(temp_string, 1, -2))
1810 exc = 1

1811 elseif string.sub(temp_string, -1, -1) == "?" then
1812 index = tonumber(string.sub(temp_string, 1, -2))
1813 exc = 2

1814 else

1815 index = tonumber (temp_string)

1816 exc = 0
1817 end

70 Implementation Adjust Fonts: Setup

1818 if index then

1819 assert(index == index // 1 and

1820 index >= 0 and

1821 index <= 1114111, \M@index@ssert)
1822 else

1823 error (\M@index@ssert)

1824 end

1825 charm_string = string.sub(charm_string, sep+1)

Create the lists that we will use to store the information from charm_string.
1826 local split_string rm = {}

1827 local split_string it = {3}

We loop through charm_string as long as it contains characters. At each iter-
ation, we store the location of the first comma in sep. We remove the portion
of charm_string preceding the first comma and store it in temp_string, and
we save the remaining portion of charm_string for processing on the next
iteration of the loop. We use i as a dummy variable to track loop iterations.
1828 local i =1

1829 while charm_string do

1830 sep = string.find(charm_string, ",")

1831 if sep then

1832 temp_string = string.sub(charm_string, 1, sep-1)
1833 charm_string = string.sub(charm_string, sep+1)

If the current value of charm_string does not contain a comma, then it must
be the last portion, and we set charm_string to nil.

1834 else

1835 temp_string = charm_string
1836 charm_string = nil

1837 end

First check whether temp_string contains a / character. If yes, we have two
values to process, and if not, we have one.

1838 sep = string.find(temp_string, "/")
1839 if sep then

The information for upright font shapes comes from the first portion of
temp_string.

1840 split_string_rm[i] = mathfont.parse_num(
1841 string.sub(temp_string, 1, sep-1))

Information for italic shapes comes from the latter portion of temp_string.

1842 split_string it[i] = mathfont.parse_num(
1843 string.sub(temp_string, sep+1))

Adjust Fonts: Setup Implementation 71

For the case without a /, the same information goes in both sets of lists.

1844 else

1845 local temp = mathfont.parse_num(temp_string)
1846 split_string rm[i] = temp

1847 split_string_it[i] = temp

1848 end

Increment i, end the loop, and return the charm information.

1849 i=1i+1

1850 end

1851 return {index, exc, split_string_rm, split_string_ it}

1852 end

We feed the user’s charm information directly to mathfont:add_to_charm,
which processes the information and stores it in mathfont. It first calls
parse_charm to parse the input and then modifies mathfont accordingly. Af-
ter being parsed, the user’s input lives in charm_rm and charm_it. The index
is the Unicode value of the character whose information we want to modify,
and the number of entries is the length of charm metrics.

1853 function mathfont:add_to_charm(charm_string)

1854 local temp = self.parse_charm(charm_string)

1855 local index = temp[1]
1856 local force_type = templ[2]
1857 local data_rm = temp[3]
1858 local data_it = temp [4]

1859 local number_of_entries = \string# data_rm

If mathfont does not already have an entry for the Unicode character index,
we create an entry with type a or e depending on the value of force_type.
1860 if not self [index] then

1861 mathfont.info(string.format("Setting up charm entries for
1862 U+\@percentchar X \@percentchar s (index \@percentchar d)",
1863 index, utf8.char(index), index))

1864 if force_type == 1 then

1865 temp = {}

1866 for i =1, 30, 1 do

1867 temp[i] = 1000

1868 end

1869 for i = 31, 33, 1 do

1870 temp[i] = 0

1871 end

1872 self :new_type_e(index, temp, temp)

1873 else

1874 self :new_type_a(index, {0, 0, 0, 0}, {0, 0, 0, O})

72 Implementation Adjust Fonts: Setup

1875 end
1876 else

If mathfont does already have an entry for the character and force_type is
positive, check whether the type of the entry in mathfont matches the value
of force_type. If not, change the type by resetting the entry in mathfont.
First, the case where the character has type a, and we want to change it to
type e. We save the top and bottom accent values to use in setting up the new
charm information.

1877 if (self[index].type == "a") and (force_type == 1) then
1878 local temp_rm = {}

1879 local temp_it = {}

1880 for i =1, 30, 1 do

1881 temp_rm[i] = 1000

1882 temp_it[i] = 1000

1883 end

1884 temp_rm[31] = self[index].data_rm[3]

1885 temp_rm[32] = self[index].data_rm[4]

1886 temp_rm[33] = 0

1887 temp_it[31] = self[index].data_it[3]

1888 temp_it[32] = self[index].data_it[4]

1889 temp_it[33] = 0

1890 self:new_type_e(index, temp_rm, temp_it)

The process to convert to type a is simpler but fairly similar.

1891 elseif (self[index].type == "e") and (force_type == 2) then
1892 self :new_type_a(index, {0, O,

1893 self[index] .data_rm[31],

1894 self [index] .data_rm[32]},

1895 {0, o,

1896 self[index] .data_it[31],

1897 self [index] .data_it[32]})

1898 end

1899 end

Handling the user’s input depends on the type of entry index. The basic pro-
cedure is to first check the number of inputs, and if the user provided enough
entries, we update each entries in the mathfont subtable. For every asterisk,
we leave the corresponding subtable entries unaltered. For type a, we need
four entries besides the index. The first two determine the left and right offset,
and the last two determine accent placement.

1900 if self[index].type == "a" then

1901 local entries_needed = 4

Adjust Fonts: Setup Implementation 73

Check number of entries. If it is too small, we issue an error, and if it is too
large, we print a warning.

1902 if number_of_entries < entries_needed then

1903 error (\M@entries@ssert)

1904 elseif number_of_entries > entries_needed then
1905 texio.write_nl(\MQ@entries@warning)

1906 end

Now update the table entries. The data outputs from parse_charm have been
properly scaled (divided by 1000), so we don’t have to worry about rescaling
in this function.

1907 for i =1, 4, 1 do

1908 if data_rm[i] \noexpand~= "*" then
1909 self [index] .data_rm[i] = data_rm[i]
1910 end

1911 if data_it[i] \noexpand~= "*" then
1912 self[index].data_it[i] = data_it[il
1913 end

1914 end

Now do type e. The number of entries in the data lists must be at least 2 x
tot_variants + 3. We loop through the information and, for each i¢th pair
of charm values, set those numbers to be the horizontal and vertical stretch
information for the ith variant.

1915 elseif self[index].type == "e" then
1916 local tot_variants = self[index].num_variants
1917 local entries_needed = 2 * tot_variants + 3

Again check number of entries.

1918 if number_of_entries < entries_needed then
1919 error (\M@entries@ssert)

1920 elseif number_of_entries > entries_needed then
1921 texio.write_nl(\MQ@entries@warning)

1922 end

Now store the charm information. Again, we scaled the data_rm and data_it
values in parse_charm, so we don’t have to divide by 1000 here.

1923 for i = 1, tot_variants, 1 do

1924 if data_rm[2*i-1] \noexpand~= "x*" then

1925 self [index] .data_rm[i] [1] = data_rm[2*i-1]
1926 end

1927 if data_rm[2*i] \noexpand~= "*" then

1928 self [index] .data_rm[i] [2] = data_rm[2*i]

1929 end

74

1930
1931
1932
1933
1934
1935
1936

Implementation Adjust Fonts: Setup

if data_it[2*i-1] \noexpand~= "*" then
self[index] .data_it[i] [1] = data_it[2*i-1]
end
if data_it[2*i] \noexpand~= "*" then
self[index] .data_it[i] [2] = data_it[2x*i]
end
end

The final entries for type e are the accent and italic correction information.

1937 for i = tot_variants + 1, tot_variants + 3, 1 do
1938 if data_rm[i] \noexpand~= "*" then

1939 self[index] .data_rm[i] = data_rm[i]

1940 end

1941 if data_it[i] \noexpand~= "x" then

1942 self[index] .data_it[i] = data_it[i]

1943 end

1944 end

1945 end

1946 end

We end this section with three general-purpose Lua functions. The first func-
tion, utf 16BE, accepts a nonnegative integer and returns its representation in
UTF-16 big-endian format. Let x be a nonnegative integer at most Ox10FFFF.
Here are the steps to convert x to its big-endian representation:

1.

6.

If x < 0xFFFF, keep x as is. Its representation is a single four-digit
hexadecimal number.

If x > 0x10000, we represent x as two four-digit hexadecimal numbers.
First, subtract 0x10000 from z, and the result y is a number between 0
and OxFFFFF.

Equivalently, we can think of y as a twenty-digit binary number. (Five
hexadecimal digits store the same information as twenty binary digits.)

Take the 10 left-most digits of y (integer divide by 2!° = 1024), and add
them to 0xD800. The result z; is the first hexadecimal number.

Take the 10 right-most digits of y (remainder after dividing by 2!° =
1024), and add them to 0xDC00. The result z; is the second hexadecimal
number.

The big-endian representation of z is the string z; 2.

The purpose of big-endian representation is to encode Unicode characters be-
yond U4+FFFF while still using four-digit hexadecimal numbers.

1947 function mathfont.utf_16BE(integer)

1948

if integer > Ox10FFFF then

Adjust Fonts: Setup Implementation 75

1949 error (\M@bound@ssert)

1950 end

1951 local temp = string.format("\@percentchar X", integer)
1952 if \string# temp <= 4 then

1953 while \string# temp < 4 do

1954 temp = "0" .. temp

1955 end

1956 else

1957 temp = integer - 0x10000

1958 local left_bits = 0xD800 + temp // 1024

1959 local right_bits = 0xDCOO + temp \@percentchar 1024
1960 temp = string.format("\@percentchar X\@percentchar X",
1961 left_bits, right_bits)

1962 end

1963 return temp

1964 end

The glyph_info function does exactly what it sounds like. It accepts a charac-
ter table from a font and returns the width, height, depth, and italic correction
values.

1965 function mathfont.glyph_info(char)

1966 local glyph_width = char.width or O

1967 local glyph_height = char.height or O

1968 local glyph_depth = char.depth or O

1969 local glyph_italic = char.italic or O

1970 return glyph_width, glyph_height, glyph_depth, glyph_italic

1971 end

The smash_glyph function returns a character table that will produce a
smashed version of the Unicode character with value index. The charac-
ter has no width, height, or depth, and we typeset the glyph virtually using a
char command.

1972 function mathfont.smash_glyph(index)

1973 local smash_table = {}

1974 smash_table.width = 0

1975 smash_table.height = 0

1976 smash_table.depth = 0

1977 smash_table.commands = {{"char", index}}
1978 return smash_table

1979 end

An empty function that does nothing. Used later for creating callbacks.

1980 function mathfont.empty(arg)
1981 end

76 Implementation Adjust Fonts: Changes

10 Adjust Fonts: Changes

This section contains the Lua functions that actually modify the font dur-
ing loading. The three functions set_nomath false, math_constants, and
apply_charm_info do most of the heavy lifting, and we set them as the de-
fault behavior for three callbacks. In total, mathfont defines seven different
callbacks and calls them inside the function adjust_font—see table 4 for a
list. Each callback accepts a fontdata object as an argument and returns noth-
ing. You can use these callbacks to change mathfont’s default modifications or
to modify a fontdata object before or after mathfont looks at it. Be aware that
if you add a function to any of the disable nomath, add math constants, or
fix_character_metrics callbacks, LuaTEX will not call the default mathfont
function associated with the callback anymore. In other words, do not mess
with these three callbacks unless you are duplicating the functionality of the
corresponding “Default Behavior” function from table 4.

We begin with the functions that create new character subtables for inclu-
sion in a font object, and we think of these new subtables as modified versions
of characters already present in a given font. The functions for assembling
character tables take three arguments. The index argument is the Unicode
index of the modified character. The charm_data argument is the subtable in
mathfont of charm information that corresponds to index, and the fontdata
argument is a font object. For type a, we change the width of the bounding
box and horizontal glyph positioning, and for type e, we scale the glyph to cre-
ate large variants and change the italic correction. For both types, we modify
accent placement. We add five categories of information into our new char-
acter tables: glyph dimensions, Unicode encoding bits, (possible) virtual font
commands, accent placement dimensions, and math kerning.

The :make_a_table returns a character table for type a characters. We

Table 4: Callbacks Created by mathfont

Callback Name Default Behavior
"mathfont.inspect_font" None
"mathfont.pre_adjust" None
"mathfont.disable_nomath" mathfont.set_nomath_false
"mathfont.add _math_constants" mathfont.math_constants
"mathfont.fix_character_metrics" mathfont.apply_charm_info
"mathfont.post_adjust" None

"mathfont.finishing touches" None

Adjust Fonts: Changes Implementation 7

build up the subtable in the variable a_table, and we eventually return
a_table at the end of the function. We let char be a shorthand for the
subtable at index in fontdata, and slant is the font’s slant parameter. In
upright fonts, slant is generally 0, and in italic fonts, slant is generally posi-
tive.

1982 function mathfont:make_a_table(index, charm_data, fontdata)

1983 local a_table = {}

1984 local char = fontdata.characters[index] or {}

1985 local ex = fontdata.parameters.x_height or O

1986 local slant = (fontdata.parameters.slant or 0)/ 65536

Get the dimensions of the character. We determine the new bounding box
dimensions, horizontal glyph placement, and accent placement in terms of the
character’s original width (plus italic correction).

1987 local width, height, depth, italic = self.glyph_info(char)
Incorporate the italic correction into the character width.

1988 width = width + italic

We extract charm information from charm_data depending on whether the
font is slanted or not.

1989 local left_stretch

1990 local right_stretch

1991 local top_accent

1992 local bot_accent

1993 if slant == 0 then

1994 left_stretch = charm_data.data_rm[1]
1995 right_stretch = charm_data.data_rm[2]
1996 top_accent = charm_data.data_rm[3]
1997 bot_accent = charm_data.data_rm[4]
1998 else

1999 left_stretch = charm data.data_it[1]
2000 right_stretch = charm_data.data_it[2]
2001 top_accent = charm_data.data_it[3]
2002 bot_accent = charm_data.data_it[4]
2003 end

The new width is 1+ 1eft_stretch+right_stretch times the original width.
The horizontal offset that appears in the commands is the left_stretch por-
tion of the new width.

2004 local offset = width * left_stretch

2005 a_table.width = width * (1 + left_stretch + right_stretch)

2006 a_table.height = height

2007 a_table.depth = depth

78 Implementation Adjust Fonts: Changes

2008 a_table.italic = 0

Unicode information attached to the character.

2009 a_table.unicode = index

2010 a_table.tounicode = self.utf_16BE(index)

2011 a_table.index = char.index

If 1eft_stretch is nonzero, we have to turn the character into a virtual char-
acter that typesets the glyph through a char command—that is the only way
to add space on the left of the glyph. (A nonzero right_stretch is easier
because we only have to extend the bounding box.)

2012 if offset \noexpand~= O then

2013 if char.commands then

2014 error (\MQ@virtual@ssert)

2015 else

2016 a_table.commands = {{"right", offsetl}, {"char", index}}
2017 end

2018 end

We calculate accent placement in two steps. The first step is to calculate a
“base” accent position from character and font properties, and then we mod-
ify the base position according to charm information. If the font contains a
top_accent value for the character, we take that value as our base accent po-
sition.

2019 local top_base

2020 1if char.top_accent then

2021 top_base = char.top_accent

If the font does not contain a top_accent value, which for text fonts is the
more likely possibility, we have to create the base accent position ourselves.
We use an approach similar to how TEX positions accents in text mode. If
the character is less than lex tall, the base accent position is halfway across
the character’s bounding box, i.e. any horizontal offset plus half the original
width and half the italic correction. If the character is taller than lex, we
move the base accent position right by the font’s slant value times the char-
acter’s height above lex. The base accent position in this approach does not
change when the user changes the 1left_stretch or right_stretch values in
the charm information.

2022 else

2023 top_base = offset + 0.5 * width

2024 if height > ex then

2025 top_base = top_base + slant * (height - ex)
2026 end

2027 end

Adjust Fonts: Changes Implementation 79

We take a similar approach for the bottom accent. For the base accent position,
we subtract the slant times lex.

2028 local bot_base
2029 1f char.bot_accent then

2030 bot_base = char.bot_accent

2031 else

2032 bot_base = offset + 0.5 * width - slant * ex
2033 end

Now add the accent information to the font.

2034 a_table.top_accent = top_base + top_accent * width
2035 a_table.bot_accent = bot_base + bot_accent * width

TEX shifts superscripts (but not subscripts) right by the italic correction. We
added italic correction to the character’s width. Effectively, that shifts any su-
perscript right relative to the character’s original bounding box, so our changes
to the character result in superscripts that behave the way we expect. How-
ever, the larger bounding box also affects subscripts, which we don’t want, so
we implement a mathkern table that moves any subscripts left by the italic
correction. A mathkern table contains up to four subtables, one for each cor-
ner of the character. Within each subtable, we store pairs of height and kern
values, where height means to apply kern to exponents at that height. In this
case, we have a kern value of minus italic correction in the lower right corner.
2036 a_table.mathkern = {}

2037 a_table.mathkern.top_right = {{height = 0, kern = 0}}

2038 a_table.mathkern.bottom_right = {{height = 0, kern = -italic}}
2039 a_table.mathkern.top_left = {{height = 0, kern = 0}}

2040 a_table.mathkern.bottom_left = {{height = 0, kern = 0}}

2041 return a_table

2042 end

For type e characters, we add several virtual characters to the font, and we use
make _e_commands to produce their commands tables. The commands tables
from this function produces a scaled version of the glyph in slot index. The
pdf command sends code directly to the pdf backend that handles the trans-
formation. The q specification induces a linear transformation of the output,
which in this case is a dilation by h_stretch and v_stretch factors. The Q
command restores the original coordinate system.

2043 function mathfont.make_ e_commands(index, h_stretch, v_stretch)

2044 local c_1 = {"pdf", "origin",

2045 string.format("q \@percentchar s 0 O \@percentchar s 0 0 cm",
2046 h_stretch, v_stretch)}

2047 local c_2 = {"char", index}

80 Implementation Adjust Fonts: Changes

2048 local c_3 = {"pdf", "origin", "Q"}
2049 return {c_1, c_2, c_3}
2050 end

The function for type e characters returns a list of character subtables because
we need to create multiple characters at once. Specifically, the function returns
a new subtable for the original character plus one subtable for each larger
variant. The structure is similar to :make_type_a, except that we scale the
glyph instead of enlarging the bounding box.

2051 function mathfont:make_e_table(index, charm_data, fontdata)
2052 local e_table = {}

2053 local char = fontdata.characters[index] or {}

2054 local ex = fontdata.parameters.x_height or 0

2055 local slant = (fontdata.parameters.slant or 0) / 65536
2056 local width, height, depth, italic = self.glyph_info(char)

Extract the charm information other than scale factors. Here _sc is short for
scale.

2057 local v = charm_data.num_variants
2058 local smash = charm_data.smash
2059 local next = charm_data.next

2060 local top_accent_sc

2061 local bot_accent_sc

2062 local italic_sc

2063 1if slant == 0 then

2064 top_accent_sc = charm_data.data_rm[2*v+1]
2065 bot_accent _sc = charm_data.data_rm[2*v+2]
2066 italic_sc = charm_data.data_rm[2*v+3]

2067 else

2068 top_accent_sc = charm_data.data_it[2*v+1]
2069 bot_accent_sc = charm_data.data_it[2*v+2]
2070 italic_sc = charm_data.data_it[2*v+3]

2071 end

Calculate accent placement for the original glyph, and rescale the italic cor-
rection. We calculate accent placement similarly to type a, and we change the
italic correction afterwards to ensure that accent placement is independent of
italic_scale. Unlike with type a, we do not enlarge the bounding box on
the left side of the character, so the base accent placement does not contain
offset.

2072 local top_base

2073 if char.top_accent then
2074 top_base = char.top_accent

Adjust Fonts: Changes Implementation

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084

else

top_base = 0.5 * width

if height > ex then

top_base = top_base + slant * (height - ex)

end
end
local bot_base = char.bot_accent or (0.5 * width - slant * ex)
local top_accent = top_base + top_accent_sc * (width + italic)
local bot_accent = bot_base + bot_accent_sc * (width + italic)
italic = italic + italic_sc * (width + italic)

Store the Unicode encoding slot for reference later

2085

local tounicode = self.utf_16BE(index)

81

We create a number of entries in e_table equal to one plus the number of
variants we want, which is stored in charm_data.num_variants. We begin
with the first entry. This isn’t a full character subtable because for the small
version of the big operator, we won’t replace the subtable already in fontdata
but rather will add the information here into that subtable.

2086
2087
2088
2089
2090
2091
2092

e_table[1] = {}

e _table[1].italic = italic

e_table[1] .unicode = index

e_table[1] .tounicode = self.utf_16BE(index)
e_table[1] .top_accent = top_accent
e_table[1] .bot_accent = bot_accent
e_table[1] .next = next[1]

Now loop through the large variants, and add each one to e_table. We begin
by extracting the scale factors for the particular large variant.

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

Now

2103
2104
2105

local h_stretch
local v_stretch
for i =2, v+1, 1 do
if slant == 0 then
h_stretch = charm data.data_rm[i-1][1]
v_stretch = charm_data.data_rm[i-1][2]
else
h_stretch = charm data.data_it[i-1][1]
v_stretch = charm_data.data_it[i-1][2]
end

add the entries for the subtable.

e_tablel[i] = {}
e_table[i] .width = width * h_stretch
e_table[i] .height = height * v_stretch

82 Implementation Adjust Fonts
2106 e_table[i] .depth = depth * v_stretch

2107 e_table[i] .italic = italic * h_stretch

Add the Unicode information.

2108 e_table[i] .unicode = index

2109 e_table[i] .tounicode = tounicode

Accent placement.

2110 e_table[i] .top_accent = top_accent * h_stretch

2111 e_table[i] .bot_accent = bot_accent * h_stretch
Add the commands.

2112 e_table[i] .commands =

2113 self .make_e_commands(smash, h_stretch, v_stretch)

. Changes

If we aren’t dealing with the last entry in the table, we need to add the char-
acter’s next field. The next larger variant after the ith character will the the
i + 1st character, and we can extract the index from the charm_information.

2114 if i <= v then

2115 e_table[i] .next = charm_data.next[i]
2116 end

2117 end

2118 return e_table

2119 end

Before we get to the main font-changing functions, we code make_ fake_angle,

which returns a character table for the fake angle brackets. The

idea is to

transform a guillement such that the top 90% of the original bounding box
lines up with the full bounding box (height plus depth) of the left parenthesis

(U+28). We make the fake angle brackets as follows:

1. Take a (single or double) guillemet, and let h be its height. We assume

the guillemet has no depth.

2. Let hy and d,, be the height and depth respectively of the left parenthesis.

3. Our transformation of the guillement will involve a translation and a di-
lation. The translation should lower the basepoint of the guillemet such
that if p is the proportion of the guillemet that is below the baseline after

translation, then (p — 0.10)h = d,, where o is the scale factor,

assuming

we apply the translation before the dilation. (The dilation fixes the cur-
rent position within the virtual character regardless of its relation to the

baseline.) This means ph = d, + 0.1ho.

4. The scale factor for the dilation is

Adjust Fonts: Changes Implementation 83

s0 90% of the guillemet height becomes equal to the size of the paren-
thesis.

The function accepts the index of a guillemet as index and the index of the
smashed guillemet as smash. The slot argument is the encoding slot of the
angle bracket. First, extract relevant character and font dimensions.

2120 function mathfont:make_fake_angle(index, smash, slot, fontdata)
2121 local fab_table = {} % fab for fake angle bracket
2122 local chars = fontdata.characters

2123 local 1lp = chars[40] or {} % lp for left parenthesis

2124 local 1lp_width, 1lp_height, 1lp_depth, 1lp_italic =

2125 self.glyph_info(lp)

2126 local g = chars[index] or {} % g for guillemet

2127 local g_width, g_height, g_depth, g_italic = self.glyph_info(g)
2128 local ex = fontdata.parameters.x_height or O

2129 local slant = (fontdata.parameters.slant or 0) / 65536

We compute the dimensions of our fake angle bracket.

2130 local factor

2131 if g_height \noexpand~= 0 then

2132 factor = (lp_height + 1lp_depth) / (0.9 * g_height)

2133 else

2134 factor = 1

2135 end

2136 local shift = 1lp_depth + 0.1 * factor * g_height

Now populate fab_table.

2137 fab_table.height = 1p_height

2138 fab_table.depth = 1lp_depth

2139 fab_table.width = g_width

2140 fab_table.italic = g_italic

Unicode information.

2141 fab_table.unicode = slot

2142 fab_table.tounicode = self.utf 16BE(slot)
We calculate accent placement information the same way as we have been
doing for type a and type e characters.

2143 if g.top_accent then

2144 fab_table.top_accent = g.top_accent

2145 else

2146 if g_height > ex then

2147 fab_table.top_accent = 0.5 * g_width +

2148 slant * (g_height - ex)

2149 else

84 Implementation Adjust Fonts: Changes

2150 fab_table.top_accent = 0.5 * g_width
2151 end

2152 end

2153 fab_table.bot_accent = g.bot_accent or
2154 (0.5 * g_width - slant * ex)
Commands.

2155 fab_table.commands = {

2156 {"down", shift},

2157 {"pdf", "origin",

2158 string.format("q 1 0 O \@percentchar s 0 O cm", factor)},
2159 {"char", smash},

2160 {"pdf", "origin", "Q"},

2161 {"down", -shiftl}}

2162 return fab_table

2163 end

Similar function that returns the character subtable for a nabla (inverted in-
crement symbol/capital Delta). Again, index is the encoding slot for an in-
crement symbol, and smash is the encoding slot for a smashed version of an
increment.

2164 function mathfont:make_nabla(index, smash, slot, fontdata)

2165 local n_table = {} % n for nabla

2166 local i = fontdata.characters[index] 7% i for increment

2167 local i_width, i_height, i_depth, i_italic = self.glyph_info(i)
Now populate n_table.

2168 n_table.width = i_width

2169 n_table.height = i_height

2170 n_table.depth = i_depth

2171 n_table.italic = i_italic

Unicode information.

2172 n_table.unicode = slot

2173 n_table.tounicode = self.utf_16BE(slot)

Take accent placement values from the increment symbol if they exist.

2174 if i.top_accent then

2175 n_table.bot_accent = i_width - i.top_accent
2176 end

2177 if i.bot_accent then

2178 n_table.top_accent = i_width - i.bot_accent
2179 end

Commands. We reflect the increment glyph horizontally and vertically.

2180 n_table.commands = {

Adjust Fonts: Changes Implementation 85

2181 {"down", -i_height},

2182 {"right", i_width},

2183 {"pdf", "origin", "q -1 0 0 -1 0 0 cm"},
2184 {"char", smash},

2185 {"pdf", "origin", "Q"},

2186 {"right", -i_width},

2187 {"down", i_heightl}}
2188 return n_table
2189 end

We come to the functions that modify the font. We need to accomplish three
tasks, and we define separate functions for each one. First, we set the font’s
nomath entry to false. Second, we incorporate the modifications based on
charm information into the font, i.e. set the font’s character subtables using the
previous functions from this section. Third, we need to add a MathConstants
table. The first task is very easy.

2190 function mathfont.set nomath false(fontdata)

2191 fontdata.nomath = false

2192 fontdata.oldmath = false

2193 end

The second task is more involved. The basic idea is to loop through mathfont,
and whenever we find an entry that is a subtable, we treat it as charm informa-
tion that we use to modify the font object. We begin by storing the character
information from the font in chars for easier reference later.

2194 function mathfont.apply_charm_info(fontdata)

2195 local chars = fontdata.characters or {}

Before we loop through the charm data, we need to make a few changes to the
font, namely add fake angle brackets, add nabla, and trim the bounding box on
the surd. First, we add fake angle brackets. We use mathfont.extra_chars
to track where we put the extra (virtual) characters in the font.

2196 local temp = mathfont.extra_chars

2197 chars[temp] = mathfont.smash_glyph(0x2039) % smashed \lguil
2198 chars[temp+1] = mathfont.smash_glyph(0x203A) % smashed \rguil
2199 chars[temp+2] = mathfont.smash_glyph(OxAB) % smashed \llguil
2200 chars[temp+3] = mathfont.smash_glyph(0xBB) 7% smashed \rrguil
Now add the characters to the font.

2201 chars[mathfont.fakel] = mathfont:make_fake_angle(%\fakelangle
2202 0x2039, temp, O0x27E8, fontdata)

2203 chars[mathfont.faker] = mathfont:make_fake_angle(Y%\fakerangle

2204 0x203A, temp+1, 0x27E9, fontdata)
2205 chars[mathfont.fakell] = mathfont:make_fake_angle(%\fakellangle

86 Implementation Adjust Fonts: Changes

2206 0xAB, temp+2, 0x27EA, fontdata)

2207 chars[mathfont.fakerr] = mathfont:make_fake_angle(%\fakerrangle
2208 0xBB, temp+3, 0x27EB, fontdata)

If the function doesn’t have an increment character, copy a capital Delta if it
exists in the font.

2209 if chars[0x394] and (not chars[0x2206]) then

2210 chars[0x2206] = {}

2211 for k,v in pairs(chars[0x394]) do

2212 chars[0x2206] [k] = v

2213 end

2214 chars[0x2206] .commands = {{"char", 0x394}}
2215 end

Add the nabla (inverted increment/capital Delta) character to the font if it is
missing.

2216 if chars[0x2206] and (not chars[0x2207]) then

2217 chars[temp+8] = mathfont.smash_glyph(0x2206)

2218 chars[0x2207] = mathfont:make_nabla/(
2219 0x2206, temp+8, 0x2207, fontdata)
2220 end

We trim the bounding box on the surd if the user requests it. Some text fonts
extend the bounding box of the surd past the edge of the glyph, and we trim the
edge of the box according to the values of \vsurdfactor and \hsurdfactor.
2221 if chars[0x221A] then

2222 local hsurd = tex.getcount("hsurdfactor") / 1000

2223 local vsurd = tex.getcount("vsurdfactor") / 1000

2224 chars[0x221A] .width = hsurd * chars[0x221A].width

2225 chars[0x221A] .height = vsurd * chars[0x221A] .height

2226 end

Perform the loop. We care about entries info whose index is a number because
those entries are the charm information that determines how we modify the
font object. We ignore charm information for any characters not present in the
font.

2227 for index, info in pairs(mathfont) do

2228 if type(index) == "number" and chars[index] then

One each iteration of the loop, we start by checking the type of the current
entry because the handling of the font object varies based on the character
type. For characters of type a, we insert our character subtable into the font
object.

2229 if info.type == "a" then

2230 chars[index] = mathfont:make_a_table(index,info,fontdata)

Adjust Fonts: Changes Implementation 87

For type e we have to add entries to chars[index] and insert multiple char-
acter subtables into the font, namely one for the smashed version of the base
glyph and others corresponding to the large variants.

2231 elseif info.type == "e" then

2232 local variants_table =

2233 mathfont:make_e_table(index, info, fontdata)
First add entries to the subtable for the base glyph.

2234 for k,v in pairs(variants_table[1]) do

2235 chars[index] [k] = v

2236 end

Smashed version of the glyph.

2237 chars[info.smash] = mathfont.smash_glyph(index)
Now add the large variants.

2238 for i = 1, info.num_variants, 1 do

2239 chars[info.next[i]] = variants_table[i+1]

2240 end

2241 end

2242 end

2243 end

2244 end

The populate_math_constants function is even longer because we need to
add a full MathConstants table to the font object, which has some fifty param-
eters that we need to set. (But the mechanics behind the function are simpler
than apply_charm_info.) We set the font parameters in terms of traditional
TEX \fontdimen parameters. Besides the eight essential parameters found in
all fonts, TEX traditionally uses some fifteen extra parameters to typeset math
formulas. To preserve whatever structure may already exist in the font object,
we do not override any MathConstants that the font already contains. For
brevity, we let MC be a shortcut for the MathConstants table.

2245 function mathfont.math constants(fontdata)

2246 fontdata.MathConstants = fontdata.MathConstants or {}

2247 local MC = fontdata.MathConstants

First evaluate the dimensions from the font object that we will use in determin-
ing other math parameter values. The A_height is the height of the capital
“A” character, and the y_depth is the depth of the lower-case “y” character.
Both will be 0 if the font does not have the correct character.

2248 local size = fontdata.size or O
2249 local ex = fontdata.parameters.x_height or 0O

2250 local em = fontdata.parameters.quad or O

88 Implementation Adjust Fonts: Changes

2251 local A_height = 0
2252 local y_depth = 0
2253 if fontdata.characters[65] then

2254 A_height = fontdata.characters[65].height or 0 % A
2255 end

2256 if fontdata.characters[121] then

2257 y_depth = fontdata.characters[121].depth or 0 % y
2258 end

We begin by setting the axis height and default rule thickness. We need to
start with these parameters because we will use them to calculate other con-
stants. We set both values to 0 initially and then change them.

2259 local axis = 0
2260 local rule_thickness = 0

Set the default rule thickness. If the font already has a value set for the pa-
rameter FractionRuleThickness, we take that as the default rule thickness,
and otherwise we set it to be 1/18 of the font size times the adjustment factor
from \rulethicknessfactor.

2261 if MC.FractionRuleThickness then

2262 rule_thickness = MC.FractionRuleThickness
2263 else

2264 local temp =

2265 tex.getcount ("rulethicknessfactor") / 1000
2266 rule_thickness = (size / 18) * temp

2267 MC.FractionRuleThickness = rule_thickness
2268 end

If the font has an AxisHeight, we take that value as the axis. If the font does
not have AxisHeight already set, we set the axis to be the height of a minus
sign, which has position U+2212 (8722 in decimal). As a fallback, we set the
axis to 0.8ex if the font does not have a character in slot U+2212.

2269 if MC.AxisHeight then

2270 axis = MC.AxisHeight

2271 else

2272 if fontdata.characters[8722] then

2273 axis = fontdata.characters[8722] .height - rule_thickness / 2
2274 else

2275 axis = 0.8 * ex

2276 end

2277 MC.AxisHeight = axis

2278 end

Adjust Fonts: Changes Implementation 89

Apart from the axis height and rule thickness, we can group the traditional
mathematics \fontdimen parameters into three categories: four for large op-
erators, five for fractions, and six for superscripts and subscripts. (OpenType
math does not use the fifth large-operator parameter &3 and the seventh script
parameter o14.) We define variables with the same names as their traditional
references from Appendix G in the TEXBook. 1 have taken the design approach
of using twice the rule height as a standard minimum clearance, and I am as-
suming that script styles are roughly 70% as large as text and display styles.
We begin with the parameters for large operators.

The parameter & is the minimum clearance between the top of a large
operator and the limit above it, and we set it to be twice the rule thickness.
Before ensuring that the bottom of the upper limit is at least & away from
the operator character, TEX attempts to position the baseline of the limit at
&10 distance above the operator character, and we set 19 to be slightly larger
than &. If the upper limit has no decender, TEX will raise its baseline by
&10, and if it has a descener, TEX will position the bottom of the descender
to be & above the operator, which in practice means it will be higher than
limits without descenders. This approach balances the desire for consistency
in whitespace with the desire for consistency in baseline height. Similarly, we
set the minimum clearance &;; for the lower limit to be equal to the attempted
clearance for the upper limit, and the attempted clearance &5 for the lower
limit will be the minimum clearance plus the average of the \scriptfont x-
height and \scriptfont A-height.

2279 local xi_9 = 2 * rule_thickness % top limit min clearance
2280 local xi_10 = xi_9 + 0.35 * y_depth % bottom limit try placement
2281 local xi_11 = xi_10 % top limit min clearance

2282 local xi_12 = xi_10 + 0.35 * (A_height + ex) % bottom attempt

Our general approach for \displaystyle fractions is to place the baseline of
the numerator numerator at a distance above the fraction rule of 1.5 times the
rule height plus descender depth plus a small extra space. The minimum clear-
ance will be the rule height, so we expect the numerator to strictly exceed the
minimum clearance in most situations. Doing so produces consistent baselines
of numerators and gives our value for og, the attempted height of the numera-
tor in \displaystyle fractions. For smaller styles, we use a single rule height
as clearance, so we add 0.5 * rule_thickness + y_depth scaled down by 0.7
to the rule thickness. The minimum clearance for numerator and denominator
are separate OpenType parameters, and we set them later. The extra 0.1 A-
height in the attempted clearance relative to the minimum clearance appears
because we measure attempted clearance from the axis, whereas we measure
minimum clearance from the top or bottom of the fraction rule.

90 Implementation Adjust Fonts: Changes

2283 local sigma_8 = axis + 1.5 * rule_thickness + y_depth +

2284 0.1 * A_height

2285 local sigma_9 = axis + 1.35 * rule_thickness + 0.7 * y_depth +
2286 0.07 * A_height

2287 local sigma_10 = sigma_9

Our approach in the denominators is the same except that we add half the
descender depth to the minimum clearance. This creates extra space below
the fraction rule so that the typographical color above the rule matches that
below the rule when the numerator contains descenders.

2288 local sigma_11 = -axis + 1.5 =* rule_thickness +
2289 0.5 * y_depth + 1.1 * A_height
2290 local sigma_12 = -axis + 1.35 * rule_thickness +

2291 0.35 * y_depth + 0.77 * A_height

For superscripts we think in terms of the top of the superscript. We raise the
baseline of the superscript by the desired height of the superscript top minus
the \scriptfont A-height. Choosing 1.3 x A_height for regular styles and
1.2 % A_height for cramped styles was a design choice that worked well. The
attempted drop for subscripts is one-fifth the A-height or slightly more than
the y-depth, whichever is greater. This way the subscript baseline is slightly
lower than any descenders, and for fonts without descenders, we still clearly
lower the subscript. Setting o5 and 019 was another design choice that worked
well.

2292 local sigma_13 = 0.6 * A_height J attempted superscript height
2203 local sigma_15 = 0.5 * A_height } attempt for cramped scripts
2294 local sigma_16 1.1 * y_depth % attempted subscript lower
2295 if sigma_16 < 0.2 * A_height then

2296 sigma_16 = 0.2 * A_height

2297 end

2298 local sigma_17 = sigma_16 % sigma_16 when superscript
2299 local sigma_18 = 0.5 * A_height J superscript lower for boxed

2300 local sigma_19 = 0.1 * A_height 7% subscript lower for boxed

The MathConstants themselves come from the Unicode equivalents of the tra-
ditional TEX \fontdimen parameters where appropriate. Where not appropri-
ate, I made design choices as indicated. Setting the next three parameters was
purely a design choice.

2301 1if not MC.DisplayOperatorMinHeight then

2302 MC.DisplayOperatorMinHeight = 1.8 * A_height

2303 end

2304 1if not MC.FractionDelimiterDisplayStyleSize then

2305 MC.FractionDelimiterDisplayStyleSize = 2 * size

Adjust Fonts: Changes Implementation 91

2306 end

2307 if not MC.FractionDelimiterSize then

2308 MC.FractionDelimiterSize = 1.3 * size

2309 end

2310 if not MC.FractionDenominatorDisplayStyleShiftDown then
2311 MC.FractionDenominatorDisplayStyleShiftDown = sigma_11
2312 end

2313 1if not MC.FractionDenominatorShiftDown then

2314 MC.FractionDenominatorShiftDown = sigma_12

2315 end

We set the minium clearance for the numerator to be twice the rule height in
\displaystyle and the rule height in other styles. Our approach in setting
the attempted height of the numerator (g and og¢) was to add the minimum
clearance plus the descender depth plus a small extra space, so in general,
we do not expect the numerator to run into the minimum clearance. For the
denominator, we do the same thing except add half the descender depth to the
clearance, which balances the amount of color above and below the fraction
rule and is similar to what we did for the lower limits on big operators when
we set &7 larger than &.

2316 if not MC.FractionDenominatorDisplayStyleGapMin then

2317 MC.FractionDenominatorDisplayStyleGapMin =

2318 rule_thickness + 0.5 * y_depth

2319 end % that MathConstants entry has a long name lol

2320 if not MC.FractionDenominatorGapMin then

2321 MC.FractionDenominatorGapMin =

2322 rule_thickness + 0.35 * y_depth

2323 end

2324 if not MC.FractionNumeratorDisplayStyleShiftUp then
2325 MC.FractionNumeratorDisplayStyleShiftUp = sigma_8
2326 end

2327 if not MC.FractionNumeratorShiftUp then

2328 MC.FractionNumeratorShiftUp = sigma_9

2329 end

2330 if not MC.FractionNumeratorDisplayStyleGapMin then
2331 MC.FractionNumeratorDisplayStyleGapMin = rule_thickness
2332 end

2333 if not MC.FractionNumeratorGapMin then

2334 MC.FractionNumeratorGapMin = rule_thickness

2335 end

The SkewedFractionHorizontalGap and SkewedFractionVerticalGap take
the values that LuaTEXwould set for a traditional TEX font.

92 Implementation Adjust Fonts: Changes

2336 if not MC.SkewedFractionHorizontalGap then

2337 MC.SkewedFractionHorizontalGap = 0.5 * em
2338 end

2339 if not MC.SkewedFractionVerticalGap then
2340 MC.SkewedFractionVerticalGap = ex

2341 end

The UpperLimit and LowerLimit dimensions correspond exactly to traditional
TEX math \fontdimen parameters.

2342 if not MC.UpperLimitBaselineRiseMin then
2343 MC.UpperLimitBaselineRiseMin = xi_11
2344 end

2345 if not MC.UpperLimitGapMin then

2346 MC.UpperLimitGapMin = xi_9

2347 end

2348 if not MC.LowerLimitBaselineDropMin then
2349 MC.LowerLimitBaselineDropMin = xi_12
2350 end

2351 if not MC.LowerLimitGapMin then

2352 MC.LowerLimitGapMin = xi_10

2353 end

Traditional TEX doesn’t have stack objects, but they are meant to be similar
to large operators, so we set the same parameters.

2354 if not MC.StretchStackGapBelowMin then
2355 MC.StretchStackGapBelowMin = xi_10
2356 end

2357 if not MC.StretchStackTopShiftUp then
2358 MC.StretchStackTopShiftUp = xi_11

2359 end

2360 1if not MC.StretchStackGapAboveMin then
2361 MC.StretchStackGapAboveMin = xi_9

2362 end

2363 1f not MC.StretchStackBottomShiftDown then
2364 MC.StretchStackBottomShiftDown = xi_12
2365 end

For the three Overbar parameters, we take the approach that the bar itself
should be as thick as the rule height. The gap will be twice the rule height,
and the extra clearance will be a single rule height.

2366 if not MC.OverbarExtraAscender then

2367 MC.OverbarExtraAscender = rule_thickness
2368 end

2369 if not MC.OverbarRuleThickness then

Adjust Fonts: Changes Implementation 93

2370 MC.OverbarRuleThickness = rule_thickness
2371 end

2372 if not MC.OverbarVerticalGap then

2373 MC.OverbarVerticalGap = 2 * rule_thickness
2374 end

For the radical sign, we take the same approach as with the Overbar parame-
ters. We insert one rule thickness of extra space above the radical symbol and
two rule thickness of extra space under it. For \textstyle and smaller, we
reduce the space to a single rule height.

2375 if not MC.RadicalExtraAscender then

2376 MC.RadicalExtraAscender = rule_thickness
2377 end

2378 if not MC.RadicalRuleThickness then

2379 MC.RadicalRuleThickness = rule_thickness
2380 end

2381 if not MC.RadicalDisplayStyleVerticalGap then
2382 MC.RadicalDisplayStyleVerticalGap = 2 * rule_thickness
2383 end

2384 if not MC.RadicalVerticalGap then

2385 MC.RadicalVerticalGap = rule_thickness

2386 end

The final three Radical parameters aren’t used if we handle degree placement
at the macro level rather than at the font level. We set them to the default
values that LuaTEX uses for traditional tfm fonts.

2387 if not MC.RadicalKernBeforeDegree then
2388 MC.RadicalKernBeforeDegree = (5/18) * em
2389 end

2390 if not MC.RadicalKernAfterDegree then

2391 MC.RadicalKernAfterDegree = (10/18) * em

2392 end

2393 if not MC.RadicalDegreeBottomRaisePercent then
2394 MC.RadicalDegreeBottomRaisePercent = 60

2395 end

The SpaceAfterScript is a design choice. Somewhat arbitrary.

2396 1if not MC.SpaceAfterScript then

2397 MC.SpaceAfterScript = 0.1 * em

2398 end

The Stack parameters come from their traditional \fontdimen analogues.

2399 if not MC.StackBottomDisplayStyleShiftDown then
2400 MC.StackBottomDisplayStyleShiftDown = sigma_11

94 Implementation Adjust Fonts: Changes

2401 end
2402 if not MC.StackBottomShiftDown then
2403 MC.StackBottomShiftDown = sigma_12
2404 end

2405 if not MC.StackTopDisplayStyleShiftUp then
2406 MC.StackTopDisplayStyleShiftUp = sigma_8
2407 end

2408 if not MC.StackTopShiftUp then

2409 MC.StackTopShiftUp = sigma_10

2410 end

Traditionally TEX uses an internal method rather than a parameter to deter-
mine the minimum distance between two boxes in an \atop stack. We set the
minimum distance to be one rule thickness plus the combined minimum clear-
ance for numerators and denominators in fractions. For \displaystyle, that
gives us

rule_thickness+(2«rule_thickness)+(2«rule_thickness+0.5xy_depth)

For smaller styles, we use single rule height values and scale down the y_depth
by 0.7.

2411 if not MC.StackDisplayStyleGapMin then

2412 MC.StackDisplayStyleGapMin =

2413 5 * rule_thickness + 0.5 * y_depth

2414 end

2415 if not MC.StackGapMin then

2416 MC.StackGapMin = 3 * rule_thickness + 0.35 * y_depth
2417 end

With three exceptions, superscript and subscript parameters come from tradi-
tional TEX dimensions.
2418 if not MC.SubscriptShiftDown then

2419 MC.SubscriptShiftDown = sigma_16

2420 end

2421 if not MC.SubscriptBaselineDropMin then
2422 MC.SubscriptBaselineDropMin = sigma_19
2423 end

2424 if not MC.SubscriptShiftDownWithSuperscript then

2425 MC.SubscriptShiftDownWithSuperscript = sigma_17

2426 end

The top of a subscript should be less than half the A-height. This is a some-
what arbitrary design choice.

2427 if not MC.SubscriptTopMax then

Adjust Fonts: Changes Implementation 95

2428 MC.SubscriptTopMax = 0.5 * A_height

2429 end

The minimum gap between superscripts and subscripts will be the height of
the rule. This is less space than TEX traditionally allocates.

2430 if not MC.SubSuperscriptGapMin then

2431 MC.SubSuperscriptGapMin = rule_thickness

2432 end

We set the minimum height for the bottom of a subscript to be the height
of a superscript in cramped styles minus the depth of a possible descender.
Theoretically this is the lowest that any portion of a superscript should ever
be if it contains only text.

2433 if not MC.SuperscriptBottomMin then

2434 MC.SuperscriptBottomMin = sigma_15 - 0.7 * y_depth
2435 end

2436 if not MC.SuperscriptBaselineDropMax then

2437 MC.SuperscriptBaselineDropMax = sigma_18

2438 end

2439 if not MC.SuperscriptShiftUp then

2440 MC.SuperscriptShiftUp = sigma_13

2441 end

2442 if not MC.SuperscriptShiftUpCramped then

2443 MC.SuperscriptShiftUpCramped = sigma_15

2444 end

If the superscript and subscript overlap, we choose the new position such that
the baselines of subscripts are roughly consistent across subformulas. In this
case, the bottom of the superscript box will rise at most to the point such that
a subscript containing only text at 70% of the next-larger style will align with
all similar subscripts. The top of the subscript will have approximate height
—o16 + 0.7 % A_height above the baseline, so to find our desired position for
the bottom of the superscript, we add the minimum clearance of a single rule
thickness. Putting this parameter in terms of the subscript sizing is necessary
because we don’t know how large the descender will be in a given subscript.

2445 if not MC.SuperscriptBottomMaxWithSubscript then

2446 MC.SuperscriptBottomMaxWithSubscript =
2447 -sigma_16 + 0.7 * A_height + rule_thickness
2448 end

As with the Overbar parameters, we set the extra clearance to be the rule
height and the gap to be twice the rule height.

2449 if not MC.UnderbarExtraDescender then
2450 MC.UnderbarExtraDescender = rule_thickness

96 Implementation Adjust Fonts: Changes

2451 end

2452 if not MC.UnderbarRuleThickness then

2453 MC.UnderbarRuleThickness = rule_thickness
2454 end

2455 if not MC.UnderbarVerticalGap then

2456 MC.UnderbarVerticalGap = 2 * rule_thickness
2457 end

No reason not to set MinConnectorOverlap to 0. It doesn’t matter for our
purposes because mathfont doesn’t use extensibles.
2458 if not MC.MinConnectorQOverlap then

2459 MC.MinConnectorOverlap = O
2460 end
2461 end

Time for callbacks! We create seven of them.

2462 luatexbase.create_callback("mathfont.inspect_font",

2463 "simple", mathfont.empty)

2464 luatexbase.create_callback("mathfont.pre_adjust",

2465 "simple", mathfont.empty)

2466 luatexbase.create_callback("mathfont.disable_nomath",

2467 "simple", mathfont.set_nomath_false)

2468 luatexbase.create_callback("mathfont.add_math_constants",
2469 "simple", mathfont.math_constants)

2470 luatexbase.create_callback("mathfont.fix_character_metrics",
2471 "simple", mathfont.apply_charm_info)

2472 luatexbase.create_callback("mathfont.post_adjust",

2473 "simple", mathfont.empty)

2474 luatexbase.create_callback("mathfont.finishing touches",

2475 "simple", mathfont.empty)

The functions mathfont.info and mathfont.get_font_name are used for in-
formational messaging. The first prints a message in the log file, and the
second returns a font name.

2476 function mathfont.info(msg)

2477 texio.write_nl("log", "Package mathfont Info: " .. msg)
2478 end

2479 function mathfont.get_font_name(fontdata)

2480 return fontdata.psname or

2481 fontdata.fullname or
2482 fontdata.name or "<unknown font name>"
2483 end

The adjust_font function is what actually goes in luaotfload.patch_font.
This function calls the six callbacks at appropriate times and writes informa-

Adjust Fonts: Metrics Implementation 97

tional messages in the log file. We adjust the font object when nomath is
false and the font is loaded in base mode. I am assuming that the user will
usually load text-only fonts in node or harf mode, and then mathfont does not
need to (and probably should not) alter that particular font. Unfortunately,
there does not appear to be a better way to notate that we will use a font for
text versus math when declaring it with \DeclareFontSize. I would ideally
set script=math with the rest of the OpenType font features, but luaotfload
ignores script declarations that aren’t built into the font.

2484 function mathfont.adjust_font(fontdata)

2485 luatexbase.call_callback("mathfont.inspect_font", fontdata)

2486 local the_font = mathfont.get_font_name(fontdata)

2487 if fontdata.nomath and

2488 fontdata.properties and

2489 fontdata.properties.mode and

2490 fontdata.properties.mode == "base" then

2491 luatexbase.call_callback("mathfont.pre_adjust",

2492 fontdata)

2493 luatexbase.call_callback("mathfont.disable_nomath",

2494 fontdata)

2495 luatexbase.call_callback("mathfont.add_math_constants",
2496 fontdata)

2497 luatexbase.call_callback("mathfont.fix_character_metrics",
2498 fontdata)

2499 luatexbase.call_callback("mathfont.post_adjust",

2500 fontdata)

2501 end

2502 luatexbase.call_callback("mathfont.finishing touches", fontdata)
2503 end

Finally, add the processing function to luaotfload’s patch_font callback.

2504 luatexbase.add_to_callback("luaotfload.patch_font",
2505 mathfont.adjust_font, "mathfont.adjust_font")

11 Adjust Fonts: Metrics

This section contains the default charm information for the characters that
mathfont adjusts upon loading a font. We start with uppercase Latin letters.
The first set of numbers applies to upright fonts, and the second set applies to
italic/slanted fonts.

2506 mathfont :new_type_a(0x41, {0,0,0,0%}, {50,0,150,03}) YA

2507 mathfont :new_type_a(0x42, {0,0,0,0}, {0,0,0,0}) %B

98 Implementation Adjust Fonts: Metrics

2508 mathfont :new_type_a(0x43, {0,0,50,0%}, {0,0,50,0}) %C
2509 mathfont :new_type_a(0x44, {0,0,0,0%}, {50,0,0,0}) %D
2510 mathfont :new_type_a(0x45, {0,0,0,0}, {50,0,0,0}) HE
2511 mathfont:new_type_a(0x46, {0,0,0,0%}, {50,0,0,03}) WE
2512 mathfont :new_type_a(0x47, {0,0,0,0%}, {0,0,0,0}) %G
2513 mathfont :new_type_a(0x48, {0,0,0,0}, {50,0,0,0}) %H

2514 mathfont :new_type_a(0x49, {0,0,0,0}, {50,0,50,0}) %I
2515 mathfont :new_type_a(0x4A, {0,0,100,0}, {50,0,100,0}) %J

2516 mathfont :new_type_a(0x4B, {0,0,0,0%}, {50,0,0,03}) %K
2517 mathfont :new_type_a(0x4C, {0,0,-200,0}, {50,0,-100,0}) YL
2518 mathfont :new_type_a(0x4D, {0,0,0,0}, {50,0,0,0}) %M
2519 mathfont :new_type_a(0x4E, {0,0,0,0%}, {50,0,0,03}) N
2520 mathfont :new_type_a(0x4F, {0,0,0,0}, {0,0,50,0}) %0
2521 mathfont :new_type_a(0x50, {0,0,0,0%}, {50,0,0,0}) WP
2522 mathfont :new_type_a(0x51, {0,0,0,0}, {0,0,50,0}) %Q
2523 mathfont :new_type_a(0x52, {0,0,0,0}, {50,0,0,0}) %R
2524 mathfont :new_type_a(0x53, {0,0,0,0%}, {0,0,0,0}) hS
2525 mathfont :new_type_a(0x54, {0,0,0,0}, {0,0,0,0}) %T
2526 mathfont :new_type_a(0x55, {0,0,0,0}, {0,0,0,0}) %0
2527 mathfont :new_type_a(0x56, {0,0,0,0%}, {0,0,0,0}) /AU
2528 mathfont :new_type_a(0x57, {0,0,0,0}, {0,0,0,0}) %W
2529 mathfont :new_type_a(0x58, {0,0,0,0%}, {50,0,0,03}) %X
2530 mathfont :new_type_a(0x59, {0,0,0,0%}, {0,0,0,0}) %Y
2531 mathfont :new_type_a(0x5A, {0,0,0,0}, {50,0,0,0}) %hZ
Lowercase Latin letters.

2532 mathfont:new_type_a(0x61, {0,0,0,0}, {0,0,0,0}) %ha
2533 mathfont :new_type_a(0x62, {0,0,0,0%}, {0,0,0,0}) %b
2534 mathfont :new_type_a(0x63, {0,0,0,0}, {0,0,100,0}) %c
2535 mathfont :new_type_a(0x64, {0,0,0,0%}, {0,0,0,0}) %d
2536 mathfont :new_type_a(0x65, {0,0,0,0}, {0,0,100,0}) Y%e
2537 mathfont :new_type_a(0x66, {0,400,300,0}, {150,0,50,0}) %f
2538 mathfont :new_type_a(0x67, {0,0,0,0%}, {0,0,0,0}) he
2539 mathfont :new_type_a(0x68, {0,0,0,0}, {0,0,0,03}) %h
2540 mathfont:new_type_a(0x69, {0,0,0,0}, {0,0,0,0}) hi
2541 mathfont :new_type_a(0x6A, {100,0,0,0}, {200,0,0,0}) %j
2542 mathfont :new_type_a(0x6B, {0,0,0,0}, {0,0,0,0}) hk
2543 mathfont :new_type_a(0x6C, {0,0,0,0%}, {0,0,0,0}) %1
2544 mathfont :new_type_a(0x6D, {0,0,0,0}, {0,0,50,03}) %m
2545 mathfont :new_type_a(0x6E, {0,0,0,0%}, {0,0,50,0}) %n
2546 mathfont :new_type_a(0x6F, {0,0,0,0%}, {0,0,100,0}) %o
2547 mathfont :new_type_a(0x70, {0,0,0,0}, {0,0,100,0}) %p

2548 mathfont :new_type_a(0x71, {0,0,0,0%}, {0,0,0,0}) hq

Adjust Fonts: Metrics

2549 mathfont
2550 mathfont
2551 mathfont
2552 mathfont
2553 mathfont
2554 mathfont
2555 mathfont
2556 mathfont
2557 mathfont
2558 mathfont
2559 mathfont

:new_type_a(0x72,
:new_type_a(0x73,
:new_type_a(0x74,
:new_type_a(0x75,
:new_type_a(0x76,
:new_type_a(0x77,
:new_type_a(0x78,
:new_type_a(0x79,
:new_type_a(0x74,
:new_type_a(0x131,
:new_type_a(0x237,

Uppercase Greek characters.

2560 mathfont
2561 mathfont
2562 mathfont
2563 mathfont
2564 mathfont
2565 mathfont
2566 mathfont
2567 mathfont
2568 mathfont
2569 mathfont
2570 mathfont
2571 mathfont
2572 mathfont
2573 mathfont
2574 mathfont
2575 mathfont
2576 mathfont
2577 mathfont
2578 mathfont
2579 mathfont
2580 mathfont
2581 mathfont
2582 mathfont
2583 mathfont
2584 mathfont

:new_type_a(0x391,
:new_type_a(0x392,
:new_type_a(0x393,
:new_type_a(0x394,
:new_type_a(0x395,
:new_type_a(0x396,
:new_type_a(0x397,
:new_type_a(0x398,
:new_type_a(0x399,
:new_type_a(0x39A,
:new_type_a(0x39B,
:new_type_a(0x39C,
:new_type_a(0x39D,
:new_type_a(0x39E,
:new_type_a(0x39F,
:new_type_a(0x3A0,
:new_type_a(0x3A1,
:new_type_a(0x3A3,
:new_type_a(0x3A4,
:new_type_a(0x3A5,
:new_type_a(0x3A6,
:new_type_a(0x3A7,
:new_type_a(0x348,
:new_type_a(0x3A9,
:new_type_a(0x3F4,

Lowercase Greek characters.

2585 mathfont
2586 mathfont
2587 mathfont

:new_type_a(0x3B1,
:new_type_a(0x3B2,
:new_type_a(0x3B3,

Implementation

{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},

{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0},

{0,0,0,0},
{O,O’O’O},
{OSO’O’O},

{0,0,50,03})
{0,0,0,0})
{0,0,0,0})
{0,0,0,0})
{0,0,50,03})
{0,0,50,03})
{0,0,50,03})
{0,0,50,0})
{0,0,0,0})
{0,0,50,03})

{200,0,50,0})

{50,0,150,0})

{50,0,0,0})
{50,0,0,0}1)

{50,0,150,03})

{50,0,0,03})
{50,0,0,03})
{50,0,0,03})
{0,0,50,03})
{50,0,0,0})
{50,0,0,0})
{0,0,150,0})
{50,0,0,03})
{50,0,0,03})
{0,0,0,0})
{0,0,50,03})
{50,0,0,03})
{50,0,0,0})
{50,0,0,0})
{0,0,0,0})
{0,0,0,0})
{0,0,50,0})
{50,0,0,03})
{0,0,0,0})
{0,0,50,03})
{0,0,50,03})

{0,0,0,01)
{0,0,0,0})
{0,0,0,01)

99

hr
%s
ht
YAl
YA
%W
hx
wy
%hz
%\imath
%»\jmath

/»\Alpha
%\Beta
%\Gamma
%\Delta
%\Epsilon
%\Zeta
%\Eta
%\Theta
%\Iota
%\Kappa
%\Lambda
%\Mu

%\Nu

A\X1i
%\0Omicron
H\Pi
%#\Rho
%\Sigma
%\Tau
%\Upsilon
%\Phi
%\Chi
%\Psi
%\Omega
%\varTheta

%\alpha
%\beta
%\gamma

100

2588 mathfont
2589 mathfont
2590 mathfont
2591 mathfont
2592 mathfont
2593 mathfont
2594 mathfont
2595 mathfont
2596 mathfont
2597 mathfont
2598 mathfont
2599 mathfont
2600 mathfont
2601 mathfont
2602 mathfont
2603 mathfont
2604 mathfont
2605 mathfont
2606 mathfont
2607 mathfont
2608 mathfont
2609 mathfont
2610 mathfont
2611 mathfont
2612 mathfont
2613 mathfont
2614 mathfont

Implementation

:new_type_a(0x3B4,
:new_type_a(0x3B5,
:new_type_a(0x3B6,
:new_type_a(0x3B7,
:new_type_a(0x3B8,
:new_type_a(0x3B9,
:new_type_a(0x3BA,
:new_type_a(0x3BB,
:new_type_a(0x3BC,
:new_type_a(0x3BD,
:new_type_a(0x3BE,
:new_type_a(0x3BF,
:new_type_a(0x3C0,
:new_type_a(0x3C1,
:new_type_a(0x3C3,
:new_type_a(0x3C4,
:new_type_a(0x3C5,
:new_type_a(0x3C6,
:new_type_a(0x3C7,
:new_type_a(0x3C8,
:new_type_a(0x3C9,
:new_type_a(0x3DO,
:new_type_a(0x3F5,
:new_type_a(0x3D1,
:new_type_a(0x3F1,
:new_type_a(0x3C2,
:new_type_a(0x3D5,

{0,0,0,0%},
{0,0,50,0%,
{0,0,50,0%},
{0,0,50,0%,
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},

{0,0,-150,0},

{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,0,0%},
{0,0,150,0%},
{0,0,0,0%},
{0,0,100,0},
{0,0,0,0%},

Adjust Fonts: Metrics

{0,0,0,0})
{0,0,50,03})
{0,0,0,0})
{0,0,0,0})
{0,0,100,0})
{0,0,50,03})
{0,0,0,0})

{0,0,-100,0})

{0,0,100,0})
{0,0,50,03})
{0,0,50,03})
{0,0,50,03})
{0,0,0,0})
{0,0,50,03})
{0,0,0,0})
{0,0,50,03})
{0,0,0,0})
{0,0,0,0})
{50,0,50,0})
{0,0,0,0})
{0,0,50,03})
{0,0,0,0})
{0,0,50,03})
{0,0,100,0})
{0,0,50,03})
{0,0,50,03})
{0,0,100,0})

%\delta
%\epsilon
%\zeta
%\eta
%\theta
%\iota
%\kappa
%\lambda
%\mu

%\nu

%H\xi
%\omicron
»\pi
%\rho
%\sigma
%\tau
%\upsilon
%\phi
%\chi
7\psi
%\omega
%\varbeta

%\varepsilon

%\vartheta
%\varrho
%\varsigma
%\varphi

We add the charm information for delimiters and other resizable characters.
We divide the characters into four categories depending on how we want to
magnify the base glyph to create large variants: delimiters, big operators, ver-
tical characters, and the integral sign. We automate the process by putting
charm information for each category of character into a separate table and
feeding the whole thing to a wrapper around :new_type_e.

2615 local delim_glyphs = {40,

2616 41,
2617 47,
2618 91,
2619 92,
2620 93,
2621 123,
2622 125,
2623 8249,

%h (

b

b/

hoL

% backslash
%1

AR

YA

% \lguil

Adjust Fonts: Metrics Implementation 101

2624 8250, % \rguil

2625 171, % \llguil
2626 187, % \rrguil
2627 mathfont.fakel, % \fakelangle
2628 mathfont.faker, % \fakerangle
2629 mathfont.fakell, % \fakellangle
2630 mathfont.fakerr} % \fakerrangle
2631 local big_op_glyphs = {33, % !

2632 35, % #

2633 36, AR

2634 37, h

2635 38, h &

2636 43, h o+

2637 63, h?

2638 64, % @

2639 167, % \S

2640 215, % \times

2641 247, % \div

2642 8719, % \prod

2643 8721, % \sum

2644 8720, % \coprod
2645 8897, % \bigvee
2646 8896, % \bigwedge
2647 8899, % \bigcup
2648 8898, % \bigcap
2649 10753, % \bigoplus
2650 10754, % \bigotimes
2651 10752, % \bigodot
2652 10757, % \bigsqcap
2653 10758} % \bigsqcup

2654 local vert_glyphs = {124, 8730} % | and \surd
2655 local int_glyphs = {8747, % \intop

2656 8748, % \iint
2657 8749, % \iiint
2658 8750, % \oint
2659 8751, % \oiint
2660 8752} % \oiiint

Each category of type e character will have its own table of charm information
with different magnification values. each table is initially empty.
2661 local delim_scale = {}

2662 local big_op_scale = {}
2663 local vert_scale = {}

102 Implementation Adjust Fonts: Metrics

2664 local int_scale = {}

Populate each table with magnification information. For every type e character
we will create fifteen larger variants in the font. Delimiters stretch mostly
vertically and some horzontally. Vertical characters stretch vertically only, so
their horizontal scale factors are all constant. Big operators stretch the same
in vertical and horizoontal directions.

2665 for i = 1, 15, 1 do
2666 delim_scale[2*i-1] = 1000 + 100*i 9 delimiters - horizontal

2667 delim_scale[2*i] = 1000 + 500%i % delimiters - vertical
2668 vert_scale[2*i-1] = 1000
2669 vert_scale[2+i] = 1000 + 500%*i % vertically scaled chars

2670 big_op_scale[2*i-1] = 1000 + 100*i % big operators - horizontal
2671 big_op_scale[2*i] = 1000 + 100*i % big operators - vertical

The integral sign is different. Visually, we would like an integral symbol that
is larger than the large operators, which means that the integral sign should
have no variants between the font’s value of \Umathoperatorsize and the
desired larger size. Accordingly, I decided it would be easiest to have large
variants of the integral sign jump by large enough scale factors that the small-
est variant larger than the regular size is already significantly larger than the
\Umathoperatorsize setting in populate math_constants. Effectively this
means that the user should take the size of the integral operator as fixed and
should set \Umathoperatorsize to make all other big operators the desired
size.

2672 int_scale[2*i-1] = 1000 + 500%i % integral sign - horizontal
2673 int_scale[2*i] = 1000 + 1500%i % integral sign - vertical
2674 end

We do not modify accent placement or italic corrections.

0

0

0
0
0
0

2675 delim_scale[31]
2676 delim_scale[32]
2677 delim_scale[33]
2678 big_op_scale[31]
2679 big_op_scale[32]
2680 big_op_scale[33]
2681 vert_scale[31]
2682 vert_scale[32] =
2683 vert_scale[33]
2684 int_scale[31]
2685 int_scale [32]
2686 int_scale [33]

nn
o
o O
O O O I

]
(@)

Unicode Hex Values Implementation 103

The wrapper for :new_type_e. We feed it a list of characters to create charm
information for and a table of scaling information.

2687 function mathfont:add extensible variants(char_list, scale_list)
2688 local variants = (\string# scale_list - 3) / 2

2689 for i = 1, \string# char_list, 1 do

2690 self :new_type_e(char_list[i], scale_list, scale_list)
2691 end
2692 end

Add the charm information for the type e characters.

2693 mathfont:add_extensible_variants(delim_glyphs, delim_scale)

2694 mathfont:add_extensible_variants(big_op_glyphs, big_op_scale)

2695 mathfont:add_extensible_variants(vert_glyphs, vert_scale)

2696 mathfont:add_extensible_variants(int_glyphs, int_scale)

Finally, end the call to \directlua and balance the preceeding conditional.

2697 }
2698 \fi % matches previous \ifM@adjust@font

12 Unicode Hex Values

For this section, we don’t want any \endlinechars present when TEX scans
things because we want to eliminate any extra spaces, so before anything else,
we set \endlinechar to —1.

2699 \count@\endlinechar

2700 \endlinechar\m@ne

We have to save \mathchar@type to use after \begin{document} because
KTEX feeds it to \@onlypreamble.

2701 \let\@@mathchar@type\mathchar@type

We define \M@sym@, which is a wrapper around \Umathchardef or \Umathcode
and is mathfont’s version of \DeclareMathSymbol. Before version 3.0, mathfont
used \DeclareMathSymbol, but we create our own version to support Unicode
input. The command first checks whether #1 is a control sequence. If yes, we
define it using \Umathchardef and again using \Umathcode. Otherwise, we
define it once with \Umathcode.

2702 \def\MOsym@#1#2#3#4{

2703 \ifcat\relax\noexpand#l

Check if we're redefining a previously declared math symbol. We put mathchar
in \if@ so we don’t have to check for \mathchar and \Umathchar separately.
We use \string so that the letters in mathchar have catcode 12 when we check

104 Implementation Unicode Hex Values

for their presence in \meaning#1 with \in@. If #1 is undefined, \in®@ will set
\1fin@ to false.

2704 \expandafter\in@\expanded
2705 {{\expandafter\@gobble\string\mathchar}{\meaning#1}}
2706 \ifin@

Now redeclare the symbol.

2707 \Umathchardef#1=+\Q@C@mathcharQtype#2

2708 +\csname sym#3\endcsname+#4\relax

The next two lines implement Unicode input.

2709 \Unathcode #4=+\Q@mathcharQ@type#2

2710 +\csname sym#3\endcsname+#4\relax

If #1 does not code for a math symbol, we check whether it is already defined.
If no, we define it, and if yes, we issue an error. Again, we implement Unicode
input.

2711 \else

2712 \ifx#1\Qundefined

2713 \Umathchardef#1=+\Q@@mathchar@type#2

2714 +\csname sym#3\endcsname+#4\relax

2715 \Umathcode #4=+\Q@@mathcharQ@type#2

2716 +\csname sym#3\endcsname+#4\relax

2717 \else

2718 \@latex@error{Command "\string#1" already defined}\@eha
2719 \fi

2720 \fi

Easy to deal with the case where #1 is a single character.
2721 \else

2722 \Unathcode “#1=+\@@mathchar@type#2+\csname sym#3\endcsname
2723 +#4\relax
2724 \fi}

Similar deal for accents; \M@acc@ is our version of \DeclareMathAccent. Newer
versions of the KTEX kernel define math accents as robust commands, so we
have to incorporate a check for robustness as well. We let \@tempswa be true
or false according to whether we can (re)define the control sequence #1 as a
math accent.

2725 \def \M@acc@#1#2#3#4{

2726 \begingroup

2727 \@tempswatrue
2728 \ifdefined#1
2729 \expandafter\in@\expanded{

2730 {\expandafter\@gobble\string\mathaccent}

\M@upper@set

Unicode Hex Values Implementation 105

2731 {\meaning#1}3}

2732 \ifin@

2733 \else

2734 \begingroup

2735 \escapechar\m@ne

2736 \expandafter

2737 \endgroup

2738 \expandafter\in@\expanded{
2739 {\string\mathaccent}

2740 {\expandafter\meaning\csname\string#1\space\endcsname}}
2741 \ifin@

2742 \else

2743 \@tempswafalse

2744 \fi

2745 \fi

2746 \fi

2747 \expandafter

2748 \endgroup
Now (re)define the command or issue an error.

2749 \if@tempswa
2750 \protected\edef#1{\Umathaccent+\@@mathchar@type#2

2751 +\csname sym#3\endcsname+#4\relax}

2752 \else

2753 \@latex@error{Command "\string#1" already definedl}\@eha
2754 \fi}

Set upper-case Latin characters. We use an \edef for \M@upper@id because
every expansion now will save IXTEX twenty-six expansions later when it evalu-
ates each \DeclareMathSymbol. If the user has enabled Lua font adjustments,
we set the mathcodes to use encoding slots in the Math Alphanumeric Symbols

block.

2755 \def \M@upper@setq{

2756 \edef\M@upper@id{M\@tempc-\MQuppershape}
2757 \M@sym@{A}{\mathalpha}{\M@upper@id}{ A}
2758 \M@sym@{B}{\mathalpha}{\MQupper@id}{ B}
2759 \M@sym@{C}{\mathalpha}{\M@upper@id}{ C}
2760 \M@sym@{D}{\mathalpha}{\M@upper@id}{ D}
2761 \M@sym@{E}{\mathalpha}{\MQupper@id}{ E}
2762 \MOsym@{F}{\mathalpha}{\MQupper@id}{ F}
2763 \M@sym@{G}{\mathalpha}{\M@upper@id}{ G}
2764 \M@sym@{H}{\mathalpha}{\MQupper@id}{ H}
2765 \M@sym@{I}{\mathalpha}{\MQupper@id}{ I}

\M@lower@set

106

2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782

Implementation

\M@sym@{J}{\mathalpha}{\MQupper@id}{"
\M@sym@{K}{\mathalpha}{\MCGupper@id}{"
\M@sym@{L}{\mathalpha}{\M@upper@id}{"
\M@sym@{M}{\mathalpha}{\MOupper@id}{"
\M@sym@{N}{\mathalpha}{\M@Gupper@id}{"
\M@sym@{0}{\mathalpha}{\MQupper@id}{"
\M@sym@{P}{\mathalpha}{\MOupper@id}{"
\M@sym@{Q}{\mathalpha}{\M@upper@id}{"
\M@sym@{R}{\mathalpha}{\MOupper@id}{"
\M@esym@{S}{\mathalpha}{\M@upper@id}{"
\M@sym@{T}{\mathalpha}{\MQupper@id}{"
\M@sym@{U}{\mathalpha}{\MOupper@id}{"
\M@sym@{V}{\mathalpha}{\MOupper@id}{"
\M@sym@{W}{\mathalpha}{\MOupper@id}{"
\M@sym@{X}{\mathalpha}{\MCGupper@id}{"
\M@sym@{Y}{\mathalpha}{\MQ@upper@id}{"
\M@sym@{Z}{\mathalpha}{\MOupper@id}{"

Set lower-case Latin characters.

2783 \def\M@lowerQ@set{
\edef\M@lower@id{M\@tempc-\M@lowershape}

2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806

\M@sym@{a}{\mathalpha}{\M@lower@id}{"
\M@sym@{b}{\mathalpha}{\M@lower@id}{"
\M@sym@{c}{\mathalpha}{\M@lower@id}{"
\M@sym@{d}{\mathalpha}{\M@lower@id}{"
\M@sym@{e}{\mathalpha}{\M@lower@id}{"
\M@sym@{f}{\mathalpha}{\M@lower@id}{"
\M@sym@{g}{\mathalpha}{\M@lower@id}{"
\M@sym@{h}{\mathalpha}{\M@lower@id}{"
\M@sym@{i}{\mathalpha}{\M@lower@id}{"
\M@sym@{j}{\mathalpha}{\M@lower@id}{"
\M@sym@{k}{\mathalpha}{\M@lower@id}{"
\M@sym@{1}{\mathalpha}{\M@lower@id}{"
\M@sym@{m}{\mathalpha}{\M@lower@id}{"
\M@sym@{n}{\mathalpha}{\M@lower@id}{"
\M@sym@{o}{\mathalpha}{\M@lower@id}{"
\M@sym@{p}{\mathalpha}{\M@lower@id}{"
\M@sym@{q}{\mathalpha}{\M@lower@id}{"
\M@sym@{r}{\mathalpha}{\M@lower@id}{"
\M@sym@{s}{\mathalpha}{\MQ@lower@id}{"
\M@sym@{t}{\mathalpha}{\M@lower@id}{"
\M@sym@{u}{\mathalpha}{\M@lower@id}{"
\M@sym@{v}{\mathalpha}{\M@lower@id}{"

J}
K}
L}
M}
N}
0}
P}
Qr
R}
S}
T}
U}
vV}
W}
X}
Y}
Z}}

a}t
b}
c}
d}
e}
£}
g}
h}
i}
jr
k}
1}
m}
n}
o}
pt
qt
T}
s}
t}
u}
v}

Unicode Hex Values

\M@diacritics@set

\M@greekupper@set

Unicode Hex Values Implementation

2807
2808
2809
2810
2811
2812
2813
2814

\M@sym@{w}{\mathalpha}{\M@lower@id}{ w}
\MOsym@{x}{\mathalpha}{\M@lower@id}{ x}
\M@sym@{y}{\mathalpha}{\M@lower@id}{ y}
\M@sym@{z}{\mathalpha}{\MO@lower@id}{ z}
\M@sym@{\imath}{\mathalpha}{\M@lower@id}{"131}
\M@sym@{\ jmath}{\mathalpha}{\M@lower@id}{"237}
\let\hbar\@undefined
\M@sym@{\hbar}{\mathord}{\M@lower@id}{"127}}

Set diacritics.

2815 \def\M@diacritics@set{

2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827

\edef\M@diacritics@id{M\@tempc-\M@diacriticsshape}

\M@acc@{\acute} {\mathalpha}{\M@diacritics@id}{"B4}
\M@acc@{\aacute} {\mathalpha}{\M@diacritics@id}{"2DD}
\Me@acc@{\dot} {\mathalpha}{\M@diacritics@id}{"2D9}
\Meacc@{\ddot} {\mathalpha}{\M@diacritics@id}{"A8}
\M@acc@{\grave} {\mathalpha}{\M@diacritics@id}{"60%}
\M@acc@{\breve} {\mathalpha}{\M@diacritics@id}{"2D8}

\M@acc@{\hat} {\mathalpha}{\M@diacritics@id}{"2C6%}
\M@acc@{\check} {\mathalphal}{\M@diacritics@id}{"2C7}
\M@acc@{\bar} {\mathalpha}{\M@diacritics@id}{"2C9}

\M@acc@{\mathring}{\mathalpha}{\M@diacritics@id}{"2DA}
\M@acc@{\tilde} {\mathalpha}{\M@diacritics@id}{"2DC}}

Set capital Greek characters.

2828 \def\M@greekupper@set{

2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845

\edef\MOgreekupper@id{M\@tempc-\MOgreekuppershape}

\M@sym@{\Alpha} {\mathalphal}{\MOgreekupper@id}{"391}
\M@sym@{\Beta} {\mathalpha}{\M@greekupper@id}{"392}
\M@sym@{\Gamma} {\mathalphal}{\M@greekupper@id}{"393}
\Mesym@{\Delta} {\mathalpha}{\MOgreekupper@id}{"394}
\M@sym@{\Epsilon} {\mathalpha}{\M@greekupper@id}{"395}
\M@sym@{\Zeta} {\mathalpha}{\M@greekupper@id}{"396}
\M@sym@{\Eta} {\mathalpha}{\MO@greekupper@id}{"397%}
\M@sym@{\Theta} {\mathalphal}{\M@greekupper@id}{"398}
\M@sym@{\Iota} {\mathalpha}{\MOgreekupper@id}{"399}
\M@sym@{\Kappa} {\mathalphal}{\MOgreekupper@id}{"39A}
\M@sym@{\Lambda} {\mathalphal}{\M@greekupper@id}{"39B}

\M@sym@{\Mu} {\mathalpha}{\M@greekupper@id}{"39C}
\M@sym@{\Nu} {\mathalpha}{\M@greekupper@id}{"39D}
\M@sym@{\Xi} {\mathalpha}{\Megreekupper@id}{"39E}

\M@sym@{\Omicron} {\mathalphal}{\MOgreekupper@id}{"39F}
\M@sym@{\Pi} {\mathalpha}{\MOgreekupper@id}{"3A0%}

107

\M@greeklower@set

108

2846
2847
2848
2849
2850
2851
2852
2853
2854

Declare \increment and \nabla if they haven’t already been declared in the

\M@sym@{\Rho}
\M@sym@{\Sigma}
\M@sym@{\Tau}
\M@sym@{\Upsilon}
\M@sym@{\Phi}
\M@sym@{\Chi}
\M@sym@{\Psi}
\M@sym@{\Omega}

Implementation Unicode Hex Values

{\mathalpha}{\MOgreekupper@id}{"3A1}
{\mathalpha}{\Megreekupper@id}{"3A3}
{\mathalpha}{\M@greekupper@id}{"3A4}
{\mathalpha}{\MO@greekupper@id}{"3A5%}
{\mathalpha}{\MOgreekupper@id}{"3A6%}
{\mathalpha}{\MOgreekupper@id}{"3A7}
{\mathalpha}{\MOgreekupper@id}{"3A8%}
{\mathalpha}{\M@greekupper@id}{"3A9}

\M@sym@{\varTheta}{\mathalpha}{\M@greekupper@id}{"3F4}

symbols or extsymbols fonts.

2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871

\ifM@adjust@font
\ifM@symbols\else

\M@sym@{\increment}
{\mathord}{\M@greekupper@id}{"2206}

\M@sym@{\nabla}

{\mathord}{\M@greekupper@id}{"2207%}

\fi
\else
\ifM@symbols\else

\M@sym@{\increment}
{\mathord}{\Megreekupper@id}{"2206}

\fi

\ifM@extsymbols\else

\M@sym@{\nabla}

{\mathord}{\MOgreekupper@id}{"2207}

\fi
\fi}

Set minuscule Greek characters.

2872 \def \M@greeklower@set{

2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883

\edef\M@greeklower@id{M\@tempc-\M@greeklowershape}

\M@sym@{\alpha}
\M@sym@{\beta}
\M@sym@{\gamma}
\M@sym@{\delta}
\M@sym@{\epsilon}
\M@sym@{\zeta}
\M@sym@{\eta}
\Mesym@{\theta}
\M@sym@{\iota}
\M@sym@{\kappa}t

{\mathalpha}{\M@greeklower@id}{"3B1}
{\mathalpha}{\M@greeklower@id}{"3B2}
{\mathalpha}{\M@greeklower@id}{"3B3}
{\mathalpha}{\MOgreeklower@id}{"3B4}
{\mathalpha}{\MOgreeklower@id}{"3B5}
{\mathalpha}{\MOgreeklower@id}{"3B6}
{\mathalpha}{\M@greeklower@id}{"3B7}
{\mathalpha}{\M@greeklower@id}{"3B8}
{\mathalpha}{\M@greeklower@id}{"3B9}
{\mathalpha}{\MO@greeklower@id}{"3BA}

\M@agreekupper@set

\M@agreeklower@set

Unicode Hex Values

Implementation

2884 \MOsym@{\lambda} {\mathalpha}{\MOgreeklower@id}{"3BB}
2885 \M@sym@{\mu} {\mathalpha}{\Me@greeklower@id}{"3BC}
2886 \M@sym@{\nu} {\mathalpha}{\MOgreeklower@id}{"3BD}
2887 \M@sym@{\xi} {\mathalpha}{\M@greeklower@id}{"3BE}
2888 \M@sym@{\omicron} {\mathalpha}{\M@greeklower@id}{"3BF}
2889 \M@sym@{\pi} {\mathalpha}{\MOgreeklower@id}{"3CO}
2890 \M@sym@{\rho} {\mathalpha}{\MO@greeklower@id}{"3C1}
2891 \MOsym@{\sigma} {\mathalpha}{\MO@greeklower@id}{"3C3}
2892 \MOsym@{\tau} {\mathalpha}{\MO@greeklower@id}{"3C4}
2893 \MOsym@{\upsilon} {\mathalpha}{\M@greeklower@id}{"3C5}
2894 \M@sym@{\phi} {\mathalpha}{\MOgreeklower@id}{"3C6}
2895 \M@sym@{\chi} {\mathalpha}{\MOgreeklower@id}{"3C7}
2896 \M@sym@{\psi} {\mathalpha}{\MOgreeklower@id}{"3C8}
2897 \M@sym@{\omega} {\mathalpha}{\MOgreeklower@id}{"3C9}
2898 \M@sym@{\varbeta} {\mathalpha}{\M@greeklower@id}{"3D0}

2899
2900
2901
2902
2903
2904

\M@sym@{\varepsilon}{\mathalpha}{\M@greeklower@id}{"3F5}

\M@sym@{\varkappa}t
\M@sym@{\vartheta}
\M@sym@{\varrho}
\M@sym@{\varsigma}
\Mesym@{\varphi}

{\mathalpha}{\MOgreeklower@id}{"3F0}
{\mathalpha}{\MOgreeklower@id}{"3D1}
{\mathalpha}{\MOgreeklower@id}{"3F1}
{\mathalpha}{\M@greeklower@id}{"3C2}
{\mathalpha}{\M@greeklower@id}{"3D5}}

Set capital ancient Greek characters.

2905 \def \MQagreekupper@set{
\edef\M@agreekupper@id{M\@tempc-\MOagreekuppershape}

2906

2907 \M@sym@{\Heta} {\mathalpha}{\M@agreekupper@id}{"370%}
2908 \M@sym@{\Sampi} {\mathalpha}{\M@agreekupper@id}{"3E0}
2909 \M@sym@{\Digamma} {\mathalpha}{\M@agreekupper@id}{"3DC}
2910 \M@sym@{\Koppa} {\mathalpha}{\M@agreekupper@id}{"3D8}
2911 \MOsym@{\Stigma} {\mathalpha}{\M@agreekupper@id}{"3DA}
2912 \MOsym@{\Sho} {\mathalpha}{\M@agreekupper@id}{"3F7}
2913 \MOsym@{\San} {\mathalpha}{\M@agreekupper@id}{"3FA}

2914
2915
2916

\M@sym@{\varSampi} {\mathalphal}{\M@agreekupper@id}{"372}
\M@sym@{\varDigamma}{\mathalpha}{\M@agreekupper@id}{"376%}
\Mesym@{\varKoppa} {\mathalpha}{\M@agreekupper@id}{"3DE}}

Set minuscule ancient Greek characters.

2917 \def \MQagreeklower@set{
\edef\M@agreeklower@id{M\@tempc-\MOagreeklowershape}

2918
2919
2920
2921
2922

\M@sym@{\heta}
\M@sym@{\sampi}
\M@sym@{\digamma}
\M@sym@{\koppa}t

{\mathalpha}{\M@agreeklower@id}{"371}
{\mathalpha}{\M@agreeklower@id}{"3E1}
{\mathalpha}{\M@agreeklower@id}{"3DD}
{\mathalpha}{\M@agreeklower@id}{"3D9}

109

\M@cyrillicupper@s

110

2923
2924
2925
2926
2927
2928

2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962

\M@sym@{\stigma}
\M@sym@{\sho}
\M@sym@{\san}

Implementation

{\mathalpha}{\M@agreeklower@id}{"3DB}
{\mathalpha}{\M@agreeklower@id}{"3F8}
{\mathalpha}{\M@agreeklower@id}{"3FB}

\M@sym@{\varsampi} {\mathalpha}{\M@agreeklower@id}{"373}
\M@sym@{\vardigamma}{\mathalpha}{\M@agreeklower@id}{"377%}
\M@sym@{\varkoppa} {\mathalpha}{\M@agreeklower@id}{"3DF}}
Set capital Cyrillic characters.

2929 \def\MOcyrillicupper@set{
\edef\M@cyrillicupper@id{M\@tempc-\M@cyrillicuppershape}

\M@sym@{\cyrA}
\M@sym@{\cyrBe}
\M@sym@{\cyrVe}
\M@sym@{\cyrGhe}
\M@sym@{\cyrDe}
\M@sym@{\cyrIe}
\M@sym@{\cyrZhe}
\M@sym@{\cyrZe}
\M@sym@{\cyrI}
\M@sym@{\cyrKa}
\M@sym@{\cyrEl}
\M@sym@{\cyrEm}
\M@sym@{\cyrEn}
\M@sym@{\cyr0}
\M@sym@{\cyrPe}
\M@sym@{\cyrEr}
\M@sym@{\cyrEs}
\M@sym@{\cyrTe}
\M@sym@{\cyrU}
\M@sym@{\cyrEf}
\M@sym@{\cyrHa}
\M@sym@{\cyrTse}
\M@sym@{\cyrChe}
\M@sym@{\cyrSha}

{\mathalpha}{\M@cyrillicupper@id}{"410}
{\mathalpha}{\M@cyrillicupper@id}{"411}
{\mathalpha}{\M@cyrillicupper@id}{"412}
{\mathalpha}{\M@cyrillicupper@id}{"413}
{\mathalpha}{\M@cyrillicupper@id}{"414}
{\mathalpha}{\M@cyrillicupper@id}{"415}
{\mathalpha}{\M@cyrillicupper@id}{"416%}
{\mathalpha}{\M@cyrillicupper@id}{"417}
{\mathalpha}{\M@cyrillicupper@id}{"418%}
{\mathalpha}{\M@cyrillicupper@id}{"41A}
{\mathalpha}{\M@cyrillicupper@id}{"41B}
{\mathalpha}{\M@cyrillicupper@id}{"41C}
{\mathalpha}{\M@cyrillicupper@id}{"41D}
{\mathalpha}{\M@cyrillicupper@id}{"41E}
{\mathalpha}{\M@cyrillicupper@id}{"41F}
{\mathalpha}{\M@cyrillicupper@id}{"420%}
{\mathalpha}{\M@cyrillicupper@id}{"421}
{\mathalpha}{\M@cyrillicupper@id}{"422}
{\mathalpha}{\M@cyrillicupper@id}{"423}
{\mathalpha}{\M@cyrillicupper@id}{"424}
{\mathalpha}{\M@cyrillicupper@id}{"425}
{\mathalpha}{\M@cyrillicupper@id}{"426%}
{\mathalpha}{\M@cyrillicupper@id}{"427}
{\mathalpha}{\M@cyrillicupper@id}{"428%}

\M@sym@{\cyrShcha}{\mathalpha}{\M@cyrillicupper@id}{"429}

\M@sym@{\cyrHard}
\M@sym@{\cyrYeru}
\M@sym@{\cyrSoft}

\M@sym@{\cyrE}
\M@sym@{\cyrYu}
\M@sym@{\cyrYa}

\M@sym@{\cyrvarI}

{\mathalpha}{\M@cyrillicupper@id}{"42A}
{\mathalpha}{\M@cyrillicupper@id}{"42B}
{\mathalpha}{\M@cyrillicupper@id}{"42C}
{\mathalpha}{\M@cyrillicupper@id}{"42D}
{\mathalpha}{\M@cyrillicupper@id}{"42E}
{\mathalpha}{\M@cyrillicupper@id}{"42F}
{\mathalpha}{\M@cyrillicupper@id}{"419}}

Set minuscule Cyrillic characters.

Unicode Hex Values

Unicode Hex Values

Implementation

\M@cyrilliclower@s 2963 \def\M@cyrilliclower@setq{
\edef\M@cyrilliclower@id{M\@tempc-\M@cyrilliclowershape}

\M@hebrew@set

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996

\M@sym@{\cyra}
\M@sym@{\cyrbe}
\M@sym@{\cyrve}
\M@sym@{\cyrghe}
\M@sym@{\cyrde}
\M@sym@{\cyrie}
\M@sym@{\cyrzhe}
\M@sym@{\cyrze}
\M@sym@{\cyri}
\M@sym@{\cyrka}
\M@sym@{\cyrel}
\M@sym@{\cyrem}
\M@sym@{\cyren}
\M@sym@{\cyro}
\M@sym@{\cyrpe}
\M@sym@{\cyrer}
\M@sym@{\cyres}
\M@sym@{\cyrte}
\M@sym@{\cyru}
\M@sym@{\cyref}
\M@sym@{\cyrha}
\M@sym@{\cyrtse}
\M@sym@{\cyrche}
\M@sym@{\cyrsha}

{\mathalpha}{\M@cyrilliclower@id}{"430%}
{\mathalpha}{\M@cyrilliclower@id}{"431}
{\mathalpha}{\M@cyrilliclower@id}{"432}
{\mathalpha}{\M@cyrilliclower@id}{"433}
{\mathalpha}{\M@cyrilliclower@id}{"434}
{\mathalpha}{\M@cyrilliclower@id}{"435%}
{\mathalpha}{\M@cyrilliclower@id}{"436}
{\mathalpha}{\M@cyrilliclower@id}{"437}
{\mathalpha}{\M@cyrilliclower@id}{"438%}
{\mathalpha}{\M@cyrilliclower@id}{"43A}
{\mathalpha}{\M@cyrilliclower@id}{"43B}
{\mathalpha}{\M@cyrilliclower@id}{"43C}
{\mathalpha}{\M@cyrilliclower@id}{"43D}
{\mathalpha}{\M@cyrilliclower@id}{"43E}
{\mathalpha}{\M@cyrilliclower@id}{"43F}
{\mathalpha}{\M@cyrilliclower@id}{"440}
{\mathalpha}{\M@cyrilliclower@id}{"441}
{\mathalpha}{\M@cyrilliclower@id}{"442}
{\mathalpha}{\M@cyrilliclower@id}{"443%}
{\mathalpha}{\M@cyrilliclower@id}{"444}
{\mathalpha}{\M@cyrilliclower@id}{"445%}
{\mathalpha}{\M@cyrilliclower@id}{"446%}
{\mathalpha}{\M@cyrilliclower@id}{"447}
{\mathalpha}{\M@cyrilliclower@id}{"448%}

\M@sym@{\cyrshcha}{\mathalpha}{\MQ@cyrilliclower@id}{"449%}

\M@sym@{\cyrhard}
\M@sym@{\cyryeru}
\M@sym@{\cyrsoft}

\M@sym@{\cyre}
\M@sym@{\cyryu}
\M@sym@{\cyrya}

\M@sym@{\cyrvari}

Set Hebrew characters.

2997 \def \MOhebrew@setq{
\edef\M@hebrew@id{M\@tempc-\M@hebrewshape}

2998
2999
3000
3001
3002
3003

\M@sym@{\aleph}
\M@sym@{\beth}
\M@sym@{\gimel}
\Mesym@{\daleth}
\M@sym@{\he}

{\mathalpha}{\M@cyrilliclower@id}{"44A}
{\mathalpha}{\M@cyrilliclower@id}{"44B}
{\mathalpha}{\M@cyrilliclower@id}{"44C}
{\mathalpha}{\M@cyrilliclower@id}{"44D}
{\mathalpha}{\M@cyrilliclower@id}{"44E}
{\mathalpha}{\M@cyrilliclower@id}{"44F}
{\mathalpha}{\M@cyrilliclower@id}{"439}}

{\mathalpha}{\M@hebrew@id}{"5D0}
{\mathalpha}{\MOhebrew@id}{"5D1}
{\mathalpha}{\MGhebrew@id}{"5D2}
{\mathalpha}{\MGhebrew@id}{"5D3}
{\mathalpha}{\MGhebrew@id}{"5D4}

111

\M@digits@set

112 Implementation Unicode Hex Values
3004 \MOsym@{\vav} {\mathalpha}{\MGhebrew@id}{"5D5}
3005 \M@sym@{\zayin} {\mathalpha}{\M@hebrew@id}{"5D6}
3006 \MOsym@{\het} {\mathalpha}{\MGhebrew@id}{"5D7}
3007 \M@sym@{\tet} {\mathalpha}{\M@hebrew@id}{"5D8}
3008 \MOsym@{\yod} {\mathalpha}{\MGhebrew@id}{"5D9}
3009 \M@sym@{\kaf} {\mathalpha}{\M@hebrew@id}{"5DB}
3010 \M@sym@{\lamed} {\mathalpha}{\M@hebrew@id}{"5DC}
3011 \M@sym@{\mem} {\mathalpha}{\M@hebrew@id}{"5DE}
3012 \M@sym@{\nun} {\mathalpha}{\MGhebrew@id}{"5E0}
3013 \MOsym@{\samekh} {\mathalpha}{\MGhebrew@id}{"5E1}
3014 \M@sym@{\ayin} {\mathalpha}{\M@hebrew@id}{"5E2}
3015 \MOsym@{\pe} {\mathalpha}{\MGhebrew@id}{"5E4}
3016 \M@sym@{\tsadi} {\mathalpha}{\M@hebrew@id}{"5E6}
3017 \M@sym@{\qof} {\mathalpha}{\MGhebrew@id}{"5E7}
3018 \M@sym@{\resh} {\mathalpha}{\M@hebrew@id}{"5E8}
3019 \M@sym@{\shin} {\mathalpha}{\MGhebrew@id}{"5E9}
3020 \M@sym@{\tav} {\mathalpha}{\MGhebrew@id}{"5EA}
3021 \M@sym@{\varkaf} {\mathalpha}{\M@hebrew@id}{"5DA}
3022 \MOsym@{\varmem} {\mathalpha}{\MGhebrew@idl}{"5DD}
3023 \M@sym@{\varnun} {\mathalpha}{\M@hebrew@id}{"5DF}
3024 \M@sym@{\varpe} {\mathalpha}{\MGhebrew@idl}{"5E3}

3025

3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037

\M@sym@{\vartsadi}{\mathalpha}{\M@hebrew@id}{"5E5}}
Set digits.

3026 \def\M@digits@set{
\edef\M@digits@id{M\@tempc-\M@digitsshape}
\M@sym@{0}{\mathalpha}{\M@digits@id}{ 0%}
\M@sym@{1}{\mathalpha}{\M@digits@id}{ 1}
\M@sym@{2}{\mathalpha}{\M@digits@id}{ 2}
\M@sym@{3}{\mathalpha}{\M@digits@id}{ 3}
\M@sym@{4}{\mathalpha}{\M@digits@id}{ 4}
\M@sym@{5}{\mathalpha}{\M@digits@id}{ 5}
\M@sym@{6}{\mathalpha}{\M@digits@id}{ 6%}
\M@sym@{7}{\mathalpha}{\M0digits@id}{ 72}
\M@sym@{8}{\mathalpha}{\M@digits@id}{ 8%}
\M@sym@{9}{\mathalpha}{\M@digits@id}{ 9}}

Set new operator font. We change the \fam to the user’s requested symbol
font for math operators.

3038 \def\MQoperator@set{

3039 \edef\operator@font{\mathgroup

3040 \csname symM\@tempc-\MQoperatorshape\endcsname}}

\M@operator@set
\operator@font

Set, delimiters.

Unicode Hex Values Implementation 113

3041 \ifM@adjust@font
\M@delimiters@set 3042 \def\M@delimiters@set{
3043 \edef\M@delimiters@id{M\@tempc-\M@delimitersshape}

3044 \edef\M@delimiters@num{

3045 \csname sym\M@delimiters@id\endcsname}

3046 \M@sym@{ (} {\mathopen} {\M@delimiters@id}{"28}
3047 \M@sym@{) } {\mathclose}{\M@delimiters@id}{"29}
3048 \Mesyme{ [} {\mathopen} {\M@delimiters@id}{"5B}
3049 \M@sym@{]} {\mathclose}{\M@delimiters@id}{"5D}

3050 \M@sym@{\leftbrace} {\mathopen} {\M@delimiters@id}{"7B}
3051 \M@sym@{\rightbrace}{\mathclose}{\M@delimiters@id}{"7D}

Set \Udelcodes for delimiters that come from individual characters.

3052 \Udelcode"28+\M@delimiters@num+"28\relax % (

3053 \Udelcode"29+\M@delimiters@num+"29\relax %)

3054 \Udelcode"2F+\M@delimiters@num+"2F\relax % /

3055 \Udelcode"5B+\M@delimiters@num+"5B\relax % [

3056 \Udelcode"5D+\M@delimiters@num+"5D\relax %]

3057 \Udelcode"7C+\M@delimiters@num+"7C\relax % |

3058 \ifM@symbols\else

3059 \M@sym@{ | }{\mathord}{\M@delimiters@id}{"7C}
3060 \fi

3061 \let\vert=|

For the delimiters that come from control sequences, we use \edef and

\Udelimiter.

3062 \protected\def\backslash{

3063 \ifmmode\mathbackslash\else\textbackslash\fi}
3064 \protected\edef\mathbackslash{

3065 \Udelimiter+2+\M@delimiters@num+92\relax}
3066 \protected\edef\lbrace{

3067 \Udelimiter+4+\M@delimiters@num+123\relax}
3068 \protected\edef\rbrace{

3069 \Udelimiter+5+\M@delimiters@num+125\relax}
3070 \protected\edef\1lguil{

3071 \Udelimiter+4+\M@delimiters@num+8249\relax}
3072 \protected\edef\rguil{

3073 \Udelimiter+5+\M@delimiters@um+8250\relax}
3074 \protected\edef\11lguil{

3075 \Udelimiter+4+\M@delimiters@num+171\relax}
3076 \protected\edef\rrguil{

3077 \Udelimiter+5+\M@delimiters@num+187\relax}

3078 \protected\edef\fakelangle{

\M@delimiters@set

\M@radical@set

\surd

114 Implementation Unicode Hex Values

3079 \Udelimiter+4+\M@delimiters@num

3080 +\directlua{tex.print (mathfont.fakel) }\relax}
3081 \protected\edef\fakerangle{

3082 \Udelimiter+5+\M@delimiters@num

3083 +\directlua{tex.print (mathfont.faker)}\relax}
3084 \protected\edef\fakellangleq{

3085 \Udelimiter+4+\M@delimiters@num

3086 +\directlua{tex.print (mathfont.fakell)}\relax}
3087 \protected\edef\fakerrangleq{

3088 \Udelimiter+5+\M@delimiters@num

3089 +\directluaf{tex.print (mathfont.fakerr)}\relax}}
3090 \else

3091 \def\M@delimiters@setq{
3092 \edef\M@delimiters@id{M\@tempc-\MQ@delimitersshape}

3093 \Mesyme{ (} {\mathopen} {\M@delimiters@id}{"28}
3004 \M@sym@{) } {\mathclose}{\M@delimiters@id}{"29}
3095 \Mesyme{ [} {\mathopen} {\M@delimiters@id}{"5B}
3096 \M@syme{] } {\mathclose}{\M@delimiters@id}{"5D}
3097 \M@sym@{\1lguil} {\mathopen} {\M@delimiters@id}{"2039}
3098 \M@sym@{\rguil} {\mathclose}{\M@delimiters@id}{"203A}

3099 \M@sym@{\1llguil} {\mathopen} {\M@delimiters@id}{"AB}

3100 \M@sym@{\rrguil} {\mathclose}{\M@delimiters@id}{"BB}

3101 \M@sym@{\leftbrace} {\mathopen} {\M@delimiters@id}{"7B}

3102 \M@sym@{\rightbrace}{\mathclose}{\M@delimiters@id}{"7D}}

3103 \fi

Radicals. When we define \surd to typeset U+221A, \MOsym@ sets the
\Umathcode of y to be a surd symbol. However, if we modified the font,
we know the surd character in the requested font can successfully make a
square root, expression, so we override the definition from \M@sym@ to turn 4
to an active character in math mode.

3104 \ifM@adjust@font

3105 \def\M@radical@setq{

3106 \edef\MOradical@id{M\Q@tempc-\M@radicalshape}

3107 \let\surd\@undefined

3108 \M@sym@{\surd}{\mathord}{\M@radical@id}{"221A}

Now set the \mathcode of y to 8000. This is probably me being paranoid, but
I wanted to stick to ascii characters in the sty file. We use \directlua to print
the surd character instead. This also has the advantage of printing an active
character, so we don’t have to scan any tokens.

3109 \expandafter\protected\expandafter\def\directlua{
3110 tex.cprint (13, utf8.char(0x221A))}

\@sqrtsOgn

\reot

\sqrtsign

\M@radical@set

\surd

\M@bigops@set

Unicode Hex Values Implementation

3111
3112
3113
3114

{\ifmmode\expandafter\sqrt\else\Uchar"221A\relax\fi}
\mathcode"221A="8000\relax

\edef\@sqrts@gn##1{\Uradical+\number
\csname sym\M@radical@id\endcsname+"221A\relax{##1}}

115

We redefine \r@@t, which typesets the degree symbol on an nth root. We set
the placement so that right side of the box containing the degree lies 60% of
the horizontal distance across the surd symbol, and the baseline of the degree
symbol is 60% of the vertical distance up the surd.

3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132

3133 \else

\def\ro@ot##1##2{

\setbox\z@\hbox{$\m@th##1\sqrtsign{##2}$}
\setbox\surdbox\hbox{$\m@th##1\@sqrts@gn{
\hbox{\vphantom{$\m@th##1##2$}}}$}
\dimen@\ht\surdbox
\advance\dimen@\dp\surdbox
\dimen®=0.6\dimen®@
\advance\dimen@-\dp\surdbox
\ifdim\wd\rootbox<0.6\wd\surdbox
\kern0.6\wd\surdbox
\else
\kern\wd\rootbox
\fi
\raise\dimen@\hbox{\1llap{\copy\rootbox}}
\kern-0.6\wd\surdbox
\box\z@}

\protected\def\sqrtsign##1{

\@sqrts@gn{\mkern\radicandoffset##1}}}

3134 \def\M@radical®@set{

3135
3136
3137
3138 \fi

\edef\M@radical@id{M\@tempc-\M@radicalshape}
\let\surd\@undefined
\M@sym@{\surd}{\mathord}{\M@radical@id}{"221A}}

Big operators.

3139 \def\M@bigops@set{

3140 \edef\M@bigops@id{M\@tempc-\M@bigopsshape}

3141 \let\sum\@undefined

3142 \let\prod\@undefined

3143 \MOsym@{\sum} {\mathop}{\M@bigops@id}{"2211}
3144 \M@sym@{\prod} {\mathop}{\M@bigops@id}{"220F}
3145 \M@sym@{\intop}{\mathop}{\MObigops@id}{"222B}}

Extended big operators.

116 Implementation Unicode Hex Values

\M@extbigops@set 3146 \def\MOextbigops@set{
3147 \edef\M@extbigops@id{M\@tempc-\M@extbigopsshape}
3148 \let\coprod\Qundefined
3149 \let\bigvee\Qundefined
3150 \let\bigwedge\@undefined
3151 \let\bigcup\@undefined
3152 \let\bigcap\Qundefined
3153 \let\bigoplus\Qundefined
3154 \let\bigotimes\Qundefined
3155 \let\bigodot\@undefined
3156 \let\bigsqcup\Qundefined
3157 \M@sym@{\coprod} {\mathop}{\M@extbigops@id}{"2210}
3158 \M@sym@{\bigvee} {\mathop}{\M@extbigops@id}{"22C1}
3159 \M@sym@{\bigwedge} {\mathop}{\M@extbigops@id}{"22C0}
3160 \M@sym@{\bigcup} {\mathop}{\M@extbigops@id}{"22C3}
3161 \M@sym@{\bigcap} {\mathop}{\M@extbigops@id}{"22C2}
3162 \M@sym@{\iintop} {\mathop}{\M@extbigops@id}{"222C}
3163 \M@sym@{\iiintop} {\mathop}{\M@extbigops@id}{"222D}
3164 \MOsym@{\ointop} {\mathop}{\M@extbigops@id}{"222E}
3165 \M@sym@{\oiintop} {\mathop}{\M@extbigops@id}{"222F}
3166 \M@sym@{\oiiintop} {\mathop}{\M@extbigops@id}{"2230}
3167 \M@sym@{\bigoplus} {\mathop}{\M@extbigops@id}{"2A01}
3168 \MOsym@{\bigotimes}{\mathop}{\MQextbigops@id}{"2402}
3169 \M@sym@{\bigodot} {\mathop}{\M@extbigops@id}{"2A00}
3170 \M@sym@{\bigsqcap} {\mathop}{\M@extbigops@id}{"2A05}
3171 \M@sym@{\bigsqcup} {\mathop}{\M@extbigops@id}{"2A063}
3172 \protected\def\iint{\iintop\nolimits}
3173 \protected\def\iiint{\iiintop\nolimits}
3174 \protected\def\oint{\ointop\nolimits}
3175 \protected\def\oiint{\oiintop\nolimits}
3176 \protected\def\oiiint{\oiiintop\nolimits}}

Set symbols.

\M@symbols@set 3177 \def\M@symbols@set{
3178 \edef\MOsymbols@id{M\@tempc-\M@symbolsshape}
3179 \let\colon\@undefined
3180 \let\mathellipsis\@undefined

Before we start declaring symbols, specifically minus or equals signs, we have
to address a minor clash with amsmath. That package defines \relbar and
\Relbar as essentially a minus and equals sign respectively. However, those
two control sequences are for making arrows, so they should come from the
arrows font, not the symbols font. If the user already called \mathfont with

Unicode Hex Values Implementation 117

the arrows keyword, we do nothing because \M@arrows@set defines \relbar
and \Relbar correctly. If not, we make these two control sequences be the
current minus and equals sign (before the font changes in \M@symbols@set)
because that’s as good a choice as any, and we prevent amsmath from chang-
ing them to the symbols font. Users or package authors who want to modify
\relbar or \Relbar should change \@relbar or \@Relbar respectively.

3181 \ifM@arrows\else

3182 \Umathcharnumdef\@relbar=\Umathcodenum™\-
3183 \Umathcharnumdef\@Relbar=\Umathcodenum™ \=
3184 \protected\def\relbar{\mathrel

3185 {\mathpalette\mathsm@sh\@relbar}}

3186 \protected\def\Relbar{\@Relbar}
We redefine stuff if amsmath gets loaded after mathfont.
3187 \@ifpackageloaded{amsmath}

3188 {\relax}{

3189 \let\@@relbar\relbar

3190 \let\@@Relbar\Relbar

3191 \AtBeginDocument{\ifM@arrows\else
3192 \@ifpackageloaded{amsmath}{
3193 \let\relbar\@@relbar

3194 \let\Relbar\@GRelbar}

3195 {\relax}

3196 \fi}}

3197 \fi

If the user enabled Lua-based font asjustments, we declare a few more big
operators for fun. For brevity, we put the adjust@font conditional here rather
than redefining \M@symbols@set. Apparently, newtx defines \bigtimes, so in
case that package gets loaded ahead of mathfont, we should make sure to clear
that definition. It’s important to declare the big operators before the normal
versions of these characters so that \M@sym@ defines the correct \Umathcode
for them.

3198 \ifM@adjust@font

3199 \let\bigtimes\Q@undefined

3200 \M@sym@{\bigat} {\mathop}{\M@symbols@id}{"40}
3201 \M@sym@{\bighash} {\mathop}{\M@symbols@id}{"23}
3202 \M@sym@{\bigdollar} {\mathop}{\M@symbols@id}{"24}
3203 \M@sym@{\bigpercent}{\mathop}{\M@symbols@id}{"25}
3204 \M@sym@{\bigand} {\mathop}{\M@symbols@id}{"26}
3205 \M@sym@{\bigplus} {\mathop}{\M@symbols@id}{"2B}
3206 \M@sym@{\bigp} {\mathop}{\M@symbols@id}{"21}
3207 \M@sym@{\bigq} {\mathop}{\M@symbols@id}{"3F}

118 Implementation Unicode Hex Values

3208 \M@sym@{\bigS} {\mathop}{\M@symbols@id}{"A7}

3209 \M@sym@{\bigtimes} {\mathop}{\M@symbols@id}{"D7}

3210 \M@sym@{\bigdiv} {\mathop}{\M@symbols@id}{"F7}

Define \nabla here if we’re adjusting the font. If we are not doing that, this
declaration goes in extsymbols.

3211 \M@sym@{\nabla} {\mathord}{\M@symbols@id}{"2207%}

3212 \fi

The rest of the symbols.

3213 \M@syme@{.} {\mathord} {\M@symbols@id}{"2E}
3214 \M@syme{@} {\mathord} {\M@symbols@id}{"40}
3215 \M@sym@{'} {\mathord} {\M@symbols@id}{"2032}
3216 \M@sym@{\prime} {\mathord} {\M@symbols@id}{"2032}
3217 \M@sym@{"} {\mathord} {\M@symbols@id}{"2033}
3218 \M@sym@{\mathhash} {\mathord} {\M@symbols@id}{"23}
3219 \MOsym@{\mathdollar} {\mathord} {\M@symbols@id}{"24}
3220 \M@sym@{\mathpercent} {\mathord} {\M@symbols@id}{"25}
3221 \MOsym@{\mathand} {\mathord} {\M@symbols@id}{"26%}

3222 \M@sym@{\mathparagraph}{\mathord}
3223 \MOsym@{\mathsection} {\mathord}
3224 \let\mathsterling\@undefined

3225 \M@sym@{\mathsterling} {\mathord}

{\M@symbols@id}{"B6%}
{\M@symbols@id}{"A7}

{\M@symbols@id}{"A3}

3226 \MOsym@{\neg} {\mathord} {\M@symbols@id}{"AC}
3227 \MOsym@{\mid} {\mathrel} {\M@symbols@id}{"7C}
3228 \M@sym@{|} {\mathord} {\M@symbols@id}{"7C}
3229 \M@sym@{\infty} {\mathord} {\M@symbols@id}{"221E}
3230 \M@sym@{\partial} {\mathord} {\M@symbols@id}{"2202}
3231 \M@sym@{\degree} {\mathord} {\M@symbols@id}{"BO}
3232 \MOsym@{\increment} {\mathord} {\M@symbols@id}{"2206%}
3233 \MOsym@{+} {\mathbin} {\M@symbols@id}{"2B}
3234 \M@sym@{-} {\mathbin} {\M@symbols@id}{"2212}
3235 \M@sym@{*} {\mathbin} {\M@symbols@id}{"2A}
3236 \MOsym@{\times} {\mathbin} {\M@symbols@id}{"D7}
3237 \M@sym@{/} {\mathord} {\M@symbols@id}{"2F}

3238 \MOsym@{\fractionslash}{\mathord}

{\M@symbols@id}{"2215}

3239 \MOsym@{\div} {\mathbin} {\M@symbols@id}{"F7}
3240 \MOsym@{\pm} {\mathbin} {\M@symbols@id}{"B1}
3241 \M@sym@{\bullet} {\mathbin} {\M@symbols@id}{"2022}
3242 \M@sym@{\dagger} {\mathbin} {\M@symbols@id}{"2020}
3243 \MOsym@{\ddagger?} {\mathbin} {\MOsymbols@id}{"2021}
3244 \M@sym@{\cdot} {\mathbin} {\M@symbols@id}{"2219}
3245 \MOsym@{\setminus} {\mathbin} {\M@symbols@id}{"5C}

Unicode Hex Values Implementation 119

3246 \M@sym@{=} {\mathrel} {\M@symbols@id}{"3D}
3247 \M@syme@{<} {\mathrel} {\M@symbols@id}{"3C}
3248 \M@sym@{>} {\mathrel} {\M@symbols@id}{"3E}
3249 \M@sym@{\leq} {\mathrel} {\M@symbols@id}{"2264}
3250 \MOsym@{\geq} {\mathrel} {\M@symbols@id}{"2265%}
3251 \M@sym@{\sim} {\mathrel} {\M@symbols@id}{"7E}
3252 \MOsym@{\approx} {\mathrel} {\MOsymbols@id}{"2248}
3253 \M@sym@{\equiv} {\mathrel} {\M@symbols@id}{"2261}
3254 \MOsym@{\parallel} {\mathrel} {\MOsymbols@id}{"2016}
3255 \M@sym@{\colon} {\mathpunct}{\M@symbols@id}{"3A}
3256 \M@sym@{:} {\mathrel} {\M@symbols@id}{"3A}
3257 \M@sym@{?7} {\mathclose}{\M@symbols@id}{"3F}
3258 \M@syme{!} {\mathclose}{\M@symbols@id}{"21}
3259 \M@sym@{\comma} {\mathord} {\M@symbols@id}{"2C}
3260 \M@syme{,?} {\mathpunct}{\M@symbols@id}{"2C}
3261 \M@sym@{;} {\mathpunct}{\M@symbols@id}{"3B}

3262 \MOsym@{\mathellipsis} {\mathinner}{\M@symbols@id}{"2026%}

Now a bit of housekeeping. We redefine \#, \%, and \& as \protected macros
that expand to previously declared \mathhash, etc. commands in math mode
and retain their standard \char definitions otherwise. Other commands that
function in both math and horizontal modes such as \S or \dag also use this
technique. Then we define macros \cong and \simeq if the user hasn’t called
\mathfont with extsymbols.

3263 \protected\def\#{\ifmmode\mathhash\else\char"23\relax\fi}

3264 \protected\def\’{\ifmmode\mathpercent\else\char"25\relax\fi}

3265 \protected\def\&{\ifmmode\mathand\else\char"26\relax\fi}

3266 \1fM@extsymbols\else

3267 \protected\def\simeq{

3268 \mathrel{\mathpalette\stack@flatrel{{-}{\sim}}}}
3269 \protected\def\cong{

3270 \mathrel{\mathpalette\stack@flatrel{{=}{\sim}}}}
3271 \fi

\models 3272 \protected\def\models{\mathrel{|}\joinrel\mathrel{=}}

New definition for \not. We define it to accept a #1 argument, which we store
in an \hbox in the appropriate style. Then we typeset a / halfway across the
distance of the \hbox and the \hbox itself. This approach manually positions
the / halfway across the #1 subformula instead of using a character that ap-
pears to the right of a slim bounding box as in traditional TEX. In case any
users want to access the old \not definition, we save it as \negslash.
\negslash 3273 \let\negslash\not
3274 \protected\def\not##1{\mathrel{\mathchoice

120 Implementation Unicode Hex Values

3275 {\setbox\@tempboxa\hbox{$\displaystyle##1\m@th$}

3276 \hbox{\hb@xt@\wd\@tempboxa{\hss$\displaystyle/\mO@th$\hss}
3277 \1lap{\box\@tempboxal}}}

3278 {\setbox\@tempboxa\hbox{$\textstyle##1\m0th$>}

3279 \hbox{\hb@xt@\wd\@tempboxa{\hss$\textstyle/\mO@th$\hss}
3280 \1lap{\box\@tempboxal}}}

3281 {\setbox\@tempboxa\hbox{$\scriptstyle##1\meth$}

3282 \hbox{\hb@xt@\wd\@tempboxa{\hss$\scriptstyle/\m@th$\hss}
3283 \1lap{\box\@tempboxal}}}

3284 {\setbox\@tempboxa\hbox{$\scriptscriptstyle##1\mO@th$}

3285 \hbox{\hb@xt@\wd\@tempboxa{\hss{$\scriptscriptstyle/

3286 \m@th$\hss}

3287 \1lap{\box\@tempboxa}}}}}}}

Set extended symbols.

\M@extsymbols@set 3288 \def\M@extsymbols@set{
3289 \edef\M@extsymbols@id{M\@tempc-\M@extsymbolsshape}
3290 \let\angle\@undefined
3201 \let\simeq\@undefined
3292 \let\sqgsubset\@undefined
3293 \let\sgsupset\Qundefined
3204 \let\bowtie\@undefined
3205 \let\doteq\@undefined

3206 \let\neq\Qundefined

3207 \M@sym@{\wp} {\mathord}{\M@extsymbols@id}{"2118}
3298 \M@sym@{\ell} {\mathord}{\M@extsymbols@id}{"2113%}
3299 \M@sym@{\forall} {\mathord}{\Mlextsymbols@id}{"2200}
3300 \MOsym@{\exists} {\mathord}{\M@extsymbols@id}{"2203}
3301 \M@sym@{\emptyset} {\mathord}{\M@extsymbols@id}{"2205%}
3302 \MOsym@{\in} {\mathord}{\MOextsymbols@id}{"2208}
3303 \MOsym@{\ni} {\mathord}{\M@extsymbols@id}{"220B}
3304 \MOsym@{\mp} {\mathord}{\M@extsymbols@id}{"2213}
3305 \M@sym@{\angle} {\mathord}{\M@extsymbols@id}{"2220}
3306 \M@sym@{\top} {\mathord}{\M@extsymbols@id}{"22A4}
3307 \M@sym@{\bot} {\mathord}{\M@extsymbols@id}{"22A5}
3308 \M@sym@{\vdash} {\mathord}{\M@extsymbols@id}{"22A2%}
3309 \M@sym@{\dashv} {\mathord}{\M@extsymbols@id}{"22A3}
3310 \MOsym@{\flat} {\mathord}{\M@extsymbols@id}{"266D}
3311 \M@sym@{\natural} {\mathord}{\M@extsymbols@id}{"266E}
3312 \M@sym@{\sharp} {\mathord}{\M@extsymbols@id}{"266F}
3313 \MOsym@{\fflat} {\mathord}{\M@extsymbols@id}{"1D12B}
3314 \M@sym@{\ssharp} {\mathord}{\M@extsymbols@id}{"1D12A}

3315

\M@sym@{\bclubsuit}

{\mathord}{\MOextsymbols@id}{"2663}

Unicode Hex Values

3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357

\M@sym@{\bdiamondsuit}

\M@sym@{\bheartsuit}
\M@sym@{\bspadesuit}
\M@sym@{\wclubsuit}

\M@sym@{\wdiamondsuit}

\M@sym@{\wheartsuit}
\M@sym@{\wspadesuit}

Implementation

{\mathord}{\M@extsymbols@id}{"2666}
{\mathord}{\M@extsymbols@id}{"2665}
{\mathord}{\M@extsymbols@id}{"2660%}
{\mathord}{\Meextsymbols@id}{"2667}
{\mathord}{\M@extsymbols@id}{"2662}
{\mathord}{\M@extsymbols@id}{"2661}
{\mathord}{\M@extsymbols@id}{"2664}

\let\spadesuit\bspadesuit
\let\heartsuit\wheartsuit
\let\diamondsuit\wdiamondsuit

\let\clubsuit\bclubsuit

\M@sym@{\wedge}
\M@sym@{\vee}
\M@sym@{\cap}
\M@sym@{\cup}
\M@sym@{\sqcap?}
\M@sym@{\sqcup}
\M@sym@{\amalg}
\M@sym@{\wr}
\M@sym@{\ast}
\M@sym@{\star}
\M@sym@{\diamond}
\M@sym@{\varcdot}
\M@sym@{\varsetminus}
\M@sym@{\oplus}
\M@sym@{\otimes}
\M@sym@{\ominus}
\M@sym@{\odiv}
\M@sym@{\oslash}
\M@sym@{\odot}
\M@sym@{\sgplus}
\M@sym@{\sqtimes}
\M@sym@{\sqminus}
\M@sym@{\sqdot}
\M@sym@{\in}
\M@sym@{\ni}
\M@sym@{\subset}
\M@sym@{\supset}
\M@sym@{\subseteq}
\M@sym@{\supseteq?}
\M@sym@{\sqsubset}
\M@sym@{\sqsupset}

{\mathbin}{\M@extsymbols@id}{"2227}
{\mathbin}{\M@extsymbols@id}{"2228%}
{\mathord}{\MOextsymbols@id}{"2229}
{\mathbin}{\M@extsymbols@id}{"222A}
{\mathbin}{\M@extsymbols@id}{"2293%}
{\mathbin}{\M@extsymbols@id}{"2294}
{\mathbin}{\M@extsymbols@id}{"2A3F}
{\mathbin}{\MOextsymbols@id}{"2240%}
{\mathbin}{\M@extsymbols@id}{"2217}
{\mathbin}{\M@extsymbols@id}{"22C6}
{\mathbin}{\MOextsymbols@id}{"22C4}
{\mathbin}{\M@extsymbols@id}{"22C5}
{\mathbin}{\M@extsymbols@id}{"2216}
{\mathbin}{\M@extsymbols@id}{"2295%}
{\mathbin}{\M@extsymbols@id}{"2297}
{\mathbin}{\M@extsymbols@id}{"2296}
{\mathbin}{\M@extsymbols@id}{"2A38%}
{\mathbin}{\M@extsymbols@id}{"2298}
{\mathbin}{\M@extsymbols@id}{"2299}
{\mathbin}{\M@extsymbols@id}{"229E}
{\mathbin}{\M@extsymbols@id}{"22A0}
{\mathbin}{\M@extsymbols@id}{"229F}
{\mathbin}{\M@extsymbols@id}{"22A1}
{\mathrel}{\M@extsymbols@id}{"2208}
{\mathrel}{\M@extsymbols@id}{"220B}
{\mathrel}{\M@extsymbols@id}{"2282}
{\mathrel}{\M@extsymbols@id}{"2283}
{\mathrel}{\MOextsymbols@id}{"2286}
{\mathrel}{\M@extsymbols@id}{"2287}
{\mathrel}{\M@extsymbols@id}{"228F%}
{\mathrel}{\MOextsymbols@id}{"2290}

121

122 Implementation Unicode Hex Values

3358 \MOsym@{\sqgsubseteq}
3359 \M@sym@{\sqsupseteq}

{\mathrel}{\M@extsymbols@id}{"2291}
{\mathrel}{\M@extsymbols@id}{"2292}
3360 \M@sym@{\triangleleft} {\mathrel}{\M@extsymbols@id}{"22B2}
3361 \MOsym@{\triangleright} {\mathrel}{\M@extsymbols@id}{"22B3}
3362 \MOsym@{\trianglelefteq} {\mathrel}{\M@extsymbols@id}{"22B4}
3363 \MOsym@{\trianglerighteq} {\mathrel}{\MQ@extsymbols@id}{"22B5}

3364 \M@sym@{\propto} {\mathrel}{\M@extsymbols@id}{"221D}
3365 \M@sym@{\bowtie} {\mathrel}{\MOextsymbols@id}{"22C8}
3366 \MO@sym@{\hourglass} {\mathrel}{\M@extsymbols@id}{"29D6}
3367 \M@sym@{\therefore} {\mathrel}{\M@extsymbols@id}{"2234}
3368 \MOsym@{\because} {\mathrel}{\MOextsymbols@id}{"2235}
3369 \M@sym@{\ratio} {\mathrel}{\M@extsymbols@id}{"2236}
3370 \M@sym@{\proportion} {\mathrel}{\M@extsymbols@id}{"2237%}
3371 \MOsym@{\11} {\mathrel}{\MOextsymbols@id}{"226A}
3372 \M@sym@{\gg} {\mathrel}{\M@extsymbols@id}{"226B}
3373 \M@sym@{\111} {\mathrel}{\M@extsymbols@id}{"22D8%}
3374 \MOsym@{\ggg} {\mathrel}{\M@extsymbols@id}{"22D9}
3375 \M@sym@{\leqq} {\mathrel}{\M@extsymbols@id}{"2266}
3376 \M@sym@{\geqq} {\mathrel}{\M@extsymbols@id}{"2267%}
3377 \M@sym@{\lapprox} {\mathrel}{\M@extsymbols@id}{"2A85}
3378 \M@sym@{\gapprox} {\mathrel}{\MOextsymbols@id}{"2A86}
3379 \M@sym@{\simeq} {\mathrel}{\M@extsymbols@id}{"2243%}
3380 \M@sym@{\eqsim} {\mathrel}{\M@extsymbols@id}{"2242}
3381 \MOsym@{\simeqq} {\mathrel}{\M@extsymbols@id}{"2245}
3382 \let\cong\simeqq

3383 \MOsym@{\approxeq} {\mathrel}{\M@extsymbols@id}{"224A}
3384 \M@sym@{\sssim} {\mathrel}{\M@extsymbols@id}{"224B}
3385 \M@sym@{\seq} {\mathrel}{\M@extsymbols@id}{"224C}
3386 \MOsym@{\doteq} {\mathrel}{\M@extsymbols@id}{"2250}
3387 \M@sym@{\coloneq} {\mathrel}{\M@extsymbols@id}{"2254}
3388 \M@sym@{\eqcolon} {\mathrel}{\M@extsymbols@id}{"2255%}
3389 \M@sym@{\ringeq} {\mathrel}{\M@extsymbols@id}{"2257}
3300 \M@sym@{\arceq} {\mathrel}{\M@extsymbols@id}{"2258}
3301 \M@sym@{\wedgeeq?} {\mathrel}{\M@extsymbols@id}{"2259}
3392 \M@sym@{\veeeq} {\mathrel}{\M@extsymbols@id}{"225A}
3393 \MOsym@{\stareq} {\mathrel}{\M@extsymbols@id}{"225B}
3304 \MOsym@{\triangleeq} {\mathrel}{\M@extsymbols@id}{"225C}
3395 \M@sym@{\defeq} {\mathrel}{\M@extsymbols@id}{"225D%}
3396 \MOsym@{\qgeq} {\mathrel}{\M@extsymbols@id}{"225F}
3397 \M@sym@{\lsim} {\mathrel}{\M@extsymbols@id}{"2272}
3398 \M@sym@{\gsim} {\mathrel}{\M@extsymbols@id}{"2273%}

3399

\M@sym@{\prec}

{\mathrel}{\M@extsymbols@id}{"227A}

Unicode Hex Values

3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441

\M@sym@{\succ}
\M@sym@{\preceq}
\M@sym@{\succeq}
\M@sym@{\preceqq}
\M@sym@{\succeqq}
\M@sym@{\precsim}
\M@sym@{\succsim}
\M@sym@{\precapprox}
\M@sym@{\succapprox}
\M@sym@{\precprec}
\M@sym@{\succsucc}
\M@sym@{\asymp}
\M@sym@{\nin}
\M@sym@{\nni}
\M@sym@{\nsubset}
\M@sym@{\nsupset}
\M@sym@{\nsubseteq}
\M@sym@{\nsupseteq}
\M@sym@{\subsetneq}
\M@sym@{\supsetneq}
\M@sym@{\nsqsubseteq}
\M@sym@{\nsqsupseteq}
\M@sym@{\sqgsubsetneq}
\M@sym@{\sqgsupsetneq}
\M@sym@{\neq}
\M@sym@{\nl}
\Mesym@{\nleq}
\M@sym@{\ngeq}
\M@sym@{\1lneq}
\M@sym@{\gneq}
\M@sym@{\1neqq}
\M@sym@{\gneqq}

\M@sym@{\ntriangleleft}

Implementation

{\mathrel}{\M@extsymbols@id}{"227B}
{\mathrel}{\M@extsymbols@id}{"227C}
{\mathrel}{\M@extsymbols@id}{"227D}
{\mathrel}{\M@extsymbols@id}{"2AB3}
{\mathrel}{\M@extsymbols@id}{"2AB4}
{\mathrel}{\M@extsymbols@id}{"227E}
{\mathrel}{\M@extsymbols@id}{"227F}
{\mathrel}{\MOextsymbols@id}{"2AB7}
{\mathrel}{\M@extsymbols@id}{"2AB8}
{\mathrel}{\M@extsymbols@id}{"2ABB}
{\mathrel}{\MOextsymbols@id}{"2ABC}
{\mathrel}{\M@extsymbols@id}{"224D}
{\mathrel}{\M@extsymbols@id}{"2209%}
{\mathrel}{\MOextsymbols@id}{"220C}
{\mathrel}{\M@extsymbols@id}{"2284}
{\mathrel}{\M@extsymbols@id}{"2285%}
{\mathrel}{\M@extsymbols@id}{"2288}
{\mathrel}{\M@extsymbols@id}{"2289}
{\mathrel}{\M@extsymbols@id}{"228A%}
{\mathrel}{\M@extsymbols@id}{"228B}
{\mathrel}{\M@extsymbols@id}{"22E2}
{\mathrel}{\M@extsymbols@id}{"22E3}
{\mathrel}{\M@extsymbols@id}{"22E4}
{\mathrel}{\M@extsymbols@id}{"22E5}
{\mathrel}{\M@extsymbols@id}{"2260%}
{\mathrel}{\M@extsymbols@id}{"226E}
{\mathrel}{\M@extsymbols@id}{"2270}
{\mathrel}{\M@extsymbols@id}{"2271%}
{\mathrel}{\M@extsymbols@id}{"2A87}
{\mathrel}{\M@extsymbols@id}{"2A88}
{\mathrel}{\M@extsymbols@id}{"2268%}
{\mathrel}{\M@extsymbols@id}{"2269}
{\mathrel}{\M@extsymbols@id}{"22EA}

\M@sym@{\ntriangleright} {\mathrel}{\M@extsymbols@id}{"22EB}
\M@sym@{\ntrianglelefteq} {\mathrel}{\M@extsymbols@id}{"22EC}
\M@sym@{\ntrianglerighteq}{\mathrel}{\MOextsymbols@id}{"22ED}

\M@sym@{\nsim}
\M@sym@{\napprox}
\M@sym@{\nsimeq}
\M@sym@{\nsimeqq}
\M@sym@{\simneqq}
\M@sym@{\nlsim}

{\mathrel}{\M@extsymbols@id}{"2241}
{\mathrel}{\M@extsymbols@id}{"2249}
{\mathrel}{\M@extsymbols@id}{"2244}
{\mathrel}{\M@extsymbols@id}{"2247}
{\mathrel}{\M@extsymbols@id}{"2246%}
{\mathrel}{\M@extsymbols@id}{"2274}

123

124

3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459

The math-operator package renames \Re and \Im to \varRe and \varIm. To
make mathfont compatible with that package, we test whether these macros

\M@sym@{\ngsim}
\M@sym@{\1nsim}
\M@sym@{\gnsim}
\M@sym@{\1napprox}
\M@sym@{\gnapprox}
\M@sym@{\nprec}
\M@sym@{\nsucc}
\M@sym@{\npreceq}
\M@sym@{\nsucceq}
\M@sym@{\precneq}
\M@sym@{\succneq}
\M@sym@{\precneqq?}
\M@sym@{\succneqq?}
\M@sym@{\precnsim}
\M@sym@{\succnsim}
\M@sym@{\precnapprox}
\M@sym@{\succnapprox}
\M@sym@{\nequiv}

Implementation

{\mathrel}{\M@extsymbols@id}{"2275}
{\mathrel}{\M@extsymbols@id}{"22E6%}
{\mathrel}{\M@extsymbols@id}{"22E7}
{\mathrel}{\M@extsymbols@id}{"2A89}
{\mathrel}{\MOextsymbols@id}{"2A8A}
{\mathrel}{\M@extsymbols@id}{"2280}
{\mathrel}{\M@extsymbols@id}{"2281%}
{\mathrel}{\M@extsymbols@id}{"22E0}
{\mathrel}{\M@extsymbols@id}{"22E1}
{\mathrel}{\M@extsymbols@id}{"2AB1}
{\mathrel}{\M@extsymbols@id}{"2AB2}
{\mathrel}{\M@extsymbols@id}{"2AB5}
{\mathrel}{\M@extsymbols@id}{"2AB6%}
{\mathrel}{\M@extsymbols@id}{"22E8}
{\mathrel}{\MOextsymbols@id}{"22E9}
{\mathrel}{\M@extsymbols@id}{"2AB9}
{\mathrel}{\M@extsymbols@id}{"2ABA}
{\mathrel}{\M@extsymbols@id}{"2262%}

contain mathchar in their definitions before redefining. First \Re.

\expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}

\M@sym@{\Re}{\mathord}{\M@extsymbols@id}{"211C}

\expanded{\noexpand\in@{\expandafter\@gobble\string\mathchar}

\M@sym@{\varRe}{\mathord}{\M@extsymbols@id}{"211C}

\expanded{\noexpand\in@{\expandafter\Q@gobble\string\mathchar}

\MOsym@{\Im}{\mathord}{\M@extsymbols@id}{"2111}

\expanded{\noexpand\in@{\expandafter\Q@gobble\string\mathchar}

3460

3461 {\meaning\Rel}}

3462 \ifin®@

3463

3464 \else

3465

3466 {\meaning\varRel}}
3467 \ifin@

3468

3469 \fi

3470 \fi

And \Im.

3471

3472 {\meaning\Im}}

3473 \ifin@

3474

3475 \else

3476

3477 {\meaning\varIm}}
3478 \ifin@

Unicode Hex Values

Unicode Hex Values Implementation 125

3479 \MOsym@{\varIm}{\mathord}{\M@extsymbols@id}{"2111}
3480 \fi
3481 \fi

We handle \ng specially. The BTEX kernel defines \ng as a text symbol, so we
define \mathng like for \$, etc.

3482 \let\textng\ng
3483 \MOsym@{\mathng}{\mathrel}{\M@extsymbols@id}{"226F}
3484 \protected\def\ng{\ifmmode\mathng\else\textng\fi}

If we're not adjusting the font, we declare \nabla here.

3485 \ifM@adjust@font\else
3486 \M@sym@{\nabla}{\mathord}{\M@extsymbols@id}{"2207}
3487 \fi}

Set arrows.

\M@arrows@set 3488 \def\MQarrows@set{
3489 \edef\M@arrows@id{M\@tempc-\M@arrowsshape}
3490 \let\uparrow\@undefined
3401 \let\Uparrow\@undefined
3492 \let\downarrow\@undefined
3493 \let\Downarrow\@undefined
3494 \let\updownarrow\Qundefined
3495 \let\Updownarrow\@undefined
3496 \let\longrightarrow\Qundefined
3497 \let\longleftarrow\Qundefined
3498 \let\longleftrightarrow\@undefined
3499 \let\hookrightarrow\@undefined
3500 \let\hookleftarrow\@undefined
3501 \let\Longrightarrow\@undefined
3502 \let\Longleftarrow\@undefined
3503 \let\Longleftrightarrow\@undefined
3504 \let\rightleftharpoons\Qundefined

3505 \M@sym@{\rightarrow} {\mathrel}{\M@arrows@id}{"2192%}
3506 \let\to\rightarrow

3507 \M@sym@{\nrightarrow} {\mathrel}{\M@arrows@id}{"219B}
3508 \M@sym@{\Rightarrow} {\mathrel}{\M@arrows@id}{"21D2}
3509 \M@sym@{\nRightarrow} {\mathrel}{\M@arrows@id}{"21CF}
3510 \M@sym@{\Rrightarrow} {\mathrel}{\M@arrows@id}{"21DB}
3511 \M@sym@{\longrightarrow} {\mathrel}{\M@arrows@id}{"27F6}
3512 \M@sym@{\Longrightarrow} {\mathrel}{\M@arrows@id}{"27F9}
3513 \M@sym@{\rightbararrow} {\mathrel}{\M@arrows@id}{"21A6}
3514 \let\mapsto\rightbararrow

3515 \M@sym@{\Rightbararrow} {\mathrel}{\M@arrows@id}{"2907%}

126

3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557

Implementation Unicode Hex Values

\M@sym@{\longrightbararrow} {\mathrel}{\M@arrows@id}{"27FC}
\let\longmapsto\longrightbararrow
\M@sym@{\Longrightbararrow} {\mathrel}{\M@arrows@id}{"27FE}

\M@sym@{\hookrightarrow} {\mathrel}{\M@arrows@id}{"21AA}
\M@sym@{\rightdasharrow} {\mathrel}{\M@arrows@id}{"21E2}
\M@sym@{\rightharpoonup} {\mathrel}{\M@arrows@id}{"21C0}
\M@sym@{\rightharpoondown} {\mathrel}{\M@arrows@id}{"21C1}
\M@sym@{\rightarrowtail} {\mathrel}{\M@arrows@id}{"21A3}
\M@sym@{\rightoplusarrow} {\mathrel}{\M@arrows@id}{"27F4}
\M@sym@{\rightwavearrow} {\mathrel}{\M@arrows@id}{"219D}
\M@sym@{\rightsquigarrow} {\mathrel}{\M@arrows@id}{"21DD}
\M@sym@{\longrightsquigarrow} {\mathrel}{\MQarrows@id}{"27FF}
\M@sym@{\looparrowright} {\mathrel}{\M@arrows@id}{"21AC}
\M@sym@{\curvearrowright} {\mathrel}{\M@arrows@id}{"293B}
\M@sym@{\circlearrowright} {\mathrel}{\M@arrows@id}{"21BB}
\M@sym@{\twoheadrightarrow} {\mathrel}{\M@arrows@id}{"21A0}
\M@sym@{\rightarrowtobar} {\mathrel}{\M@arrows@id}{"21E5}
\M@sym@{\rightwhitearrow} {\mathrel}{\M@arrows@id}{"21E8}
\M@sym@{\rightrightarrows} {\mathrel}{\M@arrows@id}{"21C9}
\M@sym@{\rightrightrightarrows}{\mathrel}{\M@arrows@id}{"21F6}
\M@sym@{\leftarrow} {\mathrel}{\M@arrows@id}{"2190}
\let\from\leftarrow
\M@sym@{\nleftarrow} {\mathrel}{\M@arrows@id}{"219A}
\M@sym@{\Leftarrow} {\mathrel}{\M@arrows@id}{"21D0}
\M@sym@{\nLeftarrow} {\mathrel}{\M@arrows@id}{"21CD}
\M@sym@{\Lleftarrow} {\mathrel}{\M@arrows@id}{"21DA}
\M@sym@{\longleftarrow} {\mathrel}{\M@arrows@id}{"27F5}
\M@sym@{\Longleftarrow} {\mathrel}{\M@arrows@id}{"27F8}
\M@sym@{\leftbararrow} {\mathrel}{\M@arrows@id}{"21A4}
\let\mapsfrom\leftbararrow
\M@sym@{\Leftbararrow} {\mathrel}{\M@arrows@id}{"2906}
\M@sym@{\longleftbararrow} {\mathrel}{\M@arrows@id}{"27FB}
\let\longmapsfrom\longleftbararrow
\M@sym@{\Longleftbararrow} {\mathrel}{\M@arrows@id}{"27FD}
\M@sym@{\hookleftarrow} {\mathrel}{\M@arrows@id}{"21A9}
\M@sym@{\leftdasharrow} {\mathrel}{\M@arrows@id}{"21E0}
\M@sym@{\leftharpoonup} {\mathrel}{\M@arrows@id}{"21BC}
\M@sym@{\leftharpoondown} {\mathrel}{\M@arrows@id}{"21BD}
\M@sym@{\leftarrowtail} {\mathrel}{\M@arrows@id}{"21A2}
\M@sym@{\leftoplusarrow} {\mathrel}{\M@arrows@id}{"2B32}
\M@sym@{\leftwavearrow} {\mathrel}{\M@arrows@id}{"219C}

\M@sym@{\leftsquigarrow} {\mathrel}{\M@arrows@id}{"21DC}

Unicode Hex Values

3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599

\M@sym@{\longleftsquigarrow}
\M@sym@{\looparrowleft}
\M@sym@{\curvearrowleft}
\M@sym@{\circlearrowleft}
\M@sym@{\twoheadleftarrow}
\M@sym@{\leftarrowtobar}
\M@sym@{\leftwhitearrow}
\M@sym@{\leftleftarrows}
\MOsym@{\leftleftleftarrows}
\M@sym@{\leftrightarrow}
\M@sym@{\Leftrightarrow}
\M@sym@{\nLeftrightarrow}
\M@sym@{\longleftrightarrow}
\M@sym@{\Longleftrightarrow}
\M@sym@{\leftrightwavearrow}
\M@sym@{\leftrightarrows}
\M@sym@{\leftrightharpoons}
\M@sym@{\leftrightarrowstobar}
\M@sym@{\rightleftarrows}
\M@sym@{\rightleftharpoons}
\M@sym@{\uparrow}
\M@sym@{\Uparrow}
\M@sym@{\Uuparrow}
\M@sym@{\upbararrow}
\M@sym@{\updasharrow}
\M@sym@{\upharpoonleft}
\M@sym@{\upharpoonright}
\M@sym@{\twoheaduparrow}
\M@sym@{\uparrowtobar}
\M@sym@{\upwhitearrow}
\M@sym@{\upwhitebararrow}
\M@sym@{\upuparrows}
\M@sym@{\downarrow}
\M@sym@{\Downarrow}
\M@sym@{\Ddownarrow}
\M@sym@{\downbararrow}
\M@sym@{\downdasharrow}
\M@sym@{\zigzagarrow}

Implementation

{\mathrel}{\M@arrows@id}{"2B33}
{\mathrel}{\M@arrows@id}{"21AB}
{\mathrel}{\M@arrows@id}{"293A}
{\mathrel}{\M@arrows@id}{"21BA}
{\mathrel}{\M@arrows@id}{"219E}
{\mathrel}{\M@arrows@id}{"21E4}
{\mathrel}{\M@arrows@id}{"21E6}
{\mathrel}{\M@arrows@id}{"21C7}
{\mathrel}{\M@arrows@id}{"2B31}
{\mathrel}{\M@arrows@id}{"2194}
{\mathrel}{\M@arrows@id}{"21D4}
{\mathrel}{\M@arrows@id}{"21CE}
{\mathrel}{\M@arrows@id}{"27F7}
{\mathrel}{\M@arrows@id}{"27FA}
{\mathrel}{\M@arrows@id}{"21AD}
{\mathrel}{\M@arrows@id}{"21C6%}
{\mathrel}{\M@arrows@id}{"21CB}
{\mathrel}{\M@arrows@id}{"21B9}
{\mathrel}{\M@arrows@id}{"21C4}
{\mathrel}{\M@arrows@id}{"21CC}
{\mathrel}{\M@arrows@id}{"2191}
{\mathrel}{\M@arrows@id}{"21D1}
{\mathrel}{\M@arrows@id}{"290A}
{\mathrel}{\M@arrows@id}{"21A5}
{\mathrel}{\M@arrows@id}{"21E1}
{\mathrel}{\M@arrows@id}{"21BF}
{\mathrel}{\M@arrows@id}{"21BE}
{\mathrel}{\M@arrows@id}{"219F}
{\mathrel}{\M@arrows@id}{"2912}
{\mathrel}{\M@arrows@id}{"21E7}
{\mathrel}{\M@arrows@id}{"21EA}
{\mathrel}{\M@arrows@id}{"21C8}
{\mathrel}{\M@arrows@id}{"2193}
{\mathrel}{\M@arrows@id}{"21D3}
{\mathrel}{\M@arrows@id}{"290B}
{\mathrel}{\M@arrows@id}{"21A7}
{\mathrel}{\M@arrows@id}{"21E3}
{\mathrel}{\M@arrows@id}{"21AF}

\let\lightningboltarrow\zigzagarrow

\M@sym@{\downharpoonleft}
\M@sym@{\downharpoonright}
\M@sym@{\twoheaddownarrow}

{\mathrel}{\M@arrows@id}{"21C3}
{\mathrel}{\M@arrows@id}{"21C2}
{\mathrel}{\M@arrows@id}{"21A1}

127

128 Implementation Unicode Hex Values

3600 \MOsym@{\downarrowtobar} {\mathrel}{\M@arrows@id}{"2913}
3601 \M@sym@{\downwhitearrow} {\mathrel}{\M@arrows@id}{"21E9}
3602 \MOsym@{\downdownarrows} {\mathrel}{\M@arrows@id}{"21CA}
3603 \M@sym@{\updownarrow} {\mathrel}{\M@arrows@id}{"2195}
3604 \M@sym@{\Updownarrow} {\mathrel}{\M@arrows@id}{"21D5}
3605 \MO@sym@{\updownarrows} {\mathrel}{\M@arrows@id}{"21C5}
3606 \M@sym@{\downuparrows} {\mathrel}{\M@arrows@id}{"21F5%}
3607 \M@sym@{\updownharpoons} {\mathrel}{\M@arrows@id}{"296E}
3608 \M@sym@{\downupharpoons} {\mathrel}{\M@arrows@id}{"296F}
3609 \MOsym@{\nearrow} {\mathrel}{\M@arrows@id}{"2197%}
3610 \M@sym@{\Nearrow} {\mathrel}{\M@arrows@id}{"21D7}
3611 \M@sym@{\nwarrow} {\mathrel}{\M@arrows@id}{"2196%}
3612 \MOsym@{\Nwarrow} {\mathrel}{\M@arrows@id}{"21D6}
3613 \MO@sym@{\searrow} {\mathrel}{\M@arrows@id}{"2198}
3614 \MOsym@{\Searrow} {\mathrel}{\M@arrows@id}{"21D8}
3615 \M@sym@{\swarrow} {\mathrel}{\M@arrows@id}{"2199}
3616 \MOsym@{\Swarrow} {\mathrel}{\M@arrows@id}{"21D9}
3617 \M@sym@{\nwsearrow} {\mathrel}{\M@arrows@id}{"2921}
3618 \MOsym@{\neswarrow} {\mathrel}{\M@arrows@id}{"2922}
3619 \MOsym@{\lcirclearrow} {\mathrel}{\M@arrows@id}{"27F2}
3620 \M@sym@{\rcirclearrow} {\mathrel}{\M@arrows@id}{"27F3}

The commands \relbar and \Relbar produce a smashed minus and an equals
sign respectively. They are helper control sequences that IXTEX uses to create
other arrows. We have a small issue with amsmath because in XqIEX and
LuaTEX, amsmath defines \relbar and \Relbar in terms of the \Umathcodes
of the minus and equals signs respectively. That is a good approach in general,
but it doesn’t work when a package like mathfont allows users to pick different
fonts for symbols and arrows. We really want \relbar and \Relbar to come
from the arrows font, so our approach is to define the control sequences now
and then redefine \AtBeginDocument if needed.

3621 \let\@relbar\@undefined

3622 \let\@Relbar\@undefined

3623 \MOsym@{\@relbar}{\mathbin}{\M@arrows@id}{"2212}

3624 \M@sym@{\@Relbar}{\mathrel}{\M@arrows@id}{"3D}

3625 \protected\def\relbar{\mathrel{\mathpalette\mathsm@sh\Qrelbar}}
3626 \protected\def\Relbar{\@Relbar}

We redefine stuff if amsmath gets loaded after mathfont.

3627 \@ifpackageloaded{amsmath}
3628 {\relax}{

3629 \let\@@relbar\relbar
3630 \let\@@Relbar\Relbar

\M@bb@set
\mathbb

\M@bb@num

\M@bb@mathcodes

Unicode Hex Values

3631
3632
3633
3634

Implementation

\AtBeginDocument{\Q@ifpackageloaded{amsmath}{

\let\relbar\@@relbar
\let\Relbar\@@Relbar}
{\relax}}}}

129

Set blackboard bold letters and numbers. The alphanumeric keywords work a

bit differently from the other font-setting commands.

We define \mathbb

here, which takes a single argument and is essentially a wrapper around
\M@bb@mathcodes. That command changes the \Umathcodes of letters to the
Unicode hex values of corresponding blackboard-bold characters, and through-
out, \M@bb@num stores the family number of the sumbol font for the bb char-
acter class. In the definition of \mathbb, we use \begingroup and \endgroup
to avoid creating unexpected atoms. The other alphanumeric keywords work
similarly.

3635 \def \M@bb@set{

3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662

\protected\def\mathbb##1{\relax

\ifmmode\else
\M@HModeError\mathbb
$

\fi

\begingroup
\M@bbGmathcodes
##1

\endgroup}

\edef\MObbOnum{\number
\csname symM\@tempc-\M@bbshape\endcsname}
\protected\edef\M@bbOmathcodes{

\Umathcode ~A=0+\M@bb@num" 1D538\relax
\Umathcode ~B=0+\M@bb@num" 1D539\relax
\Umathcode ~C=0+\M@bb@num"2102\relax
\Umathcode D=0+\M@bb@num" 1D53B\relax
\Umathcode ~E=0+\M@bb@num" 1D53C\relax
\Umathcode ~F=0+\M@bb@num" 1D53D\relax
\Umathcode~G=0+\M@bb@num" 1D53E\relax
\Umathcode ~H=0+\M@bb@num"210D\relax
\Umathcode~I=0+\M@bb@num" 1D540\relax
\Umathcode~ J=0+\M@bb@num"1D541\relax
\Umathcode “K=0+\M@bb@num" 1D542\relax
\Umathcode ~L=0+\M@bb@num" 1D543\relax
\Umathcode “M=0+\M@bb@num" 1D544\relax
\Umathcode ~N=0+\M@bb@num"2115\relax
\Umathcode~0=0+\M@bb@num" 1D546\relax

130

3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704

Implementation

\Umathcode "P=0+\M@bb@num"2119\relax
\Umathcode ~Q=0+\M@bb@num"211A\relax
\Umathcode "R=0+\M@bb@num"211D\relax
\Umathcode ~S=0+\M@bb@num"1D54A\relax
\Umathcode ~T=0+\M@bb@num" 1D54B\relax
\Umathcode ~U=0+\M@bb@num" 1D54C\relax
\Umathcode ~V=0+\M@bb@num" 1D54D\relax
\Umathcode ~W=0+\M@bb@num" 1D54E\relax
\Umathcode ~X=0+\M@bb@num" 1D54F\relax
\Umathcode ~Y=0+\M@bb@num" 1D550\relax
\Umathcode~Z=0+\M@bb@num"2124\relax
\Umathcode~a=0+\M@bb@num" 1D552\relax
\Umathcode ~b=0+\M@bb@num" 1D553\relax
\Umathcode c=0+\M@bb@num" 1D554\relax
\Umathcode ~d=0+\M@bb@num" 1D555\relax
\Umathcode ~e=0+\M@bb@num" 1D556\relax
\Umathcode f=0+\M@bb@num" 1D557\relax
\Unathcode ~g=0+\M@bbGnum" 1D558\relax
\Umathcode ~h=0+\M@bb@num" 1D559\relax
\Umathcode~i=0+\M@bb@num"1D55A\relax
\Unathcode ~ j=0+\M@bbGnum" 1D55B\relax
\Umathcode “k=0+\MC@bb@num" 1D55C\relax
\Umathcode~1=0+\M@bb@num" 1D55D\relax
\Umathcode "m=0+\M@bb@num" 1D55E\relax
\Umathcode “n=0+\M@bb@num" 1D55F\relax
\Umathcode ~0=0+\M@bb@num"1D560\relax
\Unathcode ~p=0+\M@bbGnum" 1D561\relax
\Umathcode ~q=0+\M@bb@num"1D562\relax
\Umathcode ~r=0+\M@bb@num" 1D563\relax
\Umathcode ~s=0+\M@bb@num" 1D564\relax
\Umathcode ~t=0+\M@bb@num" 1D565\relax
\Umathcode ~u=0+\M@bb@num" 1D566\relax
\Umathcode ~v=0+\M@bb@num" 1D567\relax
\Umathcode ~w=0+\M@bb@num" 1D568\relax
\Umathcode ~x=0+\M@bb@num" 1D569\relax
\Unathcode ~y=0+\M@bbGnum" 1D56A\relax
\Umathcode~z=0+\M@bb@num" 1D56B\relax
\Umathcode ~0=0+\M@bb@num" 1D7D8\relax
\Umathcode 1=0+\M@bb@num"1D7D9\relax
\Umathcode~2=0+\M@bb@num" 1D7DA\relax
\Umathcode ~3=0+\M@bb@num" 1D7DB\relax
\Umathcode ~4=0+\M@bb@num" 1D7DC\relax

Unicode Hex Values

\M@cal@set
\mathcal

\M@cal@num

\M@cal@mathcodes

Unicode Hex Values Implementation

3705
3706
3707
3708
3709

\Umathcode ~5=0+\M@bb@num" 1D7DD\relax
\Umathcode~6=0+\M@bb@num" 1D7DE\relax
\Umathcode7=0+\M@bb@num" 1D7DF\relax
\Umathcode ~8=0+\M@bb@num" 1D7E0\relax
\Umathcode~9=0+\M@bb@num" 1D7E1\relax}}

Set caligraphic letters.
3710 \def\M@cal@set{

3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745

\protected\def\mathcal##1{\relax
\ifmmode\else
\M@HModeError\mathcal
$
\fi
\begingroup
\M@cal@mathcodes
##1
\endgroup}
\edef\M@cal@num{\number
\csname symM\@tempc-\M@calshape\endcsname}
\protected\edef\M@cal@mathcodesq{
\Umathcode ~A=0+\M@cal@num"1D49C\relax
\Umathcode "B=0+\M@cal@num"212C\relax
\Umathcode~C=0+\M@cal@num"1D49E\relax
\Umathcode "D=0+\M@cal@num" 1D49F\relax
\Umathcode E=0+\M@cal@num"2130\relax
\Umathcode "F=0+\M@cal@num"2131\relax
\UmathcodeG=0+\M@cal@num"1D4A2\relax
\Umathcode "H=0+\M@cal@num"210B\relax
\Umathcode I=0+\M@cal@num"2110\relax
\Umathcode~ J=0+\M@cal@num"1D4A5\relax
\Umathcode "K=0+\M@cal@num"1D4A6\relax
\Umathcode L=0+\M@cal@num"2112\relax
\Umathcode "M=0+\M@cal@num"2133\relax
\Umathcode "N=0+\M@cal@num"1D4A9\relax
\Umathcode ~0=0+\M@cal@num"1D4AA\relax
\Umathcode ~P=0+\M@cal@num"1D4AB\relax
\Umathcode Q=0+\M@cal@num" 1D4AC\relax
\Umathcode "R=0+\M@cal@num"211B\relax
\Umathcode ~S=0+\M@cal@num"1D4AE\relax
\Umathcode T=0+\M@cal@num" 1D4AF\relax
\Umathcode ~U=0+\M@cal@num"1D4BO\relax
\Umathcode V=0+\M@cal@num"1D4B1\relax
\Umathcode W=0+\M@cal@num"1D4B2\relax

131

\M@frak@set
\mathfrak

\M@frak@num

132

3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774

Implementation

\Umathcode~X=0+\M@cal@num"1D4B3\relax
\Umathcode ~Y=0+\M@cal®@num" 1D4B4\relax
\Umathcode~Z=0+\M@cal@num"1D4B5\relax
\Umathcode ~a=0+\M@cal@num"1D4B6\relax
\Umathcode "b=0+\M@cal@num" 1D4B7\relax
\Umathcode c=0+\M@cal@num"1D4B8\relax
\Umathcode ~d=0+\M@cal@num" 1D4B9\relax
\Umathcode ~e=0+\M@cal@num"212F\relax
\Umathcode f=0+\M@cal@num"1D4BB\relax
\Unathcode ~g=0+\M@cal@uum"210A\relax
\Umathcode h=0+\M@cal@num"1D4BD\relax
\Umathcode ~i=0+\M@cal@num" 1D4BE\relax
\Umathcode” j=0+\M@cal@num"1D4BF\relax
\Umathcode “k=0+\M@cal@num"1D4CO\relax
\Umathcode 1=0+\M@cal@num"1D4C1\relax
\Umathcode ‘m=0+\M@cal@num"1D4C2\relax
\Umathcode "n=0+\M@cal@num"1D4C3\relax
\Umathcode ~0=0+\M@cal@num"2134\relax
\Unathcode "p=0+\M@cal@num"1D4C5\relax
\Unathcode *q=0+\M@cal@num"1D4C6\relax
\Umathcode r=0+\M@cal@num"1D4C7\relax
\Umathcode ~s=0+\M@cal@num"1D4C8\relax
\Umathcode t=0+\M@cal@num"1D4C9\relax
\Umathcode “u=0+\M@cal@num"1D4CA\relax
\Umathcodev=0+\M@cal@num"1D4CB\relax
\Umathcode ~w=0+\M@cal@num"1D4CC\relax
\Umathcode ~x=0+\M@cal@num"1D4CD\relax
\Unathcode ~y=0+\M@cal@num" 1D4CE\relax

\Umathcode z=0+\M@cal@num" 1D4CF\relax}}

Set fraktur letters.
3775 \def \M@frak@set{

3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786

\protected\def\mathfrak##1{\relax

\ifmmode\else
\M@HModeError\mathfrak
$

\fi

\begingroup
\M@frak@mathcodes
##1

\endgroup}

\edef\M@frak@num{\number
\csname symM\@tempc-\M@frakshape\endcsname}

Unicode Hex Values

Unicode Hex Values Implementation

\M@frak@mathcodes 3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828

\protected\edef\M@frak@mathcodes{

\Umathcode ~A=0+\M@frak@num"1D504\relax
\Umathcode ~B=0+\M@frak@num"1D505\relax
\Umathcode~C=0+\M@frak@num"212D\relax
\Umathcode "D=0+\M@frak@num"1D507\relax
\Umathcode ~E=0+\M@frak@num"1D508\relax
\Umathcode "F=0+\M@frak@num"1D509\relax
\Umathcode ~G=0+\M@frak@num"1D50A\relax
\Umathcode "H=0+\M@frak@num"210C\relax
\Umathcode I=0+\M@frak@num"2111\relax
\Umathcode~ J=0+\M@frak@num"1D50D\relax
\Umathcode "K=0+\M@frak@num"1D50E\relax
\Umathcode ~L=0+\M@frak@num" 1D50F\relax
\Umathcode "M=0+\M@frak@num"1D510\relax
\Umathcode "N=0+\M@frak@num"1D511\relax
\Umathcode ~0=0+\M@frak@num"1D512\relax
\Umathcode "P=0+\M@frak@num"1D513\relax
\Umathcode Q=0+\M@frak@num"1D514\relax
\Umathcode "R=0+\M@frak@num"211C\relax
\Umathcode~S=0+\M@frak@num"1D516\relax
\Umathcode T=0+\M@frak@num"1D517\relax
\Umathcode ~U=0+\M@frak@num"1D518\relax
\Umathcode~V=0+\M@frak@num"1D519\relax
\Umathcode " W=0+\M@frak@num"1D51A\relax
\Umathcode ~X=0+\M@frak@num"1D51B\relax
\Umathcode Y=0+\M@frak@num"1D51C\relax
\Umathcode ~Z=0+\M@frak@num"2128\relax
\Umathcode ~a=0+\M@frak@num"1D51E\relax
\Umathcode “b=0+\M@frak@num"1D51F\relax
\Umathcode~ c=0+\M@frak@num"1D520\relax
\Umathcode ~d=0+\M@frak@num"1D521\relax
\Umathcode~e=0+\M@frak@num"1D522\relax
\Umathcode f=0+\M@frak@num"1D523\relax
\Unathcode ~g=0+\M@frak@num" 1D524\relax
\Umathcode “h=0+\M@frak@num"1D525\relax
\Umathcode~ i=0+\M@frak@num"1D526\relax
\Unathcode~ j=0+\M@frak@num"1D527\relax
\Umathcode " k=0+\M@frak@num" 1D528\relax
\Umathcode~1=0+\M@frak@num"1D529\relax
\Umathcode "m=0+\M@frak@num"1D52A\relax
\Umathcode "n=0+\M@frak@num" 1D52B\relax
\Umathcode~ 0=0+\M@frak@num"1D52C\relax

133

\M@bcal@set
\mathbcal

\M@bcal@num

\M@bcal@mathcodes

134

3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839

Implementation

\Unathcode ~p=0+\M@frak@num" 1D52D\relax
\Unathcode ~q=0+\M@frak@num" 1D52E\relax
\Umathcode r=0+\M@frak@num"1D52F\relax
\Umathcode ~s=0+\M@frak@num"1D530\relax
\Umathcode t=0+\M@frak@num"1D531\relax
\Umathcode ~u=0+\M@frak@num"1D532\relax
\Umathcode v=0+\M@frak@num" 1D533\relax
\Umathcode ~w=0+\M@frak@num"1D534\relax
\Umathcode ~x=0+\M@frak@num" 1D535\relax
\Unathcode ~y=0+\M@frak@num" 1D536\relax

\Umathcode ~z=0+\M@frak@num"1D537\relax}}

Set bold caligraphic letters.
3840 \def\M@bcal@set{

3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869

\protected\def\mathbcal##1{\relax

\ifmmode\else
\M@HModeError\mathbcal
$

\fi

\begingroup
\M@bcal@mathcodes
##1

\endgroup}

\edef\M@bcal@num{\number
\csname symM\@tempc-\M@bcalshape\endcsname}
\protected\edef\M@bcal@mathcodes{

\Umathcode~A=0+\M@bcal@num"1D4D0\relax
\Umathcode *B=0+\M@bcal@num"1D4D1\relax
\Umathcode ~C=0+\M@bcal@num"1D4D2\relax
\Umathcode "D=0+\M@bcal@num"1D4D3\relax
\Umathcode "E=0+\M@bcal@num" 1D4D4\relax
\Umathcode F=0+\M@bcal@num"1D4D5\relax
\Umathcode~G=0+\M@bcal@num"1D4D6\relax
\Umathcode "H=0+\M@bcal@num" 1D4D7\relax
\Umathcode I=0+\M@bcal@num"1D4D8\relax
\Umathcode~ J=0+\M@bcal@num"1D4D9\relax
\Umathcode K=0+\M@bcal@num"1D4DA\relax
\Umathcode L=0+\M@bcal@num"1D4DB\relax
\Umathcode "M=0+\M@bcal@num" 1D4DC\relax
\Umathcode "N=0+\M@bcal@num" 1D4DD\relax
\Umathcode ~0=0+\M@bcal@num"1D4DE\relax
\Umathcode "P=0+\M@bcal@num" 1D4DF\relax
\Umathcode Q=0+\M@bcal@num"1D4EO\relax

Unicode Hex Values

\M@bfrak@set
\mathbfrak

Unicode Hex Values

3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

Implementation

\Umathcode "R=0+\M@bcal@num"1D4E1\relax
\Umathcode~S=0+\M@bcal@num"1D4E2\relax
\Umathcode T=0+\M@bcal@num"1D4E3\relax
\Umathcode U=0+\M@bcal@num" 1D4E4\relax
\Umathcode~V=0+\M@bcal@num"1D4E5\relax
\Umathcode W=0+\M@bcal@num"1D4E6\relax
\Umathcode ~X=0+\M@bcal@num" 1D4E7\relax
\Umathcode ~Y=0+\M@bcal@num"1D4E8\relax
\Umathcode ~Z=0+\M@bcal@num" 1D4E9\relax
\Umathcode a=0+\M@bcal@num"1D4EA\relax
\Umathcode "b=0+\M@bcal@num"1D4EB\relax
\Umathcode ~c=0+\M@bcal@num" 1D4EC\relax
\Umathcode ~d=0+\M@bcal@num" 1D4ED\relax
\Umathcode~e=0+\M@bcal@num"1D4EE\relax
\Umathcode f=0+\M@bcal@num"1D4EF\relax
\Unathcode ~g=0+\M@bcal@num" 1D4F0\relax
\Umathcode “h=0+\M@bcal@num" 1D4F1\relax
\Umathcode~i=0+\M@bcal@num"1D4F2\relax
\Unathcode~ j=0+\M@bcal@num" 1D4F3\relax
\Umathcode " k=0+\M@bcal@num"1D4F4\relax
\Umathcode 1=0+\M@bcal@num"1D4F5\relax
\Umathcode “'m=0+\M@bcal@num" 1D4F6\relax
\Umathcode 'n=0+\M@bcal@num" 1D4F7\relax
\Umathcode~ 0=0+\M@bcal@num"1D4F8\relax
\Unathcode ~p=0+\M@bcal@num" 1D4F9\relax
\Unathcode ~q=0+\M@bcal@num" 1D4FA\relax
\Umathcode r=0+\M@bcal@num" 1D4FB\relax
\Umathcode s=0+\M@bcal@num"1D4FC\relax
\Umathcodet=0+\M@bcal@num"1D4FD\relax
\Umathcode “u=0+\M@bcal@num" 1D4AFE\relax
\Umathcode ~v=0+\M@bcal@num" 1D4FF\relax
\Umathcode “w=0+\M@bcal@num" 1D500\relax
\Umathcode~x=0+\M@bcal@num"1D501\relax
\Unathcode ~y=0+\M@bcal@num" 1D502\relax

\Umathcode ~z=0+\M@bcal@num"1D503\relax}}

Set, bold fraktur letters.
3905 \def\M@bfrak@setq{

3906
3907
3908
3909
3910

\protected\def\mathbfrak##1{\relax

\ifmmode\else
\M@HModeError\mathbfrak
$

\fi

135

\M@bfrak@num

\M@bfrak@mathcodes

136

3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952

Implementation

\begingroup
\M@bfrak@mathcodes
##1

\endgroup}

\edef\M@bfrak@um{\number
\csname symM\@tempc-\M@bfrakshape\endcsname}
\protected\edef\M@bfrak@mathcodes{

\Umathcode ~A=0+\M@bfrak@num"1D56C\relax
\Umathcode "B=0+\M@bfrak@num"1D56D\relax
\Umathcode ~C=0+\M@bfrak@num" 1D56E\relax
\Umathcode *D=0+\M@bfrak@num"1D56F\relax
\Umathcode "E=0+\M@bfrak@num"1D570\relax
\Umathcode " F=0+\M@bfrak@num"1D571\relax
\Umathcode~G=0+\M@bfrak@num"1D572\relax
\Umathcode "H=0+\M@bfrak@num"1D573\relax
\Umathcode ~ I=0+\M@bfrak@num"1D574\relax
\Umathcode J=0+\M@bfrak@num"1D575\relax
\Umathcode "K=0+\M@bfrak@num"1D576\relax
\Umathcode " L=0+\M@bfrak@num"1D577\relax
\Umathcode "M=0+\M@bfrak@num"1D578\relax
\Umathcode "N=0+\M@bfrak@num"1D579\relax
\Umathcode ~0=0+\M@bfrak@num"1D57A\relax
\Umathcode ~P=0+\M@bfrak@num"1D57B\relax
\Umathcode Q=0+\M@bfrak@num"1D57C\relax
\Umathcode "R=0+\M@bfrak@num"1D57D\relax
\Umathcode~S=0+\M@bfrak@num"1D57E\relax
\Umathcode T=0+\M@bfrak@num"1D57F\relax
\Umathcode ~U=0+\M@bfrak@num"1D580\relax
\Umathcode~V=0+\M@bfrak@num"1D581\relax
\Umathcode ~W=0+\M@bfrak@num"1D582\relax
\Umathcode ~X=0+\M@bfrak@num"1D583\relax
\Umathcode Y=0+\M@bfrak@num"1D584\relax
\Umathcode ~Z=0+\M@bfrak@num"1D585\relax
\Umathcode ~a=0+\M@bfrak@num"1D586\relax
\Umathcode “b=0+\M@bfrak@num"1D587\relax
\Umathcode~ c=0+\M@bfrak@num"1D588\relax
\Umathcode ~d=0+\M@bfrak@num"1D589\relax
\Umathcode ~e=0+\M@bfrak@num"1D58A\relax
\Umathcode f=0+\M@bfrak@num"1D58B\relax
\Unathcode ~g=0+\M@bfrak@num"1D58C\relax
\Umathcode “h=0+\M@bfrak@num" 1D58D\relax
\Umathcodei=0+\M@bfrak@num"1D58E\relax

Unicode Hex Values

Unicode Hex Values Implementation

3953 \Umathcode ~ j=0+\M@bfrakOnum"1D58F\relax
3954 \Umathcode "k=0+\M@bfrak@num"1D590\relax
3955 \Umathcode ~1=0+\M@bfrak@num"1D591\relax
3956 \Umathcode “m=0+\M@bfrak@num"1D592\relax
3957 \Umathcode "n=0+\M@bfrak@num"1D593\relax
3958 \Umathcode ~0=0+\M@bfrak@num"1D594\relax
3959 \Umathcode ~p=0+\M@bfrak@num"1D595\relax
3960 \Umathcode ~q=0+\M@bfrak@num"1D596\relax
3961 \Umathcode r=0+\M@bfrak@num"1D597\relax
3962 \Umathcode~s=0+\M@bfrak@num"1D598\relax
3963 \Umathcode~ t=0+\M@bfrak@num"1D599\relax
3964 \Umathcode “u=0+\M@bfrak@num"1D59A\relax
3965 \Umathcode~v=0+\M@bfrak@num"1D59B\relax
3966 \Umathcode ~w=0+\M@bfrak@num"1D59C\relax
3967 \Umathcode ~x=0+\M@bfrak@num"1D59D\relax
3968 \Umathcode ~y=0+\M@bfrak@num"1D59E\relax
3969 \Umathcode~z=0+\M@bfrak@num"1D59F\relax}}

Reset \endlinechar.

3970 \endlinechar\count@
And that’s everything!

137

138 Implementation

Version History

Version History

New features and updates with each version. Listed in no particular order.

1.1b ... July 2018
—1nitial release

1.2 ..o August 2018
—minor bug fix for \mathfrak
—eliminated redundant batchfile

1.3 ... January 2019
—added symbols keyword
——created mathfont_example.pdf
——corrected the description of the
mathastext package
—font-change \message added to
\mathfont

1.4 ... April 2019
—\setfont command added
—\mathfont optional argument
can parse spaces
—no-operators now default
package optional argument
—added \comma command
—new fancy fatal error message
—improved messaging for
\mathfont
—internal command \mathpound
changed to \mathhash
—added a missing #1 after
\char~\" in the example code
redefining " in the user guide

1.5 o April 2019
—separated \increment and
\Delta
—version history added
—initial off-the-shelf use insert

added

1.6 December 2019
—separated implementation and
user documentation
—created mathfont_heading.tex
—created
mathfont_doc_patch.tex for use
with the index
—changed mathfont_greek.pdf
to mathfont_symbol list.pdf
—eliminated
mathfont_example.pdf
—eliminated operators package
option
—eliminated packages package
option
—font name can be package option
—added Hebrew and Cyrillic
characters
—separated ancient Greek from
modern Greek characters
—created new keywords:
extsymbols, delimiters, arrows,
diacritics, bigops, extbigops
—improved messaging
—improved internal code for local
font-change commands
—improved space parsing for the
optional argument of \mathfont
—bug fix for \#, etc. commands
—bad input for \mathbb, etc. now
gives a warning
—improved error checking for
\newmathrm, etc. commands
—\mathfont now ignores bad
options (on top of issuing an error)
—iternal commands now begin
with \Ma...

Version History Implementation 139

—added Easter Egg!
—improved indexing
—mathfont.dtx renamed as
mathfont code.dtx
—\newmathbold renamed as
\newmathbf

—default local font changes now
use \updefault, etc.

—added fatal error for missing
fontspec

—fatal errors result in \endinput
rather than \@@end

2.0 ... December 2021

Big Change: Font adjustments
for LuaTEX: new glyph boundaries
for Latin letters in math mode,
resizable delimiters, big operators,
MathConstants table based on font
metrics.

—added \charmline and
\charmfile

—added \mathconstantsfont
—certain dimensions in equations
are now adjustable when
typesetting with LuaTgX
—added adjust and no-adjust
package options

—automatic generation of ind file
—fixed symbols for
\leftharpoonup,
\leftharpoondown, and fraktur R
——cleaned up internal code and
documentation

—font names for \mathfont stored
to avoid multiple symbol font
declarations with the same font
—more information about nfss
family names stored and provided

—added option empty

—raised upper bound on
\DeclareSymbolFont to 256
—reintroduced
mathfont_example.tex with
different contents

——changed several
symbol-commands to \protected
rather than robust macros
—many user-level commands are
now \protected

—\updefault changed to
\shapedefault

—eliminated \catcode change for
space characters when scanning
optional argument of \mathfont
—improved messaging for
\mathfont

—removed dependence on fontspec
and added internal font-loader
—switched \epsilon and
\varepsilon

—switched \phi and \varphi
—changed / to produce a solidus
in math mode and added
\fractionslash

—removed
\restoremathinternals from the
user guide

—\setfont now sets \mathrm,
ete.

—added \newmathsc, other math
alphabet commands for small caps

2.1 . November 2022
—\mathbb, etc. commands change
\Unmathcodes of letters instead of
\M@(bb, etc.)@(letter) commands
—removed warnings about non-
letter contents of \mathbb, etc.

140 Implementation

—fonts loaded twice, once in
unspecified mode (for text) and
once in base mode (for math)
—nmathconstantsfont accepts
“upright” or “italic” as optional
argument

2.2 December 2022
——changed the easter egg text
—updated patch for
\DeclareSymbolFont to work
with changes to the kernel (fixed
the \M@p@tch@decl@re error
message)

—calling Plain TEX on
mathfont code.dtx produces sty
file and no pdf file

2.2 ... December 2022
—bug fix for
\mathconstantsfont

—bug fix for \M@check@int
—added doc2 option to ltxdoc in
mathfont code.dtx

22b ... August 2023
—minor changes to code and
documentation

—\ng now works in math (as not
greater than symbol) and text (as
pronounciation symbol)

23 .. September 2023
—solidus and \fractionslash are
\mathord instead of \mathbin
—removed \mathfont{fontspec}
functionality
—redesigned font-loader
—added package options default-
loader and fontspec-loader

Version History

24 April 2025
—\colon is \mathpunct instead
of \mathord
—moved \relbar and \Relbar to
arrows
—reformatted
mathfont_code.pdf
—made compatible with \mathbb,
etc. commands from other
packages
—renamed set_nomath_true to
set_nomath_false
—improved messaging
\AtBeginDocument
—removed deprecated package
options, \newmathbold,
\restoremathinternals
—more Faster egg messages

24a ... June 2025
—bug fix involving nil value and
the_font
——changed underscores in file
names to hyphens

3.0 ... January 2026
—\mathfont and \setfont no
longer restricted to preamble
—effects of \mathfont are local
instead of global
—\mathfont now overrides
previous calls to \mathfont
—added \mathfontshapes
—added \mainfont
—changed \setfont to
\documentfont (but kept old
name for backwards compatibility)
—changed
\setmathfontcommands to
\mathfontcommands and added
documentation in the user guide

Version History

—added support for arbitrary
NFSS series/shape codes in
\mathfont

—separated macros for default
shapes from macros for shapes
used in \mathfont

—formalized language of keywords
and shape identifiers
—font-loader is better about using
argument with spaces removed for
checking NFss font family
—font-loader now uses
\@tempshape and \Q@tempseries
when parsing argument

—moved assignment of \M@count
values into \M@newfont
—changed \CharmLine to
\charmline (but kept old name
for backwards compatibility)
—\charmline now uses
token.scan_string() for
scanning and expanding its
argument

——changed \CharmFile to
\charmfile (but kept old name
for backwards compatibility)
—added \charminfo

—added \charmtype

—renamed counts for
\SurdHorizontalFactor, etc. to
be at user level

—formalized language of user-
friendly versions of LuaTgX-only
commands in the user guide
—corrected axis height

—font adjustments now happen
only if mode=base

—no more virtual Latin letters in
extra encoding slots (package now
modifies Latin letters in their

Implementation 141

regular encoding slots for
base-mode fonts)

—added bold and bolditalic
shape identifiers

—no more type u (became type a)
—added separate charm
information for upright and italic
fonts (specified using / character)
—reworked default charm values
—possible to force type a and type
e characters using ? and ! in
\charmline

—added extra field in type e for
italic correction

—clarified role of bot_accent,
which does nothing, in the user
guide

——cleaned up Lua code

—added finishing touches
callback

—bug fix involving the handling of
italic correction in Lua font
adjustments

—bug fix involving characters in
operator font not displaying
——corrected UTF-16BE
information added to character
subtables in the font

—new definition for \not
—added \negslash

—added script=math to
OpenType features for fonts if
intended for math (so math fonts
load with built-in math features)
—added support for Unicode input
—switched \epsilon and
\varepsilon (so \epsilon is
Unicode epsilon and \varepsilon
is Unicode lunate epsilon)

—surd is now an active character

142 Implementation

in math mode (\mathcode"8000)
—cleaned up error messages
—improved messaging
\AtBeginDocument

—better error checking in
\M@check@int

30a................ February 2026
—removed spurious space in
\mainfont
—for base-mode version of fonts,
replaced script=math with
-nomathparam
—added script=latn to default
font features

Version History

Index

Index

Implementation

Entries refer to lines in the code. Bold means a definition.

Symbols

\# 3263
N 1614, 3264
N&E 3265
N Lo 319, 334, 338, 342
= 3182
N/ 320, 335, 339, 343
NS 624
= ... 321, 348-350, 1532, 3183
\@@Relbar 3190, 3194, 3630, 3633
\@@relbar 3189, 3193, 3629, 3632
\@Relbar 3183, 3186, 3622, 3624, 3626
\@documentfont 1087, 1088
\@mainfont 968, 969, 1089
\@mathconstantsfont .. 1105, 1106
\@Gmathfontshapes 1152, 1154, 1191
\@percentchar 1728,

1862, 1951, 1959, 1960, 2045, 2158
\@relbar 3182, 3185, 3621, 3623, 3625

\@sqrts@gn 3113, 3117, 3132
N~ 1531
N e 142, 185
A
\aacute 2818
\acute 2817
\addtocharm@ 1615, 1620, 1665
\agreeklowerdefault 536
\agreekupperdefault 535
\aleph 2999
\Alpha 2560, 2830
\amalge. .. 3333
\angle 3290, 3305
\approx 3252
\approxeq 3383
\Narceq 3390
\arrowsdefault 548

\bar
\bbdefault
\bcaldefault
\bclubsuit
\bdiamondsuit
\because

\beth
\bfrakdefault
\bheartsuit
\bigand
\bigat
\bigcap
\bigcup
\bigdiv
\bigdollar
\bighash
\bigodot
\bigoplus
\bigopsdefault
\bigotimes
\bigp
\bigpercent
\bigplus
\bigq
\bigS
\bigsqcap
\bigsqcup
\bigtimes
\bigvee
\bigwedge
\bot
\bowtie
\breve

2561,
2536,

2648, 3152,
2647, 3151,

2651, 3155,
2649, 3153,

2652,
2653, 3156,
3199,
2645, 3149,
2646, 3150,

3204,

143

552

3316
3368
2831
2875
3000

3200
3161
3160
3210

3201
3169
3167

544

3206

3208
3170
3171
3209
3158
3159
3307
3365
2822

144 Implementation

\bspadesuit 3318, 3323
\bullet 3241
C
\caldefault 550
\cdot 3244
\CharmFile 91, 1356, 1373, 1685

\charmfile

89, 729, 1356, 1371, 1666, 1685

\CharmInfo 92, 1356, 1688, 1705

\charminfo
110, 1361, 1361, 1686, 1692

\charminfo@ 1616, 1623, 1686

\CharmLine 90, 1356, 1372, 1684

\charmline 88, 1346,
1355, 1370, 1665, 1675, 1684

93, 1356, 1707, 1716

\CharmType
\charmtype
114, 1365, 1365, 1687, 1714

\charmtype@ 1617, 1656, 1687
\check 2824
\Chi 2581, 2851
\chi 2606, 2895
\circlearrowleft 3561
\circlearrowright 3530
\clubsuit 3326
\colon 3179, 3255
\coloneq 3387
\comma 3259
\cong 3269, 3382
\coprod 2644, 3148, 3157
\curvearrowleft 3560
\curvearrowright 3529
\cyrilliclowerdefault 538
\cyrillicupperdefault 537
D
\dagger 3242
\daleth 3002
\dashv 3309
\ddagger 3243
\ddot 2820
\Ddownarrow 3592

Index
\DeclareFontFamily 809, 815
\DeclareFontShape 749
\DeclareMathAlphabet 1228
\defeq 3395
\degree 3231
\delimitersdefault 542
\Delta 2563, 2833
\delta 2588, 2877
\diacriticsdefault 532
\diamond 3337
\diamondsuit 3325
\Digamma 2909
\digamma 2921
\digitsdefault 540
\Ndiv ... 2641, 3239
\documentfont
118, 1087, 1101, 1102, 1520, 1526
\dot 2819
\doteq 3295, 3386
\Downarrow 3493, 3591
\downarrow 3492, 3590
\downarrowtobar 3600
\downbararrow 3593
\downdasharrow 3594
\downdownarrows 3602
\downharpoonleft 3597
\downharpoonright 3598
\downuparrows 3606
\downupharpoons 3608
\downwhitearrow 3601
E
Nell 3298
\emptyset 3301
\Epsilon 2564, 2834
\epsilon 2589, 2878
\eqcolon 3388
\egsim 3380
\equiv 3253
\Eta 2566, 2836
\exists 3300
\extbigopsdefault 545
\extsymbolsdefault 547

Index Implementation 145
F I
\fakelangle 2201, 2627, 3078 \ifM@adjust@font 67,
\fakellangle 2205, 2629, 3084 423, 435, 561, 1147, 1268, 1528,
\fakerangle 2203, 2628, 3081 2698, 2855, 3041, 3104, 3198, 3485
\fakerrangle 2207, 2630, 3087 \ifM@arg@good 528, 1225,
\familydefault 994 1324, 1331, 1338, 1345, 1690, 1709
\fflat 3313 \ifM@font@loaded 68, 1513, 1525
\flat 3310 \ifMG@mode®@ 529, 1027, 1164
\fontfamily 1001 \ifM@Noluaotfload 66, 183
\forall 3299 \ifM@XeTeXLuaTeX 65, 140
\fractionslash 3238 \iiint 2657, 3173
\frakdefault 551 \iiintop 3163, 3173
\from 3537 \diint 2656, 3172
\iintop 3162, 3172
G NID o 3472, 3474
\Gamma .. 2562, 2832 \qpagn ... 2558, 2811
\gamma 2587, 2876 \increment 2857, 2864, 3232
\gapprox 3378 \infty ..o 3229
NG - 3250 \IntegralltalicFactor
\gEAQ « v v e 3376 ... 85,1343, 1351, 1354, 1375
NEEE - 3374 N\intop ..o 2655, 3145
\gimel ... 3001 \1opa 2568, 2838
\gRapprox 3446 \iopa 9593, 2882
\gneq ... 3429
\gneqq - . i e 3431 J
\gnsim, 3444 \jmath 2559, 2812
\grave 2821
\greeklowerdefault 534 K
\greekupperdefau]_t 533 \kaf 3009
\gsim 3398 \Kappa 2569, 2839
\kappa 2594, 2883
H \kern 3124, 3126, 3129
\hat 2823 \Koppa . ..o 2910
\hbar 2813, 2814 \koppai..... 20992
\heartsuit 3324
\hebrewdefault 539 L
\het 3006 \Lambda 2570, 2840
\Heta 2907 \lambda 2595, 2884
\heta 2919 \lamed 3010
\hookleftarrow 3500, 3550 \lapprox 3377
\hookrightarrow 3499, 3519 \lbrace 3066
\hourglass 3366 \lcirclearrow 3619
\hsurdfactor 493, 499, 1332 \Leftarrow 3539

146 Implementation

\leftarrow 3536, 3537
\leftarrowtail 3554
\leftarrowtobar 3563
\Leftbararrow 3546
\leftbararrow 3544, 3545
\leftbrace 3050, 3101
\leftdasharrow 3551
\leftharpoondown 3553
\leftharpoonup 3552
\leftleftarrows 3565
\leftleftleftarrows 3566
\leftoplusarrow 3555
\Leftrightarrow 3568
\leftrightarrow 3567
\leftrightarrows 3573
\leftrightarrowstobar 3575
\leftrightharpoons 3574
\leftrightwavearrow 3572
\leftsquigarrow 3557
\leftwavearrow 3556
\leftwhitearrow 3564
\leq -« oo 3249
\leqq « v v 3375
\1lguil 2197, 2623, 3070, 3097
\lightningboltarrow 3596
\Lleftarrow 3541
\1lguil 2199, 2625, 3074, 3099
\11L .o 3373
\1napprox 3445
\lneqoii... 3428
\Ineqq -« v v vt 3430
\lnsim 3443
\Longleftarrow 3502, 3543
\longleftarrow 3497, 3542
\Longleftbararrow 3549
\longleftbararrow 3547, 3548
\Longleftrightarrow 3503, 3571
\longleftrightarrow 3498, 3570
\longleftsquigarrow 3558
\longmapsfrom 3548
\longmapsto 3517
\Longrightarrow 3501, 3512

Index
\longrightarrow 3496, 3511
\Longrightbararrow 3518
\longrightbararrow 3516, 3517
\longrightsquigarrow 3527
\looparrowleft 3559
\looparrowright 3528
\lowerdefault 531
\lsim 3397
M
\M@addto@families .. 592, 853, 860
\M@agreeklower@set . 1075, 2917
\M@agreeklowershape 2918
\M@agreekupper@set . 1075, 2905
\M@agreekuppershape 2906
\M@arrows@set 1075, 3488
\M@arrowsshape 3489
\M@BadIntegerError 718,
1327, 1334, 1341, 1351, 1705, 1716
\M@bb@mathcodes 3642, 3647
\M@bb@num 3645, 3648-3709
\M@bb@set 1075, 3635
\M@bbshape 3646
\M@bcal@mathcodes 3847, 3852
\M@bcal@num 3850, 3853-3904
\M@bcal@set 1075, 3840
\M@bcalshape 3851
\M@bfrak@mathcodes ... 3912, 3917
\M@bfrak@num 3915, 3918-3969
\M@bfrak@set 1075, 3905
\M@bfrakshape 3916
\M@bigops@set 1075, 3139
\M@bigopsshape 3140
\M@bound@ssert 1750, 1949
\MQ@cal@mathcodes 3717, 3722
\M@cal@num 3720, 3723-3774
\M@cal@set 1075, 3710
\M@calshape 3721
\M@Charm 496, 1670, 1672, 1677, 1681

\M@check@csarg .. 1192, 1224, 1235
\M@check@int 1269,
1323, 1330, 1337, 1344, 1689, 1708

Index

\M@check@nfss@shapes 734, 779, 784

\M@check@opt 864, 881
\M@checkspecials 1204, 1229
\M@cyrilliclower@set .. 1075, 2963
\M@cyrilliclowershape 2964
\M@cyrillicupper@set .. 1075, 2929
\M@cyrillicuppershape 2930
\M@declare@shape . 746, 760, 862
\M@DecSymDef 486, 488

\M@default@newmath@cmds
.......... 1237, 1246, 1257
\M@defaultkeys 559, 562, 562, 1004
\M@define@newmath@cmd
........... 1233, 1247, 1256
\M@delimiters@set 1075, 3042, 3091

\M@delimitersshape 3043, 3092
\M@diacritics@set . 1075, 2815
\M@diacriticsshape 2816
\M@digits@set 1075, 3026
\M@digitsshape 3027
\M@empty@ssert 1799
\M@entries@ssert 1903, 1919
\M@entries@warning 1905, 1921
\M@extbigops@set 1075, 3146
\M@extbigopsshape 3147
\M@extsymbols@set 1075, 3288
\M@extsymbolsshape 3289
\M@families 566, 593,
595, 595, 597, 597, 1476, 1479
\M@families@begin . 1459, 1480
\M@FamilyTypeError 626, 986
\M@fill@nfss@shapes
.......... 751, 810, 816, 863
\M@FontChangeInfo 598, 1067
\M@FontFamilyInfo .. 599, 808, 814
\M@fontinfo@begin . 1432, 1497
\Me@fontinfo@begin®
...... 1436, 1447, 1457, 1458
\M@FontShapesError
. 670, 804, 1032, 1050, 1117
\M@frak@mathcodes 3782, 3787
\M@frak@num 3785, 3788-3839

Implementation 147

\M@frak@set 1075, 3775
\M@frakshape 3786
\M@greeklower@set . 1075, 2872
\M@greeklowershape 2873
\M@greekupper@set . 1075, 2828
\M@greekuppershape 2829
\M@hebrew@set 1075, 2997
\M@hebrewshape 2998
\M@HModeError
699, 3638, 3713, 3778, 3843, 3908
\M@index@ssert 1821, 1823
\M@InvalidOptionError .. 634, 869

\M@InvalidSuboptionError 642, 951

\M@keys 554, 870, 1496
\M@loader

70, 366, 367, 373, 406, 408, 806
\M@localfonts@begin .. 1457, 1506
\M@lower@set 1075, 2783
\M@lowershape 2784
\M@LuaTeXOnlyWarning .. 682, 1149
\M@missing@ssert 1803
\M@MissingCSError 690, 1197, 1201
\M@MissingOptionError .. 651, 867

\M@MissingSuboptionError 660, 888

\M@mode@false 908, 911
\M@mode@true 905
\M@newfont
765, 971, 1007, 1107, 1156, 1226
\M@NewFontCommandInfo .. 602, 1227
\M@NFSSShapesWarning ... 604, 742
\M@NoBaseModeError 612, 786
\M@NoCharmFileError 725, 1683
\M@NoFontAdjustError
....... 708, 1359, 1361, 1365
\M@NoluaotfloadError ... 186, 214
\M@NoMathfontError
72, 95, 107, 110, 114, 124, 131
\M@num@localfonts
491, 579, 1399, 1408, 1502
\M@number@ssert 1776
\M@operator@set 1075, 3038

\M@operatorshape 3040

148 Implementation

\M@otf@features
412, 417, 810, 816, 825, 831
\M@p@tch@decl@re 485, 486
\M@parse@option 878, 1012
\M@parse@sub

. 894, 897, 1017, 1109, 1162

\M@radical@set .. 1075, 3105, 3134
\M@radicalshape 3106, 3135
\M@SetMathConstants
...... 1103, 1129, 1130, 1151
\M@split@colon 761, 766
\M@split@slash 915, 959
\M@split@star 901, 962
\M@strip@colon 764, 768
\M@stripQequals 877, 893
\M@strip@star 965
\M@SymbolFontInfo
600, 1034, 1052, 1119, 1167, 1179
\M@symbolfonts@begin .. 1458, 1490
\M@symbols@set 1075, 3177
\M@symbolsshape 3178
\m@th@const@nts@fGmily . 1110,
1113, 1119, 1126, 1135, 1139

\m@th@const@nts@series
........... 1111, 1136, 1140

\m@th@const@nts@sh@pe
........... 1112, 1136, 1141

\MQupper@set 1075, 2755
\M@uppershape 2756
\M@virtual@ssert 2014
\M@XeTeXLuaTeXError 143, 165
\mainfont .. 120, 629, 631, 968, 970
\mapsfrom 3545
\mapsto 3514
\math@fonts 1144, 1151
\mathand 3221, 3265
\mathbackslash 3063, 3064
\mathbb 1205, 3636, 3638
\mathbcal 1205, 3841, 3843
\mathbf 1261
\mathbfit 1262

\mathbfrak 1205, 3906, 3908

Index
\mathbfsc 1265
\mathbfscit 1266
\mathcal 1205, 3711, 3713
\mathchoice 3274

\mathconstantsfont
122, 1092, 1104, 1149
\mathdollar 3219
\mathellipsis 3180, 3262
\mathfontcommands 1096, 1258, 1267
\mathfontshapes 121, 681, 1152, 1190

\mathfrak 1205, 3776, 3778
\mathhash 3218, 3263
\mathit 1260
\mathng 3483, 3484
\mathnolimitsmode 1529
\mathparagraph 3222
\mathpercent 3220, 3264
\mathring 2826
\mathrm 1259
\mathsc 1263
\mathscit 1264
\mathsection 3223
\mathsterling 3224, 3225
\mem 3011
\mid 3227
\mkern 3132
\models 3272
N
\nabla 2859, 2868, 3211, 3486
\RapProXt 3437
\natural 3311
\Nearrow 3610
\nearrow 3609
\neg 3226
\negslash 3273
\neq 3296, 3424
\nequiv 3459
\neswarrow 3618
\newmathbf 100, 1240, 1250, 1261
\newmathbfit . 101, 1241, 1251, 1262
\newmathbfsc . 104, 1244, 1254, 1265

Index

\newmathbfscit 105, 1245, 1255, 1266
\newmathfontcommand
130, 131, 1223, 1224, 1232, 1236

\newmathit 99, 1239, 1249, 1260
\newmathrm 98, 1238, 1248, 1259
\newmathsc 102, 1242, 1252, 1263
\newmathscit . 103, 1243, 1253, 1264
\Dgeq - v v 3427
\ngsim 3442
\nLeftarrow 3540
\nleftarrow 3538
\nLeftrightarrow 3569
\nleq oo 3426
\nlsim 3441
\Dprec 3447
\npreceq 3449
\nRightarrow 3509
\nrightarrow 3507
\nsim 3436
\nsimeq 3438
\nsimeqq 3439
\nsqsubseteq 3420
\nsqsupseteq 3421
\nsubset 3414
\nsubseteq 3416
\nsucc L 3448
\nsucceqg 3450
\nsupset 3415
\nsupseteq 3417
\ntriangleleft 3432
\ntrianglelefteq 3434
\ntriangleright 3433
\ntrianglerighteq 3435
\Nu ... 2572, 2842
\nullfont 997
\nun 3012
\Nwarrow 3612
\DWarrow 3611
\nwsearrow 3617
O
Nodiv 3343

Implementation 149

Nodot 3345
\oiiint 2660, 3176
\oiiintop 3166, 3176
\oiint 2659, 3175
\oiintop 3165, 3175
\oint 2658, 3174
\ointop 3164, 3174
\Omega 2583, 2853
\omega 2608, 2897
\Omicron 2574, 2844
\omicron 2599, 2888
\ominus 3342
\operator@font 3039
\operatordefault 541
\oplus 3340
\oslash 3344
\otimes 3341
P
\parallel 3254
\partial 3230
\Phi 2580, 2850
\phi 2605, 2894
\Pi ... 2575, 2845
\pi ... 2600, 2889
R 3240
\prec 3399
\precapprox 3407
\preceq 3401
\preceqq 3403
\precnapprox 3457
\precneq 3451
\precneqq 3453
\precnsim 3455
\precprec 3409
\precsim 3405
\prime 3216
\prod 2642, 3142, 3144
\proportion 3370
\propto 3364
\Psi 2582, 2852
\psi 2607, 2896

150 Implementation

Q
Ngeq - vt 3396
\gof 3017
R

\r@@t 3115
\radicaldefault 543
\radicandoffset 495, 501, 3132
\ratio 3369
\rbrace 3068
\rcirclearrow 3620
\Relbar 3186,

3190, 3194, 3626, 3630, 3633
\relbar 3184,

3189, 3193, 3625, 3629, 3632
\resh 3018
\rguil 2198, 2624, 3072, 3098
\Rho 2576, 2846
\rho 2601, 2890
\Rightarrow 3508
\rightarrow 3505, 3506
\rightarrowtail 3523
\rightarrowtobar 3532
\Rightbararrow 3515
\rightbararrow 3513, 3514
\rightbrace 3051, 3102
\rightdasharrow 3520
\rightharpoondown 3522
\rightharpoonup 3521
\rightleftarrows 3576
\rightleftharpoons 3504, 3577
\rightoplusarrow 3524
\rightrightarrows 3534
\rightrightrightarrows 3535
\rightsquigarrow 3526
\rightwavearrow 3525
\rightwhitearrow 3533
\ringeq 3389
\rootbox 3123, 3126, 3128
\rrguil 2200, 2626, 3076, 3100
\Rrightarrow 3510
\RuleThicknessFactor

... 84,1322, 1327, 1354, 1374

Index

\rulethicknessfactor 492, 498, 1325

S
\samekh 3013
\Sampi 2908
\sampi 2920
\San, 2913
\san 2925
\Searrow 3614
\searrow 3613
\selectfont 1001
\Seq . .o 3385
\setfont 83, 1098, 1100
\setminus 3245
\sharp 3312
\shin 3019
\Sho 2912
\Sigma 2577, 2847
\sigma 2602, 2891
\sim 3251, 3268, 3270
\simeq 3267, 3291, 3379
\simeqq 3381, 3382
\simneqq, 3440
\spadesuit 3323
\sqgcap 3331
\SQCUp 3332
\sqdot 3349
\sgminus 3348
\sgplus 3346
\sqrt 3111
\sqrtsign 3116, 3131
\sgsubset 3292, 3356
\sqsubseteq 3358
\sgsubsetneq 3422
\sgsupset 3293, 3357
\sgsupseteq 3359
\sqgsupsetneq 3423
\sqtimes 3347
\ssharp 3314
\sssim 3384
\st@ck@fl@trel 1380, 1381

\stack@flatrel .. 1379, 3268, 3270

Index Implementation
\star 3336 \tilde
\stareq 3393 \times 2640,
\Stigma 2911 \tracinglostchars 1395
\stigma 2923 \triangleeq
\subset 3352 \triangleleft
\subseteq 3354 \trianglelefteq
\subsetneq 3418 \triangleright
\SUCC oottt 3400 \trianglerighteq
\Succapprox 3408 \tsadi
\succeq 3402 \twoheaddownarrow
\SUCCEQQq -« v e oo 3404 \twoheadleftarrow
\SUCCnapprox 3458 \twoheadrightarrow
\succneq 3452 \twoheaduparrow
\suceneqq ... 3454 U
\succnélm 3456 \Uparrow 3491,
\succsim 3406
\uparrow 3490,
\succsucc ... 3410 \
uparrowtobar
\sum 2643, 3141, 3143 \UPbATATTOW . .« o\ oo
P
\supset 3353 \updasharrow
\supseteq 3355 \Updownarrow 3495,
\supsetneq 3419 \updownarrow 3494
\surd . 2654, 3107, 3108, 3136, 3137 \UPAOWRATTOWS
\surdbox 489, \updownharpoons
311?’3119’3120’312273124’3129 \upharpoonleft
\SurdHorizontalFactor \upharpoonright
- -+ 87,1329, 1334, 1355, 1376 \upperdefault
\SurdVerticalFactor \Upsilon 92579,
.- .- 86,1336, 1341, 1355, 1377 \upsilon 2604
\Swarrow 3616 \UpUPATTOWSoovo...
\SWarrow 3615 \upwhitearrow
\symbolsdefault 546 \upwhitebararrow
\Uradical
T \Uuparrow
\Tauo...... 2578, 2848
\tau 2603, 2892 Vv
\tav ... 3020 \varbeta 2609,
\tet 3007 \varcdot
\textbackslash 3063 \varDigamma
\textng 3482, 3484 \vardigamma
\therefore 3367 \varepsilon 2610
\Theta 2567, 2837 \varIm 3477
\theta 2592, 2881 \varkaf

151

2827
3236
1396
3394

3579
3578
3586

3582
3604
3603

2849
2893

3338

2927
2899
3479
3021

152 Implementation

\varkappa 2900
\varKoppa 2916
\varkoppa 2928
\varmem 3022
\varnun 3023
\varpe 3024
\varphi 2614, 2904
\varRe 3466, 3468
\varrho 2612, 2902
\varSampi 2914
\varsampi 2926
\varsetminus 3339
\varsigma 2613, 2903
\varTheta 2584, 2854
\vartheta 2611, 2901
\vartsadi 3025
\Vav ..o 3004
\vdash 3308
\vee 3328
\veeeq 3392
\vert 3061

Index

\vsurdfactor 494, 500, 1339
\\%

\wclubsuit 3319

\wdiamondsuit 3320, 3325

\wedge 3327

\wedgeeq 3391

\wheartsuit 3321, 3324

\WD oo 3297

\wspadesuit 3322
X

\NXL 2573, 2843
Y

\yod ... 3008
Z

\zayin 3005

\Zeta 2565, 2835

\zeta 2590, 2879

\zigzagarrow 3595, 3596

